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Abstract

The question of list decoding error-correcting codes over finite fields (under the Hamming metric)
has been widely studied in recent years. Motivated by the similar discrete structure of linear codes and
point lattices in RN , and their many shared applications across complexity theory, cryptography, and
coding theory, we initiate the study of list decoding for lattices. Namely: for a lattice L ⊆ RN , given a
target vector r ∈ RN and a distance parameter d, output the set of all lattice points w ∈ L that are within
distance d of r.

In this work we focus on combinatorial and algorithmic questions related to list decoding for the
well-studied family of Barnes-Wall lattices. Our main contributions are twofold:

1. We give tight (up to polynomials) combinatorial bounds on the worst-case list size, showing it to be
polynomial in the lattice dimension for any error radius bounded away from the lattice’s minimum
distance (in the Euclidean norm).

2. Building on the unique decoding algorithm of Micciancio and Nicolosi (ISIT ’08), we give a
list-decoding algorithm that runs in time polynomial in the lattice dimension and worst-case list
size, for any error radius. Moreover, our algorithm is highly parallelizable, and with sufficiently
many processors can run in parallel time only poly-logarithmic in the lattice dimension.

In particular, our results imply a polynomial-time list-decoding algorithm for any error radius bounded
away from the minimum distance, thus beating a typical barrier for error-correcting codes posed by the
Johnson radius.
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1 Introduction

A linear error-correcting code C of block length N and dimension K over a field F is a K-dimensional
subspace of FN , generated as all linear combinations of the rows of a full-rank K-by-N matrix over F.
The code’s minimum distance, denoted d(C), is the minimum Hamming weight of all nonzero codewords.
Similarly, a point lattice of dimensionN and rankK is a discrete additive subgroup of RN (or CN ), generated
as all integer linear combinations of the rows of a full-rank K-by-N matrix over R (or C). The lattice’s
minimum distance, denoted λ(L), is the minimum (Euclidean) norm of all nonzero lattice points.

Codes and lattices are intensely studied objects, with many applications in computational complexity,
cryptography, and coding theory. In particular, both kinds of objects can be used to encode data so that it
can be sent over a noisy channel and recovered reliably. A central question associated with codes is unique
decoding: given a received word r ∈ FN within Hamming distance less than d(C)/2 of some codeword
w ∈ C, find w. Similarly, the unique (often called bounded-distance) decoding problem on lattices is: given a
received word r ∈ RN within Euclidean distance less than λ(L)/2 of some lattice vector v ∈ L, find v.

For error-correcting codes, Elias [13] and Wozencraft [44] proposed extending the classical unique
decoding problem to settings where the amount of error could cause ambiguous decoding. More precisely, the
goal of list decoding is to find all codewords within a certain radius (typically exceeding d(C)/2) of a received
word; in many cases, the list is guaranteed to contain few codewords. The first breakthrough algorithmic
list decoding results were due to Goldreich and Levin [16] for the Hadamard code, and to Sudan [39] and
Guruswami-Sudan [23] for Reed-Solomon codes. These results and others have had countless applications,
e.g., in building hard-core predicates for one-way functions [16], in hardness amplification [41], in learning
Fourier coefficients [29, 15, 2], and in constructing randomness extractors [42, 43, 25].

There are two central tasks associated with list decoding: combinatorially bounding the number of
codewords within a given radius of a received word, and algorithmically finding these codewords. An
important question in understanding list decodability is finding the list-decoding radius of the code, i.e.,
the maximum distance from a received word within which the number of codewords is guaranteed to be
polynomial in the input parameters.

The Johnson bound. Under the Hamming metric, the Johnson bound gives a distance up to which list
decoding is guaranteed to be combinatorially efficient. One version of the Johnson bound states that for any
code C of relative distance δ = d(C)/N , a Hamming ball of relative radius J(δ)− ε contains at most 1/ε2

codewords, and a ball of relative radius J(δ) contains at most δN2|F| codewords, where J(δ) = 1−
√

1− δ.
The Johnson bound is generic since it does not use any structure of the code (not even linearity), and in
many cases it is not necessarily the same as the list-decoding radius. It is, however, a barrier in the current
analysis of combinatorial list decoding for many well-studied families like Reed-Solomon codes, algebraic
geometry codes, Chinese remainder codes, and others. The breakthrough works of Parvaresh-Vardy [34]
and Guruswami-Rudra [22] gave families of codes which could be (efficiently) list decoded beyond the
Johnson bound, and were followed by several related combinatorial and algorithmic results for other codes
(e.g., [8, 18, 28, 17]). For more detailed surveys on list decoding of codes we refer to [40, 19, 20, 21].

1.1 Contributions

Motivated by the common discrete structure of codes and lattices, we initiate the study of list decoding for
lattices, from both a combinatorial and algorithmic perspective. The list-decoding problem for a lattice L is:
given a received word r and an error bound, find all lattice vectors v ∈ L within the given error bound of r
(in, say, the Euclidean norm). In this work we focus on the well-studied Barnes-Wall [3] family of lattices,
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which share many connections to the Reed-Muller [32, 36] family of error-correcting codes (we elaborate
below). Our main contributions are twofold:

1. We give tight (up to polynomials) combinatorial bounds on the worst-case list size, showing it to be
polynomial in the lattice dimension N , for any error radius bounded away from the minimum distance
of the lattice; see Theorems 1.2 and 1.3 below for precise statements. Moreover, it is already known
that the list size is super-polynomial NΘ(logN) when the error radius equals the minimum distance.

