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Abstract

An algorithm for a constraint satisfaction problem is called robust if it outputs an assignment
satisfying at least (1−g(ε))-fraction of the constraints given a (1−ε)-satisfiable instance, where
g(ε) → 0 as ε→ 0, g(0) = 0. Guruswami and Zhou conjectured a characterization of constraint
languages for which the corresponding constraint satisfaction problem admits an efficient robust
algorithm. This paper confirms their conjecture.

∗Supported by the Grant Agency of the Czech Republic, grant 201/09/P223 and by the Ministry of Education of
the Czech Republic, grant MSM 0021620839.

†Supported by the Foundation for Polish Science, grant HOM/2008/7 (supported by MF EOG), and Ministry of
Science and Higher Education of Poland, grant N206 357036.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 163 (2011)



1 Introduction

The constraint satisfaction problem (CSP) provides a common framework for many theoretical
problems in computer science as well as for many real-life applications. An instance of the CSP
consists of a number of variables and constraints imposed on them, and the objective is to efficiently
find an assignment for variables with desired properties, or at least to decide whether such an
assignment exists. In the decision problem for CSP we want to decide if there is an assignment
satisfying all the constraints, in Max-CSP we wish to find an assignment satisfying maximum
number of constraints, in the approximation version of Max-CSP we seek for an assignment which
is in some sense close to the optimal one. This paper deals with an interesting special case, robust
satisfiability of the CSP: Given an instance which is almost satisfiable (say (1 − ε)-fraction of the
constraint can be satisfied), we want to efficiently find an almost satisfying assignment (which
satisfies at least (1 − g(ε))-fraction of the constraints, where limε→0 g(ε) = 0).

Most of the computational problems for the CSP are hard in general, therefore we have to
put some restrictions on the instance. In this paper we restrict the constraint language, that
is, all constraint relations must come from a fixed, finite set of relations on the domain. Robust
satisfiability was in this setting first suggested and studied in a paper by Zwick [27]. The motivation
is that in certain practical situations instances might be close to satisfiable (for example, a small
fraction of constraints might have been corrupted by noise) and an algorithm that is able to satisfy
most of the constraints could be useful.

Zwick [27] concentrated on Boolean CSPs. He gave a semidefinite programming (SDP) based
algorithm which finds (1−O(ε1/3))-satisfying assignment for (1− ε)-satisfiable instances of 2-SAT
and linear programming (LP) based algorithm which finds (1−O(1/ log(1/ε)))-satisfying assignment
for (1 − ε)-satisfiable instances of Horn-k-Sat (the number k refers to the maximum numbers of
variables in a Horn constraint). The quantitative dependence on ε was improved for 2-SAT to
(1 −O(

√
ε)) in [9]. For CUT, a special case of 2-SAT, the Goemans-Williamson algorithm [13] also

achieves (1 − O(
√
ε)). The same dependence was proved more generally for Unique-Games(q) [8]

(where q refers to the size of the domain), which improved (1−O( 5
√
ε log1/2(1/ε))) obtained in [20].

For Horn-2-Sat the exponential loss can be replaced by (1− 3ε) [19] and even (1− 2ε) [14]. These
bounds for Horn-k-Sat (k ≥ 3), Horn-2-Sat, 2-SAT, and Unique-Games(q) are actually essentially
optimal [20, 21, 14] assuming Khot’s Unique Games Conjecture [20].

On the negative side, if the decision problem for CSP is NP-complete, then given a satisfi-
able instance it is NP-hard to find an assignment satisfying α-fraction of the constraints for some
constant α < 1 (see [19] for the Boolean case and [17] for the general case). In particular these
problems cannot admit an efficient robust satisfiability algorithm (assuming P 6= NP ). How-
ever NP-completeness of the decision problem is not the only obstacle for robust algorithms. In
[15] H̊astad proved a strikingly optimal hardness result: for E3-LIN(q) (linear equations over Zq

where each equation contains precisely 3 variables) it is NP-hard to find an assignment satisfying
(1/q + ε)-fraction of the constraints given an instance which is (1 − ε)-satisfiable. Note that the
trivial random algorithm achieves 1/q in expectation.

As observed in [27] the above results cover all Boolean CSPs, because, by Schaefer’s theorem [26],
E3-LIN(q), Horn-k-Sat, and 2-SAT are essentially the only CSPs with tractable decision problem.
What about larger domains? A natural property which distinguishes Horn-k-Sat, 2-SAT, and
Unique-Games(q) from E3-LIN(q) and NP-complete CSPs is bounded width [11]. Briefly, a CSP
has bounded width if the decision problem can be solved by checking local consistency of the
instance. These problems were characterized independently by the authors [1] and Bulatov [4].
It was proved that, in some sense, the only obstacle to bounded width is E3-LIN(q) – the same
problem which is difficult for robust satisfiability. These facts motivated Guruswami and Zhou to
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conjecture [14] that the class of bounded width CSPs coincide with the class of CSPs admitting a
robust satisfiability algorithm.

A partial answer to the conjecture for width 1 problems was recently independently given by
Kun, O’Donnell, Tamaki, Yoshida and Zhou [22] (where they also show that width 1 characterizes
problems robustly decidable by the canonical LP relaxation), and Dalmau and Krokhin [10] (where
they also consider some problems beyond width 1). This paper confirms the Guruswami and Zhou
conjecture in full generality. The proof uncovers an interesting connection between the outputs of
SDP (and LP) relaxations and Prague strategies – a consistency notion crucial for the bounded
width characterization [1].

2 Preliminaries

Definition 2.1. An instance of the CSP is a triple I = (V,D, C) with V a finite set of variables,
D a finite domain, and C a finite list of constraints, where each constraint is a pair C = (S,R)
with S a tuple of variables of length k, called the scope of C, and R an k-ary relation on D (i.e. a
subset of Dk), called the constraint relation of C.

A finite set of relations Γ on D is called a constraint language. An instance of CSP(Γ) is an
instance of the CSP such that all the constraint relations are from Γ.

An assignment for I is a mapping F : V → D. We say that F satisfies a constraint C = (S,R)
if F (S) ∈ R (where F is applied component-wise). The value of F , Val(F, I), is the fraction of
constraints it satisfies. The optimal value of I is Opt(I) = maxF :V →D Val(F, I).

The decision problem for CSP(Γ) asks whether an input instance I of CSP(Γ) has a solution, i.e.
an assignment which satisfies all the constraints. It is known [5] that if CSP(Γ) is tractable, then
there exists a polynomial algorithm for finding an assignment F with Val(F, I) = 1.

Definition 2.2. Let Γ be a constraint language and let α, β ≤ 1 be real numbers. We say that an
algorithm (α, β)-approximates CSP(Γ), if it outputs an assignment F with Val(F, I) ≥ α for every
instance I of CSP(Γ) such that Opt(I) ≥ β.

We say that CSP(Γ) admits a robust satisfiability algorithm if there exists a function g : [0, 1] →
[0, 1] such that limε→0 g(ε) = 0, g(0) = 0, and a polynomial algorithm which (1 − g(ε), 1 − ε)-
approximates CSP(Γ) for every ε ∈ [0, 1].

Bounded width and the Guruswami-Zhou conjecture

A natural notion with distinguishes known CSPs which admit a robust satisfiability algorithm (like
Horn-k-Sat, 2-SAT, and Unique-Games(q)) from those which do not (like E3-LIN(q), NP-complete
CSPs) is bounded width.

Informally, CSP(Γ) has bounded width if the decision problem for CSP(Γ) can be solved by
checking local consistency. More specifically, for fixed integers (k, l), the (k, l)-algorithm derives
the strongest constraints on k variables which can be deduced by looking at l variables at a time.
During the process we may obtain a contradiction (i.e. an empty constraint relation), in this case I
has no solution. We say that CSP(Γ) has width (k, l) if this procedure is sound, that is, an instance
has a solution if and only if the (k, l)-consistency algorithm does not derive a contradiction. We say
that CSP(Γ) has width k, if it has width (k, l) for some l. Finally, we say that CSP(Γ) has bounded
width if it has width k for some k. We refer to [11, 24, 6] for formal definitions and background.

Conjecture 2.3 (Guruswami, Zhou [14]). CSP(Γ) admits a robust satisfiability algorithm if and
only if CSP(Γ) has bounded width.
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One implication of the Guruswami-Zhou conjecture follows from known results. In [1] and [4]
it was proved that E3-LIN(q) is essentially the only obstacle for bounded width – if Γ cannot
“encode linear equations”, then CSP(Γ) has bounded width (here we do not need to assume P 6=
NP). Therefore, if CSP(Γ) does not have bounded width, then Γ can encode linear equations and,
consequently, CSP(Γ) admits no robust satisfiability algorithm by H̊astad’s result [15] (assuming
P 6= NP). Details will be presented in [10].

This paper proves the other implication:

Theorem 2.4. If CSP(Γ) has bounded width then it admits a robust satisfiability algorithm.
The randomized version of this algorithm returns an assignment satisfying, in expectation, (1 −
O(log log(1/ε)/log(1/ε)))-fraction of the constraints given a (1 − ε)-satisfiable instance.

LP and SDP relaxations

Essentially the only known way to design efficient approximation algorithms is through linear
programming (LP) relaxations and semidefinite programming (SDP) relaxations. For instance, the
robust satisfiability algorithm for Horn-k-Sat [27] uses LP relaxation while the robust satisfiability
algorithms for 2-SAT and Unique-Games(q) [27, 9] are SDP-based.

Recently, robust satisfiability algorithm was devised in [22] and independently [10] for all CSPs
of width 1 (this covers Horn-k-Sat, but not 2-SAT or Unique-Games(q)). The latter one uses a
reduction to Horn-k-Sat while the former uses an LP relaxation directly. In fact, it is shown in
[22] that, in some sense, LP relaxations can be used precisely for width 1 CSPs.

