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Abstract

Dodis and Wichs [DW09] introduced the notion of a non-malleable extractor to study the
problem of privacy amplification with an active adversary. A non-malleable extractor is a much
stronger version of a strong extractor. Given a weakly-random string x and a uniformly random
seed y as the inputs, the non-malleable extractor nmExt has the property that nmExt(x, y)
appears uniform even given y as well as nmExt(x,A(y)), for an arbitrary function A with A(y) 6=
y. Dodis and Wichs showed that such an object can be used to give optimal privacy amplification
protocols with an active adversary.

Previously, there are only two known constructions of non-malleable extractors [DLWZ11,
CRS12]. Both constructions only work for (n, k)-sources with k > n/2. Interestingly, both
constructions are also two-source extractors.

In this paper, we present a strong connection between non-malleable extractors and two-
source extractors. The first part of the connection shows that non-malleable extractors can be
used to construct two-source extractors. If the non-malleable extractor works for small min-
entropy and has a short seed length with respect to the error, then the resulted two-source
extractor beats the best known construction of two-source extractors. This partially explains
why previous constructions of non-malleable extractors only work for sources with entropy rate
> 1/2, and why explicit non-malleable extractors for small min-entropy may be hard to get.

The second part of the connection shows that certain two-source extractors can be used
to construct non-malleable extractors. Using this connection, we obtain the first construction
of non-malleable extractors for k < n/2. Specifically, we give an unconditional construction
for min-entropy k = (1/2 − δ)n for some constant δ > 0, and a conditional (semi-explicit)
construction that can potentially achieve k = αn for any constant α > 0.

We also generalize non-malleable extractors to the case where there are more than one ad-
versarial seeds, and show a similar connection between the generalized non-malleable extractors
and two-source extractors.

Finally, despite the lack of explicit non-malleable extractors for arbitrarily linear entropy, we
give the first 2-round privacy amplification protocol with asymptotically optimal entropy loss
and communication complexity for (n, k) sources with k = αn for any constant α > 0. This
dramatically improves previous results and answers an open problem in [DLWZ11].
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Simons postdoctoral fellowship.
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1 Introduction

The broad area of randomness extraction studies the problem of converting a weakly random source
into a distribution that is close to the uniform distribution in statistical distance. Over the past
decades extensive research has been conducted in this area. Among which, a long line of research
([SZ99, Tre01, RRV02, LRVW03, GUV09, DW08, DKSS09] to name a few) studies the so called
“seeded extractors”, as defined by Nisan and Zuckerman [NZ96]. Besides its original motivation
in computing with imperfect random sources, seeded extractors have found applications in coding
theory, cryptography, complexity and many other areas. We refer the reader to [FS02, Vad02, ?]
for a survey on this subject. Nowadays we have nearly optimal constructions of seeded extractors
[LRVW03, GUV09, DW08, DKSS09].

Another line of research focuses on the problem of extracting random bits from several inde-
pendent sources [CG88, BIW04, BKS+05, Raz05, Bou05, Rao06, BRSW06, Li11]. In this case,
however, the best known construction is far from optimal. Specifically, the probabilistic method
shows that there exists an extractor for two independent sources on n bits with each having roughly
log n bits of entropy, while the best two-source extractor to date can only achieve entropy slightly
below n/2 [Bou05]. The best known extractor for small entropy k requires O(log n/ log k) inde-
pendent sources [Rao06, BRSW06]. Moreover, it seems hard to improve these results. Especially
in the two-source case, after decades of efforts the entropy requirement only drops from anything
above n/2 [CG88] to slightly below n/2 [Bou05].

Recently, a new kind of seeded extractors, called non-malleable extractors were introduced in
[DW09] to give protocols for the problem of privacy amplification with an active adversary. We now
give the definition of a non-malleable extractor below. As a comparison, we also give the definition
of a strong seeded extractor.

Notation. We let [s] denote the set {1, 2, . . . , s}. For ` a positive integer, U` denotes the uniform
distribution on {0, 1}`, and for S a set, US denotes the uniform distribution on S. When used as
a component in a vector, each U` or US is assumed independent of the other components. We say
W ≈ε Z if the random variables W and Z have distributions which are ε-close in variation distance.

Definition 1.1. The min-entropy of a random variable X is

H∞(X) = min
x∈supp(X)

log2(1/Pr[X = x]).

For X ∈ {0, 1}n, we call X an (n,H∞(X))-source, and we say X has entropy rate H∞(X)/n. We
say X is a flat source if it is the uniform distribution over some subset S ⊂ {0, 1}n.

Definition 1.2. A function Ext : {0, 1}n×{0, 1}d → {0, 1}m is a strong (k, ε)-extractor if for every
source X with min-entropy k and independent Y which is uniform on {0, 1}d,

(Ext(X,Y ), Y ) ≈ε (Um, Y ).

Definition 1.3. 1 A function nmExt : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-non-malleable extractor
if, for any source X with H∞(X) ≥ k and any function A : {0, 1}d → {0, 1}d such that A(y) 6= y
for all y, the following holds. When Y is chosen uniformly from {0, 1}d and independent of X,

(nmExt(X,Y ), nmExt(X,A(Y )), Y ) ≈ε (Um, nmExt(X,A(Y )), Y ).

1Following [DLWZ11], we define worst case non-malleable extractors, which is slightly different from the original
definition of average case non-malleable extractors in [DW09]. However, the two definitions are essentially equivalent
up to a small change of parameters.
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As we can see from the definitions, a non-malleable extractor is a stronger version of the strong
extractor, in the sense that it requires the output to be close to uniform even conditioned on both
the seed Y and the output nmExt(X,A(Y )) on a different but arbitrarily correlated seed A(Y ).

