
Design Extractors, Non-Malleable Condensers and Privacy

Amplification

Xin Li∗

Department of Computer Science

University of Washington

Seattle, WA 98905, U.S.A.

lixints@cs.washington.edu

Abstract

We introduce a new combinatorial object, called a design extractor, that has both the prop-
erties of a design and an extractor. We give efficient constructions of such objects and show
that they can be used in several applications.

1. Improving the output length of known non-malleable extractors. Non-malleable
extractors were introduced in [DW09] to study the problem of privacy amplification with an
active adversary. Currently, only two explicit constructions are known [DLWZ11, CRS11].
Both constructions work for n bit sources with min-entropy k > n/2. However, in both
constructions the output length is smaller than the seed length, while the probabilistic
method shows that to achieve error ǫ, one can use O(log n + log(1/ǫ)) bits to extract up
to k/2 output bits. In this paper, we use our design extractor to give an explicit non-
malleable extractor for min-entropy k > n/2, that has seed length O(log n + log(1/ǫ)) and
output length Ω(k).

2. Non-malleable condensers. We introduce and define the notion of a non-malleable
condenser. A non-malleable condenser is a generalization and relaxation of a non-malleable
extractor. We show that similar as extractors and condensers, non-malleable condensers
can be used to construct non-malleable extractors. We then show that our design extractor
already gives a non-malleable condenser for min-entropy k > n/2, with error ǫ and seed
length O(log(1/ǫ)).

3. A new optimal protocol for privacy amplification. More surprisingly, we show that
non-malleable condensers themselves give optimal privacy amplification protocols with an
active adversary. In fact, the non-malleable condensers used in these protocols are much
weaker compared to non-malleable extractors, in the sense that the entropy rate of the
condenser’s output does not need to increase at all. This suggests that one promising next
step to achieve better privacy amplification protocols may be to construct non-malleable
condensers for smaller min-entropy. As a by-product, we also obtain a new explicit 2-
round privacy amplification protocol with optimal entropy loss and optimal communication
complexity for min-entropy k > n/2, without using non-malleable extractors.

∗Partially supported by NSF Grants CCF-0634811, CCF-0916160, THECB ARP Grant 003658-0113-2007, and a
Simons postdoctoral fellowship.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 161 (2011)

1 Introduction

Over the past decades, motivated by the problem of using imperfect random sources in compu-
tation, seeded randomness extractors [NZ96] have been studied extensively [SZ99, Tre01, RRV02,
LRVW03, GUV09, DW08, DKSS09]. Besides its original motivation, seeded extractors have also
found applications in cryptography, coding theory, complexity theory and many other areas. When
viewed as a bipartite graph, seeded extractors are closely related to expander graphs, super concen-
trators [WZ99] and randomness optimal samplers [Zuc97]. Today we have seeded extractors with
nearly optimal parameters [LRVW03, GUV09, DW08, DKSS09].

Another combinatorial object, known as design, has also been widely used in computer science.
For example, it has been used in the construction of the Nisan-Wigderson pseudorandom generator
[NW94] and the construction of Trevisan’s extractor [Tre01]. Previously, except the use of designs
in Trevisan’s extractor, there is no known connection between these two objects.

In this paper, we introduce a new combinatorial object called design extractor. As evident from
the name, it is both a design and an extractor. In other words, when viewed as a bipartite graph,
we require this object to have both the properties of a design and an extractor. Informally, the two
properties are:

• For any subset S of vertices on the right with density ρ, most of the vertices on the left have
roughly a ρ fraction of neighbors in S. This is the extractor property.

• For any two different vertices on the left, the intersection of their neighbors on the right has
a small size (compared to the left degree). This is the design property. Note that we are
viewing the neighbors of left vertices as subsets of right vertices.

Formally, we have the following definition.

Definition 1.1. An (N, M, K, D, α, ǫ) design extractor is a bipartite graph with left hand side [N],
right hand side [M], left degree D such that the following properties hold.

• (extractor property) For any subset S ⊆ [M], let ρS = |S|/M . For any vertex v ∈ [N], let
ρv = |Γ(v) ∩ S|/D. Let BadS = {v ∈ [N] : |ρv − ρS | > ǫ}, then |BadS | ≤ K.

• (design property) For any two different vertices u, v ∈ [N], |Γ(u) ∩ Γ(v)| ≤ αD.

At first it may not seem obvious that such objects exist. However we show that design extrac-
tors exist with good parameters, and in fact they can be constructed very naturally from seeded
extractors. We also give much more efficient constructions of design extractors based on a variant
of Trevisan’s extractor. We then show that design extractors are useful in several applications.

1.1 Improving the output length of known non-malleable extractors

Non-malleable extractors were introduced by Dodis and Wichs [DW09] to give protocols for the
problem of privacy amplification with an active adversary. We now give the formal definition below.

Notation. We let [s] denote the set {1, 2, . . . , s}. For ℓ a positive integer, Uℓ denotes the uniform
distribution on {0, 1}ℓ, and for S a set, US denotes the uniform distribution on S. When used as
a component in a vector, each Uℓ or US is assumed independent of the other components. We say
W ≈ε Z if the random variables W and Z have distributions which are ε-close in variation distance.

1

Definition 1.2. The min-entropy of a random variable X is

H∞(X) = min
x∈supp(X)

log2(1/ Pr[X = x]).

For X ∈ {0, 1}n, we call X an (n, H∞(X))-source, and we say X has entropy rate H∞(X)/n.

Definition 1.3. A function Ext : {0, 1}n ×{0, 1}d → {0, 1}m is a strong (k, ε)-extractor if for every
source X with min-entropy k and independent Y which is uniform on {0, 1}d,

(Ext(X, Y), Y) ≈ε (Um, Y).

Definition 1.4. A function nmExt : [N] × [D] → [M] is a (k, ε)-non-malleable extractor if, for
any source X with H∞(X) ≥ k and any function A : [D] → [D] such that A(y) 6= y for all y, the
following holds. When Y is chosen uniformly from [D] and independent of X,

(nmExt(X, Y), nmExt(X,A(Y)), Y) ≈ε (U[M], nmExt(X,A(Y)), Y).

Remark 1.5. Dodis and Wichs originally defined average-case non-malleable extractor, while our
definition here is worst-case non-malleable extractor. However, these two notions are essentially
equivalent, up to a small change of parameters. Throughout the rest of our paper, when we say
non-malleable extractor, we refer to the worst-case non-malleable extractor of Definition 1.4.

In [DW09], using the probabilistic method, Dodis and Wichs showed that non-malleable extrac-
tors exist when k > 2m + 3 log(1/ε) + log d + 9 and d > log(n− k + 1) + 2 log(1/ε) + 7, for N = 2n,
M = 2m, and D = 2d. However, no explicit constructions of non-malleable were given in [DW09].

The first explicit non-malleable extractor was given in [DLWZ11], where the authors constructed
a non-malleable extractor that works for k > n/2. Using this construction, they achieved a 2-round
privacy amplification protocol with optimal entropy loss for k > n/2. However, one drawback is that
their result uses a large seed length d = n (although this restriction was later removed) and their
efficiency when outputting more than log n bits relies on an unproven assumption. Later, Cohen,
Raz, and Segev [CRS11] gave an alternative construction of a non-malleable extractor that also
works for k > n/2. Their construction improves the result of [DLWZ11] in the sense that it works
for any seed length d with 2.01 log n ≤ d ≤ n, and does not rely on any unproven assumption. Thus
the result of [CRS11] also improves the communication complexity of the protocols in [DLWZ11].

However, both the construction in [DLWZ11] and the construction [CRS11] suffer from another
drawback: the output length is smaller than the seed length. Indeed, they only achieve m = αd
for some constant α < 1. Thus, if one wants a large output length, say Ω(n), then the seed length
is also forced to be large. On the other hand, the probabilistic method shows that one can use
roughly O(log n) bits to extract up to roughly k/2 bits. For k > n/2 this is Ω(n) bits. Since one of
the ultimate goals in constructing randomness extractors is to use a small seed length to extract
almost all the entropy in a weak source, here one can ask the natural question of whether we can
improve the output length of the above constructions.

In this paper, we give a positive answer by using our design extractor. Specifically, we have the
following theorem.

Theorem 1.6. For every constant δ > 0, there exists a constant β > 0 such that for every n, k ∈ N

with k ≥ (1/2 + δ)n and ǫ > 2−βn there exists an explicit (k, ǫ) non-malleable extractor with seed
length d = O(log n + log ǫ−1) and output length m = Ω(n).

2

1.2 Non-malleable condensers

Next, we introduce the notion of a non-malleable condenser. Similar as the relation between
extractors and condensers, a non-malleable condenser is a relaxation and generalization of a non-
malleable extractor. Informally, given a weak source X, an independent seed Y , and a deterministic
(adversarial) function A such that ∀y,A(y) 6= y, we require that for most seeds y, with high
probability over the fixing of the condenser’s output on A(y), the condenser’s output on y is close
to having a certain amount of min-entropy. More formally, we have the following definition.

Definition 1.7. A (k, k′, ǫ) non-malleable condenser is a function nmCond : {0, 1}n × {0, 1}d →
{0, 1}m such that given any (n, k)-source X, an independent uniform seed Y ∈ {0, 1}d, and any
(deterministic) function A : {0, 1}d → {0, 1}d such that ∀y,A(y) 6= y, we have that with probability
1 − ǫ over the fixing of Y = y,

Pr
z′←nmCond(X,A(y))

[nmCond(X, y)|nmCond(X,A(y))=z′ is ǫ − close to an (m, k′) source] ≥ 1 − ǫ.

It is easy to see that a non-malleable extractor is indeed a special case of a non-malleable
condenser. We then show that our design extractor gives a natural construction of a non-malleable
condenser for weak sources with min-entropy k > n/2. Specifically, we have

Theorem 1.8. For any constant δ > 0, there exists a constant β > 0 such that for any n, k ∈ N

with k ≥ (1/2 + δ)n and ǫ > 2−βn, there exists an efficiently computable (k, k′, ǫ) non-malleable
condenser with d = O(log(1/ǫ)), m = Ω(n) and k′ ≥ δm/2.

Note that the seed length here does not depend on n. We further show that similar as a
condenser can be used to construct an extractor, a non-malleable condenser can also be used to
construct a non-malleable extractor. For example, we have the following theorem.

Theorem 1.9. Assume we have an explicit (k, k′, ǫ) non-malleable condenser nmCond : {0, 1}n ×
{0, 1}d → {0, 1}m such that k′ ≥ (1/2 + δ)m for some constant δ > 0 and 2d ≥ 1/ǫ. Then there
exists an efficiently computable (k, 9ǫ) non-malleable extractor with seed length O(d+log m+log ǫ−1)
and output length Ω(m).

1.3 A new optimal privacy amplification protocol

Non-malleable extractors were first defined to give privacy amplification protocols in the presence
of an active adversary. The basic setting is that, two parties Alice and Bob share a private weakly
random string, and they wish to communicate with each other through a public channel controlled
by an adversary with unlimited computational power. Assuming that both parties also have access
to local private uniform random bits, the goal is that Alice and Bob should agree on a shared
private nearly uniform string at the end of the protocol. The adversary is active in the sense that
he/she can arbitrarily insert, delete, modify, and reorder messages, or even run several rounds with
one party before resuming execution with the other party.

This problem has been studied by many researchers. Maurer and Wolf [MW97] gave the first
non-trivial protocol for this problem, which works when the entropy rate of the weakly-random
secret is bigger than 2/3. This was later improved by Dodis, Katz, Reyzin, and Smith [DKRS06]
to work for entropy rate bigger than 1/2. Yet both protocols suffer a significant entropy loss. In

3

[DW09], Dodis and Wichs showed that there is no one-round protocol for entropy rate less than
1/2. Renner and Wolf [RW03] gave the first protocol for entropy rate below 1/2, and their result
was simplified by Kanukurthi and Reyzin [KR09], who showed that the protocol can run in O(s)
rounds and achieve entropy loss O(s2) to achieve security parameter s.

In [DW09], Dodis and Wichs further showed that explicit non-malleable extractors give optimal
2-round protocols for the problem of privacy amplification with an active adversary, and these
protocols also achieve asymptotically optimal entropy loss. However, they didn’t give explicit
non-malleable extractors and only gave a weaker form of non-malleable extractors called “look
ahead” extractors. They used it to give a 2-round privacy amplification protocol with entropy loss
O(s2). Chandran, Kanukurthi, Ostrovsky, and Reyzin [CKOR10] improved the entropy loss to
O(s) but the number of rounds is also O(s). In [DLWZ11] and later in [CRS11], by giving the first
explicit non-malleable extractors for min-entropy k > n/2, the authors obtained a 2-round privacy
amplification protocol with optimal entropy loss O(s) for k > n/2. [DLWZ11] also gave a constant
round protocol with optimal entropy loss for min-entropy k = δn with any constant δ > 0.

