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Abstract

Dodis and Wichs [DW09] introduced the notion of a non-malleable extractor to study the
problem of privacy amplification with an active adversary. A non-malleable extractor is a much
stronger version of a strong extractor. Given a weakly-random string x and a uniformly random
seed y as the inputs, the non-malleable extractor nmExt has the property that nmExt(x, y)
appears uniform even given y as well as nmExt(x,A(y)), for an arbitrary function A with A(y) 6=
y. Dodis and Wichs showed that such an object can be used to give optimal privacy amplification
protocols with an active adversary.

Previously, there are only two known explicit constructions of non-malleable extractors
[DLWZ11, CRS11]. Both constructions only work for (n, k)-sources with k > n/2 and thus
they also only achieve optimal privacy amplification protocols for k > n/2. In this paper, we
give the first construction of non-malleable extractors for k < n/2. Specifically, we give two
unconditional constructions for min-entropy k = (1/2 − δ)n for some constant δ > 0, and a
conditional construction that can potentially achieve k = αn for any constant α > 0. Using
our non-malleable extractor, we also obtain the first optimal privacy amplification protocol for
min-entropy k = (1/2 − δ)n, with an active adversary.

Our constructions mainly use the bilinear property of the inner product function, and involve
appropriate encodings of the seed y as well as ideas from additive combinatorics.
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1 Introduction

Seeded randomness extractors as defined by Nisan and Zuckerman [NZ96] is an object that has
been studied extensively in computer science. Besides its original motivation in computing with
imperfect random sources, seeded extractors have found applications in coding theory, cryptogra-
phy, complexity and many other areas. We refer the reader to [FS02, Vad02] for a survey on this
subject. Especially, seeded extractors have been used in cryptography to give protocols that are
leakage resilient. Recently, a new kind of seeded extractors, called non-malleable extractors were
introduced in [DW09] to give protocols for the problem of privacy amplification with an active
adversary. We now give the definition of a non-malleable extractor below. As a comparison, we
also give the definition of a strong extractor.

Notation. We let [s] denote the set {1, 2, . . . , s}. For ℓ a positive integer, Uℓ denotes the uniform
distribution on {0, 1}ℓ, and for S a set, US denotes the uniform distribution on S. When used as
a component in a vector, each Uℓ or US is assumed independent of the other components. We say
W ≈ε Z if the random variables W and Z have distributions which are ε-close in variation distance.

Definition 1.1. The min-entropy of a random variable X is

H∞(X) = min
x∈supp(X)

log2(1/ Pr[X = x]).

For X ∈ {0, 1}n, we call X an (n, H∞(X))-source, and we say X has entropy rate H∞(X)/n. We
say X is a flat source if it is the uniform distribution over some subset S ⊂ {0, 1}n.

Definition 1.2. A function Ext : {0, 1}n ×{0, 1}d → {0, 1}m is a strong (k, ε)-extractor if for every
source X with min-entropy k and independent Y which is uniform on {0, 1}d,

(Ext(X, Y ), Y ) ≈ε (Um, Y ).

Definition 1.3. 1 A function nmExt : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-non-malleable extractor
if, for any source X with H∞(X) ≥ k and any function A : {0, 1}d → {0, 1}d such that A(y) 6= y
for all y, the following holds. When Y is chosen uniformly from {0, 1}d and independent of X,

(nmExt(X, Y ), nmExt(X,A(Y )), Y ) ≈ε (Um, nmExt(X,A(Y )), Y ).

As we can see from the definitions, a non-malleable extractor is a stronger version of the strong
extractor, in the sense that it requires the output to be close to uniform even conditioned on both
the seed Y and the output nmExt(X,A(Y )) on a different but arbitrarily correlated seed A(Y ).

The motivation to study a non-malleable extractor, the privacy amplification problem, is a fun-
damental problem in symmetric cryptography that has been studied by many researchers. Bennett,
Brassard, and Robert introduced this problem in [BBR88]. The basic setting is that, two parties
(Alice and Bob) share an n-bit secret key X, which is weakly random. This could happen because
the secret comes from a password or biometric data, which are themselves weakly random, or be-
cause an adversary Eve managed to learn some partial information about an originally uniform
secret, for example via side channel attacks. We measure the entropy of X by the min-entropy

1Following [DLWZ11], we define worst case non-malleable extractors, which is slightly different from the original
definition of average case non-malleable extractors in [DW09]. However, the two definitions are essentially equivalent
up to a small change of parameters.
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defined above. The goal is to have Alice and Bob communicate over a public channel so that they
can convert X into a nearly uniform secret key. Generally, we also assume that Alice and Bob have
local private uniform random bits. The problem is the presence of the adversary Eve, who can see
every message transmitted in the channel and may or may not change the messages. We assume
that Eve has unlimited computational power.

The case where Eve is passive, i.e., cannot change the messages, can be solved simply by using
the above mentioned strong seeded extractors. The case where Eve is active (i.e., can change
the messages in arbitrary ways), on the other hand, is much more difficult. In this case, the
simple solution by using a strong seeded extractor no longer works, and stronger tools are required.
Historically, Maurer and Wolf [MW97] gave the first non-trivial protocol in this case. Their protocol
takes one round and works when the entropy rate of the weakly-random secret X is bigger than 2/3.
Dodis, Katz, Reyzin, and Smith [DKRS06] later improved this result to give protocols that work
for entropy rate bigger than 1/2. One drawback in both cases is that the final secret key R is much
shorter than the min-entropy of X. Later, Dodis and Wichs [DW09] showed that no one-round
protocol exists for entropy rate less than 1/2. The first protocol that breaks the 1/2 entropy rate
barrier is due to Renner and Wolf [RW03], where they gave a protocol that works for essentially
any entropy rate. However their protocol takes O(s) rounds and only achieves entropy loss O(s2),
where s in the security parameter of the protocol. Kanukurthi and Reyzin [KR09] simplified their
protocol, but the parameters remain essentially the same.

In [DW09], Dodis and Wichs showed that explicit non-malleable extractors can be used to give
privacy amplification protocols that take an optimal 2 rounds and achieve optimal entropy loss
O(s). They showed that non-malleable extractors exist when k > 2m + 3 log(1/ε) + log d + 9 and
d > log(n− k + 1) + 2 log(1/ε) + 7. However, they only constructed weaker forms of non-malleable
extractors and they gave a protocol that takes 2 rounds but that still has entropy loss O(s2).
Chandran, Kanukurthi, Ostrovsky and Reyzin [CKOR10] improved the entropy loss to O(s) but
the number of rounds becomes O(s).

Dodis, Li, Wooley and Zuckerman [DLWZ11] constructed the first explicit non-malleable extrac-
tor. Their construction works for entropy k > n/2, but they use a large seed length d = n and the
efficiency when outputting more than log n bits relies on an unproven assumption. Cohen, Raz, and
Segev [CRS11] later gave an alternative construction that also works for k > n/2, but uses a short
seed length and does not rely on any unproven assumption. By using the non-malleable extractors,
these two papers thus gave 2-round privacy amplification protocols that achieve optimal entropy
loss O(s). However, since both constructions of non-malleable extractors are only shown to work
for entropy k > n/2,2 the protocols also only work for k > n/2. Thus the natural open question is
whether we can construct non-malleable extractors for smaller min-entropy, and whether there are
2-round privacy amplification protocols with optimal entropy loss for smaller min-entropy.

1.1 Our results

In this paper, we improve previous results by giving the first explicit non-malleable extractors that
work for min-entropy k < n/2. We give two unconditional constructions that work for k = (1/2−δ)n
for some universal constant δ > 0. We also give a conditional construction that can potentially
work for k = δn for any constant δ > 0. Specifically, we have the following theorems.

2We remark that the construction in [DLWZ11] is a special case of the construction in [CRS11]. Also, it is possible
that the construction in [DLWZ11] can work for entropy k ≤ n/2 (but until now nobody can prove it), but the
construction in [CRS11] in general cannot work for entropy k ≤ n/2.
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Theorem 1.4. There exist constants 0 < δ, γ < 1 such that for any n ∈ N, k = (1/2− δ)n and any
ǫ > 2−γn, there exists an explicit (k, ǫ)-non-malleable extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}
with d = O(log n + log(1/ǫ)).

Theorem 1.5. There exists a constant 0 < δ < 1 such that for any n ∈ N, k = (1/2 − δ)n, there
exists an explicit (k, ǫ)-non-malleable extractor nmExt : {0, 1}n × {0, 1}n → {0, 1}m with m = Ω(n)
and ǫ = 2−Ω(n).

Our third result needs to use an affine extractor and an assumption from additive combinatorics,
as used in [BSZ11]. Thus we first define affine extractors and state the assumption.

Definition 1.6. An [n, m, ρ, ǫ] affine extractor is a deterministic function f : {0, 1}n → {0, 1}m

such that whenever X is the uniform distribution over some affine subspace over Fn
2 with dimension

ρn, we have that for every z ∈ {0, 1}m,

|Pr[f(X) = z] − 2−m| < ǫ.

Note that we bound the error by the ℓ∞ norm instead of the traditional ℓ1 norm, as in [BSZ11].
We will let λ denote the entropy loss rate, i.e., λ = 1 − m

ρn . In this paper we will focus on

[n, (1 − λ)2
3n, 2

3 , 2−m] affine extractors and ideally we would like λ to be as small as possible (e.g.,
close to 0). We note that it is straightforward to show by the probabilistic method that such
extractors exist for any constant λ > 0. However the state of art constructions only achieve λ ≈ 3

4 .
Now we define the duality measure of two sets as in [BSZ11].

Definition 1.7. [BSZ11] Given two sets A, B ⊆ Fn
2 , their duality measure is defined as

µ⊥(A, B) =
∣∣∣Ea∈A,b∈B[(−1)〈a,b〉]

∣∣∣ .

The following conjecture is introduced in [BSZ11] and is shown in that paper to be implied by
the well-known Polynomial Freiman-Ruzsa Conjecture in additive combinatorics.

Conjecture 1.8. (Approximate Duality (ADC)) [BSZ11] For every pair of constants α, δ > 0 there
exist a constant ζ > 0 and an integer r, both depending on α and δ such that the following holds
for sufficiently large n. If A, B ⊆ Fn

2 satisfy |A|, |B| ≥ 2αn and µ⊥(A, B) ≥ 2−ζn, then there exists
a pair of subsets

A′ ⊆ A, A′ ≥ |A|
2δn+1

and B′ ⊆ B, |B′| ≥
(

µ⊥(A, B)

2

)r

· |B|
2δn

such that µ⊥(A′, B′) = 1.

We now have the following theorems.

Theorem 1.9. Assume the ADC conjecture and that we have an explicit [n, m, 2
3 , 2−m] affine

extractor with m = (1 − λ)2
3n, then there exists a constant 0 < γ < 1 such that for any n ∈ N,

k = 3λ
1+2λn and any ǫ > 2−γn, there exists a semi-explicit (k, ǫ)-non-malleable extractor nmExt :

{0, 1}n × {0, 1}d → {0, 1} with d = O(log n + log(1/ǫ)).
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Theorem 1.10. Assume the ADC conjecture and we have an explicit [n, m, 2
3 , 2−m] affine extractor

with m = (1 − λ)2
3n, then for any n ∈ N and k = 3λ

1+2λn, there exists a semi-explicit (k, ǫ)-non-

malleable extractor nmExt : {0, 1}n ×{0, 1}d → {0, 1}m with d = 3
2+4λn, m = Ω(n) and ǫ = 2−Ω(n).