2. We give a corresponding list-decoding algorithm that, for any error radius, runs in time polynomial
in the lattice dimension and worst-case list size. Moreover, our algorithm is highly parallel: with
sufficiently many processors it runs in only poly-logarithmic O(log2N) parallel time.

We note that one can easily obtain a Johnson-type bound for lattices, independent of the structure of
the lattice. Namely, for a lattice L ⊂ CN with relative squared minimum distance (abreviated as rsmd)
δ = λ(L)2/N , a Euclidean ball of relative squared radius δ

2 − ε contains at most 1
2ε lattice points, and a

ball of relative squared radius δ
2 contains at most 4N lattice points (see Lemma 2.4). Interestingly, the latter

bound is tight for Barnes-Wall lattices (see Corollary 2.5). Since δ = 1 for every Barnes-Wall lattice, our
combinatorial and algorithmic results apply far beyond the Johnson bound.

To describe our results in more detail, we need to define Barnes-Wall lattices. Let G = Z[i] be the ring of
Gaussian integers, and let φ = 1 + i ∈ G.

Definition 1.1 (Barnes-Wall lattice). The nth Barnes-Wall lattice BWn ⊆ GN of dimension N = 2n is
defined recursively as BW0 = G, and for positive integer n ≥ 1 as

BWn = {[u, u+ φv] : u, v ∈ BWn−1} .

Observe that if [u,w] ∈ BWn for u,w ∈ CN/2, then [w, u] ∈ BWn. One can check that BWn is a lattice;
indeed, it is easy to verify that it is generated by the rows of the n-fold Kronecker product

W =

[
1 1
0 φ

]⊗n
∈ CN×N .

The minimum distance of BWn is
√
N .1 The mathematical and coding properties of Barnes-Wall lattices

have been studied in numerous works, e.g., [1, 6, 26, 27, 33, 37, 38, 31].
To simplify notation, in what follows we use the notion of relative squared distance, abbreviated rsd,

and use this as the most convenient notion of “error rate.” For x ∈ Cm, define its rsd as δ(x) = 1
m‖x‖

2,
and for x, y ∈ Cm define δ(x, y) = δ(x − y). Note that the rsmd of a lattice L (defined above) satisfies
δ(L) = minx,y∈L,x 6=y δ(x, y) = min0 6=x∈L δ(x), and that the rsmd of BWn is 1. We use the base-2 logarithm
throughout the paper.

Combinatorial bounds. Let `(δ, n) denote the worst-case list size (over all received words) for BWn at
rsd δ. We prove the following upper bound.

Theorem 1.2. For any integer n ≥ 0 and real ε > 0, we have

`(1− ε, n) ≤ 4 · (1/ε)16n = NO(log(1/ε)).

1The fundamental volume of BWn in CN is det(W ) = 2nN/2, so its normalized minimum distance is
√
N/ det(W )1/(2N) =

4
√
N . This is better than the normalized minimum distance 1 of the integer lattice GN , but worse that the largest possible of Θ(

√
N)

for N -dimensional lattices.
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Moreover, we show that the above bound is tight, up to polynomials.

Theorem 1.3. For any integer n ≥ 0 and ε ∈ [2−n, 1], we have

`(1− ε, n) ≥ 2(n−log 1
ε
) log 1

2ε .

In particular, for any constant ε > 0 (or even any ε ≥ N−c for c < 1), we have `(1− ε, n) = NΩ(log(1/ε)).

It is also known that at rsd 1, the maximum list size `(1, n) is quasi-polynomial NΘ(logN) in the lattice
dimension, and is achieved by letting the received word be any lattice point (see, e.g., [6, Chapter 1, §2.2,
page 24]). Because the relative minimum distance of BWn is exactly 1, here we are just considering the
number of lattice points at minimum distance from the origin, the so-called “kissing number” of the lattice.

List-decoding algorithm. We complement the above combinatorial bounds with an algorithmic counterpart,
which builds upon the unique (bounded-distance) decoding algorithm of Micciancio and Nicolosi [31] for rsd
up to 1

4 .

Theorem 1.4. There is a deterministic algorithm that, given any received word r ∈ CN and δ ≥ 0, outputs
the list of all points in BWn that lie within rsd δ of r, and runs in time O(N2 · `(δ, n)2).

We also remark that the algorithm can be parallelized just as in [31], and runs in only polylogarithmic
O(log2N) parallel time on p ≥ N2 · `(δ, n)2 processors.

Theorems 1.2 and 1.4 immediately imply the following corollary for δ = 1− ε.

Corollary 1.5. There is a deterministic algorithm that, given a received word r ∈ CN and ε ∈ (0, 1), outputs
the list of all lattice points in BWn that lie within rsd (1− ε) of r, and runs in time (1/ε)O(n) = NO(log(1/ε)).