Our algorithm is based on the canonical SDP relaxation [25]. We will use it only for instances
with unary and binary constraints (a reduction is provided in the appendix). In this case we can
formulate the relaxation as follows.

Definition 2.5. Let Γ be a constraint language over D consisting of at most binary relations and
let I = (V,D, C) be an instance of CSP(Γ) with m constraints. The goal for the canonical SDP
relaxation of I is to find (|V ||D|)-dimensional real vectors xa, x ∈ V, a ∈ D maximizing

1

m




∑

(x,R)∈C

∑

a∈R

||xa||2 +
∑

((x,y),R)∈C

∑

(a,b)∈R

xayb



 (∗)

subject to

(SDP1) xayb ≥ 0 for all x, y ∈ V, a, b ∈ D,
(SDP2) xaxb = 0 for all x ∈ V, a, b ∈ D, a 6= b, and

(SDP3)
∑

a∈D xa =
∑

a∈D ya,
∣
∣
∣
∣
∑

a∈D xa

∣
∣
∣
∣2 = 1 for all x, y ∈ V .

The dot products xayb can be thought of as weights and the goal is to find vectors so that maximum
weight is given to pairs (or elements) in constraint relations. It will be convenient to use the notation

xA =
∑

a∈A

xa

for a variable x ∈ V and a subset A ⊆ D, so that condition (SDP3) can be written as xD = yD,
||xD||2 = 1. The contribution of one constraint to (∗) is by (SDP3) at most 1 and it is the greater
the less weight is given to pairs (or elements) outside the constraint relation.

The optimal value for the sum (∗), SDPOpt(I), is always at least Opt(I). There are algorithms
that outputs vectors with (∗) ≥ SDPOpt(I)−δ which are polynomial in the input size and log(1/δ).
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Polymorphisms

Much of the recent progress on the complexity of the decision problem for CSP was achieved by
the algebraic approach [5]. The crucial notion linking relations and operations is a polymorphism:

Definition 2.6. An l-ary operation f on D is a polymorphism of a k-ary relation R, if

(f(a1
1, . . . , a

l
1), f(a1

2, . . . , a
l
2), . . . , f(a1

k, . . . , a
l
k)) ∈ R

whenever (a1
1, . . . , a

1
k), (a2

1, . . . , a
2
k), . . . , (al

1, . . . , a
l
k) ∈ R.

We say that f is a polymorphism of a constraint language Γ, if it is a polymorphism of every
relation in Γ. The set of all polymorphisms of Γ will be denoted by Pol(Γ)

We say that Γ is a core, if all its unary polymorphisms are bijections.

The complexity of the decision problem for CSP(Γ) (modulo log-space reductions) depends only
on equations satisfied by operations in Pol(Γ) (see [5, 23]). Moreover, equations also determine
whether CSP(Γ) has bounded width [24]. The following theorem [12] states one such an equational
characterization:

Theorem 2.7. Let Γ be a core constraint language. Then the following are equivalent.

• CSP(Γ) has bounded width.

• Pol(Γ) contains a 3-ary operation f1 and a 4-ary operation f2 such that, for all a, b ∈ D,

f1(a, a, b) = f1(a, b, a) = f1(b, a, a) = f2(a, a, a, b) = · · · = f2(b, a, a, a) and f1(a, a, a) = a.

We remark that the problem of deciding whether CSP(Γ) has bounded width, given Γ as an input,
is tractable (the problem is obviously in NP).

3 Prague instances

The proof of the characterization of bounded width CSPs in [1] relies on a certain consistency notion
called Prague strategy. It turned out that Prague strategies are related to outputs of canonical
SDP relaxations and this connection is what made our main result possible.

The notions defined below will be used only for certain types of instances and constraint lan-
guages. Therefore, in the remainder of this section we assume that Λ is a constraint language
on a domain D, Λ contains only binary relations, J = (V,D, CJ ) is an instance of CSP(Λ) such
that every pair of distinct variables is the scope of at most one constraint ((x, y), PJ

x,y), and if

((x, y), PJ
x,y) ∈ CJ then ((y, x), PJ

y,x) ∈ CJ , where PJ
y,x = {(b, a) : (a, b) ∈ PJ

x,y}. (We sometimes
omit the superscripts for Px,y’s.)

The most basic consistency notion for CSP instances is 1-minimality.

Definition 3.1. The instance J is called 1-minimal, if there exist subsets PJ
x ∈ D, x ∈ V such

that, for every constraint ((x, y), PJ
x,y), the constraint relation PJ

x,y is subdirect in PJ
x × PJ

y , i.e.

the projection of PJ
x,y to the first (resp. second) coordinate is equal to PJ

x (resp. PJ
y ).

The subset PJ
x is uniquely determined by the instance (if x is in the scope of some constraint).
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Weak Prague instance

We will work with a weakening of the notion of a Prague strategy which we call a weak Prague
instance. First we need to define steps and patterns.

Definition 3.2. A step (in J ) is a pair of variables (x, y) which is the scope of a constraint in
CJ . A pattern from x to y is a sequence of variables p = (x = x1, x2, . . . , xk = y) such that every
(xi, xi+1), i = 1, . . . , k − 1 is a step.

For a pattern p = (x1, . . . , xk) we define −p = (xk, . . . , x1). If p = (x1, . . . , xk), q = (y1, . . . , yl),
xk = y1 then the concatenation of p and q is the pattern p + q = (x1, x2, . . . , xk = y1, y2, . . . , yk).
For a pattern p from x to x and a natural number k, kp denotes the k-time concatenation of p with
itself.

For a subset A ⊆ D and a step p = (x, y) we put A + p to be the projection of the constraint
relation Px,y onto the second coordinate after restricting the first coordinate to A, that is, A+ p =
{b ∈ D : (∃ a ∈ D) (a, b) ∈ Px,y}. For a general pattern p, the set A+ p is defined step by step.

Definition 3.3. J is a weak Prague instance if

(P1) J is 1-minimal,

(P2) for every A ⊆ PJ
x and every pattern p from x to x, if A+ p = A then A− p = A, and

(P3) for any patterns p1, p2 from x to x and every A ⊆ PJ
x , if A+ p1 + p2 = A then A+ p1 = A.

The instance J is nontrivial, if PJ
x 6= ∅ for every x ∈ V .

To clarify the definition let us consider the following digraph: vertices are all the pairs (A, x),
where x ∈ V and A ⊆ PJ

x , and ((A, x), (B, y)) forms an edge iff (x, y) is a step and A+(x, y) = B.
Condition (P3) means that no strong component contains (A, x) and (A′, x) with A 6= A′, condition
(P2) is equivalent to the fact that every strong component contains only undirected edges. Also
note that 1-minimality implies A ⊆ A+ p− p for any pattern from x.

The simplest example of an instance satisfying (P1) and (P2) but not (P3) is V = {x, y, z},
D = {0, 1}, Px,y = Px,z = {(0, 0), (1, 1)}, Py,z = {(0, 1), (1, 0)}. We have {0} + (x, y, z, x) +
(x, y, z, x) = {0}, but {0} + (x, y, z, x) = {1}.

The simplest example of an instance satisfying (P1) and (P3) but not (P2) is V = {x, y, z},
D = {0, 1}, Px,y = Py,z = Pz,x = {(0, 0), (1, 0), (1, 1)}. Here {0} + (x, y, z, x) = {0}, but {0} −
(x, y, z, x) = {0, 1}.

The main result of this paper relies on the following theorem which is a slight generalization of
a result in [1].

Theorem 3.4. If CSP(Λ) has bounded width and J is a nontrivial weak Prague instance of CSP(Λ),
then J has a solution (and a solution can be found in polynomial time).

SDP and Prague instances

We now show that one can naturally associate a weak Prague instance to an output of the canonical
SDP relaxation. This material will not be used in what follows, it is included to provide some
intuition for the proof of the main theorem.

Let xa, x ∈ V , a ∈ D be arbitrary vectors satisfying (SDP1), (SDP2) and (SDP3) . (These
vectors do not need to come as a result of the canonical SDP relaxation of a CSP instance.) We
define a CSP instance J = (V,D, {((x, y), Px,y) : x, y ∈ V, x 6= y}) by Px,y = {(a, b) : xayb > 0}.
and we show that it is a weak Prague instance.

6



The instance is 1-minimal with PJ
x = {a ∈ D : xa 6= 0}. To prove this it is enough to verify that

the projection of Px,y to the first coordinate is equal to Px. If (a, b) ∈ Px,y, then clearly xa cannot be
the zero vector, therefore a ∈ PJ

x . On the other hand, if a ∈ PJ
x then 0 < ||xa||2 = xaxD = xayD

and thus at least one of the dot products xayb, b ∈ D is nonzero and (a, b) ∈ Px,y.
To check (P2) and (P3) we note that, for any x, y ∈ V, x 6= y and A ⊆ PJ

x , the vector
yA+(x,y) has either a strictly greater length than xA, or xA = yA+(x,y), and the latter happens iff
A + (x, y, x) = A (see Claim 4.1.3, in fact, one can check that yA+(x,y) is obtained by adding to
xA an orthogonal vector whose size is greater than zero iff A + (x, y, x) 6= A). By induction, for
any pattern p from x to y, the vector yA+p is either strictly longer than xA, or xA = yA+p and
A+ p− p = A. Now (P2) follows immediately and (P3) is also easily seen: If A+ p+ q = A then
necessarily xA = xA+p which is possible only if A = A+ p.

Remarks. To prove property (P2) we only need to consider lengths of the vectors. In fact,
this property will be satisfied when we start with the canonical linear programming relaxation (and
define the instance J in a similar way). This is not the case for property (P3).

