
Enhancements of Trapdoor Permutations

Oded Goldreich
Department of Computer Science
Weizmann Institute of Science

Rehovot, Israel.
oded.goldreich@weizmann.ac.il

Ron Rothblum
Department of Computer Science
Weizmann Institute of Science

Rehovot, Israel.
ron.rothblum@weizmann.ac.il

August 3, 2011

Abstract

We take a closer look at several enhancements of the notion of trapdoor permutations.
Specifically, we consider the notions of enhanced trapdoor permutation (Goldreich 2004) and
doubly enhanced trapdoor permutation (Goldreich 2008) as well as intermediate notions (Roth-
blum 2010). These enhancements arose in the study of Oblivious Transfer and NIZK, but they
address natural concerns that may arise also in other applications of trapdoor permutations. We
clarify why these enhancements are needed in such applications, and show that they actually
suffice for these needs.

Keywords: Trapdoor Permutations, Oblivious Transfer, Non-Interactive Zero-Knowledge

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 159 (2011)

Contents

1 Introduction 1
1.1 A historical perspective . 1
1.2 The difficulties . 2
1.3 The current article . 3

2 Definitions 4

3 Enhanced TDP and 1-out-of-2 OT 7
3.1 The EGL Protocol . 7
3.2 Security of the EGL protocol based on ETDP . 8

4 Doubly-Enhanced TDP, 1-out-of-3 OT, and NIZK 9
4.1 1-out-of-3 OT . 10
4.2 Noninteractive Zero-Knowledge Proofs . 12

5 Obliviously Sampling Ciphertexts 13
5.1 On constructing public-key OCS schemes . 14
5.2 Sampling Multiple Ciphertexts Obliviously . 14

6 Intermediate Notions 15
6.1 Between Doubly-Enhanced and Idealized TDP . 15
6.2 Between Enhanced and Doubly-Enhanced TDP . 16

Bibliography 18

A Definitions of OT and NIZK 20
A.1 Oblivious Transfer . 20
A.2 Non-Interactive Zero-Knowledge Proofs . 20

B On the RSA and Rabin Collections 21
B.1 The RSA collection satisfies both enhancements . 21
B.2 Versions of the Rabin collection that satisfy both enhancements 21

C An Enhanced TDP whose Hardcore Bits are not Pseudorandom 22

1 Introduction

This article surveys and studies two enhancements of the notion of trapdoor permutations (TDP).
Our exposition clarifies how these enhancements of TDP emerge in two central applications, and
shows that these enhancements actually suffice for the corresponding applications. As is often the
case when studying known definitions, we find it useful to start with a review of the historical roots
of the various definitions.

1.1 A historical perspective

The notion of trapdoor permutations was formulated by Yao [24] as a sufficient condition for the
construction of secure public-key encryption schemes (as put forward by Diffie and Hellman [7] and
rigorously defined by Goldwasser and Micali [20]). Indeed, building on the ideas of [6, 20], Yao [24]
showed that any collection of trapdoor permutations can be used to construct a secure public-key
encryption scheme.

Loosely speaking, the notion of trapdoor permutations (TDP) refers to a collection of permu-
tations that are easy to sample and have domains that are easy to sample from (when given the
description of the permutation). The main requirements are that these permutations are easy to
evaluate, easy to invert when given a suitable trapdoor, but hard to invert when only given the
description of the permutation (but not the trapdoor).

The minimal requirements regarding the sampleability of permutations and their domains were
glossed over when constructing secure public-key encryption schemes (both in [20, 24] and [5]
(cf. [14, Sec. 5.3.4])). Consequently, in later years, researchers have tended to think of TDP in
terms of the idealized case in which the corresponding sampling algorithms are trivial (i.e., they
just output their random coin tosses). This tendency seems to be the source of the flaws that
followed.

Specifically, trapdoor permutations were suggested as a basis for the construction of Oblivious
Transfer (OT) protocols [8] and general Non-Interactive Zero-Knowledge proof (NIZK) systems [9].
In both cases, an idealized TDP suffices for these constructions, and this promoted a false belief
that a general TDP would also do. (We note that the difference between idealized TDP and general
TDP is crucial, because no candidate for an idealized TDP is known, whereas a general TDP can
be constructed based, say, on factoring.)

The first difficulty was discovered by Bellare and Yung [2], who observed that the soundness of
the NIZK construction of [9] relies on the hypothesis that the set of permutations in the collection
is easily recognizable (which is trivial in the idealized case). Since this hypothesis does not hold in
the known candidate TDPs, Bellare and Yung relaxed the hypothesis to requiring that membership
in the aforementioned set (or actually just being almost 1-1) can be demonstrated by a special-
purpose NIZK, and showed that the relaxed hypothesis can be met for all known candidates [2].
Interestingly, their presentation avoids the problem of sampling in the domains of the various
permutations, by postulating that these domains consist of all strings of a specific length (which,
in turn, can be easily determined by the description of the permutation). We note that all known
candidates can be converted to such a form. Still, there is a difference between the latter form (of
trivially sampleable domains) and the general case, and the rest of our discussion refers to that
difference.

The difference between TDP with trivially sampleable domains and general TDP was first
observed by Goldreich [12], when producing a detailed proof of the secure multi-party computation

1

result of [19], which relies on the construction of OT. Specifically, he discovered that the construction
of OT outlined in [8, 19], which works when the TDP has trivially sampleable domains, may not
be secure when a general TDP is employed, but is secure when using an enhanced notion of a TDP.
This enhancement requires that the permutation is hard to invert also when one is given the coins
that were used to sample the domain element (rather than merely the domain element itself).

We note that the enhanced notion of hardness-to-invert collapses to the original notion (of
hardness-to-invert) in the case that the domain-sampling algorithm is trivial (i.e., the permutation’s
domain consists of all strings of a specific length). More generally, this enhancement is insignificant
whenever it is easy to invert the domain-sampling algorithm (i.e., given an element in the domain,
find random coins that cause the domain-sampling algorithm to produce the given element). We
also mention that, for the purpose of constructing OT, the enhancement may be avoided if the
permutation’s domain is dense (by using a more complex OT construction; cf. [22]).

Turning back to the main thread, we mention that while Goldreich [14, Apdx. C.4.1] claimed
that the aforementioned enhancement of TDP suffices for constructing general NIZK, Jon Katz
raised doubts regarding this claim. These justified doubts led Goldreich [16] to propose the notion
of doubly-enhanced TDP, and show that this notion does suffice for constructing general NIZK.

Subsequent work by Rothblum [23] uncovered a taxonomy of notions of TDP, residing between
enhanced TDP and doubly-enhanced TDP. These intermediate notions will be further discussed in
Section 6.

To summarize the historical account, we note that the general formulation of TDP was envi-
sioned as the most general and/or minimal formulation of a collection of functions that allows for
the construction of secure public-key encryption schemes. This application determined the main
requirements (i.e., easy to evaluate, easy to invert when given a suitable trapdoor, but hard to
invert when not given the trapdoor), whereas the sampling conditions were stated in the most
general form possible (i.e., merely requiring easy sampling of permutations and domain elements).
However, the general (and innocent-looking) formulation of the sampling conditions turned out to
be a problem when seeking to construct OT and general NIZK based on TDP. We shall review
these difficulties in the next subsection.

1.2 The difficulties

The following presentation does not preserve the chronological order (which was followed in Sec-
tion 1.1). Also, we shall only sketch the nature of the difficulties that arise and the way in which they
are addressed by the enhancements. Corresponding detailed descriptions appear in later sections.

We shall refer to a collection of the permutations of the form fα : Dα → Dα, where α is
the index (or description) of the permutation fα, and to two sampling algorithms: (1) an index-
sampling algorithm I1 that, on input coins s, outputs an index α = I1(s); and (2) a domain-
sampling algorithm S that, on input an index α and coins r ∈ {0, 1}|α|, outputs an element in the
corresponding domain (i.e., S(α, r) ∈ Dα).1 Indeed, the index of the permutation is associated
with its description, and the hardness-to-invert condition refers to inverting fα on y, when α and
y are selected by the foregoing sampling algorithms (i.e., α← I1(s) and y ← S(α, r), where s and
r are selected uniformly in {0, 1}n). The idealized case, mentioned in Section 1.1, refers to the case
that all strings are valid indices and Dα = {0, 1}|α| for every α.

1Indeed, for simplicity (and without loss of generality), we assumed here that the number of coins taken by S(α, ·)
is |α|. Similarly, we assume here that |I1(s)| = |s|.

2

The first difficulty refers to the construction of OT based on TDP. The security of the standard
construction of [8] (as well as other applications) relies on the hypothesis that a party knowing
α = I1(s) and r (which are chosen as above), is unable to invert fα on S(α, r). Note that this
would follow from the hardness-to-invert condition if given (α and) y one can efficiently find a
random r such that y = S(α, r). However, there is no reason to assume that such a “reverse-
sampling” is feasible in general. Instead, one may define enhanced TDP as TDP that satisfy this
enhanced hardness-to-invert condition, and note that the popular candidates for TDP actually yield
enhanced TDP. Using any such enhanced TDP allows to construct an OT protocol.