The motivation to study a non-malleable extractor, the privacy amplification problem, is a fun-
damental problem in symmetric cryptography that has been studied by many researchers. Bennett,
Brassard, and Robert introduced this problem in [BBR88]. The basic setting is that, two parties
(Alice and Bob) share an n-bit secret key X, which is weakly random. This could happen because
the secret comes from a password or biometric data, which are themselves weakly random, or be-
cause an adversary Eve managed to learn some partial information about an originally uniform
secret, for example via side channel attacks. We measure the entropy of X by the min-entropy
defined above. The goal is to have Alice and Bob communicate over a public channel so that they
can convert X into a nearly uniform secret key. Generally, we also assume that Alice and Bob have
local private uniform random bits. The problem is the presence of the adversary Eve, who can see
every message transmitted in the channel and may or may not change the messages. We assume
that Eve has unlimited computational power.

The case where Eve is passive, i.e., cannot change the messages, can be solved simply by using
the above mentioned strong seeded extractors. The case where Eve is active (i.e., can change the
messages in arbitrary ways), on the other hand, is much more difficult. Historically, Maurer and
Wolf [MW97] gave the first non-trivial protocol in this case. Their protocol takes one round and
works when the entropy rate of the weakly-random secret X is bigger than 2/3. Dodis, Katz,
Reyzin, and Smith [DKRS06] later improved this result to give protocols that work for entropy
rate bigger than 1/2. One drawback in both cases is that the final secret key R is much shorter
than the min-entropy of X. Later, Dodis and Wichs [DW09] showed that no one-round protocol
exists for entropy rate less than 1/2. The first protocol that breaks the 1/2 entropy rate barrier is
due to Renner and Wolf [RW03], where they gave a protocol that works for essentially any entropy
rate. However their protocol takes O(s) rounds and only achieves entropy loss O(s2), where s in
the security parameter of the protocol. Kanukurthi and Reyzin [KR09] simplified their protocol,
but the parameters remain essentially the same.

In [DW09], Dodis and Wichs showed that explicit non-malleable extractors can be used to give
privacy amplification protocols that take an optimal 2 rounds and achieve optimal entropy loss
O(s). They showed that non-malleable extractors exist when k > 2m + 3 log(1/ε) + log d + 9 and
d > log(n− k+ 1) + 2 log(1/ε) + 7. However, they only constructed weaker forms of non-malleable
extractors and they gave a protocol that takes 2 rounds but that still has entropy loss O(s2).
Chandran, Kanukurthi, Ostrovsky and Reyzin [CKOR10] improved the entropy loss to O(s) but
the number of rounds becomes O(s) as well.

Dodis, Li, Wooley and Zuckerman [DLWZ11] constructed the first explicit non-malleable ex-
tractor. Their construction works for entropy k > n/2, but they use a large seed length d = n and
the efficiency when outputting more than log n bits relies on an unproven assumption. Cohen, Raz,
and Segev [CRS12] later gave an alternative construction that also works for k > n/2, but uses
a short seed length and does not rely on any unproven assumption. The construction in [CRS12]
also allows multiple adversarial functions {Ai}. By using the non-malleable extractors, these two
papers thus gave 2-round privacy amplification protocols that achieve optimal entropy loss O(s).
However, since both constructions of non-malleable extractors are only shown to work for entropy
k > n/2,2 the protocols also only work for k > n/2. For any constant δ > 0, [DLWZ11] also

2We remark that the 1-bit case construction in [DLWZ11] is a special case of the construction in [CRS12]. Also,
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gave a protocol for k = δn than runs in poly(1/δ) rounds and achieves optimal entropy loss O(s).
Recently, Li [Li12] introduced the notion of a non-malleable condenser, which is a relaxation of a
non-malleable extractor. He showed that non-malleable condensers for (n, k) sources also give pri-
vacy amplification protocols that take an optimal 2 rounds and achieve optimal entropy loss O(s).
However, the non-malleable condensers constructed in [Li12] also only work for k > n/2. Thus
the natural open question is whether we can construct non-malleable extractors or condensers for
smaller min-entropy, and whether there are 2-round privacy amplification protocols with optimal
entropy loss for smaller min-entropy.

One interesting aspect of the two known constructions of non-malleable extractors is that they
are also both two-source extractors. Indeed, the construction in [DLWZ11] is in fact one of the two-
source extractors introduced in [CG88], which requires the sources to have min-entropy > n/2, and
the construction in [CRS12] is in fact the two-source extractor in [Raz05], which requires at least
on of the sources to have min-entropy > n/2. Coincidently, when used as non-malleable extractors,
both of these constructions also require the weak source to have min-entropy > n/2. These facts
suggest that, despite the fact that these two kinds of extractors seem quite different, there may be
some connections between them. However, before this work, no such connection is known.

1.1 Our results

In this paper, we present a strong connection between non-malleable extractors and two-source
extractors. First, we show that non-malleable extractors can be used to construct two-source
extractors. If the non-malleable extractor works for small min-entropy and has a short seed length
(w.r.t. log(1/ε) where ε is the error of the extractor), then the resulted two-source extractor beats
the best known construction of two-source extractors.

Theorem 1.4. Assume that for any ε > 0, we have explicit constructions of (k, ε)-non-malleable
extractors with seed length d = 2 log(1/ε) + o(n) and output length m. Then there exists a constant
δ > 0 and an explicit construction of two source extractors that take as input an (n, (1/2 − δ)n)
source and an independent (n, k) source, and output m bits with error 2−Ω(n).