We also remark that the above weak Prague instance is in fact a Prague strategy in the sense
of [1]. However the following example shows that J is not necessarily a (2, 3)-strategy, meaning
that the (2, 3)-algorithm will remove some pairs from constraint relations. Consider V = {x, y, z},
D = {0, 1} and vectors x0 = (1/2, 1/2, 0), x1 = (1/2,−1/2, 0), y0 = (1/4,−1/4,

√
2/4), y1 =

(3/4, 1/4,−
√

2/4), z0 = (1/4, 1/4,
√

2/4), z1 = (3/4,−1/4,
√

2/4). The constraint relations are
then Px,y = {(0, 1), (1, 0), (1, 1)}, Px,z = {(0, 0), (0, 1), (1, 1)}, Py,z = {(0, 0), (0, 1), (1, 0), (1, 1)}.
The pair (0, 0) will be deleted from Py,z during the (2, 3)-algorithm, since there is no a ∈ {0, 1}
such that (0, a) ∈ Py,x and (0, a) ∈ Pz,x.

Finally, we note that if I is an instance of the CSP with SDPOpt(I) = 1 and we define
J using vectors with (∗)=1, then a solution of J is necessarily a solution to I. Showing that
“SDPOpt(I) = 1” implies “I has a solution” was suggested as a first step to prove the Guruswami-
Zhou conjecture. The above example explains that it is not straightforward to achieve this goal
using (2, 3)-strategies.

4 Proof

The main result, Theorem 2.4, is a consequence of the following theorem. The reduction, deran-
domization and omitted details are in the appendix.

Theorem 4.1. Let Γ be a core constraint language over D containing at most binary relations.
If CSP(Γ) has bounded width, then there exists a randomized algorithm which given an instance I
of CSP(Γ) and an output of the canonical SDP relaxation with value at least 1 − 1/n4n (where n
is a natural number) produces an assignment with value at least 1 −K/n, where K is a constant
depending on |D|. The running time is polynomial in m (the number of constraints) and nn.

Proof. Let I = (V,D, C) be an instance of CSP(Γ) with m constraints and let xa, x ∈ V , a ∈ D be
vectors satisfying (SDP1), (SDP2), (SDP3) such that the sum (∗) is at least 1 − 1/n4n. Without
loss of generality we assume that n > |D|.

Let us first briefly sketch the idea of the algorithm. The aim is to define an instance J in a
similar way as in the previous section (see Step 9), but instead of all pairs with nonzero weight we
only include pairs of weight greater than a threshold (chosen in Step 1). This guarantees that every
solution to J satisfies all the constraints of I which do not have large weight on pairs outside the
constraint relation (the bad constraints are removed in Step 3). The instance J (more precisely,
its algebraic closure formed in Step 10) has a solution by Theorem 3.4 as soon as we ensure that
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it is a weak Prague instance. Property (P1) is dealt with in a similar way as in [22]: We keep only
constraints with a gap – all pairs have either smaller weight than the threshold, or significantly
larger (Step 2). This also gives a property similar to the one in the motivating discussion in the
previous section: The vector yA+(x,y) is either significantly longer than xA or these vectors are
almost the same. However, large amount of small differences can add up, so we need to continue
taming the instance. In Steps 4 and 5 we divide the unit sphere into layers and remove some
constraints so that almost the same vectors of the form xA, yA+(x,y) never lie in different layers.
This already guarantees property (P2). For property (P3) we use “cutting by hyperplanes” idea
from [13]. We choose sufficiently many hyperplanes so that every pair xA, xB of different vectors
in the same layer is cut (the bad variables are removed in Step 7) and we do not allow almost the
same vectors to cross the hyperplane (Step 8).

The description of the algorithm follows.

1. Choose r ∈ {1, 2, . . . , n− 1} uniformly at random.

2. Remove from C all the unary constraints (x,R) such that ||xa||2 ∈ [n−4r−4, n−4r) for some
a ∈ D and all the binary constraints ((x, y), R) such that xayb ∈ [n−4r−4, n−4r) for some
a, b ∈ D.

3. Remove from C all the unary constraints (x,R) such that ||xa||2 ≥ n−4r for some a 6∈ R and
all the binary constraints ((x, y), R) such that xayb ≥ n−4r for some (a, b) 6∈ R.

Let u1 = 2|D|2n−4r−4 and u2 = n−4r − u1. For two real numbers γ, ψ 6= 0 we denote by γ ÷ ψ the
greatest integer i such that γ − iψ > 0 and this difference is denoted by γ mod ψ.

4. Choose s ∈ [0, u2] uniformly at random.

5. Remove from C all the binary constraints ((x, y), R) such that | ||xA||2 − ||yB||2 | ≤ u1 and
(||xA||2 − s) ÷ u2 6= (||yB||2 − s) ÷ u2 for some A,B ⊆ D.

The remaining part of the algorithm uses the following definitions. For all x ∈ V let Px =
{a ∈ D : ||xa||2 ≥ n−4r}. For a vector w we put h(w) = (||w||2 − s) ÷ u2 and t(w) =
⌈

π(log n)n2r min{
√

(h(w) + 2)u2, 1}
⌉

. We say that w1 and w2 are almost the same if h(w1) =

h(w2) and ||w1 − w2||2 ≤ u1.

6. Choose unit vectors q1, q2, . . . , q⌈π(log n)n2n⌉ independently and uniformly at random.

7. We say that a variable x ∈ V is uncut if there exists A,B ⊆ Px, A 6= B such that h(xA) =
h(xB) and sgn xAqi = sgn xBqi for every 1 ≤ i ≤ t(xA) (in words, no hyperplane determined
by the first t(xA) = t(xB) vectors qi cuts the vectors xA, xB). Remove from C all the
constraints whose scope contains an uncut variable.

8. Remove from C all the binary constraints ((x, y), R) for which there exist A ⊆ Px, B ⊆ Py

such that xA, yB are almost the same and sgn xAqi 6= sgn yBqi for some 1 ≤ i ≤ t(xA).

9. Let S denote the set of pairs which are the scope of some binary constraint of I. Let

J = (V,D, {((x, y), PJ
x,y) : (x, y) ∈ S ∪ S−1}), PJ

x,y = {(a, b) : xayb ≥ n−4r}.

10. Form the algebraic closure J ′ of the instance J : J ′ = (V,D, {((x, y), PJ ′

x,y) : (x, y) ∈ S∪S−1}):

PJ ′

x,y = {(f(a1, a2, . . . ), f(b1, b2, . . . )) : f ∈ Pol(Γ), (a1, b1), (a2, b2), · · · ∈ PJ
x,y}

11. Return a solution of J ′.
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Claim 4.1.1. Expected fraction of constraints removed in steps 2, 3, 5, 7 and 8 is at most K/n
for some constant K.

Proof. Step 2. For each binary constraint there are |D|2 choices for a, b ∈ D and therefore at most
|D|2 bad choices for r. For a unary constraint the number of bad choices is at most |D|. Thus the
probability that a given constraint will be removed is at most |D|2/(n− 1) and it follows that the
expected fraction of removed constraints is at most |D|2/(n− 1).

Step 3. The contribution of every removed constraint to the sum (∗) is at most 1 − n−4r ≤
1−n−4n+4. If more than γ-fraction of the constraints is removed than the sum is at most 1/m((1−
γ)m+ γm(1 − n−4n+4)) = 1 − γn−4n+4. Since (∗) ≥ 1 − 1/n4n, we have γ ≤ 1/n4.

Step 5. For every constraint ((x, y), R) and every A,B ⊆ D such that | ||xA||2 − ||yB||2 | ≤ u1,
||xA|| ≤ ||yB||, the inequality (||xA||2 − s) ÷ u2 6= (||yB||2 − s) ÷ u2 is satisfied only if s ∈ (l −
iu2, l + u1 − iu2] for some integer i, where l = ||xA||2 mod u2. These bad choices for s cover
at most (u1/u2)-fraction of the interval [0, u2]. As u1/u2 < K1/n

4 (for a suitable constant K1

depending on |D|), the probability of a bad choice is at most K1/n
4. There are 4|D| pairs of subsets

A,B ⊆ D, therefore the probability that the constraint is removed is less than K14
|D|/n4 and so is

the expected fraction of removed constraints.
Before analyzing Steps 7 and 8 let us observe that, for any vector w such that 1 ≥ ||w|| ≥ n−4r,

π(log n)n2r ||w|| ≤ t(w) ≤ 2π(log n)n2r+1 ||w|| + 1.

The first inequality follows from

√

(h(w) + 2)u2 =

√

u2((||w||2 + 2u2 − s) ÷ u2) ≥

√

u2
||w||2 + u2 − s

u2
≥ ||w||

and the second inequality follows from

√

(h(w) + 2)u2 ≤

√

u2
(||w||2 + 2u2 − s)

u2
≤

√

||w||2 + 2u2 ≤
√

||w||2 + 2 ||w||2 < 2 ||w|| .

Step 7. Consider two different subsets A,B of Px such that h(xA) = h(xB). Suppose that
A \B 6= ∅, the other case is symmetric. Let θ be the angle between xA and xB. As xA − xA∩B(=
xA\B), xB−xA∩B and xA∩B are pairwise orthogonal, the angle θ is greater than or equal to the angle
θA between xA and xA∩B. We have sin θA =

∣
∣
∣
∣xA\B

∣
∣
∣
∣ / ||xA||. Since A ⊆ Px, we get

∣
∣
∣
∣xA\B

∣
∣
∣
∣ ≥√

n−4r = n−2r and then sin θA =
∣
∣
∣
∣xA\B

∣
∣
∣
∣ / ||xA|| ≥ n−2r/ ||xA||, so θ ≥ θA ≥ n−2r/ ||xA||.

The probability that qi does not cut xA and xB is thus at most 1 − n−2r/π ||xA|| and the
probability that none of the vectors q1, . . . ,qt(xA) cut them is at most

(

1 − n−2r

π ||xA||

)t(xA)

≤
[(

1 − 1

πn2r ||xA||

)πn2r||xA||
]log n

≤
(

1

2

)log n

=
1

n
.