The second difficulty refers to the soundness of a general NIZK based on TDP. In this setting the
prover is supposed to select a random permutation (in the TDP collection) and send its description
to the verifier, and the soundness of the proof system relies on the hypothesis that the description
sent (i.e., α) indeed refers to an almost 1-1 function (i.e., fα is almost 1-1). In general, as observed
in [2], this hypothesis needs to be tested (by the verifier), and a natural way of going so it asking
the prover to provide the inverses of the function (i.e., of fα) on a sequence of randomly selected
domain elements. If we use a general TDP, then the prover is asked to provide the inverses of fα
on S(α, r1), ..., S(α, rm), when given r1, ..., rm that are randomly distributed (and are part of the
common random string).

The latter proposal brings us to a third difficulty, which refers to the question of whether
providing the value of f−1α (S(α, r)) for a random r is zero-knowledge. The answer would have
been positive if (given α) it were feasible to generate random samples of the form (x, r) such that
S(α, r) = fα(x), since in this case x = f−1α (S(α, r)). But, again, this condition may not hold in
general, and postulating that it does hold is the contents of another enhancement.2

The construction of general NIZK based on TDP uses the two aforementioned enhancements:
The first enhancement is used in order to argue that, when seeing α and r, the (unrevealed) value
of f−1α (S(α, r)) remains secret. The second enhancement is used in order to argue that revealing
f−1α (S(α, r)) for a random r is actually zero-knowledge (w.r.t a fixed α).

We note that the two difficulties that give rise to the two enhancements of TDP are natural
ones, and are likely to arise also in other (sophisticated) applications of TDP. We also note that the
source of both difficulties is that, in general, obtaining an element of Dα may not be computation-
ally equivalent to obtaining the coins that are used to produce this element. This computational
equivalence holds only in the special case in which there exists an efficient reversed domain-sampler
(i.e., a probabilistic polynomial-time algorithm that on input (α, y) outputs a string that is uni-
formly distributed in {r : S(α, r) = y}). (We mention that adaquate implementations and/or
variants of the popular candidate collections of trapdoor permutations (e.g., the RSA and Rabin
collections) do have efficient reversed domain-sampler.)

1.3 The current article

This article provides a revised account of the findings in [16, 23]. The focus of the current article
is on the notion of TDP and its enhancements. In contrast, the focus of Goldreich [16] is on the
application to general NIZK, whereas the starting point of Rothblum [23] is the two enhancements
mentioned in Sections 1.1 and 1.2. In particular, we explore the entire range between general
TDP and doubly-enhanced TDP, while Rothblum [23] focuses on the range between enhanced

2Again, if there exists a reverse-sampler for S, then it is easy to generate random samples of the form (x, r) such
that S(α, r) = fα(x). This is done by uniformly selecting x, and obtaining r from the reverse-sampler.

3

TDP and doubly-enhanced TDP. We also present an additional application of the aforementioned
enhancements in the context of public-key encryption.

We note that [16, 23] have not been published before, and the current article should be viewed
as a combined journal version of these two works. We view the current article as a hybrid of a
survey and a research article, and hope that it will help to clarify the confusion around the various
notions of enhanced TDP.

Organization. In Section 2 we recall the definition of TDP and present its two aforementioned
enhancements. These enhancements were motivated in Section 1.2, and these motivations will be
detailed in the subsequent sections. In particular, Section 3 details how the first enhancement arises
out of the construction of 1-out-of-2 OT, whereas Section 4 details how the second enhancement
arises out of the construction of 1-out-of-3 OT and general NIZK systems. In Section 5 we discuss an
application of the two enhancedments to oblivious sampling of ciphertexts in public-key encryption.
In Section 6, we consider some intermediate notions of TDP that arise naturally in the foregoing
applications.

Notation. We denote by A(x) the output distribution of algorithm A on input x and by A(x; r)
the deterministic output of algorithm A on input x and the random string r.

2 Definitions

Recall that a collection of trapdoor permutations, as defined in [13, Def. 2.4.5], is a collection of
finite permutations, denoted {fα : Dα → Dα}, accompanied by four probabilistic polynomial-
time algorithms, denoted I, S, F and B (for index, sample, forward and backward), such that the
following (syntactic) conditions hold:

1. On input 1n, algorithm I selects a random n-bit long index α of a permutation fα, along with
a corresponding trapdoor τ ;

2. On input α, algorithm S samples the domain of fα, returning an almost uniformly distributed
element in it;

3. For any x in the domain of fα, given α and x, algorithm F returns fα(x) (i.e., F (α, x) =
fα(x));

4. For any y in the range of fα if (α, τ) is a possible output of I(1n), then, given τ and y,
algorithm B returns f−1α (y) (i.e., B(τ, y) = f−1α (y)).

The standard hardness condition (as in [13, Def. 2.4.5]) refers to the difficulty of inverting fα on
a uniformly distributed element of its range, when given only the range-element and the index
α. That is, letting I1(1

n) denote the first element in the output of I(1n) (i.e., the index), it is
required that, for every probabilistic polynomial-time algorithm A (resp., every non-uniform family
of polynomial-size circuit A = {An}n), it holds that

Pr
α←I1(1n)
x←S(α)

[A(α, fα(x)) = x] = µ(n), (1)

4

where µ denotes a generic negligible function. Namely, A (resp., An) fails to invert fα on fα(x),
where α and x are selected by I and S as above. An equivalent way of writing (1) is

Pr
α←I1(1n)
r←Rn

[A(α, S(α; r)) = f−1α (S(α; r))] = µ(n), (2)

where Rn denotes the distribution of the coins of S on n-bit long inputs. That is, A fails to invert
fα on S(α; r), where α and r are selected as above.

We note that the idealized cased mentioned in the introduction refers to the special case in which
(1) I1(1

n) is uniformly distributed in {0, 1}n, and (2) Dα = {0, 1}|α|. Recall that Condition (1)
seems unrealistic, and avoiding it was the contents of [2]. Our focus, instead, is on avoiding (or
relaxing) Condition (2). Furthermore, we focus on the case that the domain sampler S cannot be
efficiently inverted.

Before proceeding, recall that any collection of trapdoor permutations can be augmented by a
hard-core predicate [6, 17], denoted h. Loosely speaking, such a predicate h is easy to compute, but
given α ← I1(1

n) and x ← S(α), it is infeasible to guess the value of h(α, f−1α (x)) non-negligibly
better than by a coin toss.

Enhanced trapdoor permutations. Although the foregoing definition suffices for some appli-
cations, in other cases (further discussed in Sections 3 and 4) we will need an enhanced hardness
condition. Specifically, we will require that it is hard to invert fα on a random input x (in the
domain of fα) even when given the coins used by S in the generation of x. (Note that, given these
coins (and the index α), the resulting domain element x is easily determined, and so we may omit
it from the input given to the potential inverter.)

Definition 2.1 (enhanced trapdoor permutations [14, Def. C.1.1]). Let {fα : Dα → Dα} be a
collection of trapdoor permutations. We say that this collection is enhanced (and call it an enhanced
collection of trapdoor permutations) if, for every probabilistic polynomial-time algorithm A, it holds
that

Pr
α←I1(1n)
r←Rn

[A(α, r) = f−1α (S(α; r))] = µ(n), (3)

where Rn and µ are as above. The non-uniform version is defined analogously.

Definition 2.1 requires that it is infeasible to invert fα on S(α; r), when given α and r, which
are selected as above (i.e., α ← I1(1

n) and r ← Rn). Note that any trapdoor permutations in
which Dα = {0, 1}|α| satisfies Definition 2.1 (because, without loss of generality, the sampling
algorithm S may satisfy S(α; r) = r). This implies that modified versions of the RSA and Rabin
collections satisfy Definition 2.1. More natural versions of both collections can also be shown to
satisfy Definition 2.1. For further discussion see Appendix B.

Any collection of enhanced trapdoor permutations can also be augmented by a hard-core predi-
cate (or rather by an enhanced hard-core predicate). Loosely speaking, such a predicate h is easy to
compute, but given α← I1(1

n) and r ← Rn, it is infeasible to guess the value of h(α, f−1α (S(α; r)))
non-negligibly better than by a coin toss. Before presenting the actual definition, we stress that
the proof of [17] extends to the current setting (cf. [13, Sec. 2.5.2] or better [15, Thm. 7.8]).

Definition 2.2 (enhanced hardcore predicate). Let {fα : Dα → Dα} be a collection of enhanced
trapdoor permutations. We say that h : {0, 1}∗ × {0, 1}∗ → {0, 1} is an enhanced hardcore predicate

5

of {fα} if h is polynomial-time computable and for every probabilistic polynomial-time algorithm
A,

Pr
α←I1(1n)
r←Rn

[A(α, r) = h(α, f−1α (S(α; r)))] (4)

where Rn and µ are as above. The non-uniform version is defined analogously.

For simplicity, for both standard and enhanced hardcore predicates, we usually drop the index
from the input of h and write h(x) where we actually mean h(α, x). (This can be done without
loss of generality, since the hardcore predicate of [17] does not use the index α.)