Note that if k is small, say k = n/3 then this already beats the best known two-source extractors,
but better results can be achieved if we have explicit constructions of generalized non-malleable
extractors. We have the following definition (which already appears in [CRS12]).

Definition 1.5. A function nmExt : {0, 1}n×{0, 1}d → {0, 1}m is a (r, k, ε)-non-malleable extractor
if, for any source X with H∞(X) ≥ k and any r function Ai : {0, 1}d → {0, 1}d, i = 1, · · · , r such
that Ai(y) 6= y for all i and y, the following holds. When Y is chosen uniformly from {0, 1}d and
independent of X,

(nmExt(X,Y ), {nmExt(X,Ai(Y ))}, Y ) ≈ε (Um, {nmExt(X,Ai(Y ))}, Y ).

Here r is the number of adversarial seeds. Note that traditional non-malleable extractors are
just (1, k, ε)-non-malleable extractors according to our definition. In Appendix A we show that
for any constant r, (r, k, ε)-non-malleable extractors exist with seed length d > 3

2 log(n − k) +
3 log(1/ε) +O(1). Now we have the following theorem.

it is possible that the construction in [DLWZ11] can work for entropy k ≤ n/2 (but until now nobody can prove it),
but the construction in [CRS12] in general cannot work for entropy k ≤ n/2.
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Theorem 1.6. For any constant b > 2 and any constant 0 < δ < 1, there exists a constant
C = C(δ) = poly(1/δ) such that the following holds. Assume that for any ε > 0 there exists an
explicit construction of (C, k, ε)-non-malleable extractors with seed length d = b log(1/ε) + o(n) and
output length m. Then there exists an explicit construction of two source extractors that take as
input an (n, δn) source and an independent (n, k) source, and output m bits with error 2−Ω(n).

Note that if we have a (C, k, ε)-non-malleable extractor for k = δn and some constant C =
C(δ) = poly(1/δ) then this will give us a two-source extractor for (n, δn) sources. If δ is small
this will be a big breakthrough for two-source extractors. This also implies that, given current
techniques, the (r, k, ε)-non-malleable extractor in [CRS12] is probably the best that we can achieve.

Next, we show that in the opposite direction, certain two-source extractors can be used to
construct non-malleable extractors. The two-source extractors we will use are those that are con-
structed based on the inner product function. More specifically, we will consider two-source ex-
tractors of the form TExt = IP(f(X), Y ), where IP is the inner product function over F2 and f(X)
stands for some function (encoding) of the source X. We have the following theorem.

Theorem 1.7. Given two integers r, ` such that ` > r. Assume that we have a two-source extractor
TExt = IP(f(X),W ) such that when given an (n, k)-source X and an independent (n2, n2/(r+ 1)−
`)-source W , TExt outputs 1 bit with error ε. Then there exists an explicit construction of (r, k, ε′)-

non-malleable extractors that output 1 bit with error ε′ = O(r2r−` + 2
3r
2 ε).

Using this theorem, and by combining known two-source extractors, we obtain new and im-
proved constructions of non-malleable extractors. We give the first explicit constructions of non-
malleable extractors that work for min-entropy k < n/2. One of them is unconditional and works
for k = (1/2− δ)n for some universal constant δ > 0. The other is conditional but can potentially
work for k = δn for any constant δ > 0. Specifically, we have the following theorems.

Theorem 1.8. There exists a constant 0 < δ < 1 and an explicit (k, ε)-non-malleable extractor
nmExt : {0, 1}n × {0, 1}n → {0, 1}m with k = (1/2− δ)n, m = Ω(n) and ε = 2−Ω(n).

Our conditional result needs to use an affine extractor and an assumption from additive com-
binatorics, as used in [BSZ11]. Thus we first define affine extractors and state the assumption.

Definition 1.9. An [n,m, ρ, ε] affine extractor is a deterministic function f : {0, 1}n → {0, 1}m
such that whenever X is the uniform distribution over some affine subspace over Fn2 with dimension
ρn, we have that for every z ∈ {0, 1}m,

|Pr[f(X) = z]− 2−m| < ε.

Note that we bound the error by the `∞ norm instead of the traditional `1 norm, as in [BSZ11].
We will let λ denote the entropy loss rate, i.e., λ = 1 − m

ρn . We note that it is straightforward to
show by the probabilistic method that such extractors exist for any constant ρ, λ > 0. However the
state of art constructions only achieve λ bigger than 1/2.

[BSZ11] also introduced the Approximate Duality conjecture (ADC), which basically says that
if two independent sources X,Y with linear entropy are such that IP(X,Y ) is not close to uniform,
then there exist two subsources X ′ ⊂ X,Y ′ ⊂ Y with small deficiency such that IP(X ′, Y ′) is
constant. In [BSZ11] it is shown that ADC is implied by the well-known Polynomial Freiman-
Ruzsa Conjecture in additive combinatorics. For a formal definition, see Section 6.3. We now have
the following theorems.
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Theorem 1.10. Assume the ADC conjecture and we have an explicit [n,m, 2
3 , 2
−m] affine extractor

with m = (1 − λ)2
3n. Then there exists a semi-explicit (k, ε)-non-malleable extractor nmExt :

{0, 1}n × {0, 1}d → {0, 1}m with k = 3λ
1+2λn, d = 3

2+4λn, m = Ω(n) and ε = 2−Ω(n).

Theorem 1.11. Given a constant integer r, assume the ADC conjecture and we have an explicit
[n,m, r+1

r+2 , 2
−m] affine extractor with m = (1 − λ) r+1

r+2n. Then there exists a semi-explicit (r, k, ε)-

non-malleable extractor with k = (r+2)λ
1+(r+1)λn, seed length d = r+2

r+1+(r+1)2λ
n− 1 and ε = 2−Ω(n).