The first inequality uses the fact that t(xA) ≥ (log n)n2r ||xA|| observed above. In the second
inequality we have used that (1 − 1/η)η ≤ 1/2 whenever η ≥ 2.

For a single variable there are at most 4|D| choices for A,B ⊆ Px, therefore the probability that
x is uncut is at most 4|D|/n. The scope of every constraint contains at most 2 variables, hence
the probability that a constraint is removed is at most 2 · 4|D|/n and the expected fraction of the
constraints removed in this step has the same upper bound.
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Step 8. Assume that ((x, y), R) is a binary constraint and A ⊆ Px, B ⊆ Py are such that xA

and yB are almost the same. Let θ be the angle between xA and yB and θA be the angle between
yB and yB − xA. By the law of sines we have ||xA|| /(sin θA) = ||yB − xA|| /(sin θ), and

θ ≤ 2 sin θ =
||yB − xA||

||xA||
sin(θA) ≤ ||yB − xA||

||xA||
≤

√
u1

||xA||
.

Therefore, the probability that vectors xA and yB are cut by some of the vectors qi, 1 ≤ i ≤ t(xA)
is at most

t(xA)

√
u1

||xA||
≤ (2π(log n)n2r ||xA|| + 1)

√

2|D|2n−4r−4

||xA||
≤ K2(log n)n−2 ≤ K2

n
,

where K2 is a constant. There are at most 4|D| choices for A,B, so the probability that our
constraint will be removed is less than K24

|D|/n.

We now proceed to show that J is a weak Prague instance. First we check condition (P1):

Claim 4.1.2. The instance J is 1-minimal and PJ
x = Px.

Proof. Let (x, y) ∈ S and take an arbitrary constraint ((x, y), R) which remained in C.
First we prove that Px,y ⊆ Px ×Py for every a, b ∈ D. Indeed, if (a, b) ∈ Px,y then xayb ≥ n−4r,

therefore ||xa||2 = xaxD = xayD ≥ n−4r, so a ∈ Px. Similarly, b ∈ Py.
On the other hand, if a ∈ Px then n−4r ≤ ||xa||2 = xayD, thus there exist b ∈ D such that

xayb ≥ n−4r/|D| ≥ n−4r−4 (we have used n4 ≥ |D|). But then xayb ≥ n−4r, otherwise the
constraint ((x, y), R) would be removed in Step 2. This implies that (a, b) ∈ Px,y. We have shown
that the projection of Px,y to the first coordinate contains Px. Similarly, the second projection
contains Py, so Px,y is subdirect in Px × Py.

For verification of properties (P2) and (P3) the following observation will be useful.

Claim 4.1.3. Let (x, y) ∈ S ∪ S−1, A ⊆ Px, B = A + (x, y). If A = B + (y, x), then the vectors
xA and yB are almost the same. In the other case, i.e. if A  B + (y, x), then h(yB) > h(xA).

Proof. The number ||yB − xA||2 is equal to

yByB − xAyB − xAyB + xAxA = xDyB − xAyB − xAyB + xAyD = xD\AyB + xAyD\B.

No pair (a, b), with a ∈ A and b ∈ D \ B, is in PJ
x,y so the dot product xayb is smaller than n−4r.

Then in fact xayb < n−4r−4 otherwise all the constraints with scope (x, y) would be removed in
Step 2. It follows that the second summand is always at most |D|2n−4r−4 and the first summand
has the same upper bound in the case B + (y, x) = A.

Moreover, ||yB||2 − ||xA||2 is equal to

yByB − xAxA = xDyB − xAyD = xDyB − xAyB − xAyD\B = xD\AyB − xAyD\B.

IfB+(y, x) = A then we have a difference of two nonnegative numbers less than or equal |D|2n−4r−4,
therefore the absolute value of this expression is at most u1. But then h(xA) = h(yB), otherwise
all constraint with scope (x, y) or (y, x) would be removed in Step 5. Using the previous paragraph,
it follows that xA and xB are almost the same.

If B + (y, x) properly contains A then the first summand is greater than or equal to n−4r, so
the whole expression is at least n−4r − |D|2n−4r−4 > u2 and thus h(yB) > h(xA).
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Claim 4.1.4. J is a weak Prague instance.

Proof. (P2). Let A ⊆ Px and let p = (x1, . . . , xi) be a pattern in J from x to x (i.e. x1 =
xi = x). By the previous claim h(xA) = h((xi)A+(x1,...,xi)) ≥ h((xi−1)A+(x1,...,xi−1)) ≥ · · · ≥
h((x2)A+(x1,x2)) ≥ h(xA). It follows that all these inequalities must in fact be equalities and, by
applying the claim again, the vectors (xj)A+(x1,x2,...,xj) and (xj+1)A+(x1,x2,...,xj+1) are almost the
same and A + (x1, x2, . . . , xj+1) + (xj+1, xj) = A + (x1, x2, . . . , xj) for every 1 ≤ j < i. Therefore
A+ p− p = A as required.

(P3). Let A ⊆ Px, let p1 = (x1, . . . , xi), p2 be two patterns from x to x such that A+p1+p2 = A
and let B = A + p1. For contradiction assume A 6= B. The same argument as above proves that
the vectors (xj)A+(x1,x2,...,xj) and (xj+1)A+(x1,x2,...,xj+1) are almost the same for every 1 ≤ j < i,
and then h(xA) = h(xB). There exists i ≤ t(xA) such that sgn xAqi 6= sgn xBqi, otherwise x is
uncut and all constraints whose scope contains x would be removed in Step 7. But this leads to
contradiction, since sgn (xj)A+(x1,...,xj)qi = sgn (xj+1)A+(x1,...,xj+1)qi for all 1 ≤ j < i, otherwise
the constraints with scope (xj , xj+1) would be removed in Step 8.

Observe that every solution F to J is a solution to the torso of I: For every remaining unary
constraint (x,R) we have Px ⊆ R (from Step 3) and for every remaining binary constraint ((x, y), R)
we have Px,y ⊆ R. Since we have removed at most (K/n)-fraction of the constraints from C, the
mapping F is an assignment for the original instance I of value at least K/n. Also, the instance
J is nontrivial because, for each x ∈ V , there exists at least one a ∈ D with ||xa||2 > 1/n4 (recall
that we assume n > |D|).

The only problem is that the CSP over the constraint language of J (consisting of PJ
x,y’s) does

not necessarily have bounded width. This is why we are forming the algebraic closure J ′ in Step 10.
The new instance still has the property that PJ ′

x = {f(a1, a2, . . . ) : f ∈ Pol(Γ), a1, a2, · · · ∈ Px} ⊆ R
for every unary constraint (x,R), and PJ ′

x,y ⊆ R for every binary constraint ((x, y), R), since the
constraint relations are preserved by every polymorphism of Γ. Moreover, every polymorphism of
Γ is a polymorphism of the constraint language Λ′ of J ′, therefore CSP(Λ′) has bounded width
(see Theorem 2.7 for instance; technically, Λ′ does not need to be a core, but we can simply add
all the singleton unary relations). As the algebraic closure of a weak Prague instance is a weak
Prague instance, we can apply Theorem 3.4 to get a solution to J ′.

5 Open Problems

The quantitative dependence of g on ε is not very far from the (UGC-) optimal bound for Horn-k-Sat.
Is it possible to get rid of the extra log log(1/ε)?

A straightforward derandomization using a result from [18] has g(ε) = O(log log(1/ε)/
√

log(1/ε)).
How to improve it to match the randomized version?

It was observed by Andrei Krokhin that the quantitative dependence is, at least to a large
extend, also controlled by the polymorphisms of the constraint language. The problems 2-SAT,
Unique-Games(q) suggest that majority or, more generally, near-unanimity polymorphisms could
be responsible for polynomial behavior.

The simplest example of polymorphism which does not imply any known stronger property
for decision CSPs other than bounded width is the 2-semilattice operation f on a three element
domain D = {0, 1, 2} defined by f(0, 0) = f(0, 1) = f(1, 0) = 0, f(1, 1) = f(1, 2) = f(2, 1) = 1,
f(2, 2) = f(2, 0), f(0, 2) = 2. This might be a source for possible hardness results.

Finally, we believe that the connection between SDP, LP and consistency notions deserves
further investigation.
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Appendix

Omitted details concerning Theorem 2.4

Reduction to core constraint languages with unary and binary relations

The reduction is given in the following proposition.

Proposition 5.1. Let Γ be a constraint language on the domain D which contains relations of
maximum arity l and such that CSP(Γ) has bounded width. Then there exists a core constraint
language Γ′ on D′ containing only at most binary relations such that CSP(Γ′) has bounded width
and such that the following holds: If CSP(Γ′) admits a robust satisfiability algorithm which is
(1 − g(ε), 1 − ε)-approximating (for every ε), then CSP(Γ) admits a robust satisfiability algorithm
which is (1 − (l + 1)g(ε), 1 − ε)-approximating.

Proof. First we form the core of Γ: We take a unary polymorphism f ∈ Pol(Γ) with minimal image
(with respect to inclusion) and put Γc = {Rc = R ∩ f(D)arity(R) : R ∈ Γ}, Dc = f(D). Then Γc

is a core constraint language. It is known that CSP(Γ) has bounded width iff CSP(Γc) does (see
[24]), therefore CSP(Γc) has bounded width.

Next we define the constraint language Γ′. The domain is D′ = (Dc)l. For every relation
Rc ∈ Γc of arity k we add to Γ′ the unary relation R′ defined by

(a1, . . . , al) ∈ R′ iff (a1, . . . , ak) ∈ Rc,

for every k ≤ l we add the binary relation

Ek = {((a1, . . . , al), (b1, . . . , bl)) : a1 = bk},

and for every (a1, . . . , al) ∈ D′ we add the singleton unary relation {(a1, . . . , al)}. The singletons
ensure that Γ′ is a core. That CSP(Γ′) has bounded width can be seen, for instance, from Theo-
rem 2.7: If f c

1 , f
c
2 are polymorphisms of Γc from this theorem, then the corresponding operations

f ′1, f
′
2 acting coordinate-wise on D′ satisfy the same equations and it is straightforward to check

that f ′1, f
′
2 are polymorphisms of Γ′.