Doubly-enhanced trapdoor permutations. Although collection of enhanced trapdoor per-
mutations suffice for the construction of Oblivious Transfer (see Section 3), it seems that they do
not suffice for constructing a general NIZK proof system (see Section 4). Thus, we further enhance
Definition 2.1 so to provide for such an implementation. Specifically, we will require that, given α,
it is feasible to generate a random pair (x, r) such that r is uniformly distributed in {0, 1}poly(|α|)
and x is a preimage of S(α; r) under fα; that is, we should generate a random x ∈ Dα along with
coins that fit the generation of fα(x) (rather than coins that fit the generation of x).

Definition 2.3 (doubly-enhanced trapdoor permutations). Let {fα : Dα → Dα} be an enhanced
collection of trapdoor permutations (as in Def. 2.1). We say that this collection is doubly-enhanced
(and call it a doubly-enhanced collection of trapdoor permutations) if there exists a probabilistic
polynomial-time algorithm that on input α outputs a pair (x, r) such that r is distributed identically
to R|α| and fα(x) = S(α; r).

We note that Definition 2.3 is satisfied by any collection of trapdoor permutations that has a
reversed domain-sampler (i.e., a probabilistic polynomial-time algorithm that on input (α, y) outputs
a string that is uniformly distributed in {r : S(α; r) = y}). Indeed, the existence of a reversed
domain-sampler eliminates the difference between producing random pairs (x, r) such that fα(x) =
S(α; r) and producing random pairs of the form (x, S(α; r)) such that fα(x) = S(α; r) (i.e., random
(x, y) such that fα(x) = y). (Similarly, the existence of a reversed domain-sampler eliminates the
difference between being given (α, r) and being given (α, S(α; r)).)

A useful relaxation of Definition 2.3 allows r to be distributed almost-identically (rather than
identically) to R|α|, where by almost-identical distributions we mean that the corresponding vari-
ation distance is negligible (i.e., the distributions are statistically close). Needless to say, in this
case the definition of a reversed domain-sampler should be relaxed accordingly.

We stress that suitable implementations of the popular candidate collections of trapdoor permu-
tations (e.g., the RSA and Rabin collections) do satisfy the foregoing doubly-enhanced condition.
In fact, any collection of trapdoor permutations that has dense and easily recognizable domains
satisfies this condition, where Dα ⊆ {0, 1}|α| is dense if |Dα| ≥ 2|α|/poly(|α|). The reason is that
having such domains offer a very simple domain-sampler, which can be inverted efficiently: The
sampler merely generates a sequence of |α|-bit long strings and outputs the first string in Dα,
whereas the reversed domain-sampler just generates such a sequence and replaces the first string
in Dα by the element given to it.

Again, any collection of doubly-enhanced trapdoor permutations can also be augmented by a
hard-core predicate (or rather by a doubly-enhanced hard-core predicate). That is, such a predicate
is required to satisfy the conditions of Definition 2.2 with respect to a collection {fα : Dα → Dα}
that is doubly-enhanced (rather than just enhanced).

6

3 Enhanced TDP and 1-out-of-2 OT

Oblivious transfer (OT) is an interactive protocol between two parties, a sender and a receiver. In
the 1-out-of-2 version, introduced by Even et al. [8], the sender gets as input two bits σ0 and σ1
and the receiver gets a single bit i. The parties exchange messages and at the end of the protocol
the receiver should learn the bit σi but gain no knowledge regarding σ1−i and the sender should
gain no knowledge of i. Oblivious transfer turned out to be a central cryptographic tool, especially
in the context of secure multi-party computation [19].

In this section we present the standard OT protocol based on TDP, which originates in [8, 19] and
is hereafter referred to as the EGL protocol. We highlight the difficulty the arises when the protocol
is implemented with general TDP, and show that under the strengthened notion of enhanced TDP
the protocol is actually secure.

Semi-Honest OT. We consider OT in the semi-honest model, where both parties follow the
protocol but may try to learn additional information based on their view of the interaction. Recall
that (using any one-way function) Goldreich et al. [19] showed a compiler that transforms protocols
secure in the semi-honest model into protocols that are secure against malicious adversaries (which
may deviate arbitrarily from the specified protocol). Informally an OT protocol should satisfy the
following requirements (w.r.t the sender input (σ0, σ1) ∈ {0, 1}2 and the receiver input i ∈ {0, 1}):

1. Correctness – At end of the protocol the receiver outputs σi (and the sender outputs nothing).

2. Receiver privacy – the sender does not learn the selection bit i (i.e., the view of the sender
can be simulated based on σ0, σ1).

3. Sender privacy – the receiver does not learn the bit σ1−i (i.e., the view of the receiver can be
simulated based on i and σi).

A precise definition of OT is provided in Appendix A.

3.1 The EGL Protocol

The EGL protocol uses a TDP {fα : Dα → Dα}α with a hardcore predicate h. We denote the algo-
rithms associated with the TDP by I (index/trapdoor sampler), S (domain sampler), F (forward
evaluation) and B (backward evaluation). The protocol is depicted in Figure 1.

Even when implemented with general TDP (or in fact any collection of permutations), it is not
hard to verify that correctness holds. That is, at the end of the protocol, the receiver outputs σi.
Also, the receiver’s privacy holds, since the the sender just sees two uniformly distributed elements
y0, y1 ∈ Dα, and therefore the selection bit i is perfectly hidden (here we use the fact that fα is a
permutation).

It is tempting to argue that the sender’s privacy also holds. The misleading intuition is that the
receiver does not know the preimage x1−i = f−1α (z1−i) and therefore the bit σ1−i is computationally
hidden by the “mask” h(x1−i). The reason this argument fails is that the receiver may be able to
efficiently compute the preimage of z1−i under f−1α by using the random coins that it has used to
generate z1−i. A general TDP does not guarantee that given an index α and random coins that
are used to sample z1−i ∈ Dα it is infeasible to obtain f−1α (z1−i) or just guess h(f−1α (z1−i)) with
non-negligible advantage. Indeed, as we shall see next, such guarantees are provided by enhanced
TDPs.

7

Sender(1n, σ0, σ1) Receiver(1n, i)

(α, τ)← I(1n)

z0, z1 ← S(α)

yi = fα(zi)

y1−i = z1−i

x0 = f−1α (y0), x1 = f−1α (y1)

c0 = h(x0)⊕ σ0, c1 = h(x1)⊕ σ1

Output ci ⊕ h(zi)

α

y0, y1

c0, c1

Figure 1: The EGL protocol for 1-out-of-2 Oblivious Transfer

3.2 Security of the EGL protocol based on ETDP

The source of trouble (as discussed right above) is that the random coins of the sampling algorithm
may reveal the preimage of the sampled element. To overcome this difficulty we use a stronger
assumption about the TDP: We assume that it is actually an enhanced TDP (Definition 2.1).
Recall that the enhancement means that even given the random coins of the domain sampler it
is hard to invert a sampled element. If the EGL protocol is implemented with enhanced TDP,
then intuitively the additional information that the receiver has regarding the sampled elements no
longer helps and the protocol is secure. Thus, we obtain the following.

Claim 3.1. If {fα} is an enhanced TDP and h is its enhanced hardcore predicate, then the EGL
protocol securely implements 1-out-of-2 OT in the semi-honest model.

Proof. We first detail the correctness and receiver’s privacy, which were sketched above. Correctness
follows by the following syntaxtic equalities:

ci ⊕ h(zi) = (h(xi)⊕ σi)⊕ h(zi)

= (h(xi)⊕ σi)⊕ h(f−1α (yi))

= (h(xi)⊕ σi)⊕ h(xi)

= σi.

To show that sender and receiver privacy hold, we show simulators that based on the local input
and output of the corresponding party simulates the party’s view.

We first show that the receiver’s privacy holds. Consider the following (simple) simulation
of the sender’s view. On input (σ0, σ1), the simulator selects a random string s and uses it to
sample an index α of a permutation. The simulator also selects two elements y0, y1 ← S(α) in
the permutation’s domain and outputs ((σ0, σ1, 1

n), s, (y0, y1)), where the first part is the sender’s
input, the second part its random string, and the third part is the message that it receives. Because
α is a permutation, the simulated view is distributed identically to the actual view of the sender
in the protocol execution, and therefore the receiver enjoys perfect privacy.

8

We now turn to the sender’s privacy. Recall that the simulator gets i and σi and needs to
simulate the receiver’s view in the protocol execution. The simulator proceeds as follows:

Simulator(i, σi, 1
n)

1. Select a random index α of a permutation.

2. Select two random strings r1 and r2 for the domain sampler S and set zj = S(α; rj) for
j ∈ {0, 1}. Set yi = fα(zi) and y1−i = z1−i.

3. Set ci = σi ⊕ h(zi) and select a bit c1−i ∈ {0, 1} uniformly at random.

4. Output (i, (r1, r2), (α, (c1, c2))), where the first part simulates the receiver’s input, the second
part its random string, and the third part simulates the two messages that it receives.