An active adversary seems quite powerful and thus it seems natural that in order to get an
optimal protocol, one needs some strong tools such as non-malleable extractors. However, one may
still ask the question of whether a non-malleable extractor is truly needed to construct an optimal
privacy amplification protocol. Surprisingly, we show that this is not the case. In fact, we show
that a non-malleable condenser itself suffices to give a 2-round privacy amplification protocol with
optimal entropy loss. Specifically, we have

Theorem 1.10. There exists a constant c > 1 such that for any n, k ∈ N and ǫ > 0, assume that we
have an explicit (k, k′, ǫ)-non-malleable condenser with k′ ≥ c(log n + log(1/ǫ)) and d = O(log n +
log(1/ǫ)). Then there is an explicit 2-round privacy amplification protocol with security parameter
log(1/ǫ), entropy loss O(log n + log(1/ǫ)) and communication complexity O(log n + log(1/ǫ)).

The existence of such non-malleable condensers follow directly from the existence of non-
malleable extractors and the fact that a non-malleable extractor is also a non-malleable condenser.
Note that in this theorem, there is no requirement on the min-entropy rate of the condenser’s
output. This means that it can even not condense the source in the traditional sense at all. In-
deed it can even lower the min-entropy rate. All that is required is that the output on y has
c(log n + log(1/ǫ)) min-entropy conditioned on the output on A(y). Thus we see that this is a
much weaker requirement than that of a non-malleable extractor. This, together with the fact that
non-malleable condensers can be used to construct non-malleable extractors, suggest that one next
and promising step to achieve better privacy amplification protocols may be to construct explicit
non-malleable condensers for smaller min-entropy.

Plugging in our non-malleable condenser for min-entropy k > n/2, we also obtain a new 2-round
privacy amplification protocol with optimal entropy loss and optimal communication complexity
for min-entropy k > n/2, without using non-malleable extractors.

2 Overview of The Constructions and Techniques

In this section we give an overview of our constructions and the techniques used. In order to give a
clean description, we shall be informal and imprecise sometimes. We start with the constructions
of design extractors.

4

2.1 Constructions of design extractors

We first show that a design extractor can be constructed easily from a seeded extractor. Take a
seeded extractor and view it as an (N, M, K, D) bipartite graph with N vertices on the left, M
vertices on the right and left degree D. The extractor property says that for any subset S on the
right with density ρ = |S|/M , most vertices on the left have roughly a ρ fraction of neighbors in
S. Indeed, the number of vertices on the left that deviate from this property is at most K. Now
consider a vertex x on the left. The neighbors of x is a subset Sx of the vertices on the right,
with density ρx = D/M . Thus again by the extractor property, most vertices on the left will have
roughly a ρx fraction of neighbors in Sx. This means that except for K −1 different vertices on the
left, all the other vertices y, y 6= x on the left will satisfy that |Γ(y) ∩ Γ(x)| is roughly D/M · D.
When D is small this is much smaller than D.

Now we can get a design extractor by the following greedy approach: first pick a vertex x on
the left and get rid of all the other vertices on the left who have more than D/M · D neighbors in
Sx, and then continue. Since each time we get rid of at most K − 1 vertices, we are left with N/K
vertices on the left, and now we get a design extractor.

One drawback of the above approach is that it takes time polynomial in N . Sometimes this is
not good enough and we need the running time to be poly-logarithmic in N . Our next improvement
comes from the observation that a certain kind of existing extractor construction is already a design
extractor. This is simply Trevisan’s extractor [Tre01]. To see this, note that for a strong extractor,
if we add the seed to the output and then view it as a bipartite graph (which is still an extractor),
we have that if two different vertices (two inputs) on the left have the same neighbor on the right,
then this neighbor must come from the same seed of the two inputs. Note that Trevisan’s extractor
uses a binary code to encode the source, thus for two different inputs their encodings have a large
hamming distance. Now consider the first bit of the output. It is selected from the bits of the
encoded source by a subset of the bits from the seed. When the seed cycles over all possibilities,
this subset also uniformly cycles over all bits of the encoded source. Thus for a large fraction of
the seeds the outputs of two different inputs will be different. Therefore their neighbors will differ
by a large fraction. Thus we already have a design extractor.

However, since Trevisan’s extractor uses a binary code, its relative distance cannot be bigger
than 1/2. Sometimes we need a larger distance for the design extractor, thus we generalize Tre-
visan’s extractor to use a code over a larger alphabet. We show that by using certain concatenated
codes from [GS00] with good list-decoding bounds and large distance, the generalized extractor is
still a strong extractor. Thus we get design extractors such that the intersection between different
subsets is smaller.

2.2 Improving the output length of non-malleable extractors

Here our approach is similar to the block-source extractor used in [NZ96]. Specifically, we first view
the extractor graph as a sampler, as in [Zuc97]. We note that by adding the seed to the output of a
strong extractor and viewing it as a bipartite graph, the neighbors of any left vertex are all distinct.
Thus we have samplers with distinct samples. Given any (n, k)-source X with k = (1/2 + δ)n, we
first use the sampler to sample a block with Ω(n) bits from the weak source. We limit the block
length to be smaller than δn, so that even conditioned on the block, the original source X still
has entropy rate > 1/2. We then take a small seed and apply a known non-malleable extractor
to X and output another small seed R, which is independent of the sampled block. Finally we

5

use R as a seed and apply an optimal strong seeded extractor to the sampled block, thus we can
output Ω(n) bits. To argue about the non-malleability, we need the outputs of the sampler to be
a non-malleable condenser, and this follows from the design extractor property.

More specifically, assume that the error of the non-malleable extractor we are seeking is ǫ, we
will construct a design extractor with N = poly(1/ǫ) = poly(K), M = n and D = δ

10n such

that the intersection of the neighbors of two different left vertices has size at most δ
8D. We now

associate the right vertices of the design extractor with the n bits of X, and choose a random
seed Y1 with d1 = log N bits to sample X̄ with D bits from X, according to the sampler. Next
we take the non-malleable extractor nmExt from [CRS11] and use another random seed Y2 with
d2 = O(log n + log(1/ǫ)) bits to extract R from X, and output d3 = O(log n + log(1/ǫ)) bits. Now
take any strong seeded extractor Ext with optimal parameters, for example the construction in
[GUV09], and the final output is Z = Ext(X̄, R) that outputs Ω(D) = Ω(n) bits.

In the following discussion we use letters with prime to denote results obtained by computing
with A(Y). The idea is as follows. When we use a sampler with distinct samples to sample X̄ from
the source X, by the analysis in [Vad04], for most seeds y1 (indeed, except K y1’s), X̄ roughly has
min-entropy rate 1/2 + δ. We call these y1’s good. We now want to show that for most good seeds
y1, for any different y′1 6= y1, X̄ sampled with y1 has min-entropy δD conditioned on X̄ sampled
with y′1 (call it X̄ ′). This can be shown as follows. First, if y′1 is good, then by similar analysis as
in [Vad04] and the fact that X̄ and X̄ ′ have at most δ

8D bits in common, the joint distribution of

(X̄, X̄ ′) has min-entropy roughly 2(1/2+ δ)D− δ
8D > (1+1.5δ)D (think of this as subtracting the

entropy of the repeated bits). Since this entropy is larger than the length of X̄ ′, which is D, we
have that conditioned on X̄ ′, X̄ has min-entropy δD. Next, if y′1 is bad, since X̄ ′ has only D bits,
even conditioned on X̄ ′, X still has min-entropy roughly (1/2+0.9δ)n. Thus again by the analysis
in [Vad04], except for K y1’s, X̄ will roughly has min-entropy (1/2+0.9δ)D > δD. In other words,
a bad y′1 can ruin at most K good y1’s. Since there are at most K bad y′1’s, they can ruin at most
K2 good y1’s. Therefore, as long as N >> K2, for most good seeds y1, for any different y′1 6= y1,
X̄ sampled with y1 has min-entropy δD conditioned on X̄ sampled with y′1.

Note that the above analysis already shows that this is a non-malleable condenser as we defined.
Now note that the seed Y = (Y1, Y2). To argue the non-malleability of our construction, we mainly
use properties of block source extractors and the known non-malleable extractors. Take some
Y ′ = (Y ′

1 , Y
′
2) 6= Y , for now we assume that Y ′

1 is a deterministic function of Y1 and Y ′
2 is a

deterministic function of Y2. We basically have the following three cases.
First, Y1 = Y ′

1 but Y2 6= Y ′
2 . The basic idea is that, X̄ has min-entropy rate roughly 1/2 + δ.

Note that even conditioned on X̄, X still has min-entropy roughly (1/2 + 0.9δ)n. Thus when we
apply the non-malleable extractor in [CRS11] to X and Y2, we get an output R that is uniform
and independent of X̄ and R′ (the output of the non-malleable extractor applied to X and Y ′

2).
Therefore as long as the size of Z is not too large (but still Ω(D)), we can fix Z ′ = Ext(X̄, R′) and
X̄ still has a constant fraction of min-entropy. Now we see Z = Ext(X̄, R) is independent of Z ′.

Second, Y1 6= Y ′
1 but Y2 = Y ′

2 . The basic idea is that, by above we know that even conditioned
on X̄ ′, X̄ has has min-entropy δD. We also know that even if conditioned on (X̄, X̄ ′), X still has
min-entropy roughly (1/2+0.8δ)n (since D is small). Thus we get that R is independent of (X̄, X̄ ′).
Therefore by the property of a strong extractor, Z = Ext(X̄, R) is independent of Z ′ = Ext(X̄ ′, R)
and has Ω(n) bits.

Third, Y1 6= Y ′
1 and Y2 6= Y ′

2 . Again, even conditioned on X̄ ′, X̄ has min-entropy δD. Also, even
if conditioned on (X̄, X̄ ′), X still has min-entropy roughly (1/2 + 0.8δ)n. Thus by the property of

6

the non-malleable extractor, R is independent of (R′, X̄, X̄ ′). Therefore, we can now fix R′ and X̄ ′

(so Z ′ is fixed), and see that Z = Ext(X̄, R) is uniform and has Ω(n) bits.
One subtle problem with the above argument is that it is not necessarily true that Y ′

1 is a
deterministic function of Y1 and Y ′

2 is a deterministic function of Y2. In fact, Y ′
1 , Y ′

2 can depend on
both Y1 and Y2, thus X̄ may be correlated with R through X̄ ′. We can solve this by modifying our
argument a little bit as follows. We first fix Y1 and Y ′

1 . After this fixing Y ′
2 is indeed a deterministic

function of Y2. If Y1 = Y ′
1 then we can proceed as before. If Y1 6= Y ′

1 , then first, by the non-
malleable condenser property for most choices of Y1, no matter what Y ′

1 is , X̄ has has min-entropy
δD conditioned on X̄ ′. Second, after this fixing, (X̄, X̄ ′) is a deterministic function of X, and are
thus independent of Y2 as well as R. However, since Y ′

1 may be a function of Y2, fixing Y ′
1 may cause

Y2 to lose entropy. Luckily, it is shown in [DLWZ11] that a non-malleable extractor with uniform
seed is also a non-malleable extractor with weak random seed, as long as the entropy loss is not
too big compared to the seed length. Thus we can take the size of Y2 to be a constant times bigger
than the size of Y1, and then fixing Y ′

1 won’t cause Y2 to lose much entropy. Now our argument
can proceed as before.

Note that the error that an adversary can achieve is at most the sum of the errors in the above
three cases. Thus we obtain a non-malleable extractor.

2.3 Constructing non-malleable extractor from non-malleable condenser

The construction is simple. Given any weak source X, assume we have a non-malleable condenser
nmCond and a known non-malleable extractor nmExt. Just take two independent uniform random
seeds Y1, Y2 and the output is Z = nmExt(nmCond(X, Y1), Y2).

However, the analysis is not as straightforward as in the case of traditional condensers and
extractors. It is actually similar to the analysis of improving the output length of a non-malleable
extractor above. Given some Y ′ = (Y ′

1 , Y
′
2) 6= Y , here we basically have two cases: Y1 = Y ′

1 or
Y1 6= Y ′

1 . We also need the size of Y2 to be larger than the size of Y1 and use the property that a
non-malleable extractor with uniform seed is also a non-malleable extractor with weak seed.

2.4 A new optimal privacy amplification protocol

Here our protocol is a generalization and modification of the protocol with a non-malleable extrac-
tor. So we first describe that protocol due to Dodis and Wichs [DW09]. The protocol also uses
an additional tool known as a one-time message authentication code (MAC). Roughly speaking, a
MAC authenticates a message m by using a private uniformly random key R to produce a tag T
for the message, such that when an adversary does not know the key, the probability that he/she
can guess the correct tag T ′ for another message m′ 6= m is small, even given m and T . We note
that there are explicit constructions of MACs that work even if the adversary knows some partial
information of the key R, namely as long as the entropy rate of R is bigger than 1/2. We call this
kind of MACs leakage-resilient MACs.

Now assume that we have a non-malleable extractor nmExt. Dodis and Wichs’ protocol proceeds
as follows. In the first round Alice chooses a fresh random string Y from her local random bits and
sends it to Bob. Bob receives a possibly modified string Y ′. They then compute R = nmExt(X, Y)
and R′ = nmExt(X, Y ′) respectively. Next, Bob chooses a fresh random string W ′ from his local
random bits and sends it to Alice, together with a tag T ′ = MACR′(W ′) by using R′ as the MAC
key. Alice receives a possibly modified version (W, T), and she checks if T = MACR(W). If not, then

7

Alice rejects; otherwise they compute outputs Z = Ext(X, W) and Z ′ = Ext(X, W ′) respectively,
where Ext is a seeded strong extractor.