Remark 1.11. In these two theorems, we use the term semi-explicit to mean that the construction
may run in time 2n. It is semi-explicit in the sense that the running time is polynomial in the length
of the truth table of the extractor (note that an exhaustive search takes time 22n

). If we have affine
extractors with large output size so that λ → 0, then we can essentially achieve k = αn for any
constant α > 0.

Remark 1.12. It is also shown in [BSZ11] that a weaker form of the ADC conjecture is true.

By plugging Theorem 1.5 into the protocol of Dodis and Wichs, we obtain a 2-round privacy
amplification protocol with optimal entropy loss for min-entropy k = (1/2 − δ)n.

Theorem 1.13. There exist constants 0 < δ, γ < 1 such that for any n ∈ N and ǫ > 2−γn, there
exists an explicit 2-round privacy amplification protocol for min-entropy k ≥ (1/2−δ)n with security
parameter log(1/ǫ) and entropy loss O(log n + log(1/ǫ)), in the presence of an active adversary.

Note that this protocol is truly optimal in both round complexity and entropy loss, since [DW09]
shows that there can be no one-round protocol for k < n/2. As a comparison, for k > n/2 we do
have one-round protocols, although the entropy loss is quite large.

2 Overview of The Constructions and Techniques

In this section we give an overview of our constructions and the techniques used. In order to give
a clean description, we shall be informal and imprecise sometimes.

All of our constructions are based on the inner product function. Especially, we are going to
make extensive use of the fact that the inner product function is a bilinear function. Note that the
inner product function is a good strong extractor. In fact, it is also a good two-source extractor.
For two independent sources on n bits, it works as long as the sum of the entropies of the two
sources is greater than n. However, at first this function does not seem to be a good candidate for
a non-malleable extractor. To see this, consider the inner product function over F2. Let X be a
source that is obtained by concatenating the bit 0 with Un−1, and let Y be an independent uniform
seed over {0, 1}n. Now for any y ∈ {0, 1}n, let A(y) be y with the first bit flipped. Thus we see
that for all x in the support of X, one has 〈x, y〉 = 〈x,A(y)〉. Therefore, the inner product function
is not a non-malleable extractor even for weak sources with min-entropy k = n − 1.

Let IP denote the inner product function. In the above example, we have that for all x in
the support of X, IP(x, y) = IP(x,A(y)). Or equivalently, IP(x, y) ⊕ IP(x,A(y)) = 0. Since IP

is bilinear, this means that IP(x, y + A(y)) = 0. How does this happen? Looking closely at this
example, our key observation is that this is because the range of Y is too large. Indeed, in this
example the range of Y is the entire {0, 1}n, thus for any y the adversary can choose a different
A(y) such that y + A(y) = 10 · · · 0 so that ∀x ∈ Supp(X), IP(x, y + A(y)) = 0.

This observation suggests that we should choose the range of Y to be a small subset S ⊂ {0, 1}n,
so that for some y’s, the adversary will be unable to choose the appropriate A(y) from S. In other
words, we take a shorter seed length l, choose an independent and uniform y ∈ {0, 1}l and map y
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to an element in {0, 1}n. This mapping is essentially an encoding. Now let us see what properties
we need the encoding to have.

We will start with a construction that works for min-entropy k > n/2. Assume that we have a
weak source X with min-entropy k = (1/2 + δ)n for some constant δ > 0. We take an independent
and uniform y ∈ {0, 1}l and encode y to ȳ ∈ {0, 1}n. For any adversarial function A, let ȳ′ be
the encoding of A(y). We will use an injective encoding, so that ∀y, ȳ′ 6= ȳ. The output of the
non-malleable extractor is then IP(X, Ȳ ).

To show that IP(X, Ȳ ) is a non-malleable extractor, it suffices to show that IP(X, Ȳ ) is close
to uniform, and that IP(X, Ȳ ) ⊕ IP(X, Ȳ ′) is close to uniform. The first part is easy. If X has
min-entropy k > n/2, then we can take Y to be the uniform distribution over some l ≥ n/2 bits.
Since the encoding is injective, Ȳ will have min-entropy l ≥ n/2. Thus IP(X, Ȳ ) is close to uniform.
For the second part, note that IP(X, Ȳ ) ⊕ IP(X, Ȳ ′) = IP(X, Ȳ + Ȳ ′). Thus now we need Ȳ + Ȳ ′

to have a large min-entropy. Indeed, in the above counterexample where l = n, the adversary can
choose A such that Ȳ + Ȳ ′ is always equal to 10 · · · 0 and thus has entropy 0. Now when we take
l < n and map {0, 1}l to S ⊂ {0, 1}n, we want Ȳ + Ȳ ′ to have a large support size.

The ideal case would be that Ȳ + Ȳ ′ also has support size |S| = 2l. This can be achieved if the
encoding has the following property: for every two different y1, y2, we have that ȳ1+ ȳ′1 6= ȳ2+ ȳ′2, or
equivalently, ȳ1 + ȳ′1 + ȳ2 + ȳ′2 6= 0. Indeed, if this is true then Ȳ + Ȳ ′ also has min-entropy l ≥ n/2,
and thus IP(X, Ȳ ) ⊕ IP(X, Ȳ ′) is close to uniform. Looking carefully at this property, we see that
it can be ensured (at least almost ensured, as we will explain shortly) if we have another property:
the elements in S (when viewed as vectors in Fn

2 ) are 4-wise linearly independent. Indeed, assume
that the elements in S are 4-wise linearly independent. Then if ȳ1 + ȳ′1 + ȳ2 + ȳ′2 = 0, the only
possible situation is that ȳ′1 = ȳ2 and ȳ′2 = ȳ1. Thus there cannot be three different y1, y2, y3 such
that ȳ1 + ȳ′1 = ȳ2 + ȳ′2 = ȳ3 + ȳ′3. Thus the min-entropy of Ȳ + Ȳ ′ is at least l − 1.

So now the question is to explicitly find a large subset S ⊂ {0, 1}n such that the elements in
S are 4-wise linearly independent. Note that in particular this implies that the sum of any two
different pairs of elements in S cannot be the same. Thus we have

(
|S|
2

)
≤ 2n. Therefore |S| can be

at most roughly 2n/2. On the other hand, in order to work for any min-entropy k > n/2, we will
need l ≥ n/2 and thus |S| = 2l ≥ 2n/2. These are very tight upper and lower bounds. Luckily, we
have explicit constructions that meet these bounds. We will think of the elements in S as columns
in a parity check matrix of some binary linear code. Thus we basically need a code with block length
2n/2 and message length 2n/2 −n. The 4-wise linearly independent property basically is equivalent
to saying that the code has distance at least 5. This is precisely the [2n/2, 2n/2 − n, 5]-BCH code.
Note that although the parity check matrix has 2n/2 columns, each column is (a, a3) for a different
element a ∈ F∗

2n/2 . Thus the encoding from y to ȳ can be computed efficiently.

Once we have the encoding, we can choose l = n/2 and we know that Ȳ has min-entropy l
and Ȳ + Ȳ ′ has min-entropy l − 1. Now it is straightforward to show that both IP(X, Ȳ ) and
IP(X, Ȳ + Ȳ ′) are close to uniform. Thus we obtain a non-malleable extractor that works for
min-entropy k > n/2.

2.1 Achieving min-entropy k < n/2

Next we show how we can improve the above construction to achieve min-entropy k < n/2. To
this end, we borrow ideas from [Bou05], where the first and the only known unconditional explicit
constructions of two source extractors for min-entropy k < n/2 were given.
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Specifically, let X be a distribution over some vector space Fn
q and let cX be the distribution

obtained by sampling x1, x2, · · · , xc from c independent copies of X and computing
∑

xi. By
Fourier analysis and the Cauchy-Schwarz inequality one can show that in order to prove IP(X, Y )
is close to uniform, it suffices to prove that IP(cX, Y ) is close to uniform with a smaller error, for
some integer c > 1. In [Bou05], Bourgain showed that for a weak source X with min-entropy rate
1/2− δ for some constant δ > 0, one can encode X to Enc(X) such that 3Enc(X) is close to having
min-entropy rate 1/2 + δ. He then used this encoding together with the inner product function to
construct a two source extractor that works for min-entropy rate 1/2 − δ.

Here we want to do the same thing. When given a source X with min-entropy rate 1/2 − δ,
we encode X using Bourgain’s encoding, and we encode the seed Y using the parity check matrix
we discussed before. The non-malleable extractor is given as nmExt(X, Y ) = IP(Enc(X), Ȳ ). Thus
we see that 3Enc(X) is close to having min-entropy rate 1/2 + δ, and both Ȳ and Ȳ + Ȳ ′ have
min-entropy rate roughly 1/2. Therefore both IP(3Enc(X), Ȳ ) and IP(3Enc(X), Ȳ + Ȳ ′) are close to
uniform. We thus conclude that both IP(Enc(X), Ȳ ) and IP(Enc(X), Ȳ + Ȳ ′) are close to uniform,
and we obtain a non-malleable extractor with 1 bit output for min-entropy k = (1/2 − δ)n.

To give our first construction that outputs Ω(n) bits, we use a different encoding for Y . In
this case our construction is essentially Bourgain’s two-source extractor. Given an (n, k)-source X
with k = (1/2 − δ)n, we treat X as an element in the field Fp, for an n + 1-bit prime p. We next
take a uniform independent seed Y ∈ {0, 1}n and also treat Y as an element in Fp. We encode
X to (X, X2) and Y to (Y, Y 2), viewed as vectors in F2

p. The non-malleable extractor is given as
nmExt(X, Y ) = IP((X, X2), (Y, Y 2)) mod M for an appropriately chosen integer M , and the inner
product is taken over F2

p.
Here the argument for the non-malleability is different. Since the output has multiple bits, we

need to use a non-uniform XOR lemma. Specifically, we choose the characters er(s) = e2πirs/p. Let
Y ′ = A(Y ), Z = XY + X2Y 2 and Z ′ = XY ′ + X2(Y ′)2, we need to show that for any non-trivial
character et and any character et′ , |EX,Y [et(Z)et′(Z

′)]| is bounded. Simple calculations show that
when t 6= 0, et(Z)et′(Z

′) = et(Z
′′), where Z ′′ = IP((X, X2), (Y + rY ′, Y 2 + r(Y ′)2)) and r = t′/t.

Thus it suffices to show that IP((X, X2), (Y + rY ′, Y 2 + r(Y ′)2)) is close to uniform.
As in [Bou05], one can show that 3(X, X2) is close to having min-entropy rate 1/2 + δ. If

t′ = 0 then r = 0 and (Y + rY ′, Y 2 + r(Y ′)2)) = (Y, Y 2), which has min-entropy rate roughly 1/2.
Thus IP((X, X2), (Y + rY ′, Y 2 + r(Y ′)2)) is close to uniform. If t′ 6= 0 then r 6= 0 and we show
that (Y + rY ′, Y 2 + r(Y ′)2)) has roughly the same min-entropy as Y (at least the min-entropy of
Y minus 1). Thus IP((X, X2), (Y + rY ′, Y 2 + r(Y ′)2)) is still close to uniform. We further show
that the error is 2−Ω(n). Therefore by the non-uniform XOR lemma Lemma 3.4 we obtained a
non-malleable extractor with Ω(n) bits of output.