Remark 1.12. Here we use the “semi-explicit” to mean that the construction may run in time 2n.
It is semi-explicit in the sense that the running time is polynomial in the length of the extractor’s
truth table (note that an exhaustive search takes time 22n). If we have affine extractors with large
output size such that λ→ 0, then we can essentially achieve k = αn for any constant α > 0.

Finally, we give a new privacy amplification protocol for min-entropy k = δn for any constant
δ > 0. Although we don’t have explicit non-malleable extractors or condensers for such small k,
our protocol simultaneously achieves optimal round complexity (2 rounds), asymptotically optimal
entropy loss and asymptotically optimal communication complexity. This is the first optimal privacy
amplification protocol for arbitrarily linear min-entropy. We have the following theorem.

Theorem 1.13. For any constant 0 < δ < 1 there exists a constant 0 < β < 1 such that as long as
s ≤ βn, there is an efficient 2-round privacy amplification protocol for any (n, δn) weak secret X
with security parameter s, entropy loss O(s+ log n) and communication complexity O(s+ log n).

Thus, in the case where k = δn, our result dramatically improves all previous results. Especially,
it improves the round complexity of the protocol in [DLWZ11] from poly(1/δ) to 2, and thus answers
an open problem in [DLWZ11].

2 Overview of The Constructions and Techniques

In this section we give an overview of our constructions and the techniques used. In order to give
a clean description, we shall be informal and imprecise sometimes.

2.1 From non-malleable extractors to two-source extractors

Given a (k, ε) non-malleable extractor nmExt with seed length d = 2 log(1/ε) + o(n), here is how
we can get a two-source extractor. Assume that we have an (n, k) source X and an independent
(n, (1/2 − δ)n) source Y for some constant δ > 0. Our first step is to use the 1-bit condenser in
[Zuc07] to convert Y into two sources Ȳ1, Ȳ2 such that each of them has l = Ω(n) bits and one of
them has min-entropy at least (1/2 + δ)l. Note that for an appropriately chosen δ this is indeed
possible. Without loss of generality assume that Ȳ1 has min-entropy at least (1/2 + δ)l.

Our key observation here is that Ȳ2 can now be viewed as a function of Ȳ1. More precisely,
we show that the source Y is a convex combination of sources {Y i} such that for each Y i, the
corresponding Ȳ i

1 also has min-entropy at least (1/2 + δ)l, and Ȳ i
2 is a deterministic function of Ȳ i

1 .
Now this looks like the setting of a non-malleable extractor, where we have one seed and another
correlated seed. However, there is a small problem: Ȳ i

1 and Ȳ i
2 may be equal sometimes. To solve

this, we let Y1 = Ȳ1 ◦ 0 and Y2 = Ȳ2 ◦ 1. In this way we guarantee that Y i
1 and Y i

2 are different, and
Y i

2 is still a function of Y i
1 . Finally, this only increases the length of the seed by 1.
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Now we are all set, and we can take the two-source extractor to be TExt(X,Y ) = nmExt(X,Y1)⊕
nmExt(X,Y2). Note that the seed Y1 here is not uniform. However, a simple argument shows that
a non-malleable extractor with seed length d and error ε remains a non-malleable extractor even
if the seed only has min-entropy k′, with error increased to 2d−k

′
ε. In our case, with seed length

d = l+ 1 = Ω(n) = 2 log(1/ε) + o(n) and k′ = (1/2 + δ)l, the error is ε′ = 2d−k
′
ε ≈ 2(1/2−δ)l2−l/2 =

2−Ω(n). By the non-malleability of nmExt, we get that TExt(X,Y ) is 2−Ω(n)-close to uniform.
We note that given any strong extractor with error ε and seed length d, it remains an extractor

even if the seed only has min-entropy k′, with error increased to 2d−k
′
ε. However, since the seed

length is at least d = log(n− k) + 2 log(1/ε)−O(1), this will never be able to get k′ below d/2. On
the other hand, if the extractor is non-malleable as in our case, then it does allow us to break the
entropy rate 1/2 barrier, and get a two-source extractor for an (n, (1/2− δ)n) source and an (n, k)
source. This shows that non-malleability is a highly non-trivial property of a seeded extractor.

Similarly, if we have (r, k, ε)-non-malleable extractors for larger r, then we can afford to have
more correlated seeds Yi, or equivalently, more sources in the output of the condenser. Thus we
can deal with smaller entropy in Y . For example, for any constant δ > 0, condensers based on sum-
product theorems [BKS+05, Raz05, Zuc07] allow us to convert an (n, δn) source into a constant D
number of sources such that each of them has l = Ω(n) bits and one of them has min-entropy at
least 0.9l. If we have (D − 1, k, ε)-non-malleable extractors with suitable parameters, then we can
get two-source extractors or an (n, δn) source and an (n, k) source.

2.2 From two-source extractors to non-malleable extractors

As stated before, we focus on two-source extractors of the form IP(f(X), Y ), where IP is the inner
product function. First consider the simplest function IP(X,Y ). Note that it is a good two-source
extractor. For two independent sources on n bits, it works as long as the sum of the entropies of the
two sources is greater than n. However, at first this function does not seem to be a good candidate
for a non-malleable extractor. To see this, consider the inner product function over F2. Let X be a
source that is obtained by concatenating the bit 0 with Un−1, and let Y be an independent uniform
seed over {0, 1}n. Now for any y ∈ {0, 1}n, let A(y) be y with the first bit flipped. Thus we see
that for all x in the support of X, one has 〈x, y〉 = 〈x,A(y)〉. Therefore, the inner product function
is not a non-malleable extractor even for weak sources with min-entropy k = n− 1.