We claim that the output of the simulator is computationally indistinguishable from the actual
view of the receiver. To see this observe that, except for c1−i, the output of the simulator is
distributed identically to the view of the receiver. Thus, an adversary that distinguishes between
the simulation and the actual execution view, also distinguishes between c1−i (which is distributed
uniformly and independent of anything else) and h(f−1α (S(α; r1−i))), when given random α and
r1−i, which contradicts the hypothesis that h is an enhanced hardcore predicate.3

4 Doubly-Enhanced TDP, 1-out-of-3 OT, and NIZK

In the previous section we showed that the pressumption that a randomly sampled element and
the random coins used to sample it are computationally equivalent is false (i.e., it may be infeasible
to retreive the coins from the sampled element), and that this fact may lead to the insecurity of
cryptographic protocols that rely on this (false) pressumption. While enhanced TDP do bring
us closer to idealized TDP (in which random coins and sampled elements are computationally
equivalent), in this section we demonstrate that a significant gap exists also between the enhanced
and the idealized notions of TDP.

The gap that we refer to is related to the fact that many applications of TDP use the property
that for a given permutation α it is easy to generate a random pair (x, y) such that y = fα(x). This
can obviously be done by just sampling x at random (in the domain) and applying the permutation
to obtain y (as fα(x)). However, in some applications a variant of this property is needed; namely,
the ability to generate a random pair (x, r) such that r is the random string used to sample
y = fα(x). For idealized TDP this is easy since we can sample (x, y) and use r = y, but for general
TDP obtaining r from y (s.t. y = S(α; r)) may be infeasible.4 (We mention that the ability to
generate such random pairs may be used in the proof of security of a given protocol and not in the
protocol execution.)

Next we show two protocols that use enhanced TDP for which the infeasibility of generating
such pairs may lead to security problems. These problems (in both protocols) can be resolved by

3Specifically, given a random string r, we set some values of i, σ1, σ2 such that the adversary distinguishes the
simulation from the real execution, and run the simulation with r1−i = r. Using the distinguishing gap of the
adversary we can guess whether c1−i = σ1−i ⊕ h(z1−i) (with non-negligible advantage), and thus guess the hardcore
bit of the fα-preimage of S(α; r).

4Indeed, this potential infeasiblity is the very motivation to the notion of enhanced TDP.

9

Sender(1n, σ1, σ2, σ3) Receiver(1n, i)

(α, τ)← I(1n)

z1, z2, z3 ← S(α)

yi = fα(zi)

yj = zj for j 6= i

xj = f−1α (yj) and cj = h(xj)⊕ σj
for j ∈ {1, 2, 3}

Output ci ⊕ h(zi)

α

y1, y2, y3

c1, c2, c3

Figure 2: The EGL protocol for 1-out-of-3 Oblivious Transfer

using an additional enhancement of TDP referred to as doubly-enhanced TDP. Recall that doubly-
enhanced TDP (which were defined specifically for this purpose – see Definition 2.3) are enhanced
TDP for which, in addition to the “standard” enhancement, it is feasible to generate pairs (x, r)
as above.

4.1 1-out-of-3 OT

As a first example we consider the natural extension of the EGL protocol to 1-out-of-k OT, for any
k ≥ 3. For simplicity we consider the 1-out-of-3 case in which the sender gets as input three bits
σ1, σ2, σ3 and the receiver gets an index i ∈ {1, 2, 3}. As before, the receiver should learn σi but
gain no knowledge on σ1, σ2 and the sender should gain no knowledge on i. The protocol for the
case k ≡ 3 is depicted in Figure 2.

At first glance, it seems that the protocol is secure when using enhanced TDP (for similar
reasons as in the 1-out-of-2 case). Nevertheless, we show that there is a subtle issue that makes
it insecure. Before proceeding, we note that there are other ways to extend the EGL protocol to
1-out-of-k while preserving security (e.g., a simple generic transformation from 1-out-of-2 OT to
1-out-of-k, for any k ≥ 2).5 Hence 1-out-of-k OT can be constructed based on enhanced TDP,
it is only that a specific natural way of doing it (i.e., Figure 2) is insecure. That is, we show
the insecurity of the foregoing (natural) construction (of Figure 2) in order to demonstrate that
enhanced TDP cannot be treated as an idealized TDP.

The problem with the 1-out-of-3 EGL Protocol. For sake of concreteness, consider the case
i = 1 (i.e., the receiver wants to receive the bit σ1). As in the case of 1-out-of-2 OT, correctness and
the receiver’s privacy follow from the fact that {fα}α is a collection of permutations. Intuitively
it seems that the sender’s privacy should also hold. Indeed, since {fα}α is an enhanced TDP
the receiver does not know x2 and x3. and therefore can learn neither σ2 nor σ3 (since each is

5Alternatively, we mention that the protocol of Figure 2 is secure for k = O(logn), provided that the enhanced
hardcore predicate that is used is the GL hardcore predicate [17]; for details, see Section 6.

10

“masked” by a pseudorandom bit). However, privacy requires not only that the individual bits be
pseudorandom, but also that they be pseudorandom together. But the fact that h(x2) and h(x3)
are each pseudorandom does not imply that (h(x2), h(x3)) is pseudorandom. For example, perhaps
the adversary can learn h(x2)⊕ h(x3), and thus break the security of the 1-out-of-3 EGL protocol
(by obtaining the value of σ2 ⊕ σ3).

This gap in the security proof can actually be used to form an attack. Specifically we refer to the
existence of an enhanced TDP (based on a standard intractability assumption) with an enhanced
hardcore predicate for which given α, r1, r2 it is easy to compute the exclusive-or of the hardcore-
bits of the preimages (i.e., h(f−1α (S(α; r1)))⊕h(f−1α (S(α; r2)))). When the extended EGL protocol
is invoked with such an enhanced TDP the receiver can actually learn σ2 ⊕ σ3 thereby breaking
(semi-honest) security. An enhanced TDP with the above property is presented in Appendix C.

Doubly-Enhanced TDP resove the problem. The essence of the problem in the 1-out-of-
k EGL protocol is that in this settings (where the adversary sees random strings and not just
sampled elements) hardcore bits are not necessarily pseudorandom. Recall that the standard way
to prove that many hardcore bits are (simultaneously) pseudorandom is via a hybrid argument.
For the hybrid argument to go through in this setting, we need the ability to generate intermediate
hybrids, which boils down to generating random pairs (h(x), r) such that x = f−1α (S(α; r)). For
enhanced TDP we have no guarantee that such pairs can be efficiently generated; furthermore, as
mentioned above, there exist enhanced TDP for which it is infeasible to generate such pairs. On
the other hand, hardcore bits of doubly-enhanced trapdoor permutations are pseudorandom in this
setting (i.e., also when the adversary sees the randomness used to sample the images). This is the
case since the second enhancement guarantees the feasiblility of generating random pairs (x, r) such
that fα(x) = S(α; r), and this allows to employ a hybrid argument in order to prove the following
claim.

Claim 4.1. Suppose that {fα} is a doubly-enhanced TDP and h is its enhanced hardcore pred-
icate. Then, for every polynomial m = m(n), the sequences (α, r1, ..., rm, h(x1), ..., h(xm)) and
(α, r1, ..., rm, b1, ..., bm) are computationally indistinguishable, where the ri’s are independently drawn
from Rn, each xi is such that fα(xi) = S(α; ri), and the bi’s are independent uniformly distributed
bits.

By setting k = m + 1, it follows that, for every polynomial k, if the TDP is doubly-enhanced,
then the EGL protocol (of Figure 2) securely implements 1-out-of-k OT in the semi-honest model.

Proof. For m = 1, the claim follows by the definition of enhanced hardcore predicate (i.e., Defini-
tion 2.2). For m > 1, we use a hybrid argument. Given α and (r, z), where r ← Rn and z ∈ {0, 1},
we select uniformly i ∈ [m], generate i− 1 pairs (r1, x1), ..., (ri−1, xi−1) such that fα(xj) = S(α; rj)
for every j ∈ [i− 1], compute bj = h(xj) for every j ∈ [i− 1], select bi+1, ..., bm uniformly in {0, 1}
(and ri+1, ..., rm from Rn), and produce the sequence

(α, r1, ..., ri−1, r, ri+1, ..., rm, b1, ..., bi−1, z, bi+1, ..., bm).

Now, the indistinguishability of neighboring hybrids follows from the hypothesis that h is an en-
hanced hardcore predicate, wheraes the extreme hybrids correspond to the desired conclusion.

11

4.2 Noninteractive Zero-Knowledge Proofs

As a second example, we consider a construction of non-interactive zero-knowledge proofs for any
NP language. Recall that zero-knowledge proofs allow a prover to convince a verifier that a
given statement is valid without disclosing any additional information other than the validity of
the statement [21]. Non-interactive zero-knowledge proof systems (NIZK), introduced by Blum,
Feldman, and Micali [4], are zero-knowledge proofs in which there is no actual interaction; that
is, a single message is sent from the prover to the verifier, which either accepts or rejects. Instead
of bi-directional interaction, a setup assumption is used; specifically, the existence of a common
random string, to which both parties have (read-only) access. For a definition of NIZK proofs see
Appendix A.