Now, let I = (V,D, C) be an instance of CSP(Γ) with Opt(I) = ε. We transform I to an
instance I ′ of CSP(Γ′) as follows. We keep the original variables and for every constraint C =
((x1, . . . , xk), R) in C we introduce a new variable xC and add k + 1 constraints

((xC), R′), ((x1, xC), E1), ((x2, xC), E2), . . . , ((xk, xC), Ek). (†)

If F : V → D is an assignment for I of value 1− ε then F c = fF has at least the same value (as f
preserves the constraint relations), and the assignment F ′ for I ′ defined by

F ′(x) = (F c(x), ?, . . . , ?) for x ∈ V

F ′(xC) = (F c(x1), . . . , F
c(xk), ?, . . . , ?) for C = ((x1, . . . , xk), R)

(where ? stands for an arbitrary element of A) has value at least 1 − ε, since all the binary
constraints in I ′ are satisfied, and the constraint (xC , R

′) is satisfied whenever F satisfies C.
We run the robust algorithm for CSP(Γ′) to get an assignment G′ for I ′ with value at least

1−g(ε), and we define G(x), x ∈ V to be the first coordinate of G′(x). Note that, for any constraint
C of I, if G′ satisfies all the constraints (†) then G satisfies C. Therefore the value of G is at least
1 − (l + 1)g(ε).
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Proof of Theorem 2.4 using Theorem 4.1

Let Γ be a core constraint language with at most binary relations (which we can assume by Proposi-
tion 5.1) such that CSP(Γ) has bounded width. Let I be an instance of CSP(Γ) with m constraints
and let 1 − ε = Opt(I).

We first check whether I has a solution. This can be done in polynomial time since CSP(Γ)
has bounded width. If a solution exists we can find it in polynomial time (see the note after
Definition 2.1).

In the other case we know that ε ≥ 1/m. We run the SDP relaxation with precision δ = 1/m
and obtain vectors with the sum (∗) equal to v ≥ SDPOpt(I) − 1/m. Finally, we execute the
algorithm provided in Theorem 4.1 with the following choice of n.

n =

⌊
logω

4 log logω

⌋

, where ω = min

{
1

1 − v
,m

}

.

The assumption is satisfied, because v ≥ 1 − 1/n4n is equivalent to n4n ≤ 1/(1 − v) and

n4n = 24n log n ≤ 24 log ω
4 log log ω

log log ω
4 log log ω < 2

log ω
log log ω

log log ω = ω ≤ 1

1 − v
.

The algorithm runs in time polynomial in m as nn < n4n ≤ ω ≤ m. To estimate the fraction of
satisfied constraints, observe that v ≥ Opt(I)− 1/m = 1− ε− 1/m ≥ 1− 2ε, so 1/(1− v) ≥ 1/2ε,
and also m ≥ 1/ε, therefore ω ≥ 1/2ε. The fraction of satisfied constraints is at least 1−K/n and

n

K
≥ 1

K

(
logω

4 log logω
− 1

)

≥ K3
log(1/2ε)

log log(1/2ε)
≥ K4

log(1/ε)

log log(1/ε)
,

where K3,K4 are suitable constants. Therefore the fraction of satisfied constraints is at least

1 −O

(
log log(1/ε)

log(1/ε)

)

.

Derandomization

We start by describing the changes in Theorem 4.1. The statement remains the same except the
algorithm will be polynomial in m and 2n2 log2 n.

The random choices in Step 1 and Step 4 can be easily avoided: In Step 1 we can try all (n−1)
possible choices for r and in Step 4 we can try all choices for s from some sufficiently dense finite
set, for instance {0, u2/n

4, 2u2/n
4, . . . }. The only difference is that bad choices for s could cover a

slightly bigger part of the interval than u1/u2 and we would get a slightly worse constant K1.
For derandomization of Step 6 we first slightly change the constant in the definition of t(w),

say t(w) = ⌈4(log n) . . .⌉ . Next we use Theorem 1.3. from [18] from which it follows that we can
efficiently find a set Q of unit vectors such that

|Q| = (|V ||D|)1+o(1)2O(log2(1/κ)

and such that, for any vectors v, w with angle θ between them, the probability that a randomly
chosen vector fromQ cuts v and w differs from θ/π by at most κ. We choose κ = 1/n2n = 1/22n log n,
therefore

|Q| ≤ K5m
K6 2n2 log2 n,

where we have used |V | = O(m) which is true whenever every variable is in the scope of some
constraint (we can clearly assume this without loss of generality).
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Now if we choose q1,q2,q⌈4(log n)n2n⌉ uniformly at random from Q, the estimates derived in
Steps 8 and 9 remain almost unchanged: The probability that qi does not cut xA and xB in Step 8
is at most 1 − n−2r/π ||xA|| + κ ≤ 1 − n−2r/4 ||xA|| (for a sufficiently large n), and the probability
that vectors xA and yB are cut by some qi in Step 9 is at most K ′

2/n (for any K ′
2 > K2).

Of course we cannot try all possible
⌈
4(log n)n2n

⌉
-tuples of vectors from Q as there are too

many. However, we can apply the method of conditional expectations – we choose the vectors one
by one keeping an estimate of the expected number of constraints removed below K/n.

Finally, the proof of the deterministic version of Theorem 2.4 remains almost the same except
we need to ensure that 2n2 log2 n is polynomial in m. Therefore we need to choose a smaller value
for n, say

n =

⌊ √
logω

log logω

⌋

,

then the algorithm outputs an assignment satisfying at least

(

1 −O

(

log log(1/ε)√
log(1/ε)

))

-fraction of the

constraints.

Algebraic closure of a weak Prague instance

Proposition 5.4 below justifies the last sentence in the proof of Theorem 4.1. But first we collect
some useful facts about Prague instances.

It will be convenient to replace (P2) with an alternative condition:

Lemma 5.2. Let J be a 1-minimal instance. Then (P2) is equivalent to the following condition.

(P2*) For every step (x, y), every A ⊆ Px and every pattern p from y to x, if A + (x, y) + p = A
then A+ (x, y, x) = A.

Proof. (P2*) ⇒ (P2). If p = (x = x1, x2, . . . , xk = x) is a pattern from x to x such that A+ p = A,
then repeated application of (P2*) gives us

A+ p− p = [A+ (x1, x2, . . . , xk−1)] + (xk−1, xk, xk−1) + (xk−1, xk−2, . . . , x1)

= A+ (x1, x2, . . . , xk−1) + (xk−1, xk−2, . . . , x1)

= [A+ (x1, x2, . . . , xk−2)] + (xk−2, xk−1, xk−2) + (xk−2, xk−3, . . . , x1)

= A+ (x1, x2, . . . , xk−2) + (xk−2, xk−3, . . . x1)

= . . .

= A.

(P2) ⇒ (P2*). By applying (P2) to the pattern (x, y)+ p we get A+(x, y)+ p− p+(y, x) = A.
From 1-minimality it follows that A+(x, y) ⊆ A+(x, y)+p−p, hence A+(x, y, x) = (A+(x, y))+
(y, x) ⊆ (A+ (x, y) + p− p) + (y, x) = A. The other inclusion follows again from 1-minimality.

The next lemma shows that when we start with an element and keep adding a pattern from x to
x, the process will stabilize.

Lemma 5.3. Let J be a weak Prague instance, x ∈ V , a ∈ Px, and let p be a pattern from x to x.
Then there exists a natural number l such that the set [a]p := {a} + lp satisfies [a]p + p = [a]p and
a ∈ [a]p.
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Proof. Because the domain is finite there exist positive integers l and l′ such that {a} + lp+ l′p =
a+ l′p. As [a]p + p+ (l′ − 1)p = [a]p it follows from (P3) that [a]p + p = [a]p. By 1-minimality, a is
in {a} + lp− lp which is equal to [a]p by (P2).

Proposition 5.4. Let J = (V,D, {Px,y : (x, y) ∈ S}) be a weak Prague instance and let F be a set
of operations on D. Then J ′ = (V,D, {P ′

x,y : (x, y) ∈ S}), where

P ′
x,y = {(f(a1, a2, . . . ), f(b1, b2, . . . )) : f ∈ F , (a1, b1), (a2, b2), · · · ∈ Px,y},

is a weak Prague instance.

Proof. It is apparent that J ′ is 1-minimal with

PJ
x = P ′

x := {f(a1, a2, . . . ) : f ∈ F , a1, a2, · · · ∈ Px}.

In what follows, by A +′ p we mean the addition computed in the instance J ′ while A + p is
computed in J .

Before proving (P2*) and (P3) we make a simple observation.

Claim 5.4.1. If f ∈ F is an operation of arity k, x ∈ V , p is a pattern from x, and A1, . . . , Ak ⊆ Px,
B ⊆ P ′

x are such that f(A1, A2, . . . , Ak) ⊆ B, then f(A1 + p,A2 + p, . . . Ak + p) ⊆ B +′ p.

Remark. By f(A1, . . . , Ak) we mean the set

f(A1, A2, . . . , Ak) = {f(a1, . . . , ak) : a1 ∈ A1, a2 ∈ A2, . . . , ak ∈ Ak}.

Proof. It is enough to prove the claim for a single step p = (x, y). The rest follows by induction. If
b ∈ f(A1 + (x, y), . . . , Ak + (x, y)) then there exist elements b1 ∈ A1 + (x, y), . . . , bk ∈ Ak + (x, y)
so that f(b1, b2, . . . , bk) = b. As bi ∈ Ai + (x, y) there are elements ai ∈ Ai such that (ai, bi) ∈ Px,y

for all 1 ≤ i ≤ k. But then (f(a1, a2, . . . , al), f(b1, b2, . . . , bk)) is in P ′
x,y and f(a1, a2, . . . , ak) ∈

f(A1, A2, . . . , Ak) ⊆ B, therefore b = f(b1, b2, . . . , bk) ∈ A+′ (x, y).