2.2 Achieving any constant min-entropy rate

In [BSZ11], Ben-Sasson and Zewi showed that affine extractors with large output size can be used
to construct two source extractors with min-entropy rate < 1/2. Their “preimage construction”
can potentially achieve any constant min-entropy rate. We show that their techniques combined
with ours can also potentially lead to non-malleable extractors for any constant min-entropy rate.
Specifically, they showed that if we have an affine extractor with large output size, then there
is an injective mapping F : {0, 1}n → {0, 1}n′

that maps {0, 1}n into the preimage of a certain
output of the affine extractor, such that for any weak source X with a certain amount of min-
entropy, F (Supp(X)) is not contained in any affine subspace of dimension say 0.51n′. Thus, we
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can take an independent uniform seed Y ∈ {0, 1}n′/2 and construct a non-malleable extractor
nmExt(X, Y ) = IP(F (X), Ȳ ), where Ȳ is encoded using the parity check matrix of a suitable
BCH-code as before. Since both Ȳ and Ȳ + Ȳ ′ have min-entropy roughly n′/2, we have that both
IP(F (X), Ȳ ) and IP(F (X), (Ȳ +Ȳ ′)) are non-constant. Next, similar as in [BSZ11], we use the ADC
conjecture to argue that in fact both IP(F (X), Ȳ ) and IP(F (X), (Ȳ + Ȳ ′)) are close to uniform.
Therefore we obtain a non-malleable extractor.

2.3 Reducing seed length

In all the constructions where we encode the seed Y by a parity check matrix, the seed length
is linear in the source length. However the error is also 2−Ω(n). If we only need to achieve a
bigger error, we can reduce the seed length by using the parity check matrix of a BCH code
with larger distance. Specifically, when the distance is 2t + 1 the seed length is roughly n/t.
However we need to guarantee something else. For example, in the construction for min-entropy
k > n/2, we need to show that both IP(X, Ȳ ) and IP(X, (Ȳ + Ȳ ′)) are still close to uniform. This
can be shown as follows. Since now the columns of the parity check matrix are 2t-wise linearly
independent, both t

2 Ȳ and t
2(Ȳ + Ȳ ′) will now have min-entropy roughly t

2H∞(Y ) = n/2. Thus
we can conclude that both IP(X, t

2 Ȳ ) and IP(X, t
2(Ȳ + Ȳ ′)) are close to uniform, and therefore

both IP(X, Ȳ ) and IP(X, (Ȳ + Ȳ ′)) are also close to uniform, by the Cauchy-Schwarz inequality.
However the error increases according to the seed length. Calculations show that we can get seed
length d = O(log n + log(1/ǫ)).

2.4 Increasing output size

We can also increase the output size to Ω(n) for all our constructions with 1 bit output. To do
this, note that we encode the seed Y by using the columns of a parity check matrix of a BCH code.
Equivalently, the encoding is that Ȳ = (Y, Y 3) when we use a field F2l with l = Θ(n) and Y is viewed
as an element in F∗

2l . Now treat F2l as the vector space Fl
2 and we take l elements b1, · · · , bl ∈ F2l

that corresponds to a basis of Fl
2. Now for each bi we define one bit Zi = IP(Enc(X), biȲ ).

We then show that {Zi} satisfy the conditions of a non-uniform XOR lemma, Lemma 3.3.
Specifically, let Z ′

i = IP(Enc(X), biȲ ′) where Y ′ = A(Y ). For any non-empty subset S1 ⊂ [l] and
any subset S2 ⊂ [l], by the linearity of the inner product function, the xor of Zi’s where i ∈ S1 and
Z ′

j ’s where j ∈ S2 is of the form IP(Enc(X), t1Ȳ + t2Ȳ ′), with t1, t2 ∈ F2l . Since S1 is non-empty

we have t1 6= 0. We then show that t1Ȳ + t2Ȳ ′ roughly has the same min-entropy as Y (at least
the min-entropy of Y minus log 3). Now since for example 3Enc(X) is close to having min-entropy
rate 1/2 + δ, we conclude that IP(Enc(X), t1Ȳ + t2Ȳ ′) is close to uniform. We further show that
the error is 2−Ω(n). Thus by Lemma 3.3 we can output m = Ω(n) bits with error 2−Ω(n).

Organization. The rest of the paper is organized as follows. We give some preliminaries in
Section 3. Next, to illustrate our ideas, in Section 4 we give a construction of a non-malleable
extractor for k > n/2, using the inner product function. In Section 5 we give non-malleable
extractors for k = (1/2 − δ)n. In Section 6 we give non-malleable extractors that can potentially
achieve any constant min-entropy rate. In Section 7 we briefly describe how we can reduce the seed
length by using a BCH-code with larger distance, and how we can increase the output size for all
constructions with one bit output. Finally in Section 8 we conclude with some open problems.
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3 Preliminaries

We often use capital letters for random variables and corresponding small letters for their instanti-
ations. Let |S| denote the cardinality of the set S. Let Zr denote the cyclic group Z/(rZ), and let
Fq denote the finite field of size q. All logarithms are to the base 2.

3.1 Probability distributions

Definition 3.1 (statistical distance). Let W and Z be two distributions on a set S. Their statistical
distance (variation distance) is

∆(W, Z)
def
= max

T⊆S
(|W (T ) − Z(T )|) =

1

2

∑

s∈S

|W (s) − Z(s)|.

We say W is ε-close to Z, denoted W ≈ε Z, if ∆(W, Z) ≤ ε. For a distribution D on a set S and
a function h : S → T , let h(D) denote the distribution on T induced by choosing x according to D
and outputting h(x). We often view a distribution as a function whose value at a sample point is
the probability of that sample point. Thus ‖W − Z‖ℓ1 denotes the ℓ1 norm of the difference of the
distributions specified by the random variables W and Z, which equals 2∆(W, Z).

Definition 3.2. A function TExt : {0, 1}n1 × {0, 1}n2 → {0, 1}m is a strong two source extractor
for min-entropy k1, k2 and error ǫ if for every independent (n1, k1) source X and (n2, k2) source Y ,

|(TExt(X, Y ), X) − (Um, X)| < ǫ

and

|(TExt(X, Y ), Y ) − (Um, Y )| < ǫ,

where Um is the uniform distribution on m bits independent of (X, Y ).

3.2 Fourier analysis

We give some basic and standard facts about Fourier analysis here. We normalize as in [DLWZ11].
For functions f, g from a set S to C, we define the inner product 〈f, g〉 =

∑
x∈S f(x)g(x). Let

D be a distribution on S, sometimes we will also view it as a function from S to R. Note that
ED[f(D)] = 〈f, D〉. Now suppose we have functions h : S → T and g : T → C. Then

〈g ◦ h, D〉 = ED[g(h(D))] = 〈g, h(D)〉.

Let G be a finite abelian group, we say φ is a character of G if it is a homomorphism from G
to C×. We call the character that maps all elements to 1 the trivial character. Define the Fourier
coefficient f̂(φ) = 〈f, φ〉, and let f̂ denote the vector with entries f̂(φ) for all φ. Note that for a
distribution D, one has D̂(φ) = ED[φ(D)].

Since the characters divided by
√
|G| form an orthonormal basis, the inner product is preserved

up to scale: 〈f̂ , ĝ〉 = |G|〈f, g〉. As a corollary, we obtain Parseval’s equality:

‖f̂‖2
ℓ2 = 〈f̂ , f̂〉 = |G|〈f, f〉 = |G|‖f‖2

ℓ2 .
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Hence by Cauchy-Schwarz,

‖f‖ℓ1 ≤
√
|G|‖f‖ℓ2 = ‖f̂‖ℓ2 ≤

√
|G|‖f̂‖ℓ∞ . (1)

For functions f, g : S → C, we define the function (f, g) : S ×S → C by (f, g)(x, y) = f(x)g(y).
Thus, the characters of the group G × G are the functions (φ, φ′), where φ and φ′ range over all

characters of G. We abbreviate the Fourier coefficient (̂f, g)((φ, φ′)) by (̂f, g)(φ, φ′). Note that

(̂f, g)(φ, φ′) =
∑

(x,y)∈G×G

f(x)g(y)φ(x)φ′(y) =

(
∑

x∈G

f(x)φ(x)

) 


∑

y∈G

g(x)φ′(x)



 = f̂(φ)ĝ(φ′).

In this paper, in the additive group of Fp we use the characters er(s) = e2πirs/p for r ∈ Fp. It is
easy to verify that {er, r ∈ Fp} indeed are characters and these characters divided by

√
p form an

orthonormal basis. Note that the trivial character corresponds to the case r = 0.
We next generalize the characters to the additive group of the field Fpl . In this case, for any

r ∈ Fpl , we use the character er(s) = e2πi(r·s)/p, where r and s are viewed as vectors in Fl
p and ·

indicates the inner product function in Fl
p. Again it is easy to verify that these indeed are characters

and they form an orthonormal basis (up to a normalization factor of pl/2).

3.3 Non-uniform XOR lemma

The following non-uniform XOR lemmas are proved in [DLWZ11].

Lemma 3.3. Let (W, W ′) be a random variable on G×G for a finite abelian group G, and suppose
that for all characters ψ, ψ′ on G with ψ nontrivial, one has

|E(W,W ′)[ψ(W )ψ′(W ′)]| ≤ ǫ.

Then the distribution of (W, W ′) is ǫ|G| close to (U, W ′), where U is the uniform distribution on
G independent of W ′. Moreover, for f : G × G → R defined as the difference of distributions
(W, W ′) − (U, W ′), we have ‖f̂‖ℓ∞ ≤ ǫ.

Lemma 3.4. For every cyclic group G = ZN and every integer M ≤ N , there is an efficiently
computable function σ : ZN → ZM = H such that the following holds. Let (W, W ′) be a random
variable on G × G, and suppose that for all characters ψ, ψ′ on G with ψ nontrivial, one has

|E(W,W ′)[ψ(W )ψ′(W ′)]| ≤ ǫ.

Then the distribution (σ(W ), σ(W ′)) is O(ǫM log N +M/N)-close to the distribution (U, W ′) where
U stands for the uniform distribution over H independent of W ′.

3.4 Strong non-malleable extractor

The following theorem is proved in [Rao07].

Theorem 3.5. [Rao07] Let TExt : {0, 1}n1 × {0, 1}n2 → {0, 1}m be any two source extractor for
min-entropy k1, k2 with error ǫ. Then if X is an (n1, k1) source and Y is an independent (n1, k

′
2)

source, we have

|(TExt(X, Y ), Y ) − (Um, Y )| ≤ 2m(2k2−k′

2+1 + ǫ).
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Here we prove a similar theorem that will enable our non-malleable extractor to be “strong”.

Theorem 3.6. Let TExt : {0, 1}n1 × {0, 1}n2 → {0, 1}m be a two source extractor for min-entropy
k1, k2 and A : {0, 1}n2 → {0, 1}n2 be a deterministic function such that for any (n1, k1) source X
and any independent (n2, k2) source Y ,

|(TExt(X, Y ), TExt(X,A(Y ))) − (Um, TExt(X,A(Y )))| ≤ ǫ.

Then for any (n2, k
′
2) source Y ′ independent of X,

|(TExt(X, Y ′), TExt(X,A(Y ′)), Y ′) − (Um, TExt(X,A(Y ′)), Y ′)| ≤ 22m(2k2−k′

2+1 + ǫ).

Proof. Let W = TExt(X, Y ) and W ′ = TExt(X,A(Y )). For any (z, z′) ∈ {0, 1}m × {0, 1}m, define
the set of bad y’s for (z, z′) to be

Bz,z′ = {y : |Pr[W = z, W ′ = z′] − 2−m Pr[W ′ = z′]| > ǫ}.
Then we must have

Claim 3.7. For every (z, z′), |Bz,z′ | < 2 · 2k2.