Assuming the existence of one-way permutations, Feige, Lapidot, and Shamir [9] constructed
NIZK proof-systems for any NP language. They also offer an efficient implementation of the
prescribed prover, by using an idealized TDP. We refer to this construction as the FLS protocol,
and consider what happens when it is implemented when using a general TDP (and the two
enhancements of this notion).

There are two gaps when trying to replace idealized TDP in the FLS protocol with general TDP.
The first gap (discovered by Bellare and Yung [2]) is that the soundness of the FLS construction
relies on the feasibility of recognizing permutations in the collection. We start by elaborating on
this gap, while noting that the solution will lead us to the second gap.

Proving that a function is 1-1. In the FLS protocol the prover provides the verifier an index
α of a permutation in the collection, and the soundness is based on the assumption that α does
indeed describe a permutation. This assumption always holds in the case of idealized TDP (where
any index describes a permutation), but for all popular candidate TDPs it is unknown how to
efficiently check whether a given string describes a valid permutation (cf. [2]). Therefore, when
the FLS protocol is implemented with general TDP, a cheating prover may provide a string that
does not correspond to any permutation (but rather describes a many-to-one function, which in
turn may be used to violate the soundness condition). Bellare and Yung suggested to resolve this
problem by augmenting the main NIZK, with a (non-interactive zero-knowledge) proof that the
given index α does indeed describe a function that is practically a permutation. This is done by
presenting sufficiently many domain elements (described as part of the common random string) and
expecting the prover to provide the inverses of these elements (where the validity of these preimages
can be checked by applying the function fα in the forward direction). Soundness follows from the
fact that if the function is not (almost) 1-1, then, with high probability, a cheating prover will not
be able to supply preimages for random domain elements. Unfortunately, it turns out that this
protocol is not necessarily zero-knowledge when using general (or singly enhanced) TDP, but it is
zero-knowledge in case the domain of fα equals {0, 1}|α|.

The reason that the foregoing protocol may not be zero-knowledge is the essence of the second
aforementioned gap, and we shall discuss this gap now, while first detailing the foregoing proof
system. In this proof system, both parties are given an index α (which allegablly describes a
permutation in the collection), and the prover is also given a corresponding trapdoor. Both parties
have access to a common random string that is partitioned into ` strings, denoted r1, . . . , r`, each
of length that fits the number of coins used by S(α). The prover uses the random strings to
obtain ` elements, y1, . . . , y` such that yi = S(α; ri), inverts them (using the trapdoor) to obtain
x1, . . . , x` such that xi = f−1α (yi), and sends x1, · · · , x` to the verifier. The verifier computes by

12

itself yi = S(α; ri) and verifies that yi = fα(xi), for all i ∈ {1, . . . , `}. Although this may convince
the verifier that fα is almost 1-1 (i.e., if n/` fraction of Dα has no preimage under fα, then the
verifier will reject with overwhelming high probability), but it may not be zero-knowledge in general.
The point is that the verifier obtains a random pair (x, r) such that fα(x) = S(α; r) (actually it gets
many such pairs), and it is not clear that the verifier could have generated such a pair (let alone
many such pairs) by itself. This concern remains valid if the collection is an enhanced TDP, but it
disappears by the assumption that the collection is doubly-enhanced (which indeed is tailored for
such applications).

General NIZK. We mention that the difficulty encountered in the foregoing protocol (for proving
that a function is 1-1) also presents itself in the basic FLS protocol. Specifically, the FLS verifier
sees random pairs of the form (x, r) such that fα(x) = S(α; r) also in the basic FLS protocol (i.e.,
before its augmentation by [2]). Again, as above (and as in the case of the EGL OT protocol for
k ≥ 3), the difficulty is resolved by using doubly-enhanced TDP. In such a case, by definition,
the ability to efficiently generate random (x, r) such that fα(x) = S(α; r) is guaranteed, and the
zero-knowledge property of the procotol follows.

5 Obliviously Sampling Ciphertexts

In this section we consider the standard construction of public-key encryption based on trapdoor
permutations [20, 24]. This construction is indeed secure given any TDP (i.e., no enhancement
is necessary), but there are natural properties that are guaranteed only when the TDP is singly
or doubly enhanced. Specifically, we refer to the ability to generate ciphertexts obliviously of the
plaintext. We focus on public-key schemes for which this property means that, given the encryption-
key, it is feasible to sample an encryption of a random message such that even the generator itself
does not know the message (assuming that it does not have the decryption-key). In contrast, the
trivial sampler that chooses a random message and encrypts it is inherently non-oblivious.

We use the standard definition of a public-key encryption scheme, except that we allow a
restriction of the message space. Recall that such a scheme is described in terms of three algorithms
(i.e., key-generation, encryption and decryption). For sake of simplicity, we assume that the message
space consists of all strings of length `(n), where n is the security parameter and ` is a polynomially-
bounded function. Typical cases are ` ≡ 1 (i.e., bit encryption) and `(n) = n.

Definition 5.1 (oblivious ciphertext sampleablity). We say that a public-key encryption scheme
(G,E,D) is an oblivious ciphertext sampleable (OCS) scheme if there exists a probabilistic polynomial-
time algorithm O (called the oblivious ciphertext sampling algorithm) such that the following holds:

1. For any encryption-key e the output of O(e) is distributed identically to a random encryption
of a random message; that is, O(e) is distributed identically to Ee(U) where U is distributed
uniformly in the message space.6

2. Given the encryption-key e and the random coins of the sampler r, the value Dd(O(e; r)) is
pseudorandom; that is, (e, r,Dd(O(e; r))) and (e, r, U) are computationally indistinguishable,
when e, r and U are random.

6A natural relaxation would require the distributions to be statistically close or even just computationally indis-
tinguishable to an adversary that has the decryption-key.

13

Note that the essence of the obliviousness condition is captured in the second item, which asserts
that the plaintext looks random even when the coins used to produce the ciphertext are known.
We mention that OCS encryption schemes were considered by Gertner et al. [10],7 who showed
that they can be used to construct a 3-round OT protocol.

5.1 On constructing public-key OCS schemes

As a concrete example of an OCS scheme consider the standard construction of public-key bit
encryption from TDP. Recall that in this construction the encryption-key is an index α of a TDP,
the decryption-key is the corresponding trapdoor τ , and the message space is {0, 1}. Using the
encryption-key α, the bit σ ∈ {0, 1} is encrypted by selecting a random domain element x← S(α),
and outputting (fα(x), h(x)⊕σ), where h is a hardcore predicate of the TDP. The ciphertext (y, b)
is decrypted via the decryption-key τ by outputting h(f−1α (y))⊕ b (where fα is inverted using τ).

At first glance, it seems that, in this scheme, it is easy to sample ciphertexts obliviously of
the plaintexts, since an encryption of a random message is uniformly distributed in Dα × {0, 1}.
Specifically, consider the algorithm O(α) that outputs (y, b) such that y ← S(α) and b is a random
bit. While the sampler O clearly outputs the right distribution (and so satisfies the first item of
Definition 5.1), it is not necessarily oblivious (i.e., it does not necessarily satisfy the second item).
The random coins of O include the random coins that are used to produce the sample y ∈ Dα, and
therefore, as shown in Section 3, when using a general TDP, it may be possible (using these random
coins) to invert fα on y, and so retreive the plaintext. Hence the suggested sampling algorithm
may not satisfy the conditions of Definition 5.1.

To resolve this issue we yet again use enhanced TDP (and assume that h is an enhanced hardcore
predicate). Indeed, if the TDP is enhanced, then the foregoing O is an oblivious ciphertext sampler
(i.e., it satisfies the conditions of Definition 5.1).8

5.2 Sampling Multiple Ciphertexts Obliviously

Consider extending the notion of obliviously sampling a single ciphertext to sampling multiple
ciphertexts obliviously. Informally a k-OCS public-key encryption scheme is one in which it is
feasible given the encryption-key e to sample from the joint distribution Ee(m1) × · · · × Ee(mk)
such that m1, . . . ,mk are (1) uniformly distributed in the message space and (2) pseudorandom even
given the random coins of the sampler (although they are information-theoretically determined).

Intuitively, it may seem that any regular OCS scheme (i.e., a 1-OCS scheme) directly yields
a k-OCS scheme, by merely invoking the oblivious sampling algorithm k times. Clearly, these k
samples will be distributed correctly, but these samples may not be pseudorandom given the random
coins of the sampler. That is, while each individual message mi is guaranteed to be pseudorandom,
the joint distribution (m1, . . . ,mk) is not necessarily pseudorandom. To see this we return to
the construction of public-key bit-encryption based on enhanced TDP discussed above. Even for
k = 2 the suggested sampler is not necessarily oblivious. This follows from reasons similar to those

7Gertner et al. [10] refer to such schemes as to having Property B.
8To prove this it suffices to show that given α, (r, b) it is infeasible to predict Dτ (O(α; (r, b)) with non-negligible

advantage. Note that Dτ (O(α; (r, b))) = Dτ (y, b) = h(f−1
α (y)) ⊕ b where y = S(α; r) so an adversary that predicts

Dτ (O(α; (r, b))) can be easily converted to an adversary for h the enhanced hardcore predicate that on input α, r
predicts h(f−1

α (y)).