Given the lower bounds, our algorithm is optimal in the sense that for any constant ε > 0, it runs in
poly(N) time for rsd 1− ε, and that list decoding in poly(N) time is impossible (in the worst case) at rsd 1.

1.2 Proof Overview and Techniques

Combinatorial bounds. Our combinatorial results exploit a few simple observations. The first is that by
the Pythagorean theorem, if δ = δ(r, w) is the error rate between a received vector r = [r0, r1] ∈ CN and
a lattice vector w = [w0, w1] ∈ BWn (where ri ∈ CN/2 and wi ∈ BWn−1), then δ(rb, wb) ≤ δ for some
b ∈ {0, 1}. The second observation is that BW lattices are closed under the operation of swapping the two
halves of their vectors, namely, [w0, w1] ∈ BWn if and only if [w1, w0] ∈ BWn. Therefore, without loss of
generality we can assume that δ(r0, w0) ≤ δ, while incurring only an extra factor of 2 in the final list size.

The other important fact is the relationship between the error rates for the two Barnes-Wall vectors
u = w0, v = 1

φ(w1 − w0) ∈ BWn−1 that determine w; namely, we have δ = 1
2δ(r0, u) + δ( 1

φ(r1 − u), v).

(See Lemma 2.1.) Since δ(r0, u) ≤ δ, we have must have δ( 1
φ(r1 − u), v) = δ − 1

2δ(r0, w0) ∈ [δ/2, δ].
Our critical insight in analyzing the list size is to carefully partition the lattice vectors in the list according

to their distances from the respective halves of the received word. Informally, a larger error rate on the left
half (i.e., between r0 and u) allows for a larger list of u’s, but also implies a smaller error rate on the right
half (i.e., between 1

φ(r1 − u) and v), which limits the number of corresponding v’s. We bound the total
list size using an inductive argument for various carefully chosen ranges of error rates at lower dimensions.
Remarkably, this technique along with the Johnson bound allows us to obtain tight combinatorial bounds on
the list size for error rates all the way up to the minimum distance.
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As a warm-up example, which also serves as an important step when analyzing larger error rates,
Lemma 2.6 gives a bound of `(5

8 , n) ≤ 4 · 24n = poly(N) for error rate δ = 5
8 . This bound is obtained by

partitioning according to the two cases δ(r0, u) ∈ [0, 5
12) and δ(r0, u) ∈ [ 5

12 ,
5
8 ], which imply that the error

rate between v and 1
φ(r1 − u) is at most 5

8 and 5
12 , respectively. When bounding the corresponding number

of u’s and v’s, the error rates up to 5
12 <

1
2 are handled by the Johnson bound, and error rates up to 5

8 are
handled by induction.

To extend the argument to error rates up to δ = 1− ε, we need to partition into three cases, including
ones which involve error rates 1− 3ε

2 and 3
4 . In turn, the bound for error rate 3

4 also uses three cases, plus
the above bound for error rate 5

8 . Interestingly, all our attempts to use fewer cases or a more direct analysis
resulted in qualitatively worse list size bounds, such as NO(log2(1/ε)) or worse.

Lastly, our lower bounds from Theorem 1.3 are obtained by using a representation of BW lattices in
terms of RM codes (see Fact 2.8), and by adapting the lower bounds from [18] for RM codes to BW lattices.

List-decoding algorithm. A natural approach to devising a list-decoding algorithm using the above facts
(also used in the context of Reed-Muller codes [18]) is to first list decode the left half r0 of the received word
to get a list of u’s, and then sequentially run through the output list to decode the right half 1

φ(r1 − u) and get
a corresponding list of v’s for each value of u. However, because the recursion has depth n, this algorithm
runs in super-polynomial time roughly `n, where ` = `(δ, n− 1) is the list size for the recursive calls.

Instead, our list decoding algorithm is based on the bounded-distance (unique) decoding algorithm for
BW lattices of Micciancio and Nicolosi [31]. They give an elegant divide-and-conquer algorithm that decodes
from error up to half the minimum distance (i.e., δ = 1

4 ) in quasi-linear Õ(N) time, or even poly-logarithmic
O(logcN) parallel time on a sufficiently large poly(N) number of processors. This was the first known
unique decoding algorithm for BWn lattices, for all n.

The main feature of the Micciancio-Nicolosi algorithm, which we exploit in our algorithm as well, is
the use of a distance-preserving linear automorphism T of the BW lattice, i.e., T (BWn) = BWn (see
Fact 3.1). In particular, a lattice vector w ∈ BWn can be reconstructed from just one arbitrary half of
each of w = [w0, w1] and T (w) = [T0(w), T1(w)]. Recall that for a received word r = [r0, r1] (where
ri ∈ CN/2), we are guaranteed that δ(rb, wb) ≤ δ(r, w) for some b ∈ {0, 1}, and similarly for T (r) and
T (w). These facts pretty straightforwardly yield a divide-and-conquer, parallelizable list-decoding algorithm
that recursively list decodes each of the four halves r0, r1, T0(r), T1(r) and reconstructs a list of solutions
by combining appropriate pairs from the sub-lists. The runtime of this algorithm is only quadratic in the
worst-case list size, times a poly(N) factor (see Section 3).