To see this, assume for the sake of contradiction that |Bz,z′ | ≥ 2 · 2k2 for some (z, z′). Let

B+
z,z′ = {y : Pr[W = z, W ′ = z′] − 2−m Pr[W ′ = z′] > ǫ}

and

B−
z,z′ = {y : Pr[W = z, W ′ = z′] − 2−m Pr[W ′ = z′] < −ǫ}.

Then |Bz,z′ | = |B+
z,z′ | + |B−

z,z′ | and thus one of them must have size ≥ 2k2 . Without loss of

generality assume that |B+
z,z′ | ≥ 2k2 . Then we can let Y to be the uniform distribution over |B+

z,z′ |
and Y is independent of X, but |(W, W ′) − (U, W ′)| > ǫ, which is a contradiction.

Let B = ∪z,z′Bz,z′ . We have |B| < 22m · 2 · 2k2 = 22m+12k2 . Now we can bound |(W, W ′, Y ′) −
(U, W ′, Y ′)| when Y ′ is an independent (n2, k

′
2) source, as follows.

|(W, W ′, Y ′) − (U, W ′, Y ′)|
≤

∑

y∈Supp(Y ′)

2−k′

2 |(W, W ′)|Y ′=y − (U, W ′)|Y ′=y|

=
∑

y∈Supp(Y ′)∩B

2−k′

2 |(W, W ′)|Y ′=y − (U, W ′)|Y ′=y| +
∑

y∈Supp(Y ′)\B

2−k′

2 |(W, W ′)|Y ′=y − (U, W ′)|Y ′=y|

<2−k′

222m+12k2 + 22mǫ

=22m(2k2−k′

2+1 + ǫ).
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3.5 Basic properties of the inner product function

Here we prove some basic properties of the inner product function.

Lemma 3.8. Let Fp be a field and X, Y be two independent random variables over Fl
p. Assume

that X has min-entropy k1 and Y has min-entropy k2. Let Z = IP(X, Y ) = X · Y be the inner
product function where the operation is in Fp. For any non-trivial character er where r ∈ Fp,

|EX,Y [er(Z)]|2 ≤ pl2−(k1+k2).

Proof. Note that if a weak random source W has min-entropy k, then ‖W‖ℓ∞ ≤ 2−k, and ‖W‖2
ℓ2 =∑

w(Pr[W = w])2 ≤ 2−k
∑

w Pr[W = w] = 2−k.
For a fixed Y = y,

EX [er(x · y)] = EX [ery(X)] = 〈ery, X〉 = X̂(ery).

Thus

EX,Y [er(Z)] = EY [EX [er(x · y)]] = EY [X̂(ery)] = 〈Y, X̂〉.
Therefore by Cauchy-Schwartz,

(EX,Y [er(Z)])2 ≤ 〈Y, Y 〉 · 〈X̂, X̂〉
= ‖Y ‖2

ℓ2‖X̂‖2
ℓ2 = pl‖Y ‖2

ℓ2‖X‖2
ℓ2

≤ pl2−k12−k2 = pl2−(k1+k2).

Now for any weak random source W , we let 2W = W + W stand for the distribution that
is obtained by first sampling w1, w2 from two independent and identical distributions according
to W , and then computing w1 + w2. Similarly W − W is obtained by first sampling w1, w2 and
then computing w1 − w2. Similarly we define cW to be the distribution by sampling wi from c
independent and identical distributions according to W , and then computing the sum. We now
have the following lemma.

Lemma 3.9. Let X, Y be two independent random variables over Fl
p. For any two integers c1, c2,

let Xc1 = 2c1X − 2c1X and Yc2 = 2c2Y − 2c2Y . Then for any non-trivial character ψ,

|EX,Y [ψ(X · Y )]| ≤ |EXc1 ,Yc2
[ψ(Xc1 · Yc2)]|1/2c1+c2+2

.

Proof. First note

|EX,Y [ψ(X · Y )]| = |EY [EX [ψ(X · Y )]]| ≤ EY |EX [ψ(X · Y )]|.
Note that ψ(s) = e2πirs/p for some r ∈ Fp. Thus by Jensen’s inequality,
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(EX,Y [ψ(X · Y )])2 ≤ EY |EX [ψ(X · Y )]|2 = EY [EX [ψ(X · Y )]EX [ψ(X · Y )]]

= |EY

∑

x1,x2

X(x1)X(x2)ψ((x1 − x2) · Y )|

= |EY EX−X [ψ((X − X) · Y )]|
= |EX1,Y [ψ(X1 · Y )]|

where X1 = X − X.
Apply the above procedure again, we get that

(EX,Y [ψ(X · Y )])4 ≤ |EX1,Y [ψ(X1 · Y )]|2 ≤ |EX2,Y [ψ(X2 · Y )]|,
where X2 = X1 − X1 = 2X − 2X.

Repeat the procedure for c1 times, we get that

(EX,Y [ψ(X · Y )])2
c1+1 ≤ |EXc1 ,Y [ψ(Xc1 · Y )]|,

where Xc1 = 2c1X − 2c1X.
similarly, we can apply the argument to Y for another c2 times, and we get

(EX,Y [ψ(X · Y )])2
c1+c2+2 ≤ |EXc1 ,Yc2

[ψ(Xc1 · Yc2)]|,
where Xc1 = 2c1X − 2c1X and Yc2 = 2c2Y − 2c2Y . Thus the lemma is proved.

3.6 Incidence theorems

We need the following theorems about point line incidences. For a field F, we call a subset ℓ ⊂ F×F
a line if there exist a, b ∈ F such that ℓ = {(x, ax + b)} for all x ∈ F. Let P ⊂ F × F be a set of
points and L be a set of lines, we say that a point (x, y) has an incidence with a line ℓ if (x, y) ∈ ℓ.
The following theorem provides a bound on the number of incidences that can be generated from
K points and K lines.

Theorem 3.10. [BKT04, Kon03] There exist universal constants α > 0, 0.1 > β > 0 such that for
any field Fq where q is either prime or 2p for p prime, if L, P are sets of K lines and K points
respectively, with K ≤ q2−β, the number of incidences I(P, L) ≤ O(K3/2−α).

3.7 BCH codes

In this paper we will only focus on BCH codes over F2. Given two parameters m, t ∈ N, a BCH
code is a linear code with block length n = 2m − 1, message length roughly n − mt and distance
d ≥ 2t + 1. Specifically, we have the following theorem.

Theorem 3.11. For all integers m and t there exists an explicit [n, n − mt, 2t + 1]-BCH code3,
with n = 2m − 1.

3In fact, the message length may not be exactly n−mt, but for simplicity we will assume that it is exactly n−mt.
The small error does not affect our analysis. Also, for small t the message length is exactly n − mt.
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Since a BCH code is a linear code, we can take its parity check matrix. Note that this is a
mt × n matrix. Let α be a primitive element in F∗

2m , the i’th column of the parity check matrix
is of the form (αi, (αi)3, (αi)5, · · · , (αi)2t−1), for i = 0, 1, · · · , n − 1. Since α is a generator in F∗

2m ,
equivalently, for y ∈ F∗

2m we can think of the y’th column to be (y, y3, · · · , y2t−1).

4 A Non-Malleable Extractor for Entropy Rate > 1/2

As a warm up, in this section we construct a non-malleable extractor for weak sources with min-
entropy rate > 1/2, based on the inner product function over F2. To this end, we need to use the
BCH code over F2. The construction is described as below.

Given an (n, k)-source X with k = (1/2 + δ)n, we choose a BCH code with t = 2 and m = n/2,
thus the block length is n′ = 2n/2 − 1 and the parity check matrix is a n × (2n/2 − 1) matrix.

Take an independent uniform seed Y ∈ {0, 1}n/2−1 and let SY stand for the integer whose binary
expression is Y . We encode Y to Ȳ such that Ȳ = Enc(Y ) is the SY ’th column in the parity check
matrix (i.e., Ȳ = (Y, Y 3) when Y is viewed as an element in F∗

2n/2). Our non-malleable extractor
is now defined as

nmExt(X, Y ) = IP(X, Enc(Y )) = IP(X, Ȳ ),

where IP is the inner product function over F2 and the output is just 1 bit.
To analyze our construction, we first have the following theorem.

Theorem 4.1. [CG88, Vaz85] For every constant δ > 0, if X is an (n, k1) source, Y is an
independent (n, k2) source and k1 + k2 ≥ (1 + δ)n, then

|(Y, IP(X, Y )) − (Y, U)| < ǫ

with ǫ = 2−Ω(n).

We now show that the construction is a non-malleable extractor.

Theorem 4.2. For any constant δ > 0, the function nmExt defined as above is a ((1/2+δ)n, 2−Ω(n))
non-malleable extractor.

Proof. Let Z = nmExt(X, Y ) and Z ′ = nmExt(X, Y ′) where Y ′ = A(Y ) for any deterministic
function A such that ∀y,A(y) 6= y. To show the construction is a non-malleable extractor, by the
xor lemma it suffices to show that

(Z, Y ) ≈ǫ (U, Y )

and

(Z ⊕ Z ′, Y ) ≈ǫ (U, Y )

for some ǫ = 2−Ω(n).
Note that the BCH code has distance 2t + 1 = 5 > 4, thus any 4 columns in the parity check

matrix must be linearly independent. This in particular implies that every two different columns
must be different. Thus Ȳ has min-entropy n/2−1. Since k+n/2−1 = n+δn−1, by Theorem 4.1
we have (note that there is a one to one correspondence between Ȳ and Y)
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(Z, Y ) ≈ǫ1 (U, Y )

with ǫ1 = 2−Ω(n). Thus we have that with probability 1 −√
ǫ1 over the fixing of Y = y,

|(Z|Y = y) − U | ≤ √
ǫ1.

Next, note that

Z ⊕ Z ′ = IP(X, Ȳ ) ⊕ IP(X, Ȳ ′) = IP(X, Ȳ ⊕ Ȳ ′) = IP(X, Ȳ + Ȳ ′).

For two different y1, y2, if ȳ1 + ȳ1
′ = ȳ2 + ȳ2

′, then ȳ1, ȳ2, ȳ1
′, ȳ2

′ are linearly dependent. Note
that ȳ1

′ = Enc(y′1) and ȳ2
′ = Enc(y′2) are also some columns of the parity check matrix. Since

y′1 6= y1 and y′2 6= y2, we have that ȳ1
′ 6= ȳ1 and ȳ2

′ 6= ȳ2. Thus we must have ȳ1
′ = ȳ2 and ȳ2

′ = ȳ1.
Therefore, the min-entropy of Ȳ + Ȳ ′ is at least n/2 − 2 since the probability of getting any

particular element in the support is at most 2 ·2−(n/2−1) = 2−(n/2−2). Since k+n/2−2 = n+δn−2,
by Theorem 4.1 we have

(Z ⊕ Z ′, Ȳ + Ȳ ′) ≈ǫ2 (U, Ȳ + Ȳ ′)

with ǫ2 = 2−Ω(n). This means that with probability 1−√
ǫ2 over the fixing of Ȳ + Ȳ ′, Z⊕Z ′ is

√
ǫ2-

close to uniform. Since Ȳ + Ȳ ′ is a deterministic function of Y , this implies that with probability
1 −√

ǫ2 over the fixing of Y = y,

|(Z ⊕ Z ′|Y = y) − U | ≤ √
ǫ2.

Thus by the non-uniform xor lemma, Lemma 3.3, we have that with probability 1−√
ǫ1 −

√
ǫ2

over the fixing of Y = y,

|(Z, Z ′)|Y = y − (U, Z ′|Y = y)| ≤ 2max{√ǫ1,
√

ǫ2}.
Therefore we have that

|(Z, Z ′, Y ) − (U, Z ′, Y )| ≤ ǫ,

where ǫ = 2max{√ǫ1,
√

ǫ2} +
√

ǫ1 +
√

ǫ2 = 2−Ω(n).