In the above example, we have that for all x in the support of X, IP(x, y) = IP(x,A(y)). Or
equivalently, IP(x, y + A(y)) = 0. How does this happen? Looking closely at this example, our
key observation is that this is because the range of Y is too large. Indeed, in this example the
range of Y is the entire {0, 1}n, thus for any y the adversary can choose a different A(y) such that
y +A(y) = 10 · · · 0 so that ∀x ∈ Supp(X), IP(x, y +A(y)) = 0.

This observation suggests that we should choose the range of Y to be a subset S ⊂ {0, 1}n, so
that for some y’s, the adversary will be unable to choose the appropriate A(y) from S. Equivalently,
we take a shorter seed length l, choose a uniform y ∈ {0, 1}l and map y to an element in {0, 1}n.
This is essentially an encoding. Now let us see what properties we need the encoding to have.

We start with a construction for min-entropy k > n/2. Assume that we have an (n, k) source
X with k = (1/2 + δ)n for some constant δ > 0. We take an independent and uniform y ∈ {0, 1}l
and encode y to ȳ ∈ {0, 1}n. For any function A, let ȳ′ be the encoding of A(y). We will use an
injective encoding, so that ∀y, ȳ′ 6= ȳ. The output of the non-malleable extractor is then IP(X, Ȳ ).

To show that IP(X, Ȳ ) is a non-malleable extractor, it suffices to show that IP(X, Ȳ ) is close
to uniform, and that IP(X, Ȳ ) ⊕ IP(X, Ȳ ′) is close to uniform. The first part is easy. If X has
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min-entropy k > n/2, then we can take Y to be the uniform distribution over some l ≥ n/2 bits.
Since the encoding is injective, Ȳ will have min-entropy l ≥ n/2. Thus IP(X, Ȳ ) is close to uniform.
For the second part, note that IP(X, Ȳ ) ⊕ IP(X, Ȳ ′) = IP(X, Ȳ + Ȳ ′). Thus now we need Ȳ + Ȳ ′

to have large min-entropy. Indeed, in the above counterexample where l = n, the adversary can
choose A such that Ȳ + Ȳ ′ is always equal to 10 · · · 0 and thus has entropy 0. Now when we take
l < n and map {0, 1}l to S ⊂ {0, 1}n, we want Ȳ + Ȳ ′ to have a large support size.

The ideal case would be that Ȳ + Ȳ ′ also has support size |S| = 2l. This can be achieved if the
encoding has the following property: for every two different y1, y2, we have that ȳ1 + ȳ′1 6= ȳ2 + ȳ′2, or
equivalently, ȳ1 + ȳ′1 + ȳ2 + ȳ′2 6= 0. Indeed, if this is true then Ȳ + Ȳ ′ also has min-entropy l ≥ n/2,
and thus IP(X, Ȳ ) ⊕ IP(X, Ȳ ′) is close to uniform. Looking carefully at this property, we see that
it can be ensured (at least almost ensured, as we will explain shortly) if we have another property:
the elements in S (when viewed as vectors in Fn2 ) are 4-wise linearly independent. Indeed, assume
that the elements in S are 4-wise linearly independent. Then if ȳ1 + ȳ′1 + ȳ2 + ȳ′2 = 0, the only
possible situation is that ȳ′1 = ȳ2 and ȳ′2 = ȳ1. Thus there cannot be three different y1, y2, y3 such
that ȳ1 + ȳ′1 = ȳ2 + ȳ′2 = ȳ3 + ȳ′3. Thus the min-entropy of Ȳ + Ȳ ′ is at least l − 1.

So now the question is to explicitly find a large subset S ⊂ {0, 1}n such that the elements in
S are 4-wise linearly independent. Note that in particular this implies that the sum of any two
different pairs of elements in S cannot be the same. Thus we have

(|S|
2

)
≤ 2n. Therefore |S| can be

at most roughly 2n/2. On the other hand, in order to work for any min-entropy k > n/2, we will
need l ≥ n/2 and thus |S| = 2l ≥ 2n/2. These are very tight upper and lower bounds. Luckily, we
have explicit constructions that meet these bounds. We will think of the elements in S as columns
in a parity check matrix of some binary linear code. Thus we basically need a code with block length
2n/2 and message length 2n/2− n. The 4-wise linearly independent property basically is equivalent
to saying that the code has distance at least 5. This is precisely the [2n/2, 2n/2 − n, 5]-BCH code.
Note that although the parity check matrix has 2n/2 columns, each column is (a, a3) for a different
element a ∈ F∗

2n/2
. Thus the encoding from y to ȳ can be computed efficiently.

Once we have the encoding, we can choose l = n/2 and we know that Ȳ has min-entropy l
and Ȳ + Ȳ ′ has min-entropy l − 1. Now it is straightforward to show that both IP(X, Ȳ ) and
IP(X, Ȳ + Ȳ ′) are close to uniform. Thus we obtain a non-malleable extractor for entropy k > n/2.

Thinking about the above encoding for a moment, one realizes that the same encoding can be
used in any two-source extractor of the form IP(f(X), Y ). Specifically, assume that IP(f(X), Y )
is a two-source extractor for an (n, k) source X and an independent (n, n/2 − 1) source Y . Then
by the same argument above, if we choose the seed Y to be the uniform distribution over {0, 1}n/2
and encode Y to Ȳ like before, we will have that both Ȳ and Ȳ + Ȳ ′ have min-entropy at least
n/2 − 1. Thus both IP(f(X), Ȳ ) and IP(f(X), Ȳ ) ⊕ IP(f(X), Ȳ ′) are close to uniform. Therefore
we get a non-malleable extractor for min-entropy k.