1.3 Comparison with Reed-Muller Codes

Here we discuss several common and distinguishing features of Barnes-Wall lattices and Reed-Muller codes.

Definition 1.6 (Reed-Muller code). For integers d, n ≥ 0, the Reed-Muller code of degree d in n variables
(over F2) is defined as

RMd
n = {〈p(α)〉α∈Fn2 , p ∈ F2[x1, . . . , xn] and deg(p) ≤ d}.

An equivalent recursive definition is RM0
n = {~0,~1} ⊆ F2n

2 for any integer n ≥ 0, and RMd
n = {[u, u +

v] : u ∈ RMd
n−1, v ∈ RMd−1

n−1}. Here if u ∈ RMd
n−1, v ∈ RMd−1

n−1 correspond to polynomials pu, pv ∈
F2[x1, . . . xn−1] respectively, then the codeword [u, u + v] ∈ RMd

n corresponds to the polynomial p =
pu + xn · pv ∈ F2[x1, . . . , xn].
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The recursive definition of RM codes already hints at structural similarities between BW lattices and
RM codes. Indeed, BW lattices can be equivalently defined as evaluations modulo φn of (Gaussian) integer
multilinear polynomials in n variables over the domain {0, φ}n. Recall that an integer multilinear polynomial
p ∈ G[x1, . . . , xn] is one whose monomials have degree at most one in each variable (and hence total degree
at most n), i.e.,

p(x1, . . . , xn) =
∑

S∈{0,1}n
aS ·

∏
i∈S

xi

where each aS ∈ G. A simple inductive argument proves the following lemma.

Lemma 1.7. BWn = φnG + {〈p(x)〉x∈{0,φ}n : p ∈ G[x1, . . . , xn] is multilinear}.

Thus, while RMd
n codewords correspond to low-degree polynomials (when d is small), BW lattice points

correspond to possibly high-degree polynomials.
As an immediate application, our main theorems imply the following corollary regarding the set of integer

multilinear polynomials that approximate a function f : {0, φ}n → C.

Corollary 1.8. Given a map f : {0, φ}n → C (represented as a lookup table) and ε = Ω(N−c) for some
c < 1, there exists an algorithm that outputs in time NO(log(1/ε)) all the integer multilinear polynomials
g : {0, φ}n → C such that ‖f − g‖2 ≤ (1− ε)N .

Just as in our algorithmic results for BW lattices, the recursive structure of RM codes is critically used
in list-decoding algorithms for these codes, but in a different way than in our algorithm. The list-decoding
algorithm for RMd

n given in [18] recursively list decodes one of the halves of a received word, and then for
each codeword in the list it recursively list decodes the other half of the received word. The recursion has depth
d and thus has a total running time of poly(N)·`(δ)d, where `(δ) is the list size at relative (Hamming) distance
δ. As mentioned above, a similar algorithm can work for BW lattices, but the natural analysis implies a
super-polynomial `(δ)n lower bound on the running time, since now the recursion has depth n. The reason we
can overcome this potential bottleneck is the existence of the linear automorphism T of BWn, which allows us
to make only a constant number of recursive calls (independently of each other), plus a poly(N) · `(δ)2-time
combining step, which yields a runtime of the form O(1)n · poly(N) · `(δ)2 = poly(N) · `(δ)2.

We note that RMd
n codes are efficiently list decodable up to a radius larger than the minimum distance [18].

We also remark that while RM codes are some of the oldest and most intensively studied codes, it was not
until recently that their list-decoding properties have been very well understood [35, 18, 28].

1.4 Other Related Work

Cohn and Heninger [5] study a list-decoding model on polynomial lattices, under both the Hamming metric
and certain ‘non-Archimedian’ norms. Their polynomial analogue of Coppersmith’s theorem [7] implies, as
a special case, Guruswami and Sudan’s result on list decoding Reed-Solomon codes [23].

Decoding and list decoding in the Euclidean space has been also considered for embeddings into real
vector spaces of codes classically defined over finite fields. These embeddings can give rise to so-called
spherical codes, where the decoding problem has as input a received vector on the unit sphere, and is required
to output the points in the code (also on the unit sphere) that form a small angle with the given target. Another
decoding model that is well-suited to real vectors is soft-decision decoding. Here, for each position in the
vector, and for each symbol, it is assigned a weight representing the confidence that the received symbols was
the actual transmitted symbol. Soft decision unique decoding for RM codes was studied in [10, 12, 11], and
list-decoding algorithms were shown in [9, 14].
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Further, the question of decoding lattices is related to the well-studied vector quantization problem. In
this problem, vectors in the ambient space need to be rounded to nearby points of a discrete lattice; for further
details on this problem see, for example, [6].

Organization. In Section 2 we prove our combinatorial upper and lower bounds for BW lattices. In
Section 3 we present and analyze our main list-decoding algorithm. We conclude with several open problems
in Section 4.

2 Combinatorial Bounds

We start with a few basic definitions. For a lattice L, a vector r ∈ Cm (often called a received word) and any
δ ≥ 0, define LL(r, δ) = {x ∈ L : δ(r, x) ≤ δ} to be the list of lattice points w ∈ L such that δ(r, w) ≤ δ.
We often omit the subscript L when the lattice is clear from context. For δ ≥ 0 and nonnegative integer n
with N = 2n, we define `(δ, n) = maxr∈Cn |L(r, δ)| to be the maximum list size for rsd δ.