5 Non-Malleable Extractors for Entropy Rate < 1/2

In this section we give our main constructions, namely non-malleable extractors for weak sources
with min-entropy rate 1/2 − δ for some universal constant δ > 0. We give two constructions, one
that outputs one bit and one that outputs many bits.

5.1 A non-malleable extractor with 1 bit output

Given an (n, k)-source X with k = (1/2 − δ)n, we first pick a prime p that is close to n. By
Bertrand’s postulate and Pierre Dusart’s improvement, for every n ≥ 3275, there exists a prime
between n and n(1 + 1

2 ln2 n
). We will pick a prime p in this range. Note that the prime can be

found in polynomial time in n. Take the field Fq where q = 2p and let g be a generator in F∗
q . The

construction is as follows.

14



• Treat X as an element in F∗
q and encode X such that Enc(X) = (X, gX).

• Take the parity check matrix of a [2p−1, 2p−1−2p, 5]-BCH code (note that the parity check
matrix is a 2p × (2p − 1) matrix). Take an independent and uniform seed Y ∈ {0, 1}p−1 and
let SY stand for the integer whose binary expression is Y . We encode Y to Ȳ such that Ȳ
is the SY ’th column in the parity check matrix (i.e., Ȳ = (Y, Y 3) when Y is viewed as an
element in F∗

2p).

• Output nmExt(X, Y ) = IP(Enc(X), Ȳ ) where IP is the inner product function over F2.

To prove our construction is a non-malleable extractor, we are going to use the non-uniform XOR
lemma. Specifically, we will first prove that nmExt(X, Y ) ≈ U and nmExt(X, Y )⊕nmExt(X,A(Y )) ≈
U , for any function A such that ∀y ∈ {0, 1}p−1,A(y) 6= y.

To this end, we first prove the following lemma.

Lemma 5.1. There exists a constant δ > 0 such that for any (n, k)-source X with k = (1/2− δ)n,
and any independent (2p, k2) source Y with k2 ≥ (1 − δ)p,

|IP(Enc(X), Y ) − U | ≤ ǫ,

where ǫ = 2−Ω(n).

Proof. We think of X as a distribution in F∗
q that has min-entropy k. This increases the error by

at most 2−k (for the element 0). By the XOR lemma, we only need to show that for the only
non-trivial character ψ (since we only output 1 bit),

|EX,Y [ψ(IP(Enc(X), Y ))]| ≤ 2−Ω(n).

Let X ′ = 4Enc(X) − 4Enc(X), by Lemma 3.9 we have

|EX,Y [ψ(IP(Enc(X), Y ))]| ≤ |EX′,Y [ψ(X ′ · Y )]| 18 .

We next bound |EX′,Y [ψ(X ′ · Y )]|. First we show that X ′ is close to a source with min-entropy
rate > 1/2. We have the following claim.

Claim 5.2. There is a universal constant δ > 0 such that if X is any weak source with min-entropy
(1/2 − δ)n, 3Enc(X) is 2−Ω(n)-close to a source with min-entropy (1/2 + δ)(2p).

Proof of the claim. Note that k = (1/2 − δ)n and p is between n and n(1 + 1
2 ln2 n

). Thus for
sufficiently large n we have that k ≥ (1/2−1.01δ)p. Note that we choose the field Fq where q = 2p.

Thus the sum of Enc(X) + Enc(X) when viewing Enc(X) as a vector in F
2p
2 is the same as when

viewing Enc(X) as a vector in F2
q . In the following we will view Enc(X) as a vector in F2

q . We show
that 3Enc(X) has a larger min-entropy rate.

First consider the distribution 2Enc(X). Note that the distribution is of the form (X +X, gX +
gX). Let X̄ = gX and note that gx is a bijection in F ∗

q . Thus X̄ has the same min-entropy as X.
Now the support of 2Enc(X) is of the form (logg(x̄1x̄2), x̄1 + x̄2). For any (b, a) in this support,

we have that x̄1x̄2 = gb and x̄1 + x̄2 = a. Thus there are at most 2 different pairs of (x̄1, x̄2) that
satisfy both equations. Therefore the min-entropy of 2Enc(X) is at least 2H∞(X)−1. We can also
assume that a 6= 0 since this only increases the error by at most 2−H∞(X). Now let k = H∞(X)−1,
we have that Enc(X) has min-entropy at least k and 2Enc(X) has min-entropy at least 2k.
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Now consider 3Enc(X). Every element in the support of 3Enc(X) has the form (logg(x̄1x̄2x̄3), x̄1+
x̄2 + x̄3), which determines the point (x̄1x̄2x̄3, x̄1 + x̄2 + x̄3). Let a = x̄1 + x̄2 and b = x̄1x̄2, this
point is

(bx̄3, a + x̄3).

Let x̃3 = a + x̄3, then

(a + x̄3, bx̄3) = (x̃3, bx̃3 − ab).

For a fixed (a = x̄1 + x̄2, b = x̄1x̄2) define the line

ℓa,b = {(x, bx − ab)|x ∈ Fq}.
Thus we have a set of lines L = {ℓa,b}. Note that a 6= 0 and b 6= 0. Thus for different (a, b),

the line ℓa,b is also different. Note that x3 is sampled from X3, which has min-entropy k and
(a, b) is sampled from Enc(X1) + Enc(X2), which has min-entropy 2k. Further note that these two
distributions are independent. Since every weak source with min-entropy k is a convex combination
of flat k sources, without loss of generality we can assume that X3 and Enc(X1)+Enc(X2) are both
flat sources. Thus L has size 22k.

Now let α, β be the two constants in Theorem 3.10. Assume that 3Enc(X) is ǫ-far from any
source with min-entropy (1 + α/2)2k. Since 3Enc(X) determines the distribution (A + X̄3, BX̄3),
this distribution is also ǫ-far from any source with min-entropy (1+α/2)2k. Thus there must exist
some set M of size at most 2(1+α/2)2k such that

Pr
(a,b)←2Enc(X),x3←X

[(a + x̄3, bx̄3) ∈ M ] ≥ ǫ.

Note that whenever (a + x̄3, bx̄3) ∈ M , this point has an incidence with the line ℓa,b. Further
note that whenever (a, b) is different or x3 is different, the incidence is also different. Thus by the
above inequality the number of incidences between the set of points M and the set of lines L is at
least

Pr
(a,b)←2Enc(X),x3←X

[(a + x̄3, bx̄3) ∈ M ]2k22k ≥ ǫ23k.

On the other hand, since L has size 22k and M has size 2(1+α/2)2k ≤ 2(1+α/2)2(1/2−δ)p <
2(1+α/2)p ≤ q2−β , by Theorem 3.10, the number of incidences between M and L is at most
O(2(3/2−α)(2+α)k) < 23k(1−α/6) = 2−αk/223k.

Thus we must have ǫ < 2−αk/2.
Thus we have shown that 3Enc(X) is 2−αk/2-close to having min-entropy (1 + α/2)2k. By

choosing δ appropriately, we get that 3Enc(X) is 2−Ω(n)-close to having min-entropy (1/2+δ)2p.

Now note that Y is a weak source over {0, 1}2p with min-entropy k2 ≥ (1− δ)p. Also note that
the min-entropy of X ′ is at least the min-entropy of 3Enc(X). Thus by Lemma 3.8 we have that

|EX′,Y [ψ(X ′ · Y )]| ≤ 22p2−(1/2+δ)2p2−(1−δ)p + 2−Ω(n) = 2−Ω(n).

Therefore
|EX,Y [ψ(IP(Enc(X), Y ))]| ≤ 2−Ω(n).
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Now we can prove our construction is a non-malleable extractor.

Theorem 5.3. For any (n, k)-source X with k = (1/2 − δ)n, an independent seed Y and any
deterministic function A such that ∀y ∈ {0, 1}p−1,A(y) 6= y,

|(nmExt(X, Y ), nmExt(X,A(Y )), Y ) − (U, nmExt(X,A(Y )), Y )| ≤ 2−Ω(n)

Proof. First let Y ′ be an independent source over {0, 1}p−1 with min-entropy k2 ≥ (1 − δ)p + 1.
Since the columns of the parity check matrix of the BCH code are 4-wise linearly independent,
different y will be mapped to different ȳ. Thus Ȳ ′ also has min-entropy k2 ≥ (1 − δ)p + 1. By
Lemma 5.1 we have

| nmExt(X, Y ′) − U | ≤ 2−Ω(n).

Next, note that nmExt(X, Y ′) ⊕ nmExt(X,A(Y ′)) = IP(Enc(X), Ȳ ′ + ¯A(Y ′)). By the same
argument as in the proof of Theorem 4.2, Ȳ ′ + ¯A(Y ′) has min-entropy at least k2 − 1 ≥ (1 − δ)p.
Thus again by Lemma 5.1 we have

| nmExt(X, Y ′) ⊕ nmExt(X,A(Y ′)) − U | ≤ 2−Ω(n).

Thus by the non-uniform XOR lemma, Lemma 3.3, we have

|(nmExt(X, Y ′), nmExt(X,A(Y ′))) − (U, nmExt(X,A(Y ′)))| ≤ 2−Ω(n).

Now note that Y has min-entropy p − 1, thus by Theorem 3.6,

|(nmExt(X, Y ), nmExt(X,A(Y )), Y ) − (U, nmExt(X,A(Y )), Y )| ≤ 22(2−Ω(n) + 2−Ω(n)) = 2−Ω(n).

5.2 A non-malleable extractor with multiple bits output

Given an (n, k)-source X with k = (1/2 − δ)n, we first pick a prime p such that 2n < p < 2n+1.
By Bertrand’s postulate, there is always such a prime. Now treat X as an element in the field Fp.
Next we take an independent and uniform seed Y ∈ {0, 1}n and again treat Y as an element in Fp.
Encode X, Y such that Enc(X) = (X, X2) and Enc(Y ) = (Y, Y 2). The operations are in Fp. Our
non-malleable extractor is defined as

nmExt(X, Y ) = IP(Enc(X), Enc(Y )) mod M

for some integer M = 2m that we will choose later. Note that Enc(X) and Enc(Y ) are vectors in
F2

p and IP is the inner product function taken over Fp.
Again, we show that for any weak source X with min-entropy (1/2 − δ)n, 3Enc(X) is close to

a weak source that has min-entropy (1/2 + δ) log(p2).

Lemma 5.4. Let F = Fp for p prime and X be a random variable over F. There is a universal
constant δ > 0 such that if X is any weak source with min-entropy (1/2 − δ)n, 3Enc(X) is p−Ω(1)-
close to a source with min-entropy (1/2 + δ) log(p2).
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Proof. Note that X has min-entropy (1/2−δ)n > (1/2−δ) log p−1. First consider the distribution
2Enc(X). Note that the distribution is of the form (X +X, X2 +X2). For any (a, b) in the support
of 2Enc(X), we have that a = x1 + x2 and b = x2

1 + x2
2. Thus there are at most 2 different pairs of

(x1, x2) that satisfy both equations. Therefore the min-entropy of 2Enc(X) is at least 2H∞(X)−1.
Now let k = H∞(X) − 1, we have that Enc(X) has min-entropy at least k and 2Enc(X) has
min-entropy at least 2k. We now have the following claim.

Claim 5.5. Let α, β be the two constants in Theorem 3.10. Then 3Enc(X) is 2−Ω(k)-close to a
source with min-entropy (1 + α/2)2k.