To prove (P2*) for J ′ let (x, y) be a step, A ⊆ P ′
x, let p be a pattern from y to x such that

A +′ (x, y) +′ p = A, and let a be an arbitrary element of A +′ (x, y, x). As A +′ (x, y, x) =
(A +′ (x, y)) +′ (y, x), there exist b ∈ A +′ (x, y) such that (a, b) ∈ P ′

x,y. By definition of P ′
x,y,

we can find f ∈ F (say, of arity k), elements a1, a2, . . . , ak in Px, and b1, . . . , bk in Py so that
(f(a1, a2, . . . , ak), f(b1, b2, . . . , bk)) = (a, b) and (ai, bi) ∈ Px,y for all 1 ≤ i ≤ k.

We consider the sets [b1]q, [b2]q, . . . , [b2]q from Lemma 5.3 for the pattern q = p + (x, y). We
take l to be the maximum of the numbers for b1, . . . , bk from this lemma, so [bi]q = bi + lq. We get

ai ∈ {bi} + (y, x) ⊆ [bi]q + (y, x) = [bi]q + p+ (x, y) + (y, x) = [bi]q + p,

where the first step follows from (ai, bi) ∈ Px,y, the inclusion and the first equality from Lemma 5.3,
and the second equality from (P2*) for the instance J (as ([bi]q + p) + (x, y) + p = [bi]q + p). Thus
a = f(a1, a2, . . . , ak) is an element of

f([b1]q + p, [b2]q + p, . . . , [bk]q + p) = f({b1} + lq + p, . . . , {bk} + lq + p)

and this set is contained in (A+′ (x, y))+′ lq+′ p = A+′ (x, y)+′ l(p+(x, y))+′ p = A by Claim 5.4.1
applied with Ai = {bi} and the pattern lq+p. We have shown that every element a of A+′ (x, y, x)
lies in A. The other inclusion follows from 1-minimality.

To prove (P3) let x ∈ V , A ⊆ P ′
x and let p, q be patterns such that A+′p+′q = A. We first show

that A ⊆ A+′ p. Let a ∈ P ′
x, take f ∈ F , a1, a2, . . . , ak ∈ Px such that f(a1, . . . , ak) = a, and find l
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so that [ai]p+q = ai + l(p+ q). From (P3) for J and Lemma 5.3 it follows that [ai]p+q +p = [ai]p+q.
By Claim 5.4.1, a ∈ f([a1]p+q, [a2]p+q, . . . , [ak]p+q) = f([a1]p+q + p, [a2]p+q + p, . . . , [ak]p+q + p) ⊆
A+′ l(p+q)+′ p = A+′ p. The same argument used for A+′ p instead of A and the patterns q+p, q
instead of p+ q, p proves A+′ p ⊆ A+′ p+′ q = A.

Proof of Theorem 3.4

Theorem 3.4 is a generalization of a result in [1] and can be proved in a similar way. We present
an alternative proof which will appear in [3].

Preliminaries

In this section we assume basic knowledge of universal algebra. Notions which are not defined here,
like algebra, subuniverse, product, subdirect product, congruence, factor algebra, simple algebra,
term, variety, etc. can be found in [7].

We use boldface letter for algebras, the same letter in the standard font denotes the universe of
the algebra. The fact that B is a subuniverse of an algebra A (or B is a subalgebra of A) will be
denoted be B ≤ A (or B ≤ A). A subuniverse B of A is proper if ∅ 6= B  A. If B is a subdirect
subuniverse of A0 × A1 × · · · × Ak we write B ≤S A0 × A1 × · · · × Ak. In this situation, the
projection kernels are denoted by π0, π1, . . . . By a subpower of A we mean a subuniverse (or a
subalgebra) of a power of A.

We say that an instance I of the CSP is in a variety V if the domain of J is the universe
of some algebra D in V and all the constraint relations are subpowers of D. A core constraint
language cannot encode linear equations iff the variety generated by the algebra of polymorphisms
is in a congruence meet semi-distributive (SD(∧)) variety (this follows from results in Chapter 9
of [16]). Therefore Theorem 3.4 is a consequence of the following result.

Theorem 5.5. Every nontrivial weak Prague instance in an SD(∧) variety has a solution.

All instances considered in this section have the set of variables V , domain D, all constraints have
binary constraint relations which are subuniverses of an algebra D in a meet semi-distributive
variety. The set of scopes is denoted by S, we assume S = S−1, S ∩ S−1 = ∅, and for every
(x, y) ∈ S there is exactly one constraint with this scope, its constraint relation is denoted by Px,y

(with a superscript indicating the instance, when necessary). If the instance is 1-minimal then
every PJ

x is a subuniverse of D and we denote the subalgebra of D with universe PJ
x by PJ

x (the
superscript is often omitted).

Absorption

One of the main tools for proving Theorem 5.5 is the absorption.

Definition 5.6. We say that B is an absorbing subuniverse of an algebra A, denoted by B ⊳ A, if
B ≤ A and there exists a term t of A such that t(B,B, . . . , B,A,B,B, . . . , B) ⊆ B for any position
of A.

The next lemma is a straightforward consequence of the definitions.

Lemma 5.7. Let R ≤S A × B and let C be an (absorbing) subuniverse of A. Then

{d ∈ B : ∃c ∈ C (c, d) ∈ R}

is an (absorbing) subuniverse of B. The absorption is realized by the same term.
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The Absorption Theorem [2] concerns linked subdirect products of algebras from Taylor varieties.
We formulate it only in the special case of SD(∧) varieties.

Definition 5.8. A subdirect subalgebra R of A × B is called linked, if π0 ∨ π1 = 1R.

Theorem 5.9 (Absorption Theorem). If A and B are algebras in an SD(∧) variety, R ≤S A×B
is linked and R 6= A×B, then A or B has a proper absorbing subuniverse.

We also require the following corollary.

Lemma 5.10. Let A and B be algebras in an SD(∧) variety such that neither A nor B has a
proper absorbing subuniverse, let R ≤S A × B and let α be a maximal congruence of A. Then

(case1) either (a, b), (a′, b) ∈ R implies that (a, a′) ∈ α for all a, a′ ∈ A, or

(case2) for every a ∈ A and b ∈ B there exists a′ ∈ A such that (a, a′) ∈ α and (a′, b) ∈ R.

Proof. Consider the subdirect product R′ = {(a/α, b) : (a, b) ∈ R} ≤S A/α × B. The algebra
A/α has no absorbing subuniverse (since the preimage of an absorbing subuniverse of A/α is an
absorbing subuniverse of A) and is simple (as α is maximal). If (case1) is not satisfied then the
projection of π0 ∨ π1 to the coordinate A/α is not the equality congruence, therefore, since A/α
is simple, π0 ∨ π1 = 1R′ , so R′ is linked. By the Absorption theorem, R′ = A/α × B which is a
restatement of (case2).

Pointed terms

The second algebraic tool are pointed terms.

Definition 5.11. Let A be an algebra. A term t(x0, . . . , xn−1) of A points to a if there exist
a0, . . . , an−1 ∈ A such that

t(b0, . . . , bn−1) = a whenever bi ∈ A and |{i : ai 6= bi}| ≤ 1.

The existence of pointed terms is proven in a sequence of lemmata.

Lemma 5.12. Let A0,A1 . . . ,An be algebras and let R �
∏n

i=0 Ai. If R ⊳

∏n
i=0 Ai then some

Ai contains a proper absorbing subalgebra.

Proof. Suppose, for a contradiction, that the lemma holds for n − 1 and fails for R �
∏n

i=0 Ai.
The projection π0(R) is an absorbing subuniverse of A0, so π0(R) = A0. Therefore there exists
a ∈ A0 such that

∅ 6= R′ = {(b1, . . . , bn−1) | (a, b1, . . . , b1)} 6=
n∏

i=1

Ai.

But then, since R′
⊳

∏n
i=1 Ai, we get a proper absorbing subuniverse of one of the Ai’s.

Lemma 5.13. Let A0,A1, . . . ,An be simple algebras with no proper absorbing subuniverses lying
in an SD(∧) variety. If R ≤s

∏n
i=0 Ai and πi ∨ πj = 1R for every i 6= j, then R =

∏n
i=0 Ai.

Proof. First we prove that there exists j such that
∧

i6=j πi 6= 0R. Indeed, otherwise the SD(∧)
congruence identity gives

∧

i6=j(πi ∨ πj) = 0R which is a contradiction.
The projection of π0 ∨

∧

i6=0 πi to the 0-th coordinate is not the equality congruence, and, since
A0 is simple, π0 ∨

∧

i6=0 πi = 1R.
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Suppose, for a contradiction, that the lemma holds for n − 1 and fails for R ≤S
∏n

i=0 Ai. By
this assumption, the projection of R to the coordinates 1, 2, . . . , n is equal to

∏n
i=1 Ai and R is a

subdirect product of A0 and
∏n

i=1 Ai. By the previous paragraph, R is linked and therefore, by the
Absorption Theorem, R is either equal to A0 ×

∏n
i=1Ai, or A0 contains a proper absorbing sub-

universe – which contradicts the assumption, or
∏n

i=1 Ai contains a proper absorbing subuniverse
– which contradicts Lemma 5.12.

Lemma 5.14. Let A be a simple algebra in an SD(∧) variety with no proper absorbing subuniverse.
Let n be an arbitrary positive integer, and let Z ⊆ An be such that:

∀a 6= b ∈ Z ∃i, j (ai = aj ∧ bi 6= bj) ∨ (ai 6= aj ∧ bi = bj)

and
∀a ∈ Z SgA({a0, . . . , an−1}) = A.