Similarly, if we have a two-source extractor IP(f(X), Y ) for an (n, k) source X and an indepen-
dent (n, k′) source Y with k′ ≈ n/(r + 1), then we can use a BCH code with distance 2r + 3 to
construct a (r, k, ε)-non-malleable extractor. We choose the seed Y to be the uniform distribution
over {0, 1}n/(r+1) and encode Y to Ȳ using the parity check matrix, i.e., Ȳ = (Y, Y 3, · · · , Y 2r+1)
when Y is viewed as an element in F∗

2n/(r+1) . Since the columns of the parity check matrix are

2(r + 1)-wise linearly independent, we can show that for any subset S ⊆ [r], Ȳ ⊕
⊕

i∈S Ai(Y )

has min-entropy roughly n/(r+ 1). Thus IP(f(X), Ȳ )⊕
⊕

i∈S IP(f(X),Ai(Y )) is close to uniform.
Therefore we get a (r, k, ε)-non-malleable extractor.
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2.3 Non-malleable extractors for min-entropy k < n/2

We give the first construction of non-malleable extractors for min-entropy k < n/2 by observing
that the encoding of sources in [Bou05] gives a function f such that IP(f(X), Y ) is a two-source
extractor for an (n, (1/2− δ)n) source X and an independent (n, k′) source Y with k′ ≈ n/2.

Specifically, let X be a distribution over some vector space Fnq and let cX be the distribution
obtained by sampling x1, x2, · · · , xc from c independent copies of X and computing

∑
xi. By

Fourier analysis and the Cauchy-Schwarz inequality one can show that in order to prove IP(X,Y )
is close to uniform, it suffices to prove that IP(cX, Y ) is close to uniform with a smaller error, for
some integer c > 1. In [Bou05], Bourgain showed that for a weak source X with min-entropy rate
1/2− δ for some constant δ > 0, one can encode X to Enc(X) such that 3Enc(X) is close to having
min-entropy rate 1/2 + δ. Thus IP(Enc(X), Y ) is a two-source extractor that meets our needs.
Therefore we obtain our non-malleable extractors for min-entropy k = (1/2− δ)n.

2.4 Non-malleable extractors for any constant min-entropy rate

In [BSZ11], Ben-Sasson and Zewi showed that affine extractors with large output size can be used
to construct two source extractors for min-entropy rate < 1/2. Their “preimage construction” can
potentially achieve any constant min-entropy rate. We observe that their encoding gives a function
f such that IP(f(X), Y ) is a two-source extractor for two independent sources with min-entropy
rate δ for any constant δ > 0. Specifically, they showed that if we have an affine extractor with
large output size, then there is an injective mapping F : {0, 1}n → {0, 1}n′ that maps {0, 1}n into
the preimage of a certain output of the affine extractor, such that for any weak source X with min-
entropy δn, F (Supp(X)) is not contained in any affine subspace of dimension say (1− δ/2)n′. Thus
when Y is a (n′, δn′) source, we have that IP(F (X), Y ) is non-constant. Next, similar as in [BSZ11],
the ADC conjecture implies that in fact IP(F (X), Y ) is close to uniform. Thus IP(F (X), Y ) is a
two-source extractor that meets our needs. Therefore we obtain a non-malleable extractor (and
even a (r, k, ε)-non-malleable extractor) for min-entropy k = δn.

2.5 Increasing output size

We can also increase the output size to Ω(n) for all our constructions with 1 bit output. To do
this, note that we encode the seed Y by using the columns of a parity check matrix of a BCH
code. Equivalently, the encoding is that Ȳ = (Y, Y 3) when we use a field F2l with l = Θ(n)
and Y is viewed as an element in F∗

2l
. Now treat F2l as the vector space Fl2 and take l elements

b1, · · · , bl ∈ F2l that corresponds to a basis of Fl2. For each bi we define one bit Zi = IP(f(X), biȲ ).
We then show that {Zi} satisfy the conditions of a non-uniform XOR lemma, Lemma 3.13.

Specifically, let Z ′i = IP(f(X), biȲ ′) where Y ′ = A(Y ). For any non-empty subset S1 ⊂ [l] and any
subset S2 ⊂ [l], by the linearity of the inner product function, the xor of Zi’s where i ∈ S1 and
Z ′j ’s where j ∈ S2 is of the form IP(f(X), t1Ȳ + t2Ȳ ′), with t1, t2 ∈ F2l . Since S1 is non-empty we

have t1 6= 0. We then show that t1Ȳ + t2Ȳ ′ roughly has the same min-entropy as Y (at least the
min-entropy of Y minus log 3). Thus IP(f(X), t1Ȳ + t2Ȳ ′) is close to uniform. We further show
that the error is 2−Ω(n). Thus by Lemma 3.13 we can output m = Ω(n) bits with error 2−Ω(n).
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2.6 Reducing seed length

In all the constructions where we encode the seed Y by a parity check matrix, the seed length
is linear in the source length. However the error is also 2−Ω(n). If we only need to achieve a
bigger error, we can reduce the seed length by using the parity check matrix of a BCH code
with larger distance. Specifically, when the distance is 2t + 1 the seed length is roughly n/t.
However we need to guarantee something else. For example, in the construction for min-entropy
k > n/2, we need to show that both IP(X, Ȳ ) and IP(X, (Ȳ + Ȳ ′)) are still close to uniform. This
can be shown as follows. Since now the columns of the parity check matrix are 2t-wise linearly
independent, both t

2 Ȳ and t
2(Ȳ + Ȳ ′) will now have min-entropy roughly t

2H∞(Y ) = n/2. Thus
we can conclude that both IP(X, t2 Ȳ ) and IP(X, t2(Ȳ + Ȳ ′)) are close to uniform, and therefore
both IP(X, Ȳ ) and IP(X, (Ȳ + Ȳ ′)) are also close to uniform, by the Cauchy-Schwarz inequality.
However the error increases according to the seed length. Calculations show that we can get seed
length d = O(log n+ log(1/ε)).