The analysis of the above protocol is simple. If the adversary Eve does not change Y , then
R = R′ and is (close to) uniform. Therefore the MAC ensures that the probability that Eve can
change W ′ without being detected is very small. On the other hand if Eve changes Y , then the
property of the non-malleable extractor guarantees that R′ is independent of R. Thus in this case,
again only with very small probability can Eve change W ′ without being detected. Now if W = W ′,
then Alice and Bob agree on a private uniform string by the property of the strong extractor.

Now we describe our protocol. In the first round, as above, we also have Alice choose a fresh
random string Y1 from her local random bits and send it to Bob, and they compute R = Ext(X, Y1)
and R′ = Ext(X, Y ′

1) respectively, where Ext is a (traditional) seeded strong extractor (note that
now we don’t have a non-malleable extractor). In the next round, Bob chooses a fresh random
string W ′ from his local random bits and sends it to Alice, together with a tag T ′

2 = MACR′(W ′)
by using R′ as the MAC key. Alice receives a possibly modified version (W, T2), and she checks if
T2 = MACR(W). If not, then Alice rejects; otherwise they compute outputs Z = Ext(X, W) and
Z ′ = Ext(X, W ′) respectively.

The above protocol guarantees that in the case where the adversary does not change Y1, W ′

can be authenticated to Alice and thus the two parties can agree on a private uniform random
string in the end. We now consider the case where the adversary does change Y1. Assume now
that we have a non-malleable condenser nmCond. We modify the above protocol such that at the
end of the first round, Alice and Bob also compute Z = nmCond(X, Y1) and Z ′ = nmCond(X, Y ′

1)
respectively. Note that the output of the non-malleable condenser may not be uniform, in fact it
may not even have high min-entropy rate. Thus we cannot use Z or Z ′ as a MAC key. However,
we still need to use the property of the non-malleable condenser to ensure that, when Eve does
change Y1, the probability that she can change W ′ without being detected is very small. To this
end, in the first round we have Alice choose another fresh random string Y2 and also send it to Bob.
Bob receives a possibly modified version Y ′

2 . Now Alice computes another tag T̄1 = Ext(Z, Y2) and
in the second round, Bob also computes T ′

1 = Ext(Z ′, Y ′
2) and sends it to Alice, where Alice may

receive a modified version T1. Now Alice will check two tags. If either T̄1 6= T1 or MACR(W) 6= T2

she rejects; otherwise they compute outputs Z = Ext(X, W) and Z ′ = Ext(X, W ′) respectively.
The basic idea for the analysis is that, when Eve changes Y1, by the property of the non-

malleable condenser, even conditioned on Z ′, Z has min-entropy O(s). Thus when Y2 is another
random string independent of Y1 and X, no matter what Y ′

2 is, as long as Y ′
2 is a function of Y2,

we can output O(s) bits in T̄1, and T̄1 is independent of T ′
1. Therefore the probability that Eve

can come up with the correct T̄1 is small. However, there are several subtle problems here. First,
T ′

1 may leak information about R or R′, thus the MAC key may not be uniform. We can solve
this problem by having the size of T ′

1 be small compared to R, so that R still has a lot of entropy
left and thus we can use the leakage-resilient MAC. This ensures that when Eve does not change
Y1, the MAC can still authenticate W ′ to Alice. Second, Y ′

1 , Y
′
2 can depend on both Y1 and Y2.

We solve this problem by using the same idea we used before. We first fix Y1 and Y ′
1 and by the

property of the non-malleable condenser, for most choices of Y1, no matter what Y ′
1 is, as long as

Y ′
1 6= Y1, even conditioned on Z ′, Z has min-entropy O(s). Now after this fixing Y ′

2 is indeed a
deterministic function of Y2. However, another problem arises. The problem is that fixing Y ′

1 may
cause Y2 to lose entropy (since Y ′

1 may depend on Y2), and the tag T ′
2 may leak information about

Z. Again, the solution is that we can make the size of Y2 a constant times bigger than the size

8

of Y1, so that fixing Y ′
1 doesn’t cause Y2 to lose much entropy. We can also limit the size of T ′

2 to
be a constant times smaller than the conditional min-entropy of Z|Z ′, so that even after fixing T ′

2,
Z|Z ′ still has min-entropy O(s). Finally we need to use a strong two-source extractor to compute
T̄1 and T ′

1. We use the two-source extractor in [Raz05], which works as long as the seed Y2 has
entropy rate > 1/2. This gives our new protocol.

Organization. The rest of the paper is organized as follows. We give some preliminaries in
Section 3. In Section 4 we show the existence of design extractors by the probabilistic method.
In Section 5 we give explicit constructions of design extractors. In Section 6 we show how we
can improve the output length of known non-malleable extractors. In Section 7 we introduce non-
malleable condensers and show the applications in constructing non-malleable extractors and giving
optimal privacy amplification protocols. Finally in Section 8 we conclude with some open problems.

3 Preliminaries

We often use capital letters for random variables and corresponding small letters for their instanti-
ations. Let |S| denote the cardinality of the set S. Let Zr denote the cyclic group Z/(rZ), and let
Fq denote the finite field of size q. All logarithms are to the base 2 unless otherwise stated.

3.1 Probability distributions

Definition 3.1 (statistical distance). Let W and Z be two distributions on a set S. Their statistical
distance (variation distance) is

∆(W, Z)
def
= max

T⊆S
(|W (T) − Z(T)|) =

1

2

∑

s∈S

|W (s) − Z(s)|.

We say W is ε-close to Z, denoted W ≈ε Z, if ∆(W, Z) ≤ ε. For a distribution D on a set S and
a function h : S → T , let h(D) denote the distribution on T induced by choosing x according to D
and outputting h(x). We often view a distribution as a function whose value at a sample point is
the probability of that sample point. Thus ‖W − Z‖ℓ1 denotes the ℓ1 norm of the difference of the
distributions specified by the random variables W and Z, which equals 2∆(W, Z).

Lemma 3.2 ([MW97]). Let X and Y be random variables and let Y denote the range of Y . Then
for all ǫ > 0

Pr
Y

[
H∞(X|Y = y) ≥ H∞(X) − log |Y| − log

(
1

ǫ

)]
≥ 1 − ǫ

Definition 3.3. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong seeded extractor for
min-entropy k and error ǫ if for every min-entropy k source X,

|(Ext(X, R), R) − (Um, R)| < ǫ,

where R is the uniform distribution on d bits independent of X, and Um is the uniform distribution
on m bits independent of R.

9

Definition 3.4. A function TExt : {0, 1}n1 × {0, 1}n2 → {0, 1}m is a strong two source extractor
for min-entropy k1, k2 and error ǫ if for every independent (n1, k1) source X and (n2, k2) source Y ,

|(TExt(X, Y), X) − (Um, X)| < ǫ

and

|(TExt(X, Y), Y) − (Um, Y)| < ǫ,

where Um is the uniform distribution on m bits independent of (X, Y).

3.2 Average conditional min-entropy

Dodis and Wichs originally defined non-malleable extractors with respect to average conditional
min-entropy, a notion defined by Dodis, Ostrovsky, Reyzin, and Smith [DORS08].

Definition 3.5. The average conditional min-entropy is defined as

H̃∞(X|W) = − log
(
Ew←W

[
max

x
Pr[X = x|W = w]

])
= − log

(
Ew←W

[
2−H∞(X|W=w)

])
.

Average conditional min-entropy tends to be useful for cryptographic applications. By taking
W to be the empty string, we see that average conditional min-entropy is at least as strong as
min-entropy. In fact, the two are essentially equivalent, up to a small loss in parameters.

We have the following lemmas.

Lemma 3.6 ([DORS08]). For any s > 0, Prw←W [H∞(X|W = w) ≥ H̃∞(X|W) − s] ≥ 1 − 2−s.

Lemma 3.7 ([DORS08]). If a random variable B has at most 2ℓ possible values, then H̃∞(A|B) ≥
H∞(A) − ℓ.

Corollary 3.8. A (k, ε)-average-case non-malleable extractor is a (k, ε)-worst-case non-malleable
extractor. For any s > 0, a (k, ε)-worst-case non-malleable extractor is a (k + s, ε + 2−s)-average-
case non-malleable extractor.

Throughout the rest of our paper, when we say non-malleable extractor, we refer to the worst-
case non-malleable extractor of Definition 1.4.

3.3 Previous Work that We Use

For a strong seeded extractor with optimal parameters, we use the following extractor constructed
in [GUV09].

Theorem 3.9 ([GUV09]). For every constant α > 0, and all positive integers n, k and any ǫ > 0,
there is an explicit construction of a strong (k, ǫ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with
d = O(log n + log(1/ǫ)) and m ≥ (1 − α)k.

We need the following two source extractor from [Raz05].

Theorem 3.10 ([Raz05]). For any n1, n2, k1, k2, m and any 0 < δ < 1/2 with

• n1 ≥ 6 log n1 + 2 log n2

10

• k1 ≥ (0.5 + δ)n1 + 3 log n1 + log n2

• k2 ≥ 5 log(n1 − k1)

• m ≤ δ min[n1/8, k2/40] − 1

There is a polynomial time computable strong 2-source extractor Raz : {0, 1}n1 × {0, 1}n2 →
{0, 1}m for min-entropy k1, k2 with error 2−1.5m.

4 The Existence of Design Extractors

Here we show that design extractors with good parameters exist. Recall the definition of a design
extractor.

Definition 4.1. An (N, M, K, D, α, ǫ) design extractor is a bipartite graph with left hand side [N],
right hand side [M], left degree D such that the following properties hold.

• (extractor property) For any subset S ⊆ [M], let ρS = |S|/M . For any vertex v ∈ [N], let
ρv = |Γ(v) ∩ S|/D. Let BadS = {v ∈ [N] : |ρv − ρS | > ǫ}, then |BadS | ≤ K.

• (design property) For any two different vertices u, v ∈ [N], |Γ(u) ∩ Γ(v)| ≤ αD.

Theorem 4.2. There exist design extractors such that C max{log(N/K)/ǫ2, log N/α} ≤ D ≤
αM/2 and M < βǫ2DK for some constants C > 1, β < 1.

Proof. We show that a random bipartite graph is a design extractor with the above parameters
with high probability. Specifically, For each vertex v ∈ [N], we take its D neighbors independently
and uniformly at random from [M]. We then bound the probability that the graph does not satisfy
either property of a design extractor.

The first property is essentially the extractor property. Thus we have that for any vertex v ∈ [N]
and any subset S ⊆ [M], the expected value of |Γ(v) ∩ S| is ρSD. Therefore we have

Pr[|ρv − ρS | > ǫ] < 2−Ω(ǫ2D)

by a chernoff bound.
If |BadS | > K, then there exists such a set with size K, and this happens with probability at

most (2−Ω(ǫ2D))K = 2−Ω(ǫ2DK) since the vertices choose their neighbors independently. Thus by
the union bound, the probability that the first property is not satisfied is at most

(
N

K

)
2M2−Ω(ǫ2DK).

Now consider the second property. For any two different vertices u and v in [N], since each of
them chooses its neighbors independently, the expected value of |Γ(u) ∩ Γ(v)| is D/M · D ≤ αD/2
since D ≤ αM/2. Therefore we have

Pr[|Γ(u) ∩ Γ(v)| > αD] < 2−Ω(αD)

by a chernoff bound.

11

Thus by the union bound, the probability that the second property is not satisfied is at most

(
N

2

)
2−Ω(αD).

Therefore the probability that a random graph is not a design extractor is at most

(
N

K

)
2M2−Ω(ǫ2DK) +

(
N

2

)
2−Ω(αD).

It is easy to check this probability is exponentially small when we choose the parameters as in
the theorem statement.

5 Explicit Constructions of Design Extractors

We first show that a design extractor can be constructed from an extractor with appropriate
parameters.

Lemma 5.1. For integers M, D and 0 < ǫ, α < 1 such that D ≤ αM/2, an (N, M, K, D, α, ǫ)
design extractor can be constructed from an (N ′, M, K, D, ǫ′) extractor in time poly(N ′) where
N = N ′/K and ǫ′ = min{ǫ, α/2}.

Proof. Suppose that there exists an (N ′, M, K, D, ǫ′) extractor. Note that ǫ ≥ ǫ′, thus the graph
already satisfies the first property of the design extractor. Next, for any particular vertex u ∈ [N ′],
let Su = Γ(u), ρSu = |Su|/M . Now for any different vertex v ∈ [N ′], let ρv = |Γ(v) ∩ Su|/D and
let BadSu = {v ∈ [N ′] : |ρv − ρSu | > ǫ′}. Note that ρSu + ǫ′ ≤ α. Thus any vertex v ∈ [N ′]
such that |Γ(v) ∩ Γ(u)| > αD is in BadSu . By the extractor property |BadSu | ≤ K. Thus we
conclude that for any vertex u ∈ [N ′], there are at most K − 1 different vertices v in [N ′] such that
|Γ(u) ∩ Γ(v)| > αD.