Then every function from Z to A is a restriction of some n-ary term operation of A.

Proof. Let F ≤ AAn
be the free algebra on n-generators (the universe consists of the n-ary term

operations of A).
Choose a, b to be two arbitrary tuples from Z and let R be the projection of F to the coordinates

a, b. Since F is generated by projections, we have (ai, bi) ∈ R for every i < n. By the second
condition on Z the algebra R is subdirect in A × A. The first condition provides i, j with, say,
ai = aj and bi 6= bj (the other case is similar). Thus the projection of π0∨π1 (computed in R) to the
second coordinate is not the equality congruence, and, by simplicity of A, it is the full congruence.
That means that R is linked, so πa ∨ πb = 1F.

By the previous paragraph, the restriction of F to Z satisfies the assumptions of Lemma 5.13,
and therefore is the full relation. In other words, every function from Z to A extends to a term
operation of A.

Corollary 5.15. Let A be a simple algebra with no proper absorbing subuniverse in an SD(∧)
variety. Then for every a ∈ A there exists a term of A which points to a.

Proof. Let A = {a0, . . . , an−1} and b = (a0, a0, a1, a1, . . . , an−1, an−1). Putting

Z = {c ∈ A2n : |{i : ci 6= bi}| ≤ 1}

we obtain a set satisfying the assumption of Lemma 5.14 and therefore the constant function
mapping Z to a extends to a term operation – the term points to a.

Pointed decomposition

The proof of Theorem 5.5 will proceed by reducing a given weak Prague instance to a smaller
induced subinstances.

Definition 5.16. Let J be an instance. Then J ′ is an induced subinstance of J with potatoes
P ′

x ≤ D, x ∈ V if P ′
x,y = Px,y ∩ (P ′

x × P ′
y).

In order to succeed with such a reduction we need to decompose the instance first.

Definition 5.17. A decomposition of a 1-minimal instance J consists of induced subinstances
J 1, . . . ,J l of J with potatoes P k

x ≤ Px, x ∈ V , k ≤ l, and a subset X of V such that

• if x /∈ X then P k
x = Px for all k ≤ l,
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• if x ∈ X then

– P k
x ∩ P k′

x = ∅ for all k 6= k′, and

– for any step (x, y) either P k
x +(x, y) = P k

y for all k ≤ l, or P k
x +(x, y) = Py for all k ≤ l.

We say that the decomposition is pointed, if there exists a term t of D of arity m and indices
k1, . . . km such that

∀o ≤ k ∀x ∈ V t(P k1
x , . . . , P ko−1

x , Px, P
ko+1
x , . . . , P km

x ) ⊆ P 1
x .

The decomposition is proper if J 1 is a nontrivial instance and P 1
x  Px for some x ∈ V .

In the following two subsections we prove:

Theorem 5.18. Every nontrivial weak Prague instance J with |Px| > 1 for some x ∈ V has a
proper pointed decomposition.

In the last subsection we show that J 1 is a weak Prague instance. These two facts imply Theo-
rem 5.5: A minimal induced subinstance I of any weak Prague instance has |P I

x | = 1, x ∈ V and
such an instance trivially has a solution (which sends x to the unique element of P I

x ).

Pointed decomposition in absorption case

We prove Theorem 5.18 in the case that some algebra Px has a proper absorbing subuniverse A.
We define a preorder on the set of all pairs (C, y), ∅ 6= C  Py by (C, y) ⊑ (D, z) if there exists

a pattern p from y yo z such that C+p = D. Among the equivalence classes of this preorder which
are greater than A we choose a maximal and denote it by M.

Let X denote the set of all y ∈ V for which there exists some C such that (C, y) ∈ M. The set
C is uniquely determined by y: If (C, y), (D, y) ∈ M then by the fact that (C, y) and (D, y) are in
the same equivalence class of ⊑ we get C + p = D and D + q = C for some patterns p and q from
y to y, and, by (P3), C = D. We put P 1

y to be the unique set with (P 1
y , y) ∈ M. For y 6∈ X we

put P 1
y = Py.

We show that the induced subinstance J 1 of J with potatoes P 1
y , y ∈ V is a pointed decom-

position of J .
By definition, P 1

y = A + p for some pattern p from x to y. Lemma 5.7 applied step by step
shows that P 1

y is an absorbing subuniverse of Py and the absorbing term is the same as for A and
Px. This term satisfies the condition in Definition 5.17 with ki = 1 for all i.

Let y ∈ X be arbitrary and let (y, z) be any step. If (P 1
y + (y, z), z) ∈ M then P 1

y + (y, z) = P 1
z

as required. On the other hand if (P 1
y + (y, z), z) /∈ M then this pair is outside of the preorder,

therefore P 1
y + (y, z) = Pz.

Pointed decomposition in no absorption case

Now we prove Theorem 5.18 in the case that none of the algebras Px, x ∈ V has a proper absorbing
subuniverse.

Lemma 5.19. Let α be a maximal congruence on some Px. Then for every step (x, y)

(case1) either
(
a/α+ (x, y)

)
∩

(
b/α+ (x, y)

)
6= ∅ implies (a, b) ∈ α for all a, b ∈ Px,

(case2) or a/α+ (x, y) = Py for all a ∈ Px.
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Proof. The lemma is a restatement of Lemma 5.10.

If Px and α are as in the previous lemma then

{a/α+ (x, y) : a ∈ Px}

is a partition of Py and the corresponding equivalence relation, denoted by α+(x, y), is easily seen
to be a congruence of Py. Moreover in (case1) the function

{(
a/α, b/(α+ (x, y))

)
: (a, b) ∈ C

}

provides an isomorphism between Px/α and Py/(α + (x, y)). Therefore, in this case, α + (x, y) is
a maximal congruence of Py and (α+ (x, y)) + (y, x) = α.

Lemma 5.20. Let α be a maximal congruence on Px, a ∈ Px, and let p be a pattern from x to y.
If a/α+ p  Py then for any a′ ∈ Px we have a′/α+ p− p = a′/α.

Proof. The proof is by induction on the length of p. Let p = (x, z)+p′. Then a/α+(x, z)  Pz and
(case1) of Lemma 5.19 (used for the step (x, z)) applies. Therefore α+(x, z) is a maximal congruence
on Pz, both a/α+(x, z) and a′/α+(x, z) are its congruence classes and a′/α+(x, z)+(z, x) = a′/α.
By inductive assumption (a′/α+ (x, z)) + p′ − p′ = (a′/α+ (x, z)) and the lemma is proved.

If Px and α are as in the previous lemma, a/α+ p  Py, and q is another pattern from x to y such
that a/α+ q  Py then, by the previous lemma, (a/α+p)−p+ q = a/α+ q and (a/α+ q)− q+p =
a/α+ p, and using (P3) we get a/α+ p = a/α+ q.

Now we are ready to define the decomposition. We assume that Px has at least two elements
and put α to be a maximal congruence on Px. We denote by P 1

x , . . . , P
l
x the equivalence classes of

α and will decompose J into J 1, . . . ,J l. We include y into X if there is a pattern p from x to y
such that P 1

x + p  Py and, in this case, we set P k
y = P k

x + p (by the discussion after the lemma,

the definition is independent on the choice of p). If y /∈ X let P k
y = Py.

Let y be an arbitrary variable in X. By Lemma 5.20, P k
y ∩ P k′

y = ∅ for any k 6= k′. Choose

any step (y, z), and suppose that P k
y + (y, z)  Pz for some k. Then, by Lemma 5.20 again,

P k
y + (y, z)  Pz for all k and P k

y + (y, z) = P k
z as required. Therefore the induced subinstances

J 1, . . . ,J l with potatoes P k
x , x ∈ V form a decomposition.

Clearly, for any k, P k
x is a subuniverse of Px and therefore, by Lemma 5.7, P k

y is a subuniverse
of Py. In order to find a pointed term for this decomposition consider Px/α. This algebra is simple,
has no proper absorbing subuniverses (since Px does not) and lies in an SD(∧) variety. Therefore,
by Corollary 5.15, there exists a term t(x1, . . . , xm) in Px/α pointing to P 1

x/α.
This term clearly satisfies the required condition for x and for y /∈ X. On the other hand if

y ∈ X then Py/(α+ p) is isomorphic to Px/α via an isomorphism sending P1
x to P1

y and therefore
t(x1, . . . , xm) satisfies the condition for Py as well. This finishes the case when there is no absorption
in the Prague instance.

Reducing to the point

The following theorem finishes the proof of the main result.

Theorem 5.21. Let J be a weak Prague instance with a pointed decomposition J 1, . . . ,J lwith
potatoes P k

x , x ∈ V , k ≤ l. Then J 1 is a weak Prague instance.
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We start with a definition of relativized addition of patterns. Throught the proof we need to
compute steps (patterns) in subinstances J 1, . . . ,J l.

For A ⊆ P k
x we denote by A +k (x, y) the addition computed in J k (i.e. A +k (x, y) = (A +

(x, y)) ∩ P k
y ). The definition naturally extends to patterns. Sometimes, working in instance J , we

need to cross-over from J k to J k′
. To do that we introduce A+k,k′

(x, y) = (A+ (x, y)) ∩ P k′

y .
Theorem 5.21 is a consequence on the following lemma:

Lemma 5.22. Let x ∈ V , A ⊆ P 1
x and let p be a pattern from x to x. If A +1 p = A then

A = (A+ p) ∩ P 1
x .

Using this lemma we prove Theorem 5.21.

Proof of Theorem 5.21. It follows from the definition of decomposition that J 1 (as well as J 2, . . . ,
J l) is 1-minimal.

(P3). Let A ⊆ P 1
x , let p, q be patterns from x to x such that A+1 p+1 q = A and let B = A+1 p.