2.7 An optimal privacy amplification protocol for k = δn

In [DLWZ11], the authors give a privacy amplification protocol for k = δn with C = poly(1/δ)
rounds and entropy loss poly(1/δ)s, where s is the security parameter. Here we want to somehow
“compress” the protocol into 2 rounds while still keeping the entropy loss to be O(s). As in
[DLWZ11], we first use the condenser in [BKS+05, Raz05, Zuc07] to convert the shared (n, k)
source X into a somewhere rate-0.9 source (X1, · · · , XC) with C = poly(1/δ) rows. Now the high-
level idea of the protocol is as follows. In the first round, Alice samples a fresh random string Y1

from her private random bits and sends it to Bob, where Bob receives a possibly modified version
Y ′1 . In the second round, Bob samples a fresh random string W ′ from his private random bits and
tries to send it to Alice, where Alice receives a possibly modified version W . We want a protocol
such that if Eve does not change Y1, then with high probability Bob can authenticate W ′ to Alice
and they can both output Ext(X,W ′) as the final outputs, by using a strong seeded extractor Ext.
If Eve does change Y1, then with high probability Alice should be able to detect this and reject.

The first goal is relatively easy to achieve. At the end of the first round, Alice and Bob compute
Z = Ext(X,Y1) and Z ′ = Ext(X,Y ′1) respectively, using a strong extractor Ext. If Eve does not
change Y1 then Z = Z ′ and is private and uniform. Thus in the second round Bob can authenticate
W ′ to Alice by also sending a tag T ′ produced by a standard MAC (message authentication code)
with Z as the key. We now focus on the second goal. If the extractor Ext in computing Z and Z ′

is non-malleable for entropy k then this can be done by using the protocol proposed by Dodis and
Wichs [DW09]. However, we do not have explicit non-malleable extractors for k = δn.

Nevertheless, we will still have Alice and Bob each produce a variable V and V ′ respectively.
We will ensure that, if Eve changes Y1 to a different Y ′1 , then even given T ′ and V ′, with high
probability Eve cannot come up with the correct V for Alice. If this is true then in the second
round we can have Bob also send V ′ to Alice, where Alice receives a possibly modified version V̄ .
Alice then checks both the tag T and whether V = V̄ . If either of them fails, Alice rejects. This
will give us a privacy amplification protocol.

The first problem with the above strategy is that now V ′ may give information about Z ′, thus
now the MAC key may not be uniform. This is easy to solve since there are constructions of MACs
that work as long as the key has entropy rate > 1/2. Thus by limiting the size of V ′ to be at most
half the size of Z ′, we can ensure that if Eve does not change Y1, Bob can still authenticate W ′ to
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Alice. We now explain how we produce the variables V, V ′.
We actually have Alice produce C variables V = (V1, · · · , VC). Similarly, Bob produces V ′ =

(V ′1 , · · · , V ′C). For this, we first choose a non-malleable extractor and have Alice and Bob each
apply the extractor to the somewhere rate-0.9 source (X1, · · · , XC), using Y1 and Y ′1 as the seeds
respectively. Let the outputs be (X̄1, · · · , X̄C) and (X̄ ′1, · · · , X̄ ′C). Note that one of the Xi’s, say
Xg is a rate 0.9-source. Thus we can use the non-malleable extractors in [DLWZ11, CRS12, Li12].
Now we fix Y1, Y

′
1 , and we have that X̄g is uniform and independent of X̄ ′g. Thus we can fix X̄ ′g

and X̄g is still uniform. Next, we fix Z ′. Since now Z ′ is a deterministic function of X, as long as
the size of Z ′ is smaller than the size of X̄g, conditioned on this fixing X̄g still has a lot of entropy
left. We will now have Alice extract each Vi from X̄i, and correspondingly, Bob will extract each
V ′i from X̄ ′i. Note that we can indeed ensure that the size of X̄g is bigger than Z ′, while the size of
Z ′ is bigger than the size of (V ′1 , · · · , V ′C) just by limiting the size of each V ′i .

Ideally, we would want V, V ′ be such that Vg is close to uniform conditioned on V ′ = (V ′1 , · · · , V ′C).
However, we cannot achieve exactly this. Instead, what we can achieve is that Vg is close to uni-
form conditioned on (V ′1 , · · · , V ′g). Once we have this, we can limit the size of (V ′g+1, · · · , V ′C) to be
smaller than the size of Vg. Thus Vg still has a lot of entropy even conditioned on V ′ = (V ′1 , · · · , V ′C).
This will ensure that with high probability Eve cannot come up with the correct Vg. Since we do
not know which one of {X̄i} is X̄g, we will choose (V1, · · · , VC) such that the size of VC is say 2s,
and for any i the size of Vi is twice the size of Vi+1. In this way, no matter what g is, the size of
(V ′g+1, · · · , V ′C) is the size of Vg minus 2s. Thus Vg still has 2s entropy left conditioned on V ′.