Now we can construct the design extractor by picking vertices in [N] from [N ′] greedily. Specif-
ically, we first pick any vertex u ∈ [N ′] and put it in [N]. Next, we delete all different vertices v
in [N ′] such that |Γ(v) ∩ Γ(u)| > αD. We then pick any vertex from the remaining vertices, and
keep on doing this. Since each step we delete at most K − 1 vertices, we have at least N = N ′/K
vertices left. Finally note that deleting vertices from [N ′] does not change the extractor property.
Thus we get an (N, M, K, D, α, ǫ) design extractor.

The above lemma shows that a design extractor can be constructed from an extractor with
appropriate parameters, but the construction is only weakly efficient in the sense that the running
time is polynomial in the number of vertices. Ideally we would want a construction that is strongly
efficient in the sense that the running time is polylogarithmic in the number of vertices. We next
show that we can achieve this by using a special kind of extractors–Trevisan’s extractor [Tre01].

Construction 5.2 (Trevisan’s extractor). [Tre01] Trev : {0, 1}n × {0, 1}d → {0, 1}m.

• Let C : {0, 1}n → {0, 1}n̄ be a binary code.

• Let l = log n̄ and S = {S1, · · · , Sm} be a design such that ∀i, Si ⊆ [d] and |Si| = l.

For a seed r ∈ {0, 1}d, let ji ∈ [n̄] be the number whose binary expression is r|Si
, the i’ th bit of

Trevisan’s extractor Trev(x, r) is defined as the ji’th bit of C(x).

12

Based on Trevisan’s extractor Trev : {0, 1}n × {0, 1}d → {0, 1}m, construct a bipartite graph
DExt with left hand side [N], right hand side [M] and left degree D, where N = 2n, M = 2m+d, D =
2d as follows. For every v ∈ [N] let xv be its binary representation. For every r ∈ {0, 1}d connect
v to the vertex in [M] whose binary representation is Trev(xv, r) ◦ r.

We now have the following lemma.

Lemma 5.3. Assume Trev is an (n, k, ǫ) extractor and the binary code in Trevisan’s extractor has
relative distance 1 − α. Then DExt is an (N, M, K, D, α, ǫ) design extractor with K = 2k.

Proof. Note that the right hand side of the graph, which corresponds to the output of the extractor,
is essentially Trev(X, R)◦R. Since Trev is a strong extractor, after concatenation with the seed, it is
still an (n, k, ǫ) extractor. Thus DExt satisfies the extractor property. Next, consider two different
vertices u, v ∈ [N] and their neighbors Γ(u), Γ(v). Since a neighbor with edge r is represented by
Trev(xv, r) ◦ r, if a neighbor of u and a neighbor of v are the same, they must be with the same
edge r. Now consider the first bit of Trev(xu, r) and Trev(xv, r). These are basically the j1’th bit
in C(xu) and C(xv), where j1 is the number whose binary expression is r|S1

. Note S1 is a subset
of [d]. Thus as r is uniformly distributed over {0, 1}d, j1 is also uniformly distributed over {0, 1}l.
Therefore by the distance property of the binary code, the first bits of Trev(xu, r) and Trev(xv, r)
differ in at least (1 − α)D positions. Thus |Γ(u) ∩ Γ(v)| ≤ αD.

The above lemma shows that in order to get a design extractor, all we need is to take a binary
code with large distance in Trevisan’s extractor. However, a binary code cannot have relative
distance greater than 1/2, so the parameter α cannot be less than 1/2. Sometimes we would want
α to be much smaller, and in this case we need to take a code over a larger alphabet. Specifically,
we are going to use the following code that have good combinatorial list decoding property.

We first have the following theorem.

Theorem 5.4. [GS00] For a q-ary code of block length n and distance d = (1 − 1/q)(1 − δ)n, for
any received word, the number of codewords differing from the received word in at most e places,
where qe/(q − 1) = (1 − γ)n, is at most 1−δ

γ2−δ
, provided γ >

√
δ.

Next we use one of the concatenated codes constructed in [GS00].

Theorem 5.5. [GS00] For every k, δ > 0, there is an explicitly specified q-ary code C, obtained
by concatenating a Reed-Solomon code with a Hadamard code, which has rate k, relative distance

d/n = (1 − 1/q)(1 − δ), and block length n = O
(

k2

δ2 log2(1/δ)

)2
.

Trevisan’s extractor uses a weak design, for which we have the following definition and theorem.

Definition 5.6. [RRV02] A family of sets S1, · · · , Sm ⊂ [d] is a weak (ℓ, ρ)-design if

1. For all i, |Si| = ℓ.

2. For all i,
∑

j<i 2
|Si∩Sj | ≤ ρ · (m − 1).

Theorem 5.7. [RRV02] For every ℓ, m ∈ N and ρ > 1, there exists a weak (ℓ, ρ)-design S1, · · · , Sm ⊂
[d] with

d =

⌈
ℓ

ln ρ
· ℓ

⌉
.

Moreover, such a family can be found in time poly(m, d).

13

We now define the following generalized version of Trevisan’s extractor, over some alphabet [q].

Construction 5.8 (Generalized Trevisan’s extractor). GTrev : [q]n × {0, 1}d → [q]m.

• Let C : [q]n → [q]n̄ be the code in Theorem 5.5.

• Let l = log n̄ and S = {S1, · · · , Sm} ⊂ [d] be an (l, ρ) design for some parameter ρ > 1.

For a seed r ∈ {0, 1}d, let ji ∈ [n̄] be the number whose binary expression is r|Si
, the i’ th

symbol of the generalized Trevisan’s extractor GTrev(x, r) is defined as the ji’th symbol of C(x).

Again, we construct a bipartite graph DExt based on the above generalized Trevisan’s extractor.
The graph has left hand side [N], right hand side [M] and left degree D, where N = qn, M = qm2d

and D = 2d. The graph is defined as follows. For every v ∈ [N] let xv be its q-ary representation.
For every r ∈ {0, 1}d connect v to the vertex in [M] which is represented by Trev(xv, r) ◦ r.

We now analyze the above construction.

Theorem 5.9. For any integers N, K such that K = NΩ(1) and any constants ǫ, α > 0, let q = 2/α,
n = logq N , k = logq K and m =

√
k. Let GTrev : [q]n×{0, 1}d → [q]m be the generalized Trevisan’s

extractor as described above, with parameters q, n, m and ρ = (k − 2 logq(m/ǫ) − O(1))/m. Then

DExt is an (N, M, K, D, α, ǫ) design extractor with D = polylog(N) and M = q
√

kpolylog(N).

Proof. We first show that GTrev is indeed a strong extractor. Let Um denote the uniform distribu-
tion over [q]m. Without loss of generality assume that for some test T (i.e., a subset of [D]× [M]),

Pr[T (R, GTrev(X, R)) = 1] − Pr[T (R, Um) = 1] ≥ ǫ.

Define the hybrid distributions D0, ..., Dm where Di is the concatenation of R, the first i symbols
from GTrev(X, R) and the last m − i symbols from Um. Thus we have

Pr[T (Dm) = 1] − Pr[T (D0) = 1] ≥ ǫ.

Therefore there must be an i, 1 ≤ i ≤ m, such that

Pr[T (Di) = 1] − Pr[T (Di−1) = 1] ≥ ǫ

m
.

Let D′
i be the distribution obtained by randomly choosing a different symbol of the (d + i)’th

symbol in Di (the i’th symbol in GTrev(X, R)), and pi = Pr[T (Di) = 1], si = Pr[T (D′
i) = 1],

pi−1 = Pr[T (Di−1) = 1]. Then

pi−1 =
1

q
· pi + (1 − 1

q
) · si.

Thus

pi − si =
q

q − 1
(pi − pi−1).

Let the (d + i)’th symbol in Di−1(the first symbol chosen from Um) be u1. Now let T2 be a
randomized circuit that first runs T on Di−1, and then predicts the i’th symbol in GTrev(X, R), yi,
as follows: if T (Di−1) = 1, predict yi = u1; otherwise choose a symbol y uniformly at random from
[q]/{u1} and predict yi = y. We have

14

Pr[correct] = Pr[correct|yi = u1] Pr[yi = u1] + Pr[correct|yi 6= u1] Pr[yi 6= u1]

= pi ·
1

q
+

1

q − 1
(1 − si) · (1 − 1

q
)

=
1

q
+

1

q
· (pi − si)

=
1

q
+

1

q − 1
· (pi − pi−1)

≥ 1

q
+

1

q − 1
· ǫ

m

Thus, we have a randomized circuit that predicts the i’th symbol of GTrev(X, R) from the first
i − 1 symbols with advantage ǫ/((q − 1)m). There is a fixing of the coin tosses of the circuit that
preserves the advantage. Also, note that in Di−1 the last m − i + 1 symbols are uniform and
independent of all the other symbols. Hence there exists a fixing of these symbols that preserves
the advantage of at least ǫ/((q − 1)m). Furthermore, we can split R ∈ {0, 1}d into those bits in
locations indexed by Si and the rest. Again, there is a way to fix the rest bits and still preserve
the advantage. Now we have a circuit T3 with all the fixings hardwired, such that T3 predicts the
i’th symbol of GTrev(X, R) from the first i − 1 symbols with probability at least 1

q + 1
q−1 · ǫ

m .
Note that the only random bits left in R are the bits indexed by Si. If we know the dependence

of the first i−1 symbols of GTrev(X, R) on these bits, then by trying all possibilities of the bits in Si

we get a string w that agrees with C(x) in at least (1
q + ǫ

(q−1)m)n̄ coordinates. Thus, the codeword

differs with w in at most e = (1− 1
q − ǫ

(q−1)m)n̄ positions. Thus we can use Theorem 5.4 to bound

the number of such codewords. Specifically, γ there is q
(q−1)2

· ǫ
m . We choose δ = q2

2(q−1)4
· ǫ2

m2 so that

the conditions in Theorem 5.4 are met. Thus we have that the number of codewords is at most

1 − δ

γ2 − δ
<

1

γ2 − δ
=

2(q − 1)4

q2
· m2

ǫ2
.

Since we don’t know the dependence, we try all possibilities. Thus, the number of codewords
is at most

q
P

j<i 2|Si∩Sj | · 2(q − 1)4

q2
· m2

ǫ2
≤ qρm · 2(q − 1)4

q2
· m2

ǫ2
.

Therefore we can take ρ = (k−2 logq(m/ǫ)−O(1))/m = kΩ(1) and the above number is at most

K = qk. Note n̄ = O(n2

δ2 log2(1/δ)
)2 = Oq(

n2m4

ǫ4 log2(m/ǫ)
). Thus

d =

⌈
log n̄

ln ρ

⌉
· log n̄ = O

(
log2 n

log k

)
= O(log n).

Thus we have shown that GTrev is a strong extractor. Therefore DExt is an extractor with

D = polylog(N) and M = q
√

kpolylog(N). Next note that q = 2/α. Thus by Theorem 5.5 the
relative distance of the code is at least (1 − 1/q)(1 − δ) > 1 − α. Now by the same argument as in
the proof of Lemma 5.3 we have that DExt is an (N, M, K, D, α, ǫ)-design extractor.

15

In the above construction we only have that D = polylog(N) = polylog(M). Sometimes in our
applications we will want D to be large, e.g., D = Ω(M). We have the following theorem.

Theorem 5.10. For any integers N, K, M such that K = NΩ(1), M ≥ polylog(N) and any con-
stants ǫ, α, β > 0. There exists an (N, M, K, D, α, ǫ) design extractor such that D = βM . Moreover
the neighbors of each vertex in [N] can be computed in time poly(log N, M).

Proof. We first use Theorem 5.9 to construct an (N, M ′, K, D′, α, ǫ) design extractor such that
D′ = polylog(N) and D′ = βM ′. This simply corresponds to the case where we only output some
constant c = log(1/β) number of bits in GTrev. Next, we add the same amount of independent
random bits to both the seed and the output of GTrev until the output has log M bits. Now we have
D = βM . It is easy to check that the resulting graph is an (N, M, K, D, α, ǫ) design extractor.

6 Improving the Output Length of Non-Malleable Extractors

In this section we show how we can use design extractors to improve the output length of non-
malleable extractors. Assume that we have an (n, k)-source with k = (1/2 + δ)n for an arbitrary
constant 0 < δ < 1. We first need an (N, M, K, D, α, ǫ) design extractor such that M = n. We
are going to associate the right hand side of the design extractor with the bits of the weak random
source.

We need the following definition of an average sampler.

Definition 6.1. [Vad04] A function Samp : {0, 1}r → [n]t is a (µ, ǫ, γ) averaging sampler if for
every function f : [n] → [0, 1] with average value 1

n

∑
i f(i) ≥ µ, it holds that 1

Pr
(i1,··· ,it)←Samp(Ur)


1

t

t∑

j=1

f(ij) < µ − ǫ


 ≤ γ.