Since the domain is finite, there is j such that A+ j(p+ q) = A′ = A′ + j(p+ q) for some A′ ⊆ Px.
Putting B′ = A′ + p we obtain B′ + q + (j − 1)(p + q) = A′ and, by (P3), A′ = B′. Then, by
Lemma 5.22,

A = (A+ j(p+ q)) ∩ P 1
x = A′ ∩ P 1

x = B′ ∩ P 1
x ⊇ B ∩ P 1

x = B.

Similarly B ⊇ A and finally A = B as required.
(P2). If A+1 p = A, where A ⊆ Px and p is a pattern from x to x, then there is j and A′ ⊆ Px

such that A + jp = A′ = A′ + jp and, by (P2), A′ − jp = A′. By Lemma 5.22, A = A′ ∩ P 1
x and

we have A −1 jp ⊆ (A′ − jp) ∩ P 1
x = A′ ∩ P 1

x = A. On the other hand, since A +1 jp = A we get
A ⊆ A−1 jp. Thus A = A−1 jp as required.

The remaining part of this section is devoted to the proof of Lemma 5.22. Let J ,J 1, . . . ,J l as
well as x,A, p be as in the statement of the lemma.

Note that, as A+1 p = A, we have A ⊆ A+ p ⊆ A+ 2p ⊆ · · · and therefore it suffices to prove
the claim for some pattern jp in place of p. Since the domain is finite, we can find j and A′ ⊆ Px

such that A′ = A+ jp, A′ + jp = A′ and therefore, by (P2), A′ − jp = A′. By enlarging j further
we can guarantee that for any B ⊆ Px and any j′ we have

• B + j′p = A′ if and only if B + jp = A′ and

• B − j′p = A′ if and only if B − jp = A′.

We substitute p with jp and get A+p = A′ = A′+p = A′−p and, for any j′, B+j′p = A′ (B−j′p =
A′) if and only if B + p = A′ (B − p = A′ respectively). We put A′′ to denote A′ ∩ P 1

x and since,
clearly, A ⊆ (A+ p) ∩ P 1

x = A′′ we aim to prove the inverse containment.
Let t(x1, . . . , xm) be the term from the definition of pointed decomposition. By induction on

0 ≤ o ≤ m we prove the following lemma.

Lemma 5.23. There exist Ao+1, . . . , Am ⊆ A′′ such that

t(A′′, . . . , A′′

︸ ︷︷ ︸

o

, Ao+1, . . . , Am) ⊆ A

and Ai + p = A′ for every i > o.
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Note that the lemma holds for o = 0 by putting Ai = A for all i, and if it holds for o = m then
A′′ ⊆ t(A′′, . . . , A′′) ⊆ A and Lemma 5.22 is proved.

The reminder of this section is devoted to the proof of Lemma 5.23. The proof requires two
technical claims.

Claim 5.23.1. For every B ⊆ A′ we have B + p = A′ if and only if B − p = A′.

Proof. Let B ⊆ A′ and B + p = A′. Since the instance is finite, there exists j such that B′ :=
B− jp = B′− jp, but then, by (P2), B′ + jp = B′. Since J is 1-minimal, we have B− jp+ jp ⊇ B,
hence B′ = B′ + 2jp ⊇ B + jp = A′. As B ⊆ A′ we get B′ = B − jp ⊆ A′ − jp = A′ and therefore
B − jp = A′. By the properties of A′ and B stated above, we have B − p = A′ and one of the
implications of the claim holds. The proof of the inverse implication is analogical.

Next we split the pattern p into parts. Let p = q + (y, z) + r + (v, w) + s where q is a maximal
initial fragment of p consisting of steps (y, z) such that P 1

y +1 (y, z) = P 1
y + (y, z) and s a maximal

terminal fragment of p consisting of steps (y, z) such that P 1
z − (y, z) = P 1

y (note that some of the
patterns q,r,s may be empty). If such a decomposition is impossible then it is easy to see that
following the pattern p from A step by step we obtain A′′ contained in A and Lemma 5.22 is proven
without the help of Lemma 5.23 – this is a trivial case.

Throughout the proof we will be using variations of the pattern p evaluated in subinstance J 1

except for the middle part which is evaluated in J k. That is for B ⊆ P 1
x we will be evaluating

B +1 q +1,k (y, z) +k r +k,1 (v, w) +1 s.

The following claim deals with such evaluations and their inverses.

Claim 5.23.2. We show that P 1
x = P 1

x +1 q +1,k (y, z) +k r+k,1 (v, w) +1 s and P 1
x = P 1

x −1 s−k,1

(v, w) −k r −1,k (y, z) −1 q for any k.

Proof. Since J 1 is 1–minimal P 1
x +1 q = P 1

y . If k = 1 we get P 1
y +1,k (y, z) = P k

z from 1–minimality
of J 1. If k 6= 1 then, by the choice of the partition of p, we get P 1

y +(y, z) 6= P 1
z and, by definition of

decomposition, P 1
y + (y, z) = Pz. Thus P 1

y +1,k (y, z) = P k
z . Since J k is 1–minimal, using previous

facts, we get P 1
x +1 q +1,k (y, z) +k r = P k

v .
If k = 1 we get P 1

v +k,1 (v, w) = P 1
z from 1–minimality of J 1. If k 6= 1 then, by the choice

of the partition of p, we get P 1
w − (v, w) = P 1

w + (w, v) 6= P 1
z and, by definition of decomposition,

P 1
w +(w, v) = Pv. Thus

(
P k

v +(v, w)
)
∩P 1

w 6= ∅ and, by the definition of decomposition P k
v +(v, w) =

Pw and further P k
v +k,1 (v, w) = P 1

w. For the pattern s we use, once again, 1–minimality of J 1. All
these facts together imply that P 1

x = P 1
x +1 q +1,k (y, z) +k r +k,1 (v, w) +1 s.

The reasoning for the inverse pattern is an alphabetical variant of the proof above.

Note that the second equality of Claim 5.23.2 implies that, for any B ⊆ P 1
x we have

B ⊆ B +1 q +1,k (y, z) +k r +k,1 (v, w) +1 s− p.

Proof of Lemma 5.23. Let 0 ≤ o < m and Ao+1, . . . , Am ⊆ A′′ satisfy Lemma 5.23 with a term t
and indices k1, . . . , km such that

t(P k1
y , . . . , P

ko′−1
y , Py, P

ko′+1
y , . . . , P km

y ) ⊆ P 1
y , ∀y, o′.

The proof proceeds by evaluating certain propagation of sets A′′ and Aj along the pattern p.
The set appearing on the j-th coordinate (j 6= o + 1) of t(x1, . . . , xm) will be propagated along p
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within J 1 except that middle part of the pattern will be propagated in J kj . On the (o + 1)-th
coordinate we follow p with no restrictions.

Thus A′
j = Aj +1 q +1,kj (y, z) +kj r +kj ,1 (v, w) +1 s for j > o + 1, for j < o + 1 we have

A′′ = A′′ +1 q +1,kj (y, z) +kj r +kj ,1 (v, w) +1 s (by Claim 5.23.2) and on the coordinate o + 1 we
put A′

o+1 = Ao+1 + p.
Let j be arbitrary. Since Aj + p = A′ then, by Claim 5.23.1, Aj − p = A′. By definition of

A′
j , using the remark after Claim 5.23.2, A′

j − 2p ⊇ Aj − p = A′. On the other hand A′
j − 2p ⊆

A′ − 2p = A′. Thus A′
j − 2p = A′ and, by the choice of p,A′ and Claim 5.23.1, Aj + p = A′. This

proves a part of Lemma 5.23, it remains to prove that t(A′′, . . . , A′′, A′
o+2, . . . , A

′
m) ⊆ A.

We prove that t(A′′, . . . , A′
m) ⊆ A step by step. First we show that

t(A′′ +1 q, . . . , Ao+1 + q, . . . , Am +1 q) ⊆ A+1 q.

Since every constraint relation is closed under t(x1, . . . , xm), we have t(A′′ + q, . . . , Am + q) ⊆
A + q and since, by the choice of q, we have Aj +1 q = Aj + q and A′′ +1 q = A′′ + q, we get
t(A′′ +1 q, . . . , Ao+1 + q, . . . , Am +1 q) ⊆ A+1 q as required.

Let (s, u) be an arbitrary step from . . . + (y, z) + r + (v, w). Denote the sets obtained by the
initial part of our pattern p (excluding (s, u)) by B1, . . . , Bm (for i 6= o + 1 the set Bi is obtained
by following p in J 1 with middle part in J ki , for Bo+1 we just follow p). By the construction
t(B1, . . . , Bm) ⊆ B (where B is obtained by following the same initial part in J 1) and we want to
extend this inclusion by the step (s, u).

Let B′
o+1 = Bo+1 + (s, u) and let B′

i = Bi +1,ki (s, u) in case of the first step, B′
i = Bi +ki (s, u)

in the middle step and B′
i = Bi +ki,1 (s, u) in case of the last step, for i 6= o + 1. For any

b ∈ t(B′
1, . . . , B

′
m) we find ai, bi such that t(b1, . . . , bm) = b, ai ∈ Bi, bi ∈ B′

i and (ai, bi) ∈ Ps,u.
Now a = t(a1, . . . , am) ∈ B (as t(B1, . . . Bm) ⊆ B) and (a, b) = (t(a1, . . . , am), t(b1, . . . , bm)) ∈ Ps,u

(as t is a polymorphism of Ps,u), therefore t(b1, . . . , bm) ∈ B + (s, u). But also t(b1, . . . , bm) ∈ P 1
u

since either all the arguments are in P 1
u , or bi ∈ P ki

u for i 6= o + 1 and we can use the property

t(P k1
u , . . . , P ko

u , Pu, P
ko+2
u , . . . , P km

u ) ⊆ P 1
u . Put together, b = t(b1, . . . , bm) ∈ B +1 (s, u), which

extends the inclusion to the next step.
The computations for the pattern s are analogical to those for q and finally we get t(A′′, . . . , A′

m) ⊆
A+1 p = A. This finishes the proof of the lemma.
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