2.1 Helpful Lemmas

We start with two simple but important observations about Barnes-Wall lattices. The first relates the rsd’s
between the respective “left” and “right” halves of a received word and a lattice point. The second relates the
list sizes for the same rsd but different dimensions.

Lemma 2.1. Let r = [r0, r1] ∈ CN with r0, r1 ∈ CN/2, and w = [u, u+φv] ∈ BWn for u, v ∈ BWn−1. Let
δ = δ(r, w), δ0 = δ(r0, u) and δ1 = δ( 1

φ(r1 − u), v). Then δ = δ0
2 + δ1.

Proof. We have

δ(r, w) =
δ(r0, u) + δ(r1, u+ φv)

2
=
δ0

2
+
‖φ‖2 · δ( 1

φ(r1 − u), v)

2
=
δ0

2
+ δ1.

Lemma 2.2. For any δ ≥ 0 and n ≥ 1, we have `(δ, n− 1) ≤ `(δ, n).

Proof. Let r ∈ CN/2 and w ∈ L(r, δ) ⊆ BWn−1. Then δ([r, r], [w,w]) = δ(r, w), and since [w,w] ∈ BWn

(because w ∈ BWn−1) it follows that [w,w] ∈ L([r, r], δ).

2.2 Johnson Bound

Here we give a Johnson-type bound on the list size, which applies to arbitrary lattices.

Lemma 2.3 (Adapted from [24]). Let x1, . . . , xt ∈ Cm and ε > 0.

1. If <〈xi, xj〉 ≤ 0 for all i 6= j, then t ≤ 4m.

2. If ‖xi‖2 ≤ 1
2 − ε and <〈xi, xj〉 ≤ −ε for all i 6= j, then t ≤ 1

2ε .

Proof. Proofs of Item 1 appear in [24] and [4, Chapter 10, page 71]. Actually, these sources refer to the inner
product space Rm and give a bound of t ≤ 2m when 〈xi, xj〉 ≤ 0 for all i 6= j. Our form of the statement
follows immediately, because the inner product space Cm is a dimension-2m inner product space over R,
and the inner product on R2m corresponds to the real part of the inner product on Cm.
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For Part 2 we have

0 ≤
∥∥∥∑

i

xi

∥∥∥2
=
〈∑

xi,
∑

xi

〉
≤
∑
i

〈xi, xi〉+
∑
i 6=j
〈xi, xj〉

=
∑
i

‖xi‖2 +
∑
i 6=j
<〈xi, xj〉

≤ t(1
2 − ε)− t(t− 1)ε.

Rearranging, we have t ≤ 1
2ε .

An immediate application of the above lemma yields a Johnson-type bound for lattices.

Lemma 2.4 (Johnson bound). Let L ⊂ CN be a lattice of rsmd δ(L), and let r ∈ CN be arbitrary. Then

1. |L(r, δ(L)
2 )| ≤ 4N , and

2. |L(r, δ(L)
2 − ε)| ≤

1
2ε for any ε > 0.

(In reading these bounds, recall that δ(L)
2 is not the relative unique-decoding distance of L; instead, δ(L)

4
is, because δ(L) is the relative squared minimum distance of the lattice.)

Proof. Let L(r, δ) = {b1, . . . , bt} ⊂ L, where δ = δ(L)
2 or δ = δ(L)

2 − ε is the rsd of interest above. Let
xi = 1√

N
(bi − r) for each i, which implies that ‖xi‖2 = 1

N ‖bi − r‖
2 ≤ δ. Since bi, bj ∈ L are distinct for

i 6= j, it follows that ‖xi − xj‖2 = 1
N ‖bi − bj‖

2 ≥ δ(L). Since

‖xi − xj‖2 = ‖xi‖2 + ‖xj‖2 − 〈xi, xj〉 − 〈xj , xi〉 = ‖xi‖2 + ‖xj‖2 − 2<〈xi, xj〉,

we have (for i 6= j)

<〈xi, xj〉 = 1
2(‖xi‖2 + ‖xj‖2 − ‖xi − xj‖2) ≤ δ − δ(L)

2
.

By substituting δ = δ(L)
2 we get that <〈xi, xj〉 ≤ 0, and the first claim follows from Item 1 of Lemma 2.3.

Similarly, by substituting δ = δ(L)
2 − ε we get that <〈xi, xj〉 ≤ −ε, and so the second claim follows from

Item 2 of Lemma 2.3.

Corollary 2.5. For the lattice BWn ⊆ CN and any ε > 0, we have `(1
2 , n) = 4N and `(1

2 − ε, n) ≤ 1
2ε .

Proof. Since δ(BWn) = 1, the upper bounds follow immediately by Lemma 2.4. For the equality `(1
2 , n) =

4N , an easy inductive argument shows that |L(r, 1
2)| = 4N for the received word r = (φ2 , . . . ,

φ
2 ) ∈ CN .

