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Abstract

We prove an exponential lower bound on the lengths of resolution proofs of propo-
sitions expressing the finite Ramsey theorem for pairs.

Assuming that n ≥ R(k), where R(k) denotes the Ramsey number, the Ramsey theorem
for pairs and two colors, n→ (k)2

2, is presented by the following unsatisfiable set of clauses.
The variables are xij, for 1 ≤ i < j ≤ n. The clauses are

∨
i,j∈K xij and

∨
i,j∈K ¬xij, for all

sets K ⊆ {1, . . . , n}, |K| = k. The corresponding tautology will be denoted by RAM(n, k).
The Ramsey theorem was proposed as a hard tautology by Krishnamurthy in [6]. He

studied the tautology RAM(R(k), k) and proved a lower bound R(k)/2 on the width of
resolution proofs (see also [5]). This implies an exponential lower bound on the tree-like res-
olution proofs. Kraj́ıček proved an exponential lower bound on this tautology by reducing
the proofs of the pigeonhole principle to it, [4]. The problem with this tautology is that
we do not know what is R(k). This prevent us from proving an upper bound on the proof
complexity of this tautology. Therefore researchers focused on the tautology RAM(n, k) for
k = b1

2
log nc (all logarithms are to the base 2 in this paper). This tautology is provable in a

bounded depth Frege system, see [7, 4]. For this tautology, Kraj́ıček proved an exponential
lower bound on tree-like resolution proofs with conjunctions of logarithmic size, [3]. The
complexity of unrestricted resolution proofs with conjunctions of logarithmic size proofs of
RAM(n, b1

2
log nc) is still an open problem. An exponential lower bound on such proofs

would have interesting consequences in proof complexity and bounded arithmetic. In partic-
ular it would give a separation of the relativized theories T 2

2 and T 3
2 by a ∀Σb

1 sentence (see
[2, 1]). In this paper we prove an exponential lower bound on unrestricted resolution proofs.

Theorem 1 Resolution proofs of RAM(n, b1
2

log nc) have size at least 2n
1
4−o(1).

∗Institute of Mathematics, Academy of Sciences, Prague, and Institute of Theoretical Computer Sci-
ence, Prague, e-mail: pudlak@math.cas.cz. Partially supported by Institutional Research Plan No.
AV0Z10190503, project No. 1M0021620808 of MŠMT ČR and grant IAA100190902 of GA AV ČR.
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Proof. We will use the following bound for the sum of Bernoulli variables X =
∑r
i=1 Xi with

Pr(Xi = 1) = q.
Pr(X ≥ cr) ≤ qcr2H(c)r,

where H is the entropy function, which follows from
(
r
cr

)
≤ 2H(c)r.

Let δ > 0. We will prove a lower bound 2Ω(n
1
4−δ). Let k = b1

2
log nc and m = bn 1

4
−δc.

In the rest of the proof we will ignore rounding. ε and p will be sufficiently small constant
whose values will be determined later.

Let ρ be the random restriction that sets xij to 0 with probability p
2
, xij to 1 with

probability p
2

and leaves xij free with probability 1− p. Let a proof P be given and let S be
its size. After hitting P by ρ, some clauses become true and we delete them. The others may
have reduced length, because some literals become false. We will denote by Pρ the reduced
proof. The probability that Pρ contains a clause of length > m

2
is less than

S(1− p
2
)
m
2 = S · 2log(1− p

2
) 1
2
n

1
4−δ .

Hence, if S < 2− log(1− p
2

) 1
2
n

1
4−δ−1, the probability is < 1

2
. We will assume this and show a

contradiction.
Consider an initial clause. The probability that ρ sets at least ε

(
k
2

)
literals of the clause

is at most
(p

2
)ε(

k
2)2H(ε)(k2) = 2(log p

2
·ε+H(ε))(k2) ≤ 2

1
8

(log p
2
·ε+H(ε)+o(1))(logn)2 .

Hence the probability that this happens for at least one initial clause is at most

2
1
8

(log p
2
·ε+H(ε)+o(1))(logn)2 · 2

(
n
k

)
≤

2
1
8

(log p
2
·ε+H(ε)+o(1))(logn)2n

1
2

logn =

2
1
8

(log p
2
·ε+H(ε)+ 1

2
+o(1))(logn)2 .

If p is sufficiently small w.r.t. ε, then the term log p
2
· ε+H(ε) + 1

2
+ o(1) is negative for large

n. Hence, for such a p and large n the probability is < 1
2
.

Thus there exists ρ such that in the proof Pρ

1. every clause has length at most m/2;

2. every initial clause has at least (1− ε)
(
k
2

)
variables.

Following an idea of Kraj́ıček [3], we will use a random graph G on m vertices to show
that such a proof does not exist. While Kraj́ıček only needed that G does not have a
homogeneous set of size k, we will need more: the number of edges on every subset of size
k is strictly between ε

(
k
2

)
and (1 − ε)

(
k
2

)
. (This is why we need m larger than n

1
4 .) The

probability that this condition fails for one fixed set of size k is at most

2 · 2−(1−ε)(k2)
( (k

2

)
ε
(
k
2

)) ≤ 2 · 2(−1+ε+H(ε))(k2) = 2(−1+ε+H(ε)+o(1))
(logn)2

8 .

2



The probability that there exists a set of size k for which it fails is at most

2(−1+ε+H(ε)+o(1))
(logn)2

8 ·
(
m
k

)
≤

2(−1+ε+H(ε)+o(1))
(logn)2

8 ·mk ≤

2
−1+ε+H(ε)+o(1)

8
(logn)2+ 1

2
logn·( 1

4
−δ) logn =

2
ε+H(ε)−4δ+o(1)

8
(logn)2 .

Hence if we choose ε > 0 so that ε+H(ε) < 4δ, the exponent will be negative for sufficiently
large n. Thus we obtain the auxiliary graphs.

Now, as in Kraj́ıček’s proof, construct a path in Pρ from the empty clause to an initial
clause such that for every clause C on the path the following condition is satisfied. There
exists a bijection between the indices of the variables of C and vertices of the graph G such
that if xij (or ¬xij) is a literal in C and u, v are vertices corresponding to i, j, then (u, v) is
not an edge (respectively is an edge in G). We can construct this path, because every clause
has at most m/2 literals. However the latter condition cannot be satisfied by the initial

clauses, because each initial clause has at least (1 − ε)
(
k
2

)
literals of the same kind, but in

G there are less than (1− ε)
(
k
2

)
pairs (u, v) of the same kind (edges or non-edges) on every

k-element subset. This contradiction finishes the proof.
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