Proof of the claim. Note that an element in the support of 3Enc(X) has the form (x1+x2+x3, x
2
1+

x2
2 + x2

3). This determines the point

(x1 + x2 + x3, (x1 + x2 + x3)
2 − (x2

1 + x2
2 + x2

3))

=((x1 + x2) + x3, 2(x1 + x2)x3 + (x1 + x2)
2 − (x2

1 + x2
2))

Let a = x1 + x2 and b = x2
1 + x2

2, this point is

(a + x3, 2ax3 + a2 − b).

Let x̄3 = a + x3, then

(a + x3, 2ax3 + a2 − b) = (x̄3, 2ax̄3 − a2 − b).

For a fixed (a = x1 + x2, b = x2
1 + x2

2) define the line

ℓa,b = {(x, 2ax − a2 − b)|x ∈ F}.
Note that for different (a, b), the line ℓa,b is also different. Thus we have a set of lines L =

{ℓa,b}. Note that x3 is sampled from X3, which has min-entropy k and (a, b) is sampled from
Enc(X1) + Enc(X2), which has min-entropy 2k. Further note that these two distributions are
independent. Since every weak source with min-entropy k is a convex combination of flat k sources,
without loss of generality we can assume that X3 and Enc(X1) + Enc(X2) are both flat sources.
Thus L has size 22k.

Now assume that 3Enc(X) is ǫ-far from any source with min-entropy (1+α/2)2k. Since 3Enc(X)
determines the distribution (A+X3, 2AX3 +A2−B), this distribution is also ǫ-far from any source
with min-entropy (1 + α/2)2k. Thus there must exist some set M of size at most 2(1+α/2)2k such
that

Pr
(a,b)←2Enc(X),X3←X

[(a + x3, 2ax3 + a2 − b) ∈ M ] ≥ ǫ.

Note that whenever (a + x3, 2ax3 + a2 − b) ∈ M , this point has an incidence with the line ℓa,b.
Further note that whenever (a, b) is different or x3 is different, the incidence is also different. Thus
by the above inequality the number of incidences between the set of points M and the set of lines
L is at least

Pr
(a,b)←2Enc(X),X3←X

[(a + x3, 2ax3 + a2 − b) ∈ M ]2k22k ≥ ǫ23k.
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On the other hand, since L has size 22k and M has size 2(1+α/2)2k ≤ 2(1+α/2)2(1/2−δ) log p <
2(1+α/2) log p ≤ p2−β , by Theorem 3.10, the number of incidences between M and L is at most
O(2(3/2−α)(2+α)k) < 23k(1−α/6) = 2−αk/223k.

Thus we must have ǫ < 2−αk/2.

By choosing δ appropriately and noting that k ≥ (1/2 − δ) log p − 2, the lemma is proved.

Now we can use the non-uniform XOR lemma to argue that our extractor is non-malleable.
Specifically, we have the following lemma.

Lemma 5.6. Let δ be the constant in Lemma 5.4. Given any (n, k)-source X with k = (1/2− δ)n,
and Y an independent source over {0, 1}n with min-entropy (1− δ)n, let W = IP(Enc(X), Enc(Y ))
and W ′ = IP(Enc(X), Enc(Y ′)) where Y ′ = A(Y ) and ∀y ∈ {0, 1}n,A(y) 6= y. For any two
characters ψ(s) = e2πits/p and ψ′(s) = e2πit′s/p where t, t′ ∈ Fp and t 6= 0,

|EW,W ′ [ψ(W )ψ′(W ′)]| ≤ 2−Ω(n).

Proof. Note that W, W ′ are deterministic functions of X, Y . Thus

EW,W ′ [ψ(W )ψ′(W ′)] = EX,Y [ψ(W )ψ′(W ′)].

Depending on whether ψ′ is trivial, we have two cases.
Case 1: t′ = 0. This corresponds to the case where ψ′ is the trivial character. In this case

ψ′(W ′) is always 1. Thus

EW,W ′ [ψ(W )ψ′(W ′)] = EX,Y [ψ(W )] = EX,Y [ψ(Enc(X) · Enc(Y ))].

Note that Enc(Y ) has the same min-entropy as Y , which is (1 − δ)n. Now consider Enc(X).
Since X has min-entropy (1/2− δ)n, by Lemma 5.4 3Enc(X) is p−Ω(1)-close to having min-entropy
(1/2+ δ) log(p2). Now note that the min-entropy of 4Enc(X)−4Enc(X) is at least the min-entropy
of 4Enc(X), and which in turn is at least the min-entropy of 3Enc(X). Thus 4Enc(X) − 4Enc(X)
is p−Ω(1)-close to having min-entropy (1/2 + δ) log(p2). Since (1/2 + δ) log(p2) + (1 − δ)n > (1 +
2δ) log p + (1 − δ)(log p − 1) > (2 + δ) log p − 1, by Lemma 3.9 we have

|EW,W ′ [ψ(W )ψ′(W ′)]| = |EX,Y [ψ(Enc(X) · Enc(Y ))]| ≤ (p221−(2+δ) log p)1/16 + p−Ω(1) = 2−Ω(n).

Case 2: t′ 6= 0. This corresponds to the case where ψ′ is non-trivial. In this case, note that

ψ(W )ψ′(W ′) = e2πit(Enc(X)·Enc(Y ))e2πit′(Enc(X)·Enc(Y ′)) = e2πit(Enc(X)·(Enc(Y )+rEnc(Y ′)),

where r = t′/t ∈ Fp and r 6= 0 since t 6= 0 and t′ 6= 0.

Let Ẽnc(Y ) = Enc(Y ) + rEnc(Y ′), then

EW,W ′ [ψ(W )ψ′(W ′)] = EX,Y [ψ(W )ψ′(W ′)] = EX,Y [ψ(Enc(X) · Ẽnc(Y ))].

Now again by the same argument as above we have that 4Enc(X) − 4Enc(X) is p−Ω(1)-close to

having min-entropy (1/2 + δ) log(p2). Now we only need to bound the min-entropy of Ẽnc(Y ).
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If for every two different y1, y2, we have that Enc(y1) + rEnc(y′1) 6= Enc(y2) + rEnc(y′2), then

obviously Ẽnc(Y ) will have the same min-entropy as Y . Now assume that for some two different
y1, y2, we have Enc(y1) + rEnc(y′1) = Enc(y2) + rEnc(y′2).

This gives us

y1 + ry′1 = y2 + ry′2

and

(y1)
2 + r(y′1)

2 = (y2)
2 + r(y′2)

2.

Hence we get

y1 − y2 = r(y′2 − y′1)

and

(y1 + y2)(y1 − y2) = r(y′2 + y′1)(y
′
2 − y′1).

Since y1 6= y2 and r 6= 0, we must have that y′1 6= y′2. Thus we get

y1 + y2 = y′2 + y′1.

Therefore we can completely solve the equations and get

y′1 = ((r + 1)y2 + (r − 1)y1)/2r, y′2 = ((r + 1)y1 + (r − 1)y2)/2r.

Thus any element in Supp(Ẽnc(Y )) can come from at most 2 elements in Supp(Y ). To see
this, assume for the sake of contradiction that we have Enc(y1) + rEnc(y′1) = Enc(y2) + rEnc(y′2) =
Enc(y3) + rEnc(y′3) for three different y1, y2, y3. Thus by above we have

y′1 = ((r + 1)y2 + (r − 1)y1)/2r

and

y′1 = ((r + 1)y3 + (r − 1)y1)/2r.

Note that r 6= −1 since otherwise this would imply that y′1 = y1 which contradicts the assump-
tion that ∀y,A(y) 6= y. Thus we get y2 = y3, another contradiction.

Therefore the min-entropy of Ẽnc(Y ) is at least H∞(Y ) − 1 = (1 − δ)n − 1. Now since (1/2 +
δ) log(p2) + (1 − δ)n − 1 > (1 + 2δ) log p + (1 − δ)(log p − 1) − 1 > (2 + δ) log p − 2, by Lemma 3.9
we have

|EW,W ′ [ψ(W )ψ′(W ′)]| = |EX,Y [ψ(Enc(X) · Ẽnc(Y ))]| ≤ (p222−(2+δ) log p)1/16 + p−Ω(1) = 2−Ω(n).

Now we can prove the following theorem.
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Theorem 5.7. Let δ be the constant from Lemma 5.4. Given any (n, k) source X with k =
(1/2 − δ)n and an independent uniform seed Y ∈ {0, 1}n, as well as any deterministic function
A : {0, 1}n → {0, 1}n such that ∀y,A(y) 6= y,

|(nmExt(X, Y ), nmExt(X,A(Y )), Y ) − (Um, nmExt(X,A(Y )), Y )| ≤ ǫ,

where ǫ = 2−Ω(n) and output size m = Ω(n).

Proof. Let Z = nmExt(X, Y ) and Z ′ = nmExt(X,A(Y )). By Lemma 5.6 and Lemma 3.4, we can
choose an m = Ω(n) and M = 2m such that when nmExt(X, Y ) = IP(Enc(X), Enc(Y )) mod M and
Y is an (n, (1 − δ)n) source independent of X, we have

|(Z, Z ′) − (Um, Z ′)| ≤ ǫ′,

where ǫ′ = O(n2m2−Ω(n) + 2m−n) = 2−Ω(n).
Therefore when Y is an independent uniform distribution over {0, 1}n, by Theorem 3.6 we have

|(Z, Z ′, Y ) − (Um, Z ′, Y )| ≤ ǫ,

where ǫ = 22m(21−δn + ǫ′).
Note that ǫ′ = O(n2m2−Ω(n) + 2m−n). Thus we can take m = Ω(n) and ǫ = 22m(21−δn + ǫ′) =

2−Ω(n). Thus the theorem is proved.

6 Achieving Even Smaller Min-Entropy

In this section we show that we can construct non-malleable extractors for even smaller min-entropy
rate (potentially any constant arbitrarily close to 0), if we assume that we have affine extractors with
large enough output size, and the Approximate Duality Conjecture (or the Polynomial Freiman-
Ruzsa Conjecture) as in [BSZ11].

Recall the definition of an affine extractor.

Definition 6.1. An [n, m, ρ, ǫ] affine extractor is a deterministic function f : {0, 1}n → {0, 1}m

such that whenever X is the uniform distribution over some affine subspace over Fn
2 with dimension

ρn, we have that for every z ∈ {0, 1}m,

|Pr[f(X) = z] − 2−m| < ǫ.

We now have the following construction.

Construction 6.2. Given any (n, k) source X and a constant 0 < λ < 1, let f : {0, 1}n′ → {0, 1}m′

be an [n′, m′ = (1 − λ)2
3n′, 2

3 , 2−m′

] affine extractor such that n = n′ − m′. For any z ∈ {0, 1}m′

,

let f−1(z) = {x : f(x) = z}. Then there exists z ∈ {0, 1}m′

such that |f−1(z)| ≥ 2n. Let
F : {0, 1}n → f−1(z) be (any) injective map. Now take a BCH code as in Theorem 3.11 with t = 2
and m = n′/2, and the n′ × (2n′/2 − 1) parity check matrix.

Take an independent uniform seed Y ∈ {0, 1}n′/2−1 and let SY stand for the integer whose
binary expression is Y . We encode Y to Ȳ such that Ȳ = Enc(Y ) is the SY ’th column in the parity
check matrix (i.e., Ȳ = (Y, Y 3) when Y is viewed as an element in F∗

2n′/2
). Our non-malleable

extractor is now defined as
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nmExt(X, Y ) = IP(F (X), Enc(Y )) = IP(F (X), Ȳ ),

where IP is the inner product function taken over F2.