Samp has distinct samples if for every x ∈ {0, 1}r, the samples produced by Samp(x) are all
distinct.

It is shown in [Zuc97] that randomness extractors give averaging samplers (in fact, these two
objects are equivalent). We have the following theorem.

Theorem 6.2. [Zuc97] An (N, M, K, D, ǫ) extractor is a (µ, ǫ, γ) averaging sampler for any µ > 0,
t = D and γ = K/N .

To ensure that the sampler has distinct samples, we let the output of the extractor be the
concatenation of a strong extractor’s output and the seed. Thus different seeds correspond to
different vertices on the right.

The idea is that, we will use our design extractor as the averaging sampler to sample bits from
a weak random source X. Specifically, this is done by picking a vertex uniformly from the left hand
side, and then use the concatenation of its D neighbors (D bits) as the output of the sampler. Note
that this only requires d1 = log N bits. We now have the following two lemmas about the output
of the sampler.

1In general average samplers consider two sided errors, however in this paper it is enough to consider one-sided
error, as in [Vad04]. Moreover, two sided error are actually implied by one sided error by considering 1 − f .

16

Let X be a weak random source with min-entropy δn for some δ > 0. Let S ∈ [n]D be the
output of the sampler, we write Xi for the i’th bit of X and XS for the bits of X that are indexed
by S. Some part of our analysis will follow that of [Vad04].

For every x ∈ Supp(X), define pi(x) = Pr[Xi = xi|X1 = x1, · · · , Xi−1 = xi−1] and hi(x) =
log(1/pi(x)). Intuitively, if read in a stream from x1 to xn, hi(x) would be the min-entropy that
is contributed by the bit xi. Since X has min-entropy δn, we have Pr[X = x] = Πipi(x) =
2−

P

i hi(x) ≤ 2−δn. Thus
∑

i hi(x) ≥ δn, which means that the average of hi(x) is at least δ for
every x ∈ Supp(X). Therefore with high probability the sampler will output a sequence of bits
with entropy rate roughly δ. However, the sampler is only guaranteed to work for functions with
output range [0, 1], while hi(x) could be greater than 1. Thus we will set a threshold and truncate
large values. Specifically, we choose a parameter τ < δ/3 and let h′

i(x) = min{hi(x), log(1/τ)}.
We need to argue that this truncation does not cost us much entropy. To this end, call x

well-spread if
∑

i h
′
i(x) ≥ (δ − 2τ)n. We have the following lemma.

Lemma 6.3. [Vad04] Pr[Xis not well-spread] ≤ 2−Ω(τn).

Next, choose µ = (δ−2τ)/ log(1/τ) and ǫ = τ/ log(1/τ) in the sampler. We will call a sequence
s = (i1, · · · , iD) ∈ [n]D good for x if

1

D

D∑

j=1

h′
ij (x) ≥ δ − 3τ.

Otherwise we will call s bad for x. Let b(s) = Pr[s is bad for X]. We have

Lemma 6.4. [Vad04] E[b(S)] ≤ γ + 2−Ω(τn).

Next, we show that the bits indexed by good sequences have high min-entropy. The proof is
essentially the same as in [Vad04], but we include it both for completeness and our next lemma.

Lemma 6.5. [Vad04] For every s, the random variable Xs is b(s)-close to a (δ − 3τ)D -source.

Proof. Fix some s = (i1, · · · , iD). Now think of X as being generated by the following process. We
have n independent random variables F1, · · · , Fn where Fi is distributed (arbitrarily) over functions
from {0, 1}i−1 to {0, 1}, and X is deterministically generated by setting Xi = Fi(X1, X2, · · · , Xi−1).

We will now fix Fi for every i /∈ s. For any fixing f̄ = (fi)i/∈s, let X f̄ denote X conditioned on

f̄ . Note that for any string z ∈ {0, 1}D in the support of X f̄
s , there is a unique x ∈ {0, 1}n in the

support of X f̄ such that xs = z (which is the string obtained by setting xi = zi for all i ∈ s and
xi = fi(x1, · · · , xi−1) for all i /∈ s.). Let this x be xf̄ (z). We have

Pr[X f̄
s = z] = Pr[X f̄ = xf̄ (z)] = Πn

i=1[X
f̄
i = xf̄ (z)i|X f̄

1 = xf̄ (z)1, · · · , X f̄
i−1 = xf̄ (z)i−1].

Note that when i /∈ s, the conditional probability in the i’th factor is 1, and when i ∈ s, the
conditional probability equals pi(x

f̄ (z)). Therefore if s is good for xf̄ (z) and consists of distinct
samples, we have

Pr[X f̄
s = z] = Πi∈spi(x

f̄ (z)) ≤ Πi∈s2
−h′

i(x
f̄ (z)) ≤ 2−(δ−3τ)D.

17

Let b(s, f̄) denote the probability that s is bad for X f̄ . Then X f̄
s is b(s, f̄)-close to some

(δ − 3τ)D-source Z f̄ . Now consider the random variable F̄ = (Fi)i/∈s. Note that Xs = X F̄
s and ZF̄

is a convex combination of (δ − 3τ)D-sources and thus is also a (δ − 3τ)D-source. Moreover the
statistical distance between Xs and ZF̄ is at most E(b(s, F̄)) = b(s).

We now have the following lemma.

Lemma 6.6. Assume the averaging sampler is an (N, M, K, D, α, ǫ) design extractor. Then for
every two different s1, s2, the random variable (Xs1

, Xs2
) is b(s1) + b(s2)-close to a (2δ − 6τ −

α log(1/τ))D source.

Proof. Similar as in the proof of Lemma 6.5, fix some s1 = (l1, · · · , lD) and s2 = (j1, · · · , jD). Let
s = s1 ∪ s2. Note that (Xs1

, Xs2
) = Xs.

Again we fix Fi for every i /∈ s. For any fixing f̄ = (fi)i/∈s, let X f̄ denote X conditioned on

f̄ . Note that for any string z ∈ {0, 1}D in the support of X f̄
s , there is a unique x ∈ {0, 1}n in the

support of X f̄ such that xs = z (which is the string obtained by setting xi = zi for all i ∈ s and
xi = fi(x1, · · · , xi−1) for all i /∈ s.). Let this x be xf̄ (z). We have

Pr[X f̄
s = z] = Pr[X f̄ = xf̄ (z)] = Πn

i=1[X
f̄
i = xf̄ (z)i|X f̄

1 = xf̄ (z)1, · · · , X f̄
i−1 = xf̄ (z)i−1].

Note that when i /∈ s, the conditional probability in the i’th factor is 1, and when i ∈ s, the
conditional probability equals pi(x

f̄ (z)). Therefore we have

Pr[X f̄
s = z] = Πi∈spi(x

f̄ (z)) ≤ Πi∈s2
−h′

i(x
f̄ (z)).

Note that by the property of the design extractor, the intersection of s1 and s2 has at most αD
elements. Also note that h′

i(x
f̄ (z)) ≤ log(1/τ). Thus we have

Πi∈s2
−h′

i(x
f̄ (z)) ≤ Πi∈s1

2−h′
i(x

f̄ (z)) · Πi∈s2
2−h′

i(x
f̄ (z)) · (2log(1/τ))αD.

Thus if both s1 and s2 are good for xf̄ (z), we have

Pr[X f̄
s = z] ≤ 2−(δ−3τ)D · 2−(δ−3τ)D · (2log(1/τ))αD = 2−(2δ−6τ−α log(1/τ))D.

Let b(s, f̄) denote the probability that either s1 or s2 is bad for X f̄ . Note that b(s, f̄) ≤
b(s1, f̄) + b(s2, f̄) by the union bound. Then X f̄

s is b(s, f̄)-close to some (2δ − 6τ − α log(1/τ))D-
source Z f̄ . Now consider the random variable F̄ = (Fi)i/∈s. Note that Xs = X F̄

s and ZF̄ is a
convex combination of (2δ − 6τ −α log(1/τ))D-sources and thus is also a (2δ − 6τ −α log(1/τ))D-
source. Moreover the statistical distance between Xs and ZF̄ is at most E(b(s, F̄)) ≤ E(b(s1, f̄))+
E(b(s2, f̄)) = b(s1) + b(s2).

We now consider the case where the weak random source X has min-entropy rate 1/2 + δ
for some constant δ > 0. We choose the parameters such that τ = δ/10, α = τ/ log(1/τ) and
D = Ω(αM) = Ω(n). We have the following lemma.

Lemma 6.7. Assume X has min-entropy k = (1/2 + δ)n for some constant δ > 0. Let Y be a
uniform seed used by the sampler, and let A : {0, 1}r → {0, 1}r be any deterministic function such
that ∀y,A(y) 6= y. Let s = Samp(y) and A(s) = Samp(A(y)) where Samp is the (N, M, K, D, α, ǫ)

18

design extractor described above. Then for at least 1−O

(√
K3

N

)
fraction of the choices of s, with

probability at least 1− 12
√

γ − 2−Ω(δn) over the fixing of XA(s), Xs is 6
√

γ + 2−Ω(δn)-close to a δD/2
source.

Proof. First note that by Lemma 6.4, E(b(s)) ≤ γ + 2−Ω(τn) = γ + 2−Ω(δn). Thus by Markov’s
inequality we have

Pr[b(s) > 4
√

γ + 2−Ω(δn)] < 4
√

γ3 + 2−Ω(δn).

Now we will say s is good if b(s) ≤ 4
√

γ + 2−Ω(δn), otherwise we say s is bad. Note the notion
of “good” here is different from those in Lemma 6.5 and Lemma 6.6. Note that

2(1/2 + δ) − 6τ − α log(1/τ) = 1 + 2δ − 7τ > 1 + δ.

Thus for two different si, sj , if both of them are good, then by Lemma 6.6 we have that (Xsi
, Xsj

)

is 2 4
√

γ +2−Ω(δn)-close to a (1+δ)D source. Note that Xsj
only has D bits, therefore by Lemma 3.2

we have

Pr
Xsj

[Xsi
|Xsj

=x is 2 4
√

γ + 2−Ω(δn) close to a δD/2 source] ≥ 2−Ω(δD).

Next, we consider those bad s. Fix a bad s̄ and let X̄ denote Xs̄. Note that the random variable
S is sampled from N possible sequences using d1 = log N bits.

Note that X̄ has only D bits and D < δn/10. Thus by Lemma 3.2 we have

Pr
X̄

[X|X̄=x̄ has min-entropy n/2] ≥ 1 − 2−Ω(δn).

When X|X̄=x̄ has min-entropy n/2, again by Lemma 6.4 and Lemma 6.5 we have that Xs|X̄=x̄

is b(s)-close to a (1/2 − 3τ)D-source and

E[b(S)] ≤ γ + 2−Ω(τn) = γ + 2−Ω(δn).

Thus we have

EX̄,S [b(s)] ≤ γ + 2−Ω(δn) + 2−Ω(δn) = γ + 2−Ω(δn).

Therefore

Pr
X̄,S

[b(s) > 6
√

γ + 2−Ω(δn)] < 5
√

γ6 + 2−Ω(δn).

Thus

Pr
S

[Pr
X̄

[b(s) > 6
√

γ + 2−Ω(δn)] > 12
√

γ + 2−Ω(δn)] < 4
√

γ3 + 2−Ω(δn).

In other words, for any bad s̄, with probability at least 1 − 4
√

γ3 − 2−Ω(δn) over the choices of
S = s, with probability at least 1− 12

√
γ−2−Ω(δn) over the choices of X̄, Xs|X̄=x̄ is 6

√
γ+2−Ω(δn)-close

to a (1/2 − 3τ)D source.

19

Note that 1/2− 3τ > δ/2. Since there are at most (4
√

γ3 + 2−Ω(δn))N bad s, by a union bound
they can ruin at most

(4
√

γ3 + 2−Ω(δn))N(4
√

γ3 + 2−Ω(δn)) = O(γ3/2N) = O

(√
K3

N

)

fraction of S, as long as γ ≥ 2−Ω(δn). Thus when s does not belong to this bad fraction, no matter
what s′ = A(s) is, we have that with probability at least 1− 12

√
γ − 2−Ω(δn) over the choices of Xs′ ,

Xs is 6
√

γ + 2−Ω(δn)-close to a δD/2 source.

Note that γ = K/N . Thus we have the following corollary.

Corollary 6.8. For any constant δ > 0, there exists a constant β > 0 such that for any ǫ > 2−βn,
there exists an explicit design extractor with N = poly(1/ǫ), M = n, D = Ω(n) and the following
holds. Assume X has min-entropy k = (1/2+δ)n. Let Y be a uniform seed used by the sampler, and
let A : {0, 1}r → {0, 1}r be any deterministic function such that ∀y,A(y) 6= y. Let s = Samp(y) and
A(s) = Samp(A(y)) where Samp is the (N, M, K, D, α, ǫ) design extractor described above. With
probability at least 1 − ǫ over the choices of S = s, we have that with probability at least 1 − ǫ over
the choices of XA(s), Xs is ǫ-close to a δD/2 source.

Note that here for a fixed source X the ǫ fraction of bad s are the same even for different
functions A. This is important for us.