14

discussed in Section 4 and the difficulty can be resolved similarly by using a doubly-enhanced TDP.
Details follow.

Consider the standard TDP based encryption scheme and the corresponding oblivious sampler
O (outlined in Section 5.1). Let O2 denote the direct product of O; that is, O2(α) selects two
random elements y1, y2 ∈ Dα and two random bits b0, b1 ∈ {0, 1} and outputs ((y1, b1), (y2, b2)).
The output of O2 is indeed distributed identically to a pair of encryptions of independent random
bits. However, the random string used by O2 is (r1, b1, r2, b2) where r1 and r2 are the random strings
that respectively sample y1 and y2 (i.e., yi = S(α; ri)). In Section 4 we showed that for an enhanced
TDP, given α, r1 and r2, it may be feasible to compute h(x1) ⊕ h(x2) where xi = f−1α (yi). Since
the two plaintext bits (corresponding to ciphertexts (y1, b1) and y2, b2) are respectively “masked”
by h(x1) and h(x2), the random string used by O2 may reveal whether the two plaintexts are equal
or not.

As mentioned above, the difficulty can be resolved by using a doubly-enhanced TDP. When using
a doubly-enhanced TDP, for any polynomial k = k(n), the sampler that outputs (y1, b1), . . . , (yk, bk),
where y1, . . . , yk are random domain elements and b1, . . . , bk are random bits, is a k-oblivious sam-
pler for the TDP based public-key encryption scheme. This fact follows from Claim 4.1, which
states that even given the random strings r1, . . . , rk, which are used to sample y1, . . . , yk respec-
tively, the bits h(x1), . . . , h(xk), where xj = f−1α (yj), are pseudorandom. Thus, given r1, . . . , rk, the
k plaintext bits that correspond to the k ciphertexts (y1, b1), . . . , (yk, bk), are also pseudorandom
since they are respectively “masked” by the pseudorandom bits h(x1), . . . , h(xk).

6 Intermediate Notions

So far we have mainly considered general TDP, enhanced TDP, doubly-enhanced TDP and idealized
TDP. In this section we present a few intermediate notions. We first consider the realm between
doubly-enhanced TDP and idealized TDP and then an intermediate notion between enhanced and
doubly-enhanced TDP.

6.1 Between Doubly-Enhanced and Idealized TDP

Recall that idealized TDP are TDP which have domain {0, 1}|α| (and therefore have a trivial
sampler) and for which the set of indices with respect to security parameter n are {0, 1}n. The
first relaxation that we discuss refers to dropping the latter requirement:

Definition 6.1. A TDP is called a full-domain TDP if for every index α ← I1(1
n) it holds that

Dα = {0, 1}|α|.

This definition as the subsequent three definitions were mentioned in passing in Section 2.
Assuming, for simplicity, that Dα ⊆ {0, 1}|α|, we consider a relaxation of Definition 6.1 by allowing
domains that are either dense and/or efficiently recognizable.

Definition 6.2. A TDP is dense if for every index α← I1(1
n) it holds that |Dα| ≥ 2|α|

poly(α) .

Definition 6.3. A TDP has an efficiently recognizable domain if it is possible to efficiently check,
given an index α and a string x ∈ {0, 1}|α|, whether x ∈ Dα.

We note that given a TDP with dense and efficiently recognizable domain, one can construct
a full-domain TDP. This is done in two steps: First, we construct a full-domain weak TDP (in

15

the sense of weak one-way functions), and then we apply the transformation from weak one-way
functions to strong one-way functions (see [13, Theorem 2.3.2]) to obtain a full-domain (strong)
TDP.9 Lastly we recall an additional relaxation discussed in Section 2:

Definition 6.4. A TDP is said to have a reversed domain-sampler if there exists a probabilistic
polynomial-time algorithm that on input an index α and a domain element y ∈ Dα outputs a string
that is uniformly distributed in {r : S(α; r) = y}).

As mentioned in Section 2, any TDP that has a reversed domain-sampler is doubly-enhanced.
The first enhancement follows by using the reversed domain-sampler to reduce the standard in-
verting task to the enhanced-inverting task (i.e., given (α, y), we invoke the enhanced-inverter on
input (α, r) where r is random subject to S(α; r) = y). For the second enhancement, we can sam-
ple a random (x, r) such that fα(x) = S(α; r) by selecting a random element x ∈ Dα, computing
y = fα(x), and using the reversed domain-sampler to obtain r.

6.2 Between Enhanced and Doubly-Enhanced TDP

In some of the protocols discussed above we used the doubly-enhanced property to argue that many
hardcore bits of a doubly-enhanced TDP are pseudorandom in the enhanced settings. Although
we have an example for an enhanced TDP whose enhanced hardcore bits are not pseudorandom it
may be possible to transform any enhanced TDP to one whose hardcore bits are pseudorandom.
The following theorem takes a step in this direction by showing that upto logarithmically many
hardcore bits of a specific enhanced hardcore predicate are pseudorandom.

Theorem 6.5. Let {fα : Dα → Dα}α be an enhanced TDP where Dα ⊆ {0, 1}|α| and let {gα : Dα×
{0, 1}|α| → Dα × {0, 1}|α|}α be the enhanced TDP defined as gα(x, s) = (fα(x), s) where |x| =

|s| = |α|. Then, for the GL enhanced hardcore predicate of {gα}α, defined as h(x, s)
def
= 〈x, s〉 =∑n

i=1 xisi mod 2, logarithmically many hardcore bits are pseudorandom. That is, for any k =
O(log |α|) the following ensembles are computationally indistinguishable:

• {(h(x1, s1), . . . , h(xk, sk)), ((r1, s1), . . . , (rk, sk))}α where each pair (ri, si) is a uniform random
strings of the domain sampler of g and xi = f−1α (S(α; ri)).

• {(σ1, . . . , σk), ((r1, s1), . . . , (rk, sk))}α where each pair (ri, si) is a uniform random strings of
the domain sampler of g and each σi is a uniformly random bit.

To proof Theorem 6.5 we show that given an index α of a permutation and k = O(log n)
random strings (r1, s1), . . . , (rk, sk) of the domain sampler Sg (the sampling algorithm of {gα}α),
it is infeasible to approximate

⊕
j∈U bj , for any non-empty set U ⊆ [k] (where bj = h(xj , sj) and

xj = f−1α (S(α; rj))). The theorem follows by applying the computational XOR lemma for hardcore
functions [13, Lem. 2.5.8]. (This XOR lemma asserts that if it is infeasible to approximate the parity
of a random subset of logarithmically many hardcore bits, then these bits are pseudorandom.)

9For the first step suppose that we have a TDP {fα}α with dense and efficiently recongizable domains. We consider
a new TDP {f ′α}α that is defined by letting f ′α(x) = fα(x) if x ∈ Dα and f ′α(x) = x otherwise (i.e., if x /∈ Dα). Note
that {f ′α}α is an efficiently computable permutation (since the domains are efficiently recongizable), and that it is
weakly one-way due to the density of the domains and the one-wayness of {fα}α.

16

Proposition 6.6. Let k = k(n) be O(log n). For any probabilistic polynomial-time algorithm A
and any non-empty set U ⊆ [k], it holds that

Pr
(α,τ)←I(1n)

(r1,s1),...,(rk,sk)←{0,1}poly(|α|)×{0,1}poly(|α|)

A (α, (r1, s1), . . . , (rk, sk), U) =
⊕
j∈U

bj

 =
1

2
+ µ(n) (5)

where bj
def
= h(xj , sj) = 〈xj , sj〉 and xj

def
= f−1α (S(α; rj)) (and µ is a generic negligible function).

Proof. Assume toward a contradiction that this is not the case. That is, there exists a non-empty
set U ⊆ [k] and an algorithm A that has a non-negligible advantage in approximating

⊕
j∈U bj

based on α,U and (r1, s1), . . . , (rk, sk). Furthermore, such a set U can be found in probabilis-
tic polynomial-time by experimenting with all possible sets (while generating random samples of
I(1n)). Fixing such a set U = {j1, . . . , jk′}, we observe that

⊕
j∈U bj =

⊕
j∈U 〈xj , sj〉 equals

〈xj1 ◦ · · · ◦ xjk′ , sj1 ◦ · · · ◦ sjk′ 〉, which is the GL hardcore predicate of g′α that is defined by the di-
rect produce of k′ values of gα (i.e., g′α((x1, s1), . . . , (xk, sk)) = (gα(x1, r1), . . . , gα(xk, sk))). Thus,
it suffices to note that g′α is an enhanced trapdoor permutation,10 and the result of [17] (cf. [13,
Sec. 2.5.2] or better [15, Thm. 7.8]) implies that the said predicate is indeed an enhanced hardcore.

Corollary. Theorem 6.5 implies that, when using the GL hardcore predicate, the extended EGL
protocol is secure for any logarithmically bounded k.