Remark 6.3. Note that here the function F may not be efficiently computable (in time poly(n)).
However, the time to compute F is polynomial in the length of the truth table of our final extractor.

Let W = nmExt(X, Y ) and W ′ = nmExt(X, Y ′) where Y ′ = A(Y ) such that ∀y,A(y) 6= y.
Again we will show the non-malleability of our extractor by showing that (W, Y ) ≈ǫ (U, Y ) and
(W ⊕ W ′, Y ) ≈ǫ (U, Y ) for some ǫ. To this end, we first show the following.

Lemma 6.4. For any (n, k) source X with k = 2.5λ
1+2λn and an independent (n′

2 − 1, n′

3 + 1) source
Y , nmExt(X, Y ) is non-constant.

Proof. As usual we can assume without loss of generality that X and Y are flat sources. If
nmExt(X, Y ) = IP(F (X), Enc(Y )) is a constant, then Supp(F (X)) and Supp(Enc(Y )) must be
contained in two affine subspaces with dimension d1, d2 such that d1 + d2 ≤ n′. Note that Enc(Y )

is an injective function. Thus Supp(Enc(Y )) has size 2
n′

3
+1. Therefore d2 > n′

3 . We next show that
d1 > 2

3n′ and thus reach a contradiction.
To see this, let S = Supp(F (X)). It suffices to show that S is not contained in any affine

subspace of dimension 2
3n′. Let A be such an affine subspace. We have

|A ∩ S| ≤ |A ∩ f−1(z)| < 2 · 2−m′

2
2
3
n′

= 2
2λ
3

n′+1,

where the last inequality follows from the fact that f is an affine extractor. Now note that |S| =

2
2.5λ
1+2λ

n = 2
2.5λ

3
n′

. Thus we have that |A ∩ S| < |S| and therefore S cannot be contained in A.

Recall the Approximate Duality conjecture introduced in [BSZ11].

Conjecture 6.5. (Approximate Duality (ADC)) [BSZ11] For every pair of constants α, δ > 0 there
exist a constant ζ > 0 and an integer r, both depending on α and δ such that the following holds
for sufficiently large n. If A, B ⊆ Fn

2 satisfy |A|, |B| ≥ 2αn and µ⊥(A, B) ≥ 2−ζn, then there exists
a pair of subsets

A′ ⊆ A, A′ ≥ |A|
2δn+1

and B′ ⊆ B, |B′| ≥
(

µ⊥(A, B)

2

)r

· |B|
2δn

such that µ⊥(A′, B′) = 1.

Now we have the following lemma.

Lemma 6.6. There exists a constant ζ = ζ(λ) such that for any (n, k) source X with k = 3λ
1+2λn

and an independent (n′

2 − 1, 7n′

15 ) source Y , nmExt(X, Y ) is 2−ζn-close to uniform.

Proof. Let v = n
n′ = 1+2λ

3 , α = min{λ, 1
3} and δ = λ

8 . Let ζ ′ and r be the constant and the integer

guaranteed by conjecture 6.5 for α and δ. Let ζ = min{ ζ′

v , 1−λ
8r }. We will prove the lemma by way

of contradiction.
Let X and Y be two independent sources as in the statement of the lemma. Again we assume

without loss of generality that both X and Y are flat sources. Let A = Supp(X), B = Supp(Y )
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and Ā = {F (a)|a ∈ A} ⊆ Fn′

2 , B̄ = {Enc(b)|b ∈ B} ⊆ Fn′

2 . Note that both F and Enc are injective

functions. Thus |Ā| = 2
3λ

1+2λ
n = 2λn′ ≥ 2αn′

and |B̄| = 2
7n′

15 > 2
n′

3 ≥ 2αn′

.
Assume for the sake of contradiction that the error of nmExt(X, Y ), which is equal to 1

2µ⊥(Ā, B̄),

is greater than 2−ζn ≥ 2−ζ′n′

. Then by the ADC conjecture (conjecture 6.5) there exist A′ ⊆ Ā
and B′ ⊆ B̄ such that

|A′| ≥ |Ā|
2δn′+1

≥ 2
5λ
6

n′

= 2
2.5λ
1+2λ

n and |B′| ≥ |B̄|
2δn′+rζn

≥ 2
7n′

15

2
n′

8

> 2
n′

3
+1,

and µ⊥(A′, B′) = 1.
Let A′′ and B′′ be the preimages of A′ and B′ under F and Enc respectively. Since F and Enc

are injective, we must have |A′′| ≥ 2
2.5λ
1+2λ

n and |B′′| ≥ 2
n′

3
+1. Thus if we let X ′ and Y ′ be the

uniform distribution over A′′ and B′′ respectively, we get two independent sources that satisfy the
conditions in Lemma 6.4. However IP(F (X ′), Enc(Y ′)) is a constant, which contradicts Lemma 6.4.
Thus we must have that nmExt(X, Y ) is 2−ζn-close to uniform.

Now we can prove the following theorem.

Theorem 6.7. There exists a constant ζ = ζ(λ) such that for any (n, k) source X with k = 3λ
1+2λn

and an independent uniform seed Y over n′

2 − 1 = 3
2+4λn − 1 bits,

|(W, W ′, Y ) − (U, W ′, Y )| ≤ 2−Ω(ζn).

Proof. Let ζ = ζ(λ) be as in Lemma 6.6. First let Y be an independent source with min-entropy
7n′

15 + 1. By Lemma 6.6 we have

|W − U | ≤ 2−ζn.

Now consider W ⊕ W ′ = nmExt(X, Y ) ⊕ nmExt(X, Y ′) = IP(F (X), Enc(Y ) + Enc(Y ′)). By
the same argument as in the proof of Theorem 4.2, Enc(Y ) + Enc(Y ′) has min-entropy at least
H∞(Y ) − 1 = 7n′

15 . Thus again by Lemma 6.6 we have

|W ⊕ W ′ − U | ≤ 2−ζn.

Therefore by the non-uniform XOR lemma, Lemma 3.3, we have

|(W, W ′) − (U, W ′)| ≤ O(2−ζn).

Now if we let Y be the uniform distribution over n′

2 − 1 bits, by Theorem 3.6 we have

|(W, W ′, Y ) − (U, W ′, Y )| ≤ 22(2−Ω(n) + O(2−ζn)) = 2−Ω(ζn).
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7 Reducing the Seed Length and Increasing the Output Size

In this section we show that we can reduce the seed length and increase the output size for the
constructions in Section 4, Subsection 5.1 and Section 6. All these constructions share the same
pattern: the seed Y is encoded using the parity check matrix of a BCH code, and then the output
is the inner product function of the encoded source and the encoded seed over F2.

We only discuss the construction in Subsection 5.1, and the method used can be applied to all
the other constructions in the same way. We start by showing how to reduce the seed length.

7.1 Reducing the seed length

In the constructions mentioned above, we use a BCH code with distance 5. Thus the columns of
the parity check matrix are 4-wise linearly independent. To reduce the seed length, we are going to
use a BCH code with larger distance. Specifically, we will choose a [2ℓ − 1, 2ℓ − 1− 2tℓ, 4t+1]-BCH
code with ℓ = p/t for some parameter t to be chosen later. Note that the parity check matrix is a
2p × (2ℓ − 1) matrix4. Thus the columns of the matrix are D = 4t-wise linearly independent. The
detailed construction is as follows.

• Given an (n, k)-source X with k = (1/2− δ)n, pick a prime p such that n ≤ p ≤ n(1+ 1
2 ln2 n

).

• Let q = 2p and g be a generator in F∗
q . Treat X as an element in F∗

q and encode X such that

Enc(X) = (X, gX).

• Let ℓ = p/t. Take the parity check matrix of a [2ℓ − 1, 2ℓ − 1 − 2tℓ, 4t + 1]-BCH code. Note
that it is a 2p × (2ℓ − 1) matrix. Take an independent and uniform seed Y ∈ {0, 1}ℓ−1 and
let SY stand for the integer whose binary expression is Y . We encode Y to Ȳ such that Ȳ is
the SY ’th column in the parity check matrix.

• Output nmExt(X, Y ) = IP(Enc(X), Ȳ ) where IP is the inner product function taken over F2.

As in Subsection 5.1, we have Claim 5.2. We now want to argue about the min-entropy of tȲ
and t(Ȳ + ¯A(Y )).

Lemma 7.1. Assume Y has min-entropy k2, then tȲ is t22−(k2+1)-close to having min-entropy
t(k2− log t), and t(Ȳ + Ȳ ′) is t22−(k2+2) + t(t2−

2
3
k2)log t-close to having min-entropy t((1− log t

3t )k2−
3 log t).

Proof. Without loss of generality assume that Y is a flat source. Let K = 2k2 . First consider tȲ .
Note that Ȳ has the same min-entropy as Y and is also a flat source, since every two columns of
the parity check matrix are different. The support of tȲ has the form ȳ1 + · · · + ȳt. Consider the
case where all ȳi’s are different. This takes up a probability mass of

K!

(K − t)!
· K−t = 1 · (1 − 1

K
) · · · (1 − t − 1

K
) > 1 −

t−1∑

i=1

i

K
> 1 − t2

2K
.

Since the columns of the parity check matrix are 4t-wise linearly independent. For every two
different sets {ȳi}’s, their sum cannot be the same. Therefore, the probability mass of getting a

4Actually p is not divisible by t, thus ℓt < p. However for simplicity we will assume that the matrix has 2p rows.
For example we can add 0’s in the end, the small error does not affect our analysis.
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particular value is at most t!K−t ≤ 2−t(k2−log t). Thus tȲ is t22−(k2+1)-close to having min-entropy
t(k2 − log t).

Next consider t(Ȳ + ¯A(Y )). Let A(Y ) = Y ′ and Y ′′ = Ȳ +Ȳ ′. Note that for every s ∈ Supp(Y ′′),
s 6= 0 since ∀y,A(y) 6= y. Also note that Y ′′ has min-entropy at least k2−1 since if ȳ1+ȳ′1 = ȳ2+ȳ′2
for y1 6= y2, then we must have ȳ′1 = ȳ2 and ȳ′2 = ȳ1. Without loss of generality assume that Y ′′ is
a flat source with min-entropy k2 − 1. Let K2 = 2k2−1. Note that now in the support of Y ′′ there
are no two different y1, y2 such that ȳ1 + ȳ′1 = ȳ2 + ȳ′2 (since this will be absorbed into the same
element).

We now consider tY ′′. An element in its support has the form
∑t

i=1(ȳi + ȳ′i). We first get rid of
those elements in Supp(tY ′′) such that some of the {ȳi + ȳ′i}’s are the same. By the same argument

as above this takes up a probability mass of at most t2

2K2
. Now, for a particular set {ȳi + ȳ′i}i∈[t],

we consider how many different sets can have the same sum.
Since the columns of the parity check matrix are 4t-wise linearly independent, if the sum of

two different sets {ȳi + ȳ′i}i∈[t] are the same, then except those ȳi + ȳ′i’s that are common in
both sets, the rest of ȳi + ȳ′i’s must form cycles. By cycle we mean a set of l elements such that
ȳ′1 = ȳ2, ȳ′2 = ȳ3, · · · , ȳ′l = ȳ1 so that the sum is 0. Note that l ≥ 3 since the support of Y ′′ has
no 2-cycles. Let S1, S2 be the two sets {ȳi + ȳ′i}i∈[t]. Now, the elements in a cycle can come from
both sets or just from one set. If the elements from a cycle comes only from S2, then this cycle can
be replaced by any other cycle with the same length, and the sum of S1 and S2 are still the same.
On the other hand, if the elements of a cycle comes from both S1 and S2, then the elements in this
cycle are completely determined by S1 since cycles are disjoint. Therefore, let r be the number of
common elements in S1, S2, and let l be the total length of cycles whose elements only come from
the rest elements of S2, and note that cycles have length at least 3, we have that if l ≥ log t, then
the total probability mass of these elements in Supp(tY ′′) is at most

∑

log t≤l≤t

(
t

l

)(K2

3
l
3

)
l!(K2)

−l ≤
∑

log t≤l≤t

tl(
K2

3
)

l
3 (K2)

−l <
∑

log t≤l≤t

(t(K2)
− 2

3 )l < t(t2−
2
3
k2)log t.