Now we show how the above lemma can be used to construct a non-malleable extractor with large
output length. First we need the following definition and theorem about non-malleable extractors
with weak random seeds.

Definition 6.9. [DLWZ11] A function nmExt : [N] × [D] → [M] is a (k, k′, ε)-non-malleable
extractor if, for any source X with H∞(X) ≥ k, any seed Y with H∞(Y) ≥ k′, and any function
A : [D] → [D] such that A(y) 6= y for all y, the following holds:

(nmExt(X, Y), nmExt(X,A(Y)), Y) ≈ε (U[M], nmExt(X,A(Y)), Y).

A non-malleable extractor with small error will remain to be non-malleable even if the seed is
somewhat weak random.

Lemma 6.10. [DLWZ11] A (k, ǫ)-non-malleable extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m is
also a (k, k′, ǫ′)-non-malleable extractor with ǫ′ = 2d−k′

ǫ.2

Theorem 6.11. [CRS11] For any constant δ > 0, there is a constant c such that for any ǫ > 0
there is an explicit (k = (1/2 + δ)n, ε)-non-malleable extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m

with d = c(m + log ε−1 + log n).

Now we have the following construction of non-malleable extractors.

2In fact, the non-malleable extractors in [DLWZ11, CRS11] can be shown to remain non-malleable even if the seed
only contains a very small amount of min-entropy, but here we only discuss the general case.

20

Algorithm 6.12 (NMExt, non-malleable extractor with large output size).

Input: x — an n bit string.
Output: z — an m bit string with m = Ω(n).

Sub-Routines and Parameters:

Let ǫ1, ǫ2, ǫ3 be three error parameters that we will choose later.
Let X be an (n, k)-source with k = (1/2 + δ)n for some constant δ > 0.
Let DExt be an (N, M = n, K, D, α, ǫ) design extractor as in Corollary 6.8, with D = Ω(n),
error ǫ1 and seed length d1 = log N = O(log ǫ−1

1).
Let Ext be the optimal strong seeded extractor as in Theorem 3.9, with error ǫ3 and output
length δD/10.
Let nmExt be a non-malleable extractor as in Theorem 6.11 using d2 = 2d1+c(2d1+d3+log ǫ−1

2 +
log n) bits and outputting d3 = O(log n + log ǫ−1

3) bits with error ǫ2/22d1 .

1. Associate the right hand side of DExt with the n bits of X. Choose a random seed Y1 with
d1 bits and let X̄ = DExt(X, Y1) be the output bits of X selected by Y1.

2. Choose another independent random seed Y2 with d2 bits and compute R = nmExt(X, Y2).

3. Output Z = Ext(X̄, R) = Ext(DExt(X, Y1), nmExt(X, Y2)).

We have the following theorem.

Theorem 6.13. The above construction is a (k, ǫ) non-malleable extractor with k = (1/2 + δ)n,
seed length d = d1 + d2 + d3 = O(log n + log ǫ−1) and output length m = Ω(n).

Proof. Without loss of generality assume that ǫ ≤ 1/n. Otherwise we can choose ǫ′ = 1/n and
O(log n+ log ǫ′−1) = O(log n) = O(log n+ log ǫ−1). We will choose ǫ1 < ǫ, ǫ2 < ǫ and ǫ3 < ǫ. In the
following we will use letters with prime to denote the corresponding random variables produced
with A(Y). For example, Y ′ = A(Y).

Note that the seed of the extractor is Y = (Y1, Y2). We want to show that

(NMExt(X, Y), NMExt(X, Y ′), Y) ≈ǫ (Um, NMExt(X, Y ′), Y).

for any deterministic function Y ′ = A(Y) and Y ′ 6= Y . Since Y ′ 6= Y , it must be that either
Y ′

1 6= Y1 or Y ′
2 6= Y2. We consider the following three cases.

Case 1: Y ′
1 = Y1 but Y ′

2 6= Y2. This case is relatively easy. We first fix Y1 = y1. By Lemma 6.4
and Lemma 6.5, we have

Claim 6.14. With probability at least 1− ǫ1 over the fixing of Y1, X̄ is ǫ1-close to a (D, (1/2+ δ−
3τ)D > D/2) source.

Now after this fixing X̄ = DExt(X, y1) is a deterministic function of X and Y ′
2 is a deterministic

function of Y2. Note that D < αM < δn/10. Thus we can now fix X̄ and by Lemma 3.2 we have

Claim 6.15. With probability 1− 2−Ω(δn) over the fixings of X̄, X has min-entropy at least (1/2+
δ/2)n.

21

Moreover after this fixing X and Y2 are still independent. Now if conditioned on the fixing of
X̄, X indeed has min-entropy at least (1/2 + δ/2)n, then since Y ′

2 is now a deterministic function
of Y2, by Theorem 6.11 we have

(R, R′, Y2) ≈ǫ2 (Ud3
, R′, Y2).

Thus we have

Claim 6.16. With probability 1− ǫ1 over the fixings of Y1, X̄ is ǫ1-close to a (D, D/2) source, and

|(X̄, R, R′, Y2) − (X̄, Ud3
, R′, Y2)| ≤ 2−Ω(δn) + ǫ2,

where Ud3
is the uniform distribution over {0, 1}d3 and independent of (X̄, R′, Y2).

Now we consider the distribution (X̄, R, R′, Y2) where R is actually equal to Ud3
and independent

of (X̄, R′, Y2). This will increase the error by at most 2−Ω(δn)+ǫ2. Now we fix Y2, R′ and Ext(X̄, R′).
Note that after this fixing R is still uniform and independent of X̄. Furthermore since the size of
(Ext(X̄, R′), Y2, R

′) is at most δD/10 + d2 + d3 < δD/4. Thus by Lemma 3.2 we have

Claim 6.17. With probability 1− 2−Ω(D) over the fixings of (Ext(X̄, R′), Y2, R
′), X̄ is a (D, D/2−

δD/4 − D/8 > D/4) source.

When X̄ has min-entropy at least D/4, since R is independent of X̄, by the property of the
strong extractor Ext, we have

|Ext(X̄, R) − Um| ≤ ǫ3.

Thus by combining Claim 6.14, Claim 6.16 and Claim 6.17 we have

|(Z, Z ′, Y) − (Um, Z ′, Y)| ≤ ǫ1 + ǫ1 + 2−Ω(δn) + ǫ2 + 2−Ω(D) + ǫ3 = O(ǫ1 + ǫ2 + ǫ3 + 2−Ω(n)).

Case 2. Y ′
1 6= Y1 but Y ′

2 = Y2. Again, we first fix Y1 = y1. By Corollary 6.8, with probability
at least 1− ǫ1 over this fixing, no matter what Y ′

1 is, with probability at least 1− ǫ1 over the fixing
of X̄ ′, X̄ is ǫ1-close to a δD/2 source. Thus we can now fix Y ′

1 = y′1 (note that Y ′
1 may not be a

deterministic function of Y1 since it can also depend on Y2), and we have

Claim 6.18. With probability at least 1− ǫ1 over the fixing of X̄ ′, X̄ is ǫ1-close to a δD/2 source.

Note that we first fix Y1 = y1. After this fixing Y ′
1 is a deterministic function of Y2. Since Y ′

1

has size d1 and Y2 has size d2 = 2d1 + c(2d1 + d3 + log ǫ−1
2 + log n), by Lemma 3.2 we have

Claim 6.19. With probability at least 1− ǫ1 over the fixing of Y ′
1, Y2 is a (d2, c(2d1 +d3 +log ǫ−1

2 +
log n)) source.

Now after we fixed Y1 and Y ′
1 , X̄ and X̄ ′ are deterministic functions of X. Thus we can fix

them and since the size of (X̄, X̄ ′) is at most 2D < δn/5, by Lemma 3.2 we have

Claim 6.20. With probability at least 1−2−Ω(δn) over the fixings of (X̄, X̄ ′), X is a (n, (1/2+δ/2)n)
source.

22

Note that after all these fixings Y2 and X are still independent. Since a non-malleable extractor
is also a strong extractor (even with weak seed), by Lemma 6.10 and Theorem 6.11 we have

|(R, X̄, X̄ ′, Y ′
1 , Y2) − (Ud3

, X̄, X̄ ′, Y ′
1 , Y2)| ≤ ǫ1 + 2−Ω(δn) + 22d1ǫ1/22d1 = ǫ1 + ǫ2 + 2−Ω(δn).

Note that here we are conditioning on the fixing of Y1 = y1, thus Y ′
1 , Y2 are independent of X̄.

Thus by the property of the strong extractor, together with Claim 6.18 we have

|(Z, Z ′, Y ′
1 , Y2, R) − (Um, Z ′, Y ′

1 , Y2, R)| ≤ ǫ1 + ǫ1 + ǫ2 + 2−Ω(δn) + ǫ3 = 2ǫ1 + ǫ2 + ǫ3 + 2−Ω(δn).

Adding back the probability of a bad Y1 = y1, we have

|(Z, Z ′, Y) − (U, Z ′, Y)| ≤ 3ǫ1 + ǫ2 + ǫ3 + 2−Ω(δn) = O(ǫ1 + ǫ2 + ǫ3 + 2−Ω(n)).

Case 3 Y ′
1 6= Y1 and Y ′

2 6= Y2. The first part of the case is the same as Case 2. Specifically,
we first fix Y1 = y1. By Corollary 6.8, with probability at least 1 − ǫ1 over the fixings, no matter
what Y ′

1 is, with probability at least 1 − ǫ1 over the fixings of X̄ ′, X̄ is ǫ1-close to a δD/2 source.
Thus we can now fix Y ′

1 = y′1 (note that Y ′
1 may not be a deterministic function of Y1 since it can

also depend on Y2), and we have

Claim 6.21. With probability at least 1− ǫ1 over the fixing of X̄ ′, X̄ is ǫ1-close to a δD/2 source.

Note that we first fix Y1 = y1. After this fixing Y ′
1 is a deterministic function of Y2. Since Y ′

1

has size d1 and Y2 has size d2 = 2d1 + c(2d1 + d3 + log ǫ−1
2 + log n), by Lemma 3.2 we have

Claim 6.22. With probability at least 1− ǫ1 over the fixing of Y ′
1, Y2 is a (d2, c(2d1 +d3 +log ǫ−1

2 +
log n)) source.

Now after we fixed Y1 and Y ′
1 , X̄ and X̄ ′ are deterministic functions of X. Thus we can fix

them and since the size of (X̄, X̄ ′) is at most 2D < δn/5, by Lemma 3.2 we have

Claim 6.23. With probability at least 1−2−Ω(δn) over the fixings of (X̄, X̄ ′), X is a (n, (1/2+δ/2)n)
source.

From here the proof differs from Case 2. Note that after all these fixings Y2 and X are still
independent, and now Y ′

2 is a deterministic function of Y2. Thus by Lemma 6.10 and Theorem 6.11
we have

|(R, R′, X̄, X̄ ′, Y ′
1 , Y2, Y

′
2)−(Ud3

, R′, X̄, X̄ ′, Y ′
1 , Y2, Y

′
2)| ≤ 2ǫ1+2−Ω(δn)+22d1ǫ2/22d1 = 2ǫ1+ǫ2+2−Ω(δn).

Note that here we are conditioning on the fixing of Y1 = y1, thus Y ′
1 , Y2, Y

′
2 are independent of

X̄ and we can fix them. R′ may be correlated with X̄. However, note that R′ has size at most
d3 = O(log n + log ǫ−1

3). Thus by Lemma 3.2 we have

Claim 6.24. With probability at least 1 − 2−Ω(δD) over the fixings of R′, X̄ is a (n, δD/4) source.

23

Now we can fix (R′, X̄ ′). After this fixing R is still close to uniform and independent of X̄.
Moreover X̄ still has a lot of min-entropy. On the other hand after this fixing Z ′ = Ext(X̄ ′, R′) is
fixed. Therefore by the property of the strong extractor we have

|(Z, Z ′, Y, Y ′) − (Um, Z ′, Y, Y ′)| ≤ ǫ3 + 2−Ω(δD) + 2ǫ1 + ǫ2 + 2−Ω(δn) = 2ǫ1 + ǫ2 + ǫ3 + 2−Ω(n).

Adding back the probability of a bad Y1 = y1, we have

|(Z, Z ′, Y) − (Um, Z ′, Y)| ≤ 3ǫ1 + ǫ2 + ǫ3 + 2−Ω(n) = O(ǫ1 + ǫ2 + ǫ3 + 2−Ω(n)).

Note that the total error achieved by an adversary A is at most the sum of the errors in the
above three cases, thus

|(Z, Z ′, Y) − (Um, Z ′, Y)| ≤ O(ǫ1 + ǫ2 + ǫ3 + 2−Ω(n)).

By choosing ǫ1, ǫ2, ǫ3 = Θ(ǫ) appropriately, we have that

|(Z, Z ′, Y) − (Um, Z ′, Y)| ≤ ǫ,

the seed length is d = O(log n + log ǫ−1), and the output length is m = Ω(n).

7 Non-Malleable Condensers

In this section, we show that the construction we give in the previous section already gives a
non-malleable condenser. Recall the definition of a non-malleable condenser.