2.3 Beyond the Johnson Bound

In this section we prove our main combinatorial bounds on the list size for Barnes-Wall lattices BWn ⊆ GN .
Our main result is that the list size at rsd (1−ε) is (1/ε)O(n) = NO(log(1/ε)) for any ε > 0. The proof strategy
is inductive, and is based on a careful partitioning of the lattice vectors in the list according to the distances of
their left and right halves from the respective halves of the received word. Intuitively, the larger the distance
on one half, the smaller the distance on the other (Lemma 2.1 above makes this precise). The total list size
can therefore be bounded using list bounds for various carefully chosen distances at lower dimensions. Our
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analysis relies on a poly(N) list-size bound for rsd 3
4 , which in turn relies on a poly(N) bound for rsd 5

8 .
We first prove these simpler bounds, also using a partitioning argument. (Note that the concrete constants
appearing below are chosen to simplify the analysis, and are likely not optimal.)

Lemma 2.6. For any integer n ≥ 0, we have `(5
8 , n) ≤ 4 · 24n.

Proof. The claim is clearly true for n = 0, so suppose n ≥ 1 with N = 2n. Let r = [r0, r1] ∈ CN with
r0, r1 ∈ CN/2 be an arbitrary received word, and let w = [u, u + φv] ∈ L(r, 5

8) for u, v ∈ BWn−1. Let
δ = δ(r, w) ≤ 5

8 , δ0 = δ(r0, u) and δ1 = δ( 1
φ(r1 − u), v).

Note that δ = 1
2(δ(r0, u) + δ(r1, u + φv)) ≤ 5

8 . Without loss of generality, we can assume that δ0 =
δ(r0, u) ≤ 5

8 . For if not, then we would have δ(r1, u+φv) ≤ 5
8 , and since [a, b] ∈ BWn implies [b, a] ∈ BWn

for a, b ∈ GN/2, we could instead work with the received word r′ = [r1, r0] and w′ = [u+φv, u] ∈ L(r′, 5
8).

This incurs a factor of at most 2 in the total list size, which we account for in the analysis below.
Assuming δ0 ≤ 5

8 , we now split the analysis into two cases: δ0 ∈ [0, 5
12), and δ0 ∈ [ 5

12 ,
5
8 ]. By Lemma 2.1,

these cases correspond to δ1 ≤ 5
8 and δ1 ≤ 5

12 , respectively. Since u ∈ L(r0, δ0) and v ∈ L( 1
φ(r1 − u), δ1),

after incorporating the factor of 2 from the argument above we have

`(5
8 , n) ≤ 2 ·

(
`( 5

12 , n− 1) · `(5
8 , n− 1) + `(5

8 , n− 1) · `( 5
12 , n− 1)

)
= 4 · `( 5

12 , n− 1) · `(5
8 , n− 1)

≤ 4 · 6 · `(5
8 , n− 1)

≤ 24n · `(5
8 , 0),

where the penultimate inequality is by Item 2 of Corollary 2.5, and the final inequality is by unwinding the
recurrence.

Lemma 2.7. For any integer n ≥ 0, we have `(3
4 , n) ≤ 4 · 242n.

Proof. The claim is clearly true for n = 0, so suppose n ≥ 1; we proceed by induction on n. Define the
same notation as in the proof of Lemma 2.6, using rsd bound 3

4 instead of 5
8 .

As before, we assume that δ0 ≤ 3
4 and account for the accompanying factor of 2 in the list size. This

time we split the analysis into three cases: δ0 ∈ [0, 1
4), δ0 ∈ [1

4 ,
5
8), and δ0 ∈ [5

8 ,
3
4 ]. By Lemma 2.1, these

correspond to δ1 ≤ 3
4 , δ1 ≤ 5

8 , and δ1 ≤ 7
16 , respectively.

Using Corollary 2.5 and Lemma 2.6, we therefore have

`(3
4 , n) ≤ 2 ·

(
`(1

4 , n− 1) · `(3
4 , n− 1) + `(5

8 , n− 1) · `(5
8 , n− 1) + `(3

4 , n− 1) · `( 7
16 , n− 1)

)
≤ 2 · (2 + 8) · `(3

4 , n− 1) + 2 · `(5
8 , n− 1)2

≤ 20 · 4 · 242(n−1) + 32 · 242(n−1)

≤ 4 · 242n.

We are now ready to prove our main combinatorial bound.

Proof of Theorem 1.2. Recall that we need to show that, for any n ≥ 0 and ε > 0, we have `(1 − ε, n) ≤
4 · (1/ε)16n. The claim is clearly true for n = 0. We proceed by induction on n; namely, we assume that
for all η > 0 it holds that `(1 − η, n − 1) ≤ 4 · (1/η)16(n−1). Define the same notation as in the proof of
Lemma 2.6, using rsd bound 1− ε instead of 5

8 .
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As in earlier proofs, we assume that δ0 ≤ 1− ε and account for the accompanying factor of 2 in the list
size. We split the analysis into 3 cases: δ0 ∈ (0, 1

2 − ε), δ0 ∈ [1
2 − ε, 1−

3ε
2 ), and δ0 ∈ [1− 3ε

2 , 1− ε]. By
Lemma 2.1, these correspond to δ1 ≤ 1− ε, δ1 ≤ 3

4 −
ε
2 <

3
4 , and δ1 ≤ 1

2 −
ε
4 , respectively.