On the other hand, if l < log t, then the probability that tY ′′ gets a particular value is at most

∑

0≤l≤log t

∑

0≤r≤t−l

(
t

l

)(
t − l

r

)(K2

3
l
3

)
t!(K2)

−t < t log t · t2t(
K2

3
)

log t
3 (K2)

−t < t log t(t2(K2)
−(1− log t

3t
))t.

Thus the min-entropy is at least t((1 − log t
3t )k2 − 3 log t).

Now for an (n, k)-source X with k = (1/2−δ)n, we know that 3Enc(X) is 2−Ω(n)-close to having
min-entropy (1/2+δ)(2p). Assume that we want our non-malleable extractor to have error ǫ ≤ 1/n.
We’ll choose a parameter t < n/C log n for a sufficiently large constant C > 1. When Y is uniform
over ℓ = p/t bits, tȲ is close to having min-entropy t(k2− log t) > (1−1/C)p > (1/2−δ/2)(2p), and
t(Ȳ +Ȳ ′) is close to having min-entropy t((1− log t

3t )k2−3 log t) > (1−1/C)p > (1/2−δ/2)(2p). When
tȲ and t(Ȳ + Ȳ ′) indeed have this min-entropy, by Lemma 3.8 we have that both IP(3Enc(X), tȲ )
and IP(3Enc(X), t(Ȳ + Ȳ ′)) are 2−Ω(n)-close to uniform. Thus we can take t = Ω(n/(log(1/ǫ))) and
by Lemma 3.9 and Theorem 3.6 we have that the error of the non-malleable extractor is at most ǫ,
and the seed length is roughly p/t = O(n/t) = O(log(1/ǫ)). Thus we have the following theorem.
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Theorem 7.2. There exists a universal constant δ > 0 such that for every n ∈ N and ǫ such that
2−Ω(n) ≤ ǫ ≤ 1/poly(n), there exists an explicit (k, ǫ) non-malleable extractor nmExt : {0, 1}n ×
{0, 1}d → {0, 1} for k = (1/2 − δ)n and seed length d = O(log n + log(1/ǫ)).

7.2 Increasing the output size

Here we show that we can modify all the constructions with 1 bit output to output m = Ω(n) bits.
Again we only discuss the construction in Subsection 5.1, and the method can be applied to all the
other constructions with 1 bit output.

Recall that in the construction we used a field F2p for a prime p. Given the finite filed F2p , the
elements of this field form a vector space of dimension p over F2. Let b1, · · · , bp ∈ F2p be a basis
for this vector space. Now recall that in the construction we encode the seed Y to Ȳ = (Y, Y 3),
when viewing Y as an element in F∗

2p . Now for each bi, let Ȳ i = (biY, biY
3) and define one bit

Zi = IP(Enc(X), Ȳ i). We now show that {Zi} satisfy the conditions of a non-uniform XOR lemma.

Lemma 7.3. Given any (n, k)-source X with k = (1/2−δ)n and an independent seed Y ∈ {0, 1}p−1

with min-entropy (1 − δ)p, let A : {0, 1}p−1 → {0, 1}p−1 be any deterministic function such that
∀y,A(y) 6= y. For any i, let Z ′

i = IP(Enc(X), Ȳ i′), where Ȳ i′ = (biY
′, biY

′3) and Y ′ = A(Y ). Then
for any non-empty subset S1 ⊆ [p] and any subset S2 ⊆ [p], we have that

|
⊕

i∈S1

Zi ⊕
⊕

j∈S2

Z ′
j − U | ≤ 2−Ω(n).

Proof. Note that ⊕

i∈S1

Zi = IP(Enc(X),
∑

i∈S1

Ȳ i) = IP(Enc(X), t1(Y, Y 3)),

where t1 =
∑

i∈S1
bi ∈ F2p , and

⊕

j∈S2

Z ′
j = IP(Enc(X),

∑

j∈S2

Ȳ j′) = IP(Enc(X), t2(Y
′, Y ′3)),

where t2 =
∑

j∈S2
bjF2p .

Thus

⊕

i∈S1

Zi ⊕
⊕

j∈S2

Z ′
j = IP(Enc(X), Ỹ ),

where Ỹ = t1(Y, Y 3) + t2(Y
′, Y ′3).

As usual, it suffices to prove that for the only non-trivial character ψ (since we only have 1 bit),

|EX,Y [ψ(IP(Enc(X), Ỹ ))]| ≤ 2−Ω(n).

Again, let X ′ = 4Enc(X) − 4Enc(X), by Lemma 3.9 we have

|EX,Y [ψ(IP(Enc(X), Ỹ ))]| ≤ |EX′,Y [ψ(X ′ · Ỹ )]| 18 .

Now by the same argument as in the proof of Lemma 5.1, X ′ is 2−Ω(n)-close to a source with
min-entropy (1/2 + δ)(2p). Thus we only need to bound the min-entropy of Ỹ . We have two cases.

26



Case 1: S2 = φ. In this case Ỹ = t1(Y, Y 3). Since S1 6= φ, we have t1 6= 0. Thus Ỹ has the
same min-entropy as Y , which is (1− δ)p. Since (1/2 + δ)(2p) + (1− δ)p = (2 + δ)p, by Lemma 3.8
we have that

|EX′,Y [ψ(X ′ · Ỹ )]| ≤ 22p2−(2+δ)p + 2−Ω(n) = 2−Ω(n).

Therefore |EX,Y [ψ(IP(Enc(X), Ỹ ))]| ≤ 2−Ω(n).
Case 2: S2 6= φ. In this case we have t1 6= 0 and t2 6= 0. We need to bound the min-entropy of

Ỹ = t1(Y, Y 3)+ t2(Y
′, Y ′3). Again, if for every two different y1, y2, we have t1(y1, y

3
1)+ t2(y

′
1, y

′3
1 ) 6=

t1(y2, y
3
2) + t2(y

′
2, y

′3
2 ), then Ỹ will have the same min-entropy of Y . We now have the following

claim.

Claim 7.4. Any element in Supp(Ỹ ) can come from at most 3 different elements in Supp(Y ).

Proof of the claim. Assume for the sake of contradiction that there are 4 different y1, y2, y3, y4 such
that t1(yi, y

3
i ) + t2(y

′
i, y

′3
i ) are the same for i = 1, 2, 3, 4. First consider y1, y2, we have t1(y1, y

3
1) +

t2(y
′
1, y

′3
1 ) = t1(y2, y

3
2) + t2(y

′
2, y

′3
2 ). Since t1 6= 0, let r = t2/t1F2p . Thus r 6= 0 and we have

(y1, y
3
1) + r(y′1, y

′3
1 ) = (y2, y

3
2) + r(y′2, y

′3
2 ). We first consider the case where r = 1. In this case, the

vectors (y1, y
3
1), (y′1, y

′3
1 ), (y2, y

3
2) and (y′2, y

′3
2 ) are linearly dependent over F2. However we know

that the columns of the parity check matrix of the BCH code are 4-wise linearly independent. Thus
we must have y′1 = y2 and y′2 = y1. Thus in this case the element in Supp(Ỹ ) comes from at most
2 different elements in Supp(Y ). Now if r 6= 1, we have

y1 + ry′1 = y2 + ry′2

and

(y1)
3 + r(y′1)

3 = (y2)
3 + r(y′2)

3.

Hence we get

y1 − y2 = r(y′2 − y′1)

and

(y2
1 + y1y2 + y2

2)(y1 − y2) = r(y′22 + y′1y
′
2 + y′21 )(y′2 − y′1).

Since y1 6= y2 and r 6= 0, we must have that y′1 6= y′2. Thus we get

y2
1 + y1y2 + y2

2 = y′22 + y′1y
′
2 + y′21 .

Similarly we can get

y2
1 + y1y3 + y2

3 = y′23 + y′1y
′
3 + y′21 .

Thus

(y1 + y2 + y3)(y2 − y3) = (y′1 + y′2 + y′3)(y
′
2 − y′3).

Also, from y2 + ry′2 = y3 + ry′3 we get
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y2 − y3 = r(y′3 − y′2).

Since y2 6= y3, we have

y′1 + y′2 + y′3 = −r(y1 + y2 + y3).

Similarly we can get

y′1 + y′2 + y′4 = −r(y1 + y2 + y4).

Therefore

y′4 − y′3 = r(y3 − y4).

On the other hand, from y3 + ry′3 = y4 + ry′4 we get

y′4 − y′3 = 1/r(y3 − y4).

Thus

(r2 − 1)(y3 − y4) = 0.

Since r 6= 1, r2 − 1 6= 0. Thus we have y3 = y4, a contradiction.

Therefore, the min-entropy of Ỹ is at least H∞(Y )− log 3 = (1−δ)p− log 3. Now by Lemma 3.8
we have that

|EX′,Y [ψ(X ′ · Ỹ )]| ≤ 22p2−(1+2δ)p2−(1−δ)p+log 3 + 2−Ω(n) = 2−Ω(n).

Therefore |EX,Y [ψ(IP(Enc(X), Ỹ ))]| ≤ 2−Ω(n).

Now if we have a uniform random seed Y ∈ {0, 1}p−1, by Lemma 3.3 and Theorem 3.6 we can
choose m = Ω(n) bits from {Zi} such that when we output Z1 ◦ · · · ◦ Zm we get a non-malleable
extractor with error 2−Ω(n) and output size m = Ω(n). Specifically, we have the following theorem.

Theorem 7.5. There exists a constant 0 < δ < 1 such that for any n ∈ N, k = (1/2 − δ)n, there
exists an explicit (k, ǫ)-non-malleable extractor nmExt : {0, 1}n × {0, 1}n → {0, 1}m with m = Ω(n)
and ǫ = 2−Ω(n).

8 Conclusions and Open Problems

In this paper we give the first explicit constructions of non-malleable extractors for min-entropy
k < n/2. We give two unconditional constructions for k = (1/2 − δ)n for some constant δ > 0 and
one conditional construction that can potentially achieve any constant min-entropy rate. Using
our non-malleable extractor, we also obtain the first optimal privacy amplification protocol for
k = (1/2 − δ)n, with an active adversary.

There are several natural open problems left. First, two of our constructions achieve an optimal
seed length, but only output 1 bit. It will be interesting to see if we can output more than 1 bit
in these cases. Second, the constructions that can output multiple bits have a large seed length
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d = n. It is natural to ask if we can reduce the seed length in these cases. Also, one obvious
open problem is to construct non-malleable extractors for smaller min-entropy, or to obtain an
unconditional construction for any constant min-entropy rate.

Finally, we want to point out that all known constructions of non-malleable extractors, including
[DLWZ11, CRS11] and our constructions, seem to be some variant of known constructions of two-
source extractors. This seems to suggest that there is some connection between non-malleable
extractors and two-source extractors. We feel that this is interesting. It would be very nice if
such a connection can be established, and thus help us gain knowledge and insights about both
non-malleable extractors and two-source extractors.
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