Definition 7.1. A (k, k′, ǫ) non-malleable condenser is a function nmCond : {0, 1}n × {0, 1}d →
{0, 1}m such that given any (n, k)-source X, an independent uniform seed Y ∈ {0, 1}d, and any
(deterministic) function A : {0, 1}d → {0, 1}d such that ∀y,A(y) 6= y, we have that with probability
1 − ǫ over the fixings of Y = y,

Pr
z′←nmCond(X,A(y))

[nmCond(X, y)|nmCond(X,A(y))=z′ is ǫ − close to an (m, k′) source] ≥ 1 − ǫ.

Similar as the fact that an extractor is a special case and a stronger version of a condenser, a
non-malleable extractor is also a special case and a stronger version of a non-malleable condenser.
Indeed, a (k, ǫ) non-malleable extractor with output size m is just a (k, m, 3

√
ǫ) non-malleable con-

denser. Thus a non-malleable condenser is a strictly weaker object than a non-malleable extractor.
Dodis and Wichs showed that non-malleable extractors exist with k > 2m + 3 log(1/ε) + log d + 9
and d > log(n − k + 1) + 2 log(1/ε) + 7, thus non-malleable condensers exist with at least these
parameters.

It can be seen easily from Corollary 6.8 that when X has min-entropy k ≥ (1/2 + δ)n for
any constant δ > 0, the design extractor actually gives a non-malleable condenser for X. Indeed,
Corollary 6.8 gives the following theorem.

Theorem 7.2. For any constant δ > 0, there exists a constant β > 0 such that for any n, k ∈ N

with k ≥ (1/2 + δ)n and ǫ > 2−βn, there exists an efficiently computable (k, k′, ǫ) non-malleable
condenser with d = O(log(1/ǫ)), m = Ω(n) and k′ ≥ δm/2.

We now give two applications of non-malleable condensers below.

24

7.1 From non-malleable condenser to non-malleable extractor

In the context of randomness extractors, condensers are used as an intermediate object to construct
extractors. Namely, we first use condensers to convert a weak source with low min-entropy rate
into another source with high min-entropy rate, where randomness extraction becomes easier. Here
we show that non-malleable condensers can also be used to construct non-malleable extractors. For
example, we have the following theorem.

Theorem 7.3. Assume we have an explicit (k, k′, ǫ) non-malleable condenser nmCond : {0, 1}n ×
{0, 1}d → {0, 1}m such that k′ ≥ (1/2+δ)m for any constant δ > 0 and 2d ≥ 1/ǫ. Then there exists
an efficiently computable (k, 9ǫ) non-malleable extractor with seed length O(d+log m+log ǫ−1) and
output length Ω(m).

Before proving this theorem, we need an alternative description of the non-malleable condenser.

Lemma 7.4. Assume that we have a (k, k′, ǫ) non-malleable condenser nmCond : {0, 1}n×{0, 1}d →
{0, 1}m. Given any (n, k)-source X, for at least 1 − ǫ fraction of choices y ∈ {0, 1}d, we have that
∀y′ 6= y,

Pr
z′←nmCond(X,y′)

[nmCond(X, y)|nmCond(X,y′)=z′ is ǫ − close to an (m, k′) source] ≥ 1 − ǫ.

Note the difference between the above statement and the definition of a non-malleable condenser.
The definition says that given any A such that ∀y,A(y) 6= y, there is a 1−ǫ fraction of good seeds y.
The lemma above says that there is a 1− ǫ fraction of good seeds y regardless of what the function
A is. We show that the definition implies the lemma (In fact, these statements are equivalent).

Proof. Assume for the sake of contradiction that the lemma does not hold. Thus, we have that for
some (n, k)-source X, there is an S ⊂ {0, 1}d, |S| ≥ ǫ2d, such that ∀y ∈ S, there exists y′ ∈ {0, 1}d,
y′ 6= y and

Pr
z′←nmCond(X,y′)

[nmCond(X, y)|nmCond(X,y′)=z′ is ǫ − close to an (m, k′) source] < 1 − ǫ.

Now, we can take a function A such that ∀y ∈ S,A(y) = y′ and let A(y) be arbitrary for all
the other y’s. The source X and the function A now contradict the definition of the non-malleable
condenser. Thus the lemma is proved.

We can now prove the theorem.

Proof of Theorem 7.3. The construction of the non-malleable extractor is simple. Just take the non-
malleable extractor nmExt from Theorem 6.13 and combine it with the non-malleable condenser.
Specifically, we take two independent uniform seed Y1, Y2, where Y1 has d bits and Y2 has d2 =
O(d + log m + log ǫ−1) bits, and the output is

Z = nmExt(nmCond(X, Y1), Y2).

We now show that the construction is a non-malleable extractor for (n, k)-sources. Let W =
nmCond(X, Y1). As usual, we will use letters with prime to denote the corresponding random

25

variables produced by using A(Y) instead of Y . Similarly, since Y = Y1 ◦ Y2 and A(Y) 6= Y , we
have the following two cases.

Case 1: Y ′
1 = Y1 but Y ′

2 6= Y2. We first condition on Y1 = y1. By Lemma 7.4, with probability
1 − ǫ over the fixings of Y1 = y1, W = nmCond(X, y1) is 2ǫ-close to an (m, k′)-source.

Now after we fix Y1 = y1, W is a deterministic function of X and Y ′
2 is a deterministic function

of Y2. Thus W and Y2 are independent. Note that k′ ≥ (1/2 + δ)m, therefore by Theorem 6.13 we
have

|(Z, Z ′, Y2) − (U, Z ′, Y2)| ≤ 2ǫ + ǫ = 3ǫ.

Adding back the error ǫ of conditioning on Y1 = y1, we have

|(Z, Z ′, Y) − (U, Z ′, Y)| ≤ 3ǫ + ǫ = 4ǫ.

Case 2: Y ′
1 6= Y1. Again, we first condition on Y1 = y1. By Lemma 7.4, with probability 1 − ǫ

over the fixing of Y1 = y1, no matter what y′1 is, W conditioned on W ′ = w′ has high min-entropy.
Thus we further condition on Y ′

1 = y′1 and W ′ = w′, and we have

Pr
w′←W ′

[W |W ′=w′ is ǫ − close to an (m, k′) source] ≥ 1 − ǫ.

Note that we first conditioned on Y1 = y1. After this fixing Y ′
1 is a deterministic function of

Y2. Next we fix Y ′
1 = y′1. Since Y ′

1 has d bits and Y2 has d2 bits, by Lemma 3.2 we have that with
probability 1−2−d ≥ 1−ǫ over the fixing of Y ′

1 = y′1, Y2 has min-entropy at least d2−d−d = d2−2d.
We choose d2 = O(d+log m+log ǫ−1) such that the error of nmExt in Theorem 6.13 is at most ǫ/22d.
Thus when Y2 has min-entropy at least d2 −2d, by Lemma 6.10 (and noticing that a non-malleable
extractor is also a strong extractor) we have

|(Z, Y2) − (U, Y2)| ≤ ǫ + ǫ = 2ǫ.

Note that the above inequality is conditioning on the fixing of Y1 = y1, Y
′
1 = y′1, W

′ = w′. After
this fixing Y ′

2 is a deterministic function of Y2. Thus we also have

|(Z, Y2, Y
′
2) − (U, Y2, Y

′
2)| ≤ ǫ + ǫ = 2ǫ.

Adding back all the errors we get

|(Z, W ′, Y1, Y
′
1 , Y2, Y

′
2) − (U, W ′, Y1, Y

′
1 , Y2, Y

′
2)| ≤ 2ǫ + ǫ + ǫ + ǫ = 5ǫ.

Since Z ′ = nmExt(W ′, Y ′
2), we have

|(Z, Z ′, Y) − (U, Z ′, Y)| ≤ 5ǫ.

Note that the total error achieved by an adversary A is at most the sum of the errors in the two
cases, therefore the construction is a (k, 9ǫ)-non-malleable extractor with output length Ω(m).

26

7.2 A new two round optimal protocol for privacy amplification

In [DW09], Dodis and Wichs showed that non-malleable extractors give optimal two round protocols
for privacy amplification with an active adversary. One can ask the natural question of whether
the reverse is true, i.e., does an optimal two round protocol for privacy amplification essentially
require a non-malleable extractor? Here we show that this is not necessary. In fact, we show that
it suffices to use a non-malleable condenser, which is much weaker than a non-malleable extractor.
First we have the following claim.

Claim 7.5. For every constant c > 1 there exists a constant 0 < β < 1 such that for any n, k
and 2−βk < ǫ < 1 there is a (possibly non-explicit) (k, k′, ǫ)-non-malleable condenser nmCond :
{0, 1}n × {0, 1}d → {0, 1}m with k > 2m + 3 log(1/ε) + log d + 9, k′ ≥ c(log n + log(1/ǫ)) and
d = O(log n + log(1/ǫ)).

Proof. This follows directly from the existence proof of non-malleable extractors in [DW09] and
the fact that a non-malleable extractor is also a non-malleable condenser.

We now formally define a privacy amplification protocol with an active adversary. Following
[KR09], let x ∈ {0, 1}n be the secret string shared by Alice and Bob, where x is sampled according
to a distribution X. Let Protocol (PA, PB) be executed in the presence of an active adversary Eve.
Let Va denote the random variable that describes Alice’s view of the communication when (PA, PB)
is executed and define Vb likewise. We use small letters va, vb to denote specific values of Va, Vb.
The private randomness of Alice and Bob are denoted by y and w respectively. Alice’s output
is denoted by rA = PA(x, va, y) and Bob’s output is denoted by rB = PB(x, vb, w) (if successful,
both outputs will be of length m; rejection will be denoted by symbol ⊥). Let V denote Eve’s
view of the protocol. Since Eve is computationally unbounded, we can simply assume that Eve is
deterministic.

Definition 7.6. [KR09] An interactive protocol (PA, PB), executed by Alice and Bob on a com-
munication channel fully controlled by an active adversary Eve, is a (k, m, ǫ)-privacy amplification
protocol if it satisfies the following properties whenever H∞(X) ≥ k:

1. Correctness. If Eve is passive, then Pr[RA = RB] = 1.

2. Robustness. The probability that the following experiment outputs “Eve wins” is at most
ǫ: sample x from X; let va, vb be the communication upon execution of (PA, PB) with Eve
actively controlling the channel, and let rA = PA(x, va, y), rB = PB(x, vb, w). Output “Eve
wins” if (rA 6= rB ∧ rA 6=⊥ ∧rB 6=⊥).

3. Extraction. Letting V denote Eve’s view of the protocol,

|(RA, V |RA 6=⊥) − (Um, V)| ≤ ǫ

and

|(RB, V |RB 6=⊥) − (Um, V)| ≤ ǫ.

Here s = log(1/ǫ) is called the security parameter of the protocol, and k − m is called the
entropy loss of the protocol.

27

7.2.1 Prerequisites from previous work

One-time message authentication codes (MACs) use a shared random key to authenticate a message
in the information-theoretic setting.

Definition 7.7. A function family {MACR : {0, 1}d → {0, 1}v} is a ǫ-secure one-time MAC for
messages of length d with tags of length v if for any w ∈ {0, 1}d and any function (adversary)
A : {0, 1}v → {0, 1}d × {0, 1}v,

Pr
R

[MACR(W ′) = T ′ ∧ W ′ 6= w | (W ′, T ′) = A(MACR(w))] ≤ ǫ,

where R is the uniform distribution over the key space {0, 1}ℓ.

Theorem 7.8 ([KR09]). For any message length d and tag length v, there exists an efficient
family of (⌈d

v ⌉2−v)-secure MACs with key length ℓ = 2v. In particular, this MAC is ε-secure when
v = log d + log(1/ǫ).
More generally, this MAC also enjoys the following security guarantee, even if Eve has partial
information E about its key R. Let (R, E) be any joint distribution. Then, for all attackers A1 and
A2,

Pr
(R,E)

[MACR(W ′) = T ′ ∧ W ′ 6= W | W = A1(E), (W ′, T ′) = A2(MACR(W), E)] ≤
⌈

d

v

⌉
2v− eH∞(R|E).

(In the special case when R ≡ U2v and independent of E, we get the original bound.)

Remark 7.9. Note that the above theorem indicates that the MAC works even if the key R has
average min-entropy rate > 1/2.

7.2.2 The protocol

Now we give our privacy amplification protocol. We assume that the shared weak random source
has min-entropy k, and the error ǫ we seek satisfies 2−Ω(βk) < ǫ < 1/n. For convenience, in
the description below we introduce an “auxiliary” security parameter s. Eventually, we will set
s = log(C/ǫ)+O(1) = log(1/ǫ)+O(1), so that C/2s < ǫ, for a sufficiently large constant C related
to the number of “bad” events we need to account for. We need the following building blocks:

• Let nmCond : {0, 1}n × {0, 1}d1 → {0, 1}l be the non-malleable condenser from Claim 7.5,
with l = Ω(k) and error 2−s.

• Let Ext : {0, 1}n × {0, 1}d1 → {0, 1}m be a (k, 2−s)-extractor with optimal entropy loss
k − m = O(s).