Using Corollary 2.5, Lemma 2.7 and the inductive hypothesis, it follows that

`(1− ε, n) ≤ 2
(
`(1− ε, n− 1) ·

(
`(1

2 − ε, n− 1) + `(1
2 −

ε
4 , n− 1)

)
+ `(1− 3ε

2 , n− 1) · `(3
4 , n− 1)

)
≤ 2

(
`(1− ε, n− 1)( 1

2ε + 2
ε ) + `(1− 3ε

2 , n− 1) · 4 · 242(n−1)
)

≤ 5
ε · `(1− ε, n− 1) + 8 · 242(n−1) · `(1− 3ε

2 , n− 1)

≤ 20
ε · (

1
ε )

16(n−1) + 32 · 242(n−1) · ( 2
3ε)

16(n−1)

≤ (1
ε )

16(n−1) · (20
ε + 32 · (242 · (2

3)16)(n−1))

≤ (1
ε )

16(n−1) · (52
ε )

≤ 4 · (1
ε )

16n

when ε ≤ 4
5 . If ε > 4

5 then `(1− ε, n) = 1 ≤ 4 · (1
ε )

16n, and the proof is complete.

Notice that in the above proof, it is important to use an upper bound like δ0 ≤ 1− 3ε
2 in one of the cases,

so that the factor (2
3)16(n−1) in the inductive list bound can cancel out the corresponding factor of 242(n−1)

for the corresponding rsd bound δ1 ≤ 3
4 . This allows the recurrence to be dominated by the term

`(1− ε, n− 1) · `(1
2 − ε, n− 1) = O(1

ε ) · `(1− ε, n− 1),

yielding a solution of the form (1/ε)O(n).

2.4 Lower Bounds

For our lower bounds we make use of a relationship between Barnes-Wall lattices and Reed-Muller codes,
and then apply known lower bounds for the latter.

Fact 2.8 ([26, §IV.B]).

BWn = {
n−1∑
d=0

φdcd + φncn : cd ∈ RMd
n, 0 ≤ d ≤ n− 1; cn ∈ GN},

where the embedding of F2 into C is given by 0 7→ 0 and 1 7→ 1. In particular, any codeword cd ∈ RMn
d

gives rise to a lattice point φd · cd ∈ BWn,

Fact 2.9 ([30, Chap. 13, §4]).

1. The minimum distance of RMd
n is 2n−d. In particular, the characteristic vector cV ∈ F2n

2 of any
subspace V ⊆ Fn2 of dimension k ≥ n− d is a codeword of RMd

n.

(The characteristic vector cS ∈ F2n
2 of a set S ⊆ Fn2 is defined by indexing the coordinates of F2n

2 by
elements α ∈ Fn2 , and letting (cS)α = 1 if and only if α ∈ S.)

2. There are 2d ·
n−d−1∏
i=0

2n−i − 1

2n−d−i − 1
> 2d(n−d) subspaces of dimension n− d in Fn2 .

9



Proof of Theorem 1.3. Let k ≥ 0 be an integer such that 2nε ≤ 2k ≤ 2n+1ε. Let the received word be
r = φk · [1, 0, . . . , 0] ∈ GN , where we assume that the first coordinate is indexed by 0n ∈ Fn2 . By Fact
2.9 and Fact 2.8, for any subspace H ⊆ Fn2 of dimension n − k, we have φk · cH ∈ BWn. Notice that
‖r − φk · cH‖2 = |φk|2 · ‖cH − [1, 0, . . . , 0]‖2 = 2k · (2n−k− 1) = 2n− 2k ≤ 2n(1− ε). By Fact 2.9, there
are at least 2k(n−k) ≥ 2(n−log 1

ε
) log 1

2ε subspaces H ⊂ Fn2 of dimension n− k, which completes the proof.

3 List-Decoding Algorithm

In this section we prove Theorem 1.4 by giving a list-decoding algorithm that runs in time polynomial in the
list size; in particular, by Theorem 1.2 it runs in time NO(log(1/ε)) for rsd (1− ε) for any fixed ε > 0. The
runtime and error tolerance are optimal (up to polynomial overhead) in the sense that the list size can be
NΩ(log(1/ε)) by Theorem 1.3, and can be super-polynomial in N for rsd 1 or more.

The list-decoding algorithm is closely related to the highly parallel Bounded Distance Decoding algorithm
of Micciancio and Nicolosi [31], which outputs the unique lattice point within rsd δ = 1

4 of the received word
(if it exists). In particular, both algorithms work by recursively (and independently) decoding four words of
dimension N/2 that are derived from the received word, and then combining the results appropriately. In our
case, the runtime is strongly influenced by the sizes of the lists returned by the recursive calls, and so the
combinatorial bounds from Section 2 are critical to the runtime analysis.

We need the following easily-verifiable fact regarding the symmetries (automorphisms) of BWn.

Fact 3.1. For N = 2n, the linear transformation T : CN → CN given by T ([u, v]) = φ
2 · [u+ v, u− v] is a

distance-preserving automorphism of BWn, namely T (BWn) = BWn and δ(x) = δ(T (x)) for all x ∈ CN .