Further Notions. Theorem 6.5 refers to the pseudorandomness of the sequence h(x1, s1), ..., h(xk, sk)

relative to (α, (r1, s1), ..., (rk, sk)), where xi
def
= f−1α (S(α; ri)). Alternative notions that refer to the

unpredictability of related sequences arise naturally. The interested reader is referred to [23] for a
taxonomy of notions of TDP that lie between enhanced and doubly-enhanced.

10Note that here we merely claim that direct product preserves (rather than amplifies) hardness-to-invert. Indeed,
if given α, (r1, s1), . . . , (rk, sk) it is feasible to compute x1, . . . , xk, then it particular it is feasible to compute x1 from
α, (r1, s1).

17

References

[1] W. Alexi, B. Chor, O. Goldreich and C.P. Schnorr. RSA/Rabin Functions: Certain Parts
are As Hard As the Whole. SIAM Journal on Computing, Vol. 17, April 1988, pages
194–209. Preliminary version in 25th FOCS, 1984.

[2] M. Bellare and M. Yung. Certifying Permutations: Noninteractive Zero-Knowledge Based
on Any Trapdoor Permutation. Journal of Cryptology, Vol. 9, pages 149–166, 1996.

[3] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-Knowledge
Proof Systems. SIAM Journal on Computing, Vol. 20, No. 6, pages 1084–1118, 1991.
(Considered the journal version of [4].)

[4] M. Blum, P. Feldman and S. Micali. Non-Interactive Zero-Knowledge and its Applications.
In 20th ACM Symposium on the Theory of Computing, pages 103–112, 1988. See [3].

[5] M. Blum and S. Goldwasser. An Efficient Probabilistic Public-Key Encryption Scheme
which hides all partial information. In Crypto84, Lecture Notes in Computer Science
(Vol. 196), Springer-Verlag, pages 289–302.

[6] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-
Random Bits. SIAM Journal on Computing, Vol. 13, pages 850–864, 1984. Preliminary
version in 23rd FOCS, 1982.

[7] W. Diffie and M.E. Hellman. New Directions in Cryptography. IEEE Transactions on
Information Theory, IT-22 (Nov. 1976), pages 644–654.

[8] S. Even, O. Goldreich, and A. Lempel. A Randomized Protocol for Signing Contracts.
Communications of the ACM, Vol. 28, No. 6, 1985, pages 637–647. Extended abstract in
Crypto’82.

[9] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs
Under General Assumptions. SIAM Journal on Computing, Vol. 29 (1), pages 1–28, 1999.
Preliminary version in 31st FOCS, 1990.

[10] Y. Gertner, S. Kannan, T. Malkin, O. Reingold and M. Viswanathan. The Relationship
between Public Key Encryption and Oblivious Transfer. Proceedings of the 41st Annual
Symposium on Foundations of Computer Science (FOCS), 2000.

[11] O. Goldreich. A Uniform Complexity Treatment of Encryption and Zero-Knowledge.
Journal of Cryptology, Vol. 6, No. 1, pages 21–53, 1993.

[12] O. Goldreich. Secure Multi-Party Computation. Available from the author’s homepage,
1998 (revised 2001).

[13] O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge University Press,
2001.

[14] O. Goldreich. Foundation of Cryptography: Basic Applications. Cambridge University
Press, 2004.

18

[15] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge Univer-
sity Press, 2008.

[16] O. Goldreich. Basing Non-Interactive Zero-Knowledge on (Enhanced) Trapdoor Permuta-
tions: The State of the Art. To appear in Lecture Notes in Computer Science (Vol. 6650),
Springer. Available from the author’s homepage, Nov. 2008.

[17] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21st
ACM Symposium on the Theory of Computing, pages 25–32, 1989.

[18] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity
or All Languages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM, Vol.
38, No. 1, pages 691–729, 1991. Preliminary version in 27th FOCS, 1986.

[19] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game – A Com-
pleteness Theorem for Protocols with Honest Majority. In 19th ACM Symposium on the
Theory of Computing, pages 218–229, 1987.

[20] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System
Science, Vol. 28, No. 2, pages 270–299, 1984. Preliminary version in 14th STOC, 1982.

[21] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof
Systems. SIAM Journal on Computing, Vol. 18, pages 186–208, 1989. Preliminary version
in 17th STOC, 1985.

[22] I. Haitner. Implementing Oblivious Transfer using a Collection of Dense Trapdoor Per-
mutations. In 1st Theory of Cryptography Conference, Lecture Notes in Computer Science
(Vol. 2951), Springer, 2004.

[23] R. Rothblum. A Taxonomy of Enhanced Trapdoor Permutations. ECCC, TR10-145,
September 2010.

[24] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEE Symposium on
Foundations of Computer Science, pages 80–91, 1982.

19

A Definitions of OT and NIZK

For sake of simplicity, we present a non-uniform formulation of all definitions; that is, the inputs
to the protocols are quantified over all possibilities. Thus, constructing such protocols may require
non-uniformly hard TDP. Uniform-complexity formulations can be derived by considering only
polynomial-time sampleable inputs (cf., [11] or [14, Sec. 5.2.5]).

A.1 Oblivious Transfer

Here k = k(n) is a polynomially bounded function. A pair of probabilistic polynomial-time strate-
gies (S,R) constitute a 1-out-of-k OT protocol (in the semi-honest model) if the following conditions
hold.

• Correctness: For every σ1, . . . , σk ∈ {0, 1} and i ∈ {1, . . . , k}, when S(1n, σ1, . . . , σk) inter-
acts with R(1n, i) the receiver R outputs σi and the sender S outputs nothing.

• Receiver security: There exists a probabilistic polynomial-time simulator S1 such that the
following two probability ensembles are computationally indistinguishable.

1. {S1(σ1, . . . , σk, 1n)}n∈N,σ1,...,σk,i and

2. {view1(σ1, . . . , σk, i, 1n)}n∈N,σ1,...,σk,i, where view1 is a random variable that consists of
the sender’s view in the interaction (i.e. its input, randomness and received messages).

• Sender security: There exists a probabilistic polynomial-time simulator S2 such that the
following two probability ensembles are computationally indistinguishable.

1. {S2(i, 1n, σi)}n∈N,σ1,...,σk,i and

2. {view2(σ1, . . . , σk, i, 1n)}n∈N,σ1,...,σk,i, where view2 is a random variable that consists of
the receiver’s view in the interaction (i.e. its input, randomness and received messages).

A.2 Non-Interactive Zero-Knowledge Proofs

A pair of probabilistic polynomial-time algorithms (P, V) constitute an (efficient-prover) non-interactive
zero-knowledge proof for an NP language L with the witness relation RL if the following conditions
hold.

• Completeness: For every x ∈ L and every witness w such that (x,w) ∈ RL,

Pr
r∈{0,1}poly(|x|)

[V (x, r, P (x,w, r)) = 1] ≥ 2

3
.

• Soundness: For every x /∈ L and every cheating strategy P ∗,

Pr
r∈{0,1}poly(|x|)

[V (x, r, P ∗(x, r)) = 1] ≤ 1

3
.

• Zero-Knowledge: There exists a probabilistic polynomial-time simulator M such that the
following two probability ensembles are computationally indistinguishable.

1. {M(x)}x∈L,w∈RL(x), where RL(x) = {w : (x,w) ∈ RL}, and

2. {(x,R|x|, P (x,w,R|x|))}x∈L,w∈RL(x), where Rn denotes a random variable uniformly dis-
tributed over poly(n).

20

B On the RSA and Rabin Collections

In this appendix we show that suitable versions of the RSA and Rabin collections satisfy the two
aforementioned enhancements (presented in Definitions 2.1 and 2.3, respectively). Establishing
this claim is quite straightforward for the RSA collection, whereas for the Rabin collection some
modifications (of the straightforward version) seem necessary. In order to establish this claim we
will consider a variant of the Rabin collection in which the corresponding domains are dense and
easy to recognize, and will show that having such domains suffices for establishing the claim.

B.1 The RSA collection satisfies both enhancements

We start our treatment by considering the RSA collection (as presented in [13, Sec. 2.4.3.1] and
further discussed in [13, Sec. 2.4.3.2]). Note that in order to discuss the enhanced hardness condition
(of Def. 2.1) it is necessary to specify the domain sampler, which is not entirely trivial (since
sampling Z∗N (or even ZN) by using a sequence of unbiased coins is not that trivial).

A natural sampler for Z∗N (or ZN) generates random elements in the domain by using a regular
mapping from a set of sufficiently long strings to Z∗N (or to ZN). Specifically, the sampler uses

`
def
= 2blog2Nc random bits, views them as an integer in i ∈ {0, 1, ..., 2`− 1}, and outputs i mod N .

This yields an almost uniform sample in ZN , and an almost uniform sample in Z∗N can be obtained
by discarding the few elements in ZN \ Z∗N .