• Let Raz : {0, 1}d2 × {0, 1}l → {0, 1}t be the two source extractor from Theorem 3.10, with
d2 ≥ 5d1, error 2−s and t = s.

• Let MAC be the (“leakage-resilient”) MAC for d1-bit messages, as in Theorem 7.8, with tag
length v = 2s and key length ℓ = 2v = 4s.

28

Using the above building blocks, the protocol is given in Figure 1. To emphasize the presence
of Eve, we use letters with ‘prime’ to denote all the protocol values seen or generated by Bob; e.g.,
Bob picks W ′

1, but Alice sees potentially different W1, etc. Also, for any random variable G used
in describing our protocol, we use the notation G =⊥ to indicate that G was never assigned any
value, because the party who was supposed to assign G rejected earlier. The case of final keys RA

and RB becomes a special case of this convention.

Alice: X Eve: E Bob: X

Sample random Y1, Y2.
Compute Z = nmCond(X,Y1).
R = Ext(X,Y1) and output 4s bits.

(Y1, Y2) −−−−−−−−→ (Y ′

1
, Y ′

2
)

Sample random W ′.
Compute Z ′ = nmCond(X,Y ′

1
).

R′ = Ext(X,Y ′

1
) and output 4s bits.

T ′

1
= Raz(Y ′

2
, Z ′), T ′

2
= MACR′(W ′).

Set final RB = Ext(X,W ′).
(W,T1, T2) ←−−−−−−−− (W ′, T ′

1
, T ′

2
)

If T1 6= Raz(Y2, Z) or
T2 6= MACR(W) reject.
Set final RA = Ext(X,W).

Figure 1: 2-round Privacy Amplification Protocol.

Theorem 7.10. The above protocol is a privacy amplification protocol with security parameter
log(1/ǫ) and entropy loss O(log(1/ǫ)), communication complexity O(log(1/ǫ)).

Proof. The proof can be divided into two cases: whether the adversary changes Y1 or not. Note
that Y1, Y2 and W all have size O(s).

Case 1: The adversary does not change Y1. In this case, note that R = R′ and is 2−s-close to
uniform in Eve’s view (even conditioned on Y1, Y2). Thus the property of the MAC guarantees that
Bob can authenticate W ′ to Alice. However, one thing to note here is that Eve has some additional
information, namely T ′

1 which can leak information about the MAC key. On the other hand, the
size of T ′

1 is s, thus by Lemma 3.7 the average conditional min-entropy H∞(R|T ′
1) is at least 3s.

Therefore by Theorem 7.8 the probability that Eve can change W ′ to a different W without causing
Alice to reject is at most

⌈
d1

2s

⌉
22s− eH∞(R|T ′

1
) + 2−s ≤ O(22s−3s) + 2−s ≤ O(2−s).

When W = W ′, by Theorem 3.9 RA = RB and is 2−s-close to uniform in Eve’s view.
Case 2: The adversary does change Y1. In this case, by the property of the non-malleable

condenser, with probability 1 − 2−s over the fixing of Y1 = y1,

Pr
z′←nmCond(X,y′

1
)
[nmCond(X, y1)|nmCond(X,y′

1
)=z′ is 2−s − close to an (l, k′) source] ≥ 1 − 2−s.

29

Thus we first fix Y1 = y1 and then fix Y ′
1 = y′1. Note that after we fix Y1, Y ′

1 is a deterministic
function of Y2. Since Y1 has d1 bits and Y2 has d2 ≥ 5d1 bits, we can fix Y ′

1 = y′1 and by Lemma 3.2,
with probability 1 − 2−d1 ≥ 1 − 2−s over this fixing, Y2 has min-entropy d2 − d1 − d1 ≥ 3d1.

Next we fix Z ′ = nmCond(X, y′1) and we know that with probability 1 − 2−s over this fixing,
Z = nmCond(X, y1) is 2−s-close to having min-entropy k′ ≥ c(log n + s) > cs. Note that W ′ is
independent of everything else, thus we can fix W ′ and now T ′

2 is a deterministic function of X.
Since T ′

2 has size at most 2s, we can now fix T ′
2 and by Lemma 3.2 with probability 1 − 2−s over

the fixings, Z is 2−s-close to having min-entropy k′ − 3s > (c − 3)s.
Note that now we have fixed Y1, Y

′
1 , Z

′, T ′
2. Further note now that Y2 and Z are still independent,

since Z is a deterministic function of X, and X is independent of Y2. Note that Y2 has min-entropy
at least d2 − 2d1 > d2/2. Let T̄1 = Raz(Y2, Z), by Theorem 3.10, with an appropriately chosen
d2 = O(s) and sufficiently large constant c we have that we can output s bits in T̄1 and

(T̄1, Y2) ≈2−s (U, Y2).

Note that now after all the fixings, Y ′
2 is a deterministic function of Y2, and the error introduced

by the fixings is at most O(2−s). Thus

(T̄1, Y1, Y
′
1 , Y2, Y

′
2 , Z

′, W ′, T ′
2) ≈O(2−s) (U, Y1, Y

′
1 , Y2, Y

′
2 , Z

′, W ′, T ′
2).

Note that T ′
1 = Raz(Y ′

2 , Z
′), thus

(T̄1, Y, T ′
1, W

′, T ′
2) ≈O(2−s) (U, Y, T ′

1, W
′, T ′

2).

Therefore, the probability that Eve can come up with the correct T1 = T̄1 for Alice is at most
2−s +O(2−s) = O(2−s). The total error probability that Eve can achieve is at most the sum of the
above two cases, which is O(2−s). For an appropriately chosen s = O(log(1/ǫ)) this is at most ǫ.

Finally note that every string transmitted has size O(s), thus the entropy loss is O(s) =
O(log(1/ǫ)), and the communication complexity is also O(s) = O(log(1/ǫ)).

Plugging in Theorem 7.2, we obtain a 2-round protocol with optimal entropy loss for min-
entropy k ≥ (1/2 + δ)n, without using non-malleable extractors.

Theorem 7.11. There exists a constant 0 < β < 1 such that for any constant δ > 0, k = (1/2+δ)n
and ǫ > 2−βδn, there exists an explicit privacy amplification protocol for (n, k)-sources with security
parameter log(1/ǫ), entropy loss O(log(1/ǫ)) and communication complexity O(log(1/ǫ)), in the
presence of an active adversary.

7.3 Non-malleable condensers and MACs

Here we point out a relation between non-malleable condensers and MACs (message authentication
codes). We have the following claim.

Claim 7.12. A ǫ-secure one time MAC that works when the key R is any (n, k)-source is a
(k, k′,

√
ǫ) non-malleable condenser with k′ = 1

2 log(1/ǫ).

Proof. In the definition of the MAC (Definition 7.7), we view the message W as the seed of the non-
malleable condenser, and the tag T = MACR(W) as the output of the non-malleable condenser.
For any fixed message w, we let the function A in Definition 7.7 be defined as follows.

30

For any fixed t = MACR(w), consider the set of distributions {MACR(w′)|MACR(w)=t, w
′ 6= w}.

Let pt = maxw′,t′ Pr[MACR(w′)|MACR(w)=t = t′] and (w1, t1) be the pair where p is achieved. Now
let A(t) = (w1, t1). Thus we have that

Pr
R

[MACR(W ′) = T ′ ∧ W ′ 6= w | (W ′, T ′) = A(MACR(w))] =
∑

t

Pr[T = t]pt = ET [pt].

By definition we have that ET [pt] ≤ ǫ. Thus by Markov’s inequality we have

Pr
T

[pt ≤
√

ǫ] ≥ 1 −
√

ǫ.

Therefore, for any seed w, with probability 1 − √
ǫ over the fixing of T = MACR(w), for any

other seed w′ 6= w, MACR(w′) has min-entropy at least 1
2 log(1/ǫ) (since the probability mass of

any element in the support is at most
√

ǫ). Thus this is a a (k, k′,
√

ǫ) non-malleable condenser
with k′ = 1

2 log(1/ǫ).

Note that the above proof shows that the MAC in fact gives something stronger, in the sense that
for any two different w, w′, with probability 1 −√

ǫ over the fixing of T = MACR(w), MACR(w′)
has min-entropy at least 1

2 log(1/ǫ). Thus the reverse is not true. In particular, a non-malleable
condenser may not be a MAC, because there might be a bad seed w such that nmCond(X, w) is
fixed and thus it would be easy for an adversary to change a w′ to w.

Given this relation, Theorem 7.8 thus also gives a non-malleable condenser for (n, k)-sources
with k > n/2. However, this construction has a large seed length, i.e., the seed length d ≥ n/2.
Also, the output size must be at least n/2. Thus it is not suitable for our applications. On the
other hand, our non-malleable condenser has seed length d = O(log(1/ǫ)), thus we achieve an
optimal seed length with respect to the error, and we can adjust our seed length and output size
appropriately according to the applications.

8 Conclusions and Open Problems

In this paper we introduce a new combinatorial object called a design extractor, that is both a
design and an extractor. We give efficient constructions of design extractors and use them to
improve the output length of known non-malleable extractors. We then introduce the notion of
a non-malleable condenser and show that our design extractor gives a non-malleable condenser
for min-entropy k > n/2. We show that non-malleable condensers can be used to construct non-
malleable extractors, and non-malleable condensers alone can be used to give optimal privacy
amplification protocols with an active adversary.

There are several natural open problems left. The first is to construct non-malleable condensers
for smaller min-entropy, so that we can obtain better non-malleable extractors and better privacy
amplification protocols. This approach seems promising. Another problem is to find new applica-
tions of our design extractors.

31

Acknowledgments

We would like to thank David Zuckerman for many useful discussions, especially for his suggestion
to use Trevisan’s extractor.

References

[CKOR10] N. Chandran, B. Kanukurthi, R. Ostrovsky, and L. Reyzin. Privacy amplification
with asymptotically optimal entropy loss. In Proceedings of the 42nd Annual ACM
Symposium on Theory of Computing, pages 785–794, 2010.

[CRS11] Gil Cohen, Ran Raz, and Gil Segev. Non-malleable extractors with short seeds and
applications to privacy amplification. Technical Report TR11-096, ECCC, 2011.

[DKRS06] Y. Dodis, J. Katz, L. Reyzin, and A. Smith. Robust fuzzy extractors and authenticated
key agreement from close secrets. In CRYPTO, pages 232–250, 2006.

[DKSS09] Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the
method of multiplicities, with applications to kakeya sets and mergers. In Proceedings
of the 50th Annual IEEE Symposium on Foundations of Computer Science, 2009.

[DLWZ11] Yevgeniy Dodis, Xin Li, Trevor D. Wooley, and David Zuckerman. Privacy amplification
and non-malleable extractors via character sums. In Proceedings of the 52nd Annual
IEEE Symposium on Foundations of Computer Science, 2011.

[DORS08] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM Journal on Computing, 38:97–
139, 2008.

[DW08] Zeev Dvir and Avi Wigderson. Kakeya sets, new mergers and old extractors. In Pro-
ceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science,
2008.

[DW09] Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key cryp-
tography from weak secrets. In Proceedings of the 41st Annual ACM Symposium on
Theory of Computing, page 601610, 2009.

[GS00] V. Guruswami and M. Sudan. List decoding algorithms for certain concatenated codes.
In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pages
181–190, 2000.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders
and randomness extractors from Parvaresh-Vardy codes. Journal of the ACM, 56(4),
2009.

[KR09] B. Kanukurthi and L. Reyzin. Key agreement from close secrets over unsecured chan-
nels. In EUROCRYPT, pages 206–223, 2009.

32

[LRVW03] C. J. Lu, Omer Reingold, Salil Vadhan, and Avi Wigderson. Extractors: Optimal up
to constant factors. In Proceedings of the 35th Annual ACM Symposium on Theory of
Computing, pages 602–611, 2003.

[MW97] Ueli M. Maurer and Stefan Wolf. Privacy amplification secure against active adversaries.
In CRYPTO ’97, 1997.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and
System Sciences, 49(2):149–167, October 1994.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, 52(1):43–52, 1996.

[Raz05] Ran Raz. Extractors with weak random seeds. In Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, pages 11–20, 2005.

[RRV02] Ran Raz, Omer Reingold, and Salil Vadhan. Extracting all the randomness and reducing
the error in trevisan’s extractors. JCSS, 65(1):97–128, 2002.

[RW03] R. Renner and S. Wolf. Unconditional authenticity and privacy from an arbitrarily
weak secret. In CRYPTO, pages 78–95, 2003.

[SZ99] Aravind Srinivasan and David Zuckerman. Computing with very weak random sources.
SIAM Journal on Computing, 28:1433–1459, 1999.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, pages
860–879, 2001.

[Vad04] Salil P. Vadhan. On constructing locally computable extractors and cryptosystems in
the bounded-storage model. J. Cryptology, 17(1):43–77, 2004.

[WZ99] Avi Wigderson and David Zuckerman. Expanders that beat the eigenvalue bound:
Explicit construction and applications. Combinatorica, 19(1):125–138, 1999.

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random Structures and
Algorithms, 11:345–367, 1997.

33

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