Algorithm 1 LISTDECODEBW: List-decoding algorithm for Barnes-Wall lattices.
Input: r ∈ CN (for N = 2n) and δ ≥ 0.
Output: The list L(r, δ) ⊂ BWn.

1: if n = 0 then
2: output L(r, δ) ⊂ G by enumeration.
3: end if
4: parse r = [r0, r1] for r0, r1 ∈ CN/2, and let r+ = φ

2 (r0 + r1) and r− = φ
2 (r0− r1), so [r+, r−] = T (r).

5: for all j ∈ {0, 1,+,−} do
6: let Lj = LISTDECODEBW(rj , δ).
7: end for
8: for each (b, s) ∈ {0, 1} × {+,−} and each pair (wb, ws) ∈ Lb × Ls, compute the corresponding

candidate vector w = [w0, w1] ∈ BWn from among

[w0,
2
φw+ − w0], [w0, w0 − 2

φw−], [ 2
φw+ − w1, w1], [ 2

φw− + w1, w1].

9: return the set L of all the candidate vectors w such that δ(w, r) ≤ δ.

Proof of Theorem 1.4. We need to show that on input r ∈ CN and δ ≥ 0, Algorithm 1 runs in time
O(N2 · `(δ, n)2) and outputs L = L(r, δ).
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We first prove correctness, by induction. The algorithm is clearly correct for n = 0; now suppose that
n ≥ 1 and the algorithm is correct for n− 1. Adopt the notation from Algorithm 1, and let w = [w0, w1] ∈
L(r, δ) for w0, w1 ∈ BWn−1 be arbitrary. Since δ(w, r) ≤ δ, we have δ(r0, w0) ≤ δ or δ(r1, w1) ≤ δ
or both, so w0 ∈ L(r0, δ) or w1 ∈ L(r1, δ) or both. A key observation is that the same is true about the
corresponding vectors after applying the automorphism T . Namely, letting [w+, w−] = T (w) ∈ BWn for
w+, w− ∈ BWn−1, we have [w+, w−] ∈ L([r+, r−], δ) and so w+ ∈ L(r+, δ) or w− ∈ L(r−, δ) or both.

By the inductive hypothesis and the above observations, we will have (wb, ws) ∈ Lb × Ls for at least
one choice of (b, s) ∈ {0, 1} × {+,−}. The algorithm calculates the vector w = [w0, w1] as a candidate,
simply by solving for w0, w1 using wb, ws and the definition of T . Therefore, w will appear in the output
list L. And because L ⊆ L(r, δ), the claim follows.

We now analyze T (n), the number of operations over C for an input of dimension N = 2n, which is
easily seen to satisfy the recurrence

T (n) ≤ 4T (n− 1) + 4 · `(δ, n− 1)2 ·O(2n−1) ≤ 4n · T (0) +
n∑
i=1

4i · `(δ, n− i)2 ·O(2n−i)

≤ O(N2) +O(2n) · `(δ, n− 1)2 ·
n∑
i=1

2i = O(N2 · `(δ, n− 1)2).

Remark 3.2. We note that the above algorithm, like the unique decoder of [31], can be highly parallelized.
The parallel time on p processors (counting the number of operations in C) satisfies the recurrence

T (n, p) =

{
T (n) if n = 0 or p < 4

T (n− 1, p/4) +O(N · `(δ, n− 1)2/p+ logN) otherwise,

where T (n) is the sequential time computed in Theorem 1.4. This is because it takes O(N · `(δ, n− 1)2/p)
time per processor to combine the lists in Step 8 of the algorithm, and computing the `(δ, n− 1)2 distances in
Step 9 requires computing sums of N terms in C, and takes a total of O(N · `(δ, n− 1)2/p+ logN) parallel
time. Notice that when p ≥ N2 · `(δ, n− 1)2, the algorithm runs in only polylogarithmic O(log2N) parallel
time. Note that when the list size `(δ, n− 1) = 1, our analysis specializes exactly to that of [31].

4 Discussion and Open Problems

An important variant of the list-decoding problem for codes is local list decoding. In this model, the algorithm
is required to run in time polylogarithmic in the block length, and output succinct representations of all
the codewords within a given radius. Defining a meaningful notion of local decoding for lattices (and BW
lattices in particular) would require additional constraints, since lattice points do not in general admit succinct
representations (since one needs to specify an integer coefficient for each basis vector). While by the Johnson
bound we have a poly(n) list size for rsd up to 1/2− poly(1/n), defining the right notion of local decoding
in this context could be an interesting direction.

Another interesting direction to explore is to find (or construct) more asymptotic families of lattices with
nice list-decoding properties. In particular, are there generic operations that when applied to lattices guarantee
good list-decoding properties? For codes, list decodability has been shown to behave well under the tensoring
and interleaving operations, as demonstrated in [17]. Since at least tensoring is also well-defined for lattices,
understanding its effect in the context of list decoding is a natural further direction.

Finally, it would be interesting and potentially useful to consider list decoding for norms other than the
Euclidean norm, such as the `∞ or `0 norms.
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