The fact that the foregoing implementation of the RSA collection satisfies Definition 2.1 (as well
as Definition 2.3) follows from the fact that it has an efficient reversed-sample (which eliminates
the potential gap between having a domain element and having a random sequence of coins that
makes the domain-sample output this element). Specifically, given an element e ∈ ZN , the reversed-
sampler outputs an almost uniformly distributed element of {i∈{0, 1, ..., 2` − 1} : i ≡ e (mod N)}
by selecting uniformly j ∈ {0, 1, ..., b2`/Nc − 1} and outputting i← j ·N + e.

B.2 Versions of the Rabin collection that satisfy both enhancements

In contrast to the case of the RSA, the Rabin Collection (as defined in [13, Sec. 2.4.3.3]), does not
satisfy Definition 2.1 (because the coins of the sampling algorithm give away a modular square root
of the domain element). Still, the Rabin Collection can be easily modify to yield a doubly-enhanced
collection of trapdoor permutations, provided that factoring is hard (in the same sense as assumed
in [13, Sec. 2.4.3]).

The modification is based on modifying the domain of these permutations (following [1]). Specif-
ically, rather than considering the permutation induced (by the modular squaring function) on the
set QN of the quadratic residues modulo N , we consider the permutations induced on the set MN ,
where MN contains all integers in {1, ..., N/2} that have Jacobi symbol modulo N that equals 1.
Note that, as in case of QN , each quadratic residue has a unique square root in MN (because
exactly two square roots have Jacobi symbol that equals 1 and their sum equals N ; indeed, as in
case of QN , we use the fact that −1 has Jacobi symbol 1). However, unlike QN , membership in
MN can be determined in polynomial-time (when given N without its factorization). Lastly, note
that squaring modulo N is a 1-1 mapping of MN to QN . In order to obtain a permutation over
MN , we modify the function a little such that if the result of modular squaring is bigger than N/2,
then we use its additive inverse (i.e., rather than outputting y > N/2, we output N − y).

21

Using the fact that MN is dense (w.r.t {0, 1}blog2Nc+1) and easy to recognize, we may proceed
in one of two ways, which are actually generic. Thus, let us assume that we are given an arbitrary
collection of trapdoor permutations, denoted {fα : Dα → Dα}α∈I , such that Dα ⊆ {0, 1}|α| is dense

(i.e., |Dα| > 2|α|/poly(|α|))11 and easy to recognize (i.e., there exists an efficient algorithm that
given (α, x) decides whether or not x ∈ Dα).

1. The most natural way to proceed is showing that the collection {fα} itself is doubly-enhanced.
This is shown by presenting a rather straightforward domain-sampler that satisfies the en-
hanced hardness condition (of Def. 2.1), and noting that this sampler has an efficient reversed
sampler (which implies that Def. 2.3 is satisfied).

The domain-sampler that we have in mind repeatedly selects random (i.e., uniformly dis-
tributed) |α|-bit long strings and outputs the first such string that resides in Dα (and a
special failure symbols if |α| · 2|α|/|Dα| attempts have failed). This sampler has an efficient
reversed-sampler that, given x ∈ Dα, generates a random sequence of |α|-bit long strings and
replaces the first string that resides in Dα by the string x.

2. An alternative way of obtaining a doubly-enhanced collection is to first define a (rather
artificial) collection of weak trapdoor permutations, {f ′α : {0, 1}|α| → {0, 1}|α|}α∈I , such that
f ′α(x) = fα(x) if x ∈ Dα and f ′α(x) = x otherwise. Using the amplification of a weak one-way
property to a standard one-way property (as in [13, Sec. 2.3&2.6]), we are done.

Indeed, in the first alternative we amplified the trivial domain-sampler that succeeds with noticeable
probability, whereas in the second alternative we amplified the one-way property of the trivial
extension of fα to the domain {0, 1}|α|. Either way we obtain a doubly-enhanced collection of
trapdoor permutations, provided that {fα} is an ordinary collection of trapdoor permutations.

We mention that the foregoing modifications of the Rabin collection follows the outline of the
second modification that is presented in [14, Apdx. C.1]. In contrast, as pointed out by Jonathan
Katz, the first implementation (of an enhanced trapdoor permutation based on factoring) that is
presented in [14, Apdx. C.1] is not doubly-enhanced.

C An Enhanced TDP whose Hardcore Bits are not Pseudorandom

In this section we show that a variant of the factoring based enhanced TDP presented in Ap-
pendix B.2, has an enhanced hardcore predicate for which two or more samples are not pseudoran-
dom.

Notation. For a Blum integer N , let JN be the set of all elements in Z∗N that have Jacobi symbol

+1 modulo N and let MN
def
= JN ∩ {1, . . . , bN2 c}. For x ∈ Z∗N , let QRN (x) be 1 if x is quadratic

residue (modulo N) and 0 otherwise.

Construction C.1. (A factoring-based enhanced TDP)

I(1n) : Let N = PQ where P and Q are two uniformly selected primes such that 2n−1 ≤ P,Q ≤ 2n

and P ≡ Q ≡ 3 mod 4. Select a random element y ∈ JN and output (N, y) as the index and
(P,Q) as the trapdoor.

11Actually, a more general case, which is used for the Rabin collection, is one in which Dα ⊆ {0, 1}`(|α|) satisfies
|Dα| > 2`(|α|)/poly(|α|), where ` : N→ N is a fixed function.

22

sampler S(N, y) : Select, uniformly at random r ∈ Z∗N , and let z = y · r2 mod N . If z ≤ bN2 c,
output z and otherwise output N − z.

F ((N, y), x) : Set z = x2 mod N . If z ≤ bN2 c output z and otherwise output N − z.

B((N, y), x) : Given the factorization of N , it is possible to compute square roots modulo N and to
invert this permutation (for details see [14, Sec. 2.4.4.2]).

Note that Construction C.1 is almost the same as the enhanced TDP of Appendix B.2, where
the only difference is in how elements are sampled in the domain MN (and the augmentation of
the index that is used for that purpose). In particular, the evaluation and inversion algorithms
remain the same, and therefore, as discussed in Appendix B.2, the function FN is a permutation
over MN . Additionally, the sampling algorithm S(N, y) produces a uniformly distributed element
in MN , since S(N, y) induces a 4-to-1 mapping from its random strings to MN .

We proceed to show an enhanced hardcore predicate for Construction C.1 (which implies,

in particular, that the TDP is enhanced). Specifically, we show that the predicate hN,y(x)
def
=

QRN (FN,y(x)) (i.e., the predicate that equals 1 if the image of x under FN,y is a quadratic residue
and 0 otherwise) is an enhanced hardcore predicate.

Claim C.2. Assuming the quadratic residuosity assumption12, the predicate hN,y is an enhanced
hardcore predicate of Construction C.1.

Proof. Given x, the predicate hN,y is indeed easy to compute (i.e., if FN,y(x) = x2 mod N , then
hN,y(x) = 1, otherwise it must be that FN,y(x) = N − x2 mod N which implies that hN,y(x) = 0).
What remains to be shown is that given (N, y) and r, it is infeasible to predict QRN (S(N, y; r)).
The key point is that multiplication by r2 preserves quadratic residuosity whereas multiplication
by −r2 complements it (i.e., y · r2 is a quadratic residue if and only if y is a quadratic residue and
−y · r2 is a residue if and only if y is a non-residue). Thus, given N, y and r it is easy to check
whether y and S(N, y; r) have the same QRN value (i.e., compute QRN (y)⊕QRN (S(N, y; r))), by
checking whether S multiplies y by r2 or by −r2. Thus, an adversary that computes QR(S(N, y; r))
can be used to compute QRN (y). Details follow.

Consider an adversary A that on input (N, y) and r, breaks the hardcore predicate by outputting
QRN (S(N, y; r)) with probability 1

2 + ε. We use A to construct an adversary A′ to the quadratic
residuosity problem as follows. The adversary A′ is given N and y and needs to compute QRN (y).
To do so A′ selects uniformly at random r ∈ Z∗N , computes b = QRN (y) ⊕ QRN (S(N, y; r))
and outputs A((N, y), r) ⊕ b. With probability 1

2 + ε the output of A′ equals QRN (S(N, y; r)) ⊕(
QRN (y)⊕QRN (S(N, y; r))

)
which in turn equals QRN (y).

Thus, based on the quadratic residuosity assumption, the predicate hN,y is an enhanced hardcore
predicate. However, we argue that the enhanced hardcore bits are not pseudorandom. Specifically,
we show that, given the index (N, y) and two random strings r1 and r2, it is easy to check whether
the hardcore bits of the preimages of the elements sampled by r1 and r2 are equal or not. To do so,
first compute QRN (y)⊕QRN (S(N, y; r1)) and QRN (y)⊕QRN (S(N, y; r2)), by checking whether
S multiplies y by r2i or by −r2i (as above). Then, compute the exclusive-or of these two values,
which yields QRN (S(N, y; r1))⊕QRN (S(N, y; r2)) (i.e., the exclusive-or of the two hardcore bits).

12The assumption states that given a random Blum integer N and a random element in JN it is infeasible to decide
whether the element is a quadratic residue or not (with non-negligible advantage).

23

Hence, the predicate hN,y is an enhanced hardcore predicate but is not pseudorandom (in the
enhanced setting) for even two samples.

24

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