Finally we explain how we can achieve the above property. We achieve this by using the “look-
ahead” extractor in [DW09] based on an alternating extraction protocol. Specifically, in the first
round we also have Alice sample two other random strings (Y2, Y3) and send them to Bob, where Bob
receives (Y ′2 , Y

′
3). Note that after we fix (Y1, Y

′
1), (Y ′2 , Y

′
3) is a deterministic function of (Y2, Y3). Now

pick a strong extractor Ext and Alice performs the following alternating extraction protocol: S1 =
Y3, R1 = Ext(X,S1), S2 = Ext(Y2, R1), R2 = Ext(X,S2), · · ·SC = Ext(Y2, RC−1), RC = Ext(X,SC).
Bob will perform the same protocol using (Y ′2 , Y

′
3) and produces {S′i, R′i}. As long as the size of

(Si, Ri) is limited, this protocol has the property that for any i, (Ri, Si) is uniform and independent
of {Sj , Rj , S′j , R′j , j < i}. We now modify this protocol such that whenever Si is used to extract

Ri, Alice also uses it to extract Vi = Ext(X̄i, Si). Correspondingly, Bob extracts V ′i = Ext(X̄ ′i, S
′
i).

Now one can show that as long as the size of Vi is also limited, we have that for any i, (Ri, Si) is
uniform and independent of {Sj , Rj , Vj , S′j , R′j , V ′j , j < i}. Specifically, we have that Sg is uniform
and independent of {Sj , Rj , Vj , S′j , R′j , V ′j , j < g}. Moreover, we can show that conditioned on the
fixing of {Sj , Rj , Vj , S′j , R′j , V ′j , j < g}, both Sg and S′g are deterministic functions of (Y2, Y3) and

are thus independent of X̄g. Furthermore, X̄g still has a lot of entropy left. Now since Ext is a
strong extractor, we have that Vg = Ext(X̄g, Sg) is uniform conditioned on {Vj , V ′j , j < g} and

(Sg, S
′
g). Note that we have fixed (X̄ ′g, Z

′) before, while V ′g = Ext(X̄ ′g, S
′
g) and T ′ is a function of

Z ′. Thus Vg is still uniform even conditioned on ({V ′j , j ≤ g}, T ′). Thus we have achieved our goal.
One small problem with the above discussion is that in the first round Alice sends (Y1, Y2, Y3)

to Bob and Bob receives (Y ′1 , Y
′

2 , Y
′

3). Thus Y ′1 is a function of (Y1, Y2, Y3). Therefore fixing (Y1, Y
′

1)
may cause (Y2, Y3) to lose entropy. Thus in the alternating extraction protocol (Y2, Y3) may not
be uniform. However, by making the size of Y1 a constant times smaller than the size of Y3, we
can ensure that Y3 has entropy rate > 2/3 conditioned on (Y1, Y

′
1). Thus we can add a step 0 in

the alternating extraction protocol: S0 = Y3, R0 = Raz(S0, X), S1 = Ext(Y2, R0) and the following
protocol remains the same. Here Raz is the two-source extractor in [Raz05] that works as long
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as one of the source has entropy rate > 1/2. This gives our whole privacy amplification protocol.
Note that the entropy loss is O(2Cs) = 2poly(1/δ)s. For any constant δ > 0 this is still O(s). By
using the improved non-malleable extractor in [Li12] that has short seed length and large output
size (In fact, it suffices to use the non-malleable condensers in [Li12], instead of extractors), we can
achieve randomness complexity (the number of truly random bits needed) O(Cs) = poly(1/δ)s and
communication complexity O(2Cs) = 2poly(1/δ)s.

Organization. The rest of the paper is organized as follows. We give some preliminaries in
Section 3. In Section 4 we show that non-malleable extractors can be used to construct two-
source extractors. In Section 5 we show that two-source extractors based on the inner product
function can be used to construct non-malleable extractors. In Section 6 we give our new and
improved constructions of non-malleable extractors. In Section 7 we give our privacy amplification
protocol for arbitrarily linear min-entropy. We conclude with some open problems in Section 8.
The existence of generalized non-malleable extractors is proved in Appendix A and an alternative
construction of non-malleable extractors for entropy (1/2− δ)n is given in Appendix B.

3 Preliminaries

We often use capital letters for random variables and corresponding small letters for their instanti-
ations. Let |S| denote the cardinality of the set S. Let Zr denote the cyclic group Z/(rZ), and let
Fq denote the finite field of size q. All logarithms are to the base 2.

3.1 Probability distributions

Definition 3.1 (statistical distance). Let W and Z be two distributions on a set S. Their statistical
distance (variation distance) is

∆(W,Z)
def
= max

T⊆S
(|W (T )− Z(T )|) =

1

2

∑
s∈S
|W (s)− Z(s)|.

We say W is ε-close to Z, denoted W ≈ε Z, if ∆(W,Z) ≤ ε. For a distribution D on a set S and
a function h : S → T , let h(D) denote the distribution on T induced by choosing x according to D
and outputting h(x). We often view a distribution as a function whose value at a sample point is
the probability of that sample point. Thus ‖W − Z‖`1 denotes the `1 norm of the difference of the
distributions specified by the random variables W and Z, which equals 2∆(W,Z).

Definition 3.2. A function TExt : {0, 1}n1 × {0, 1}n2 → {0, 1}m is a strong two source extractor
for min-entropy k1, k2 and error ε if for every independent (n1, k1) source X and (n2, k2) source Y ,

|(TExt(X,Y ), X)− (Um, X)| < ε

and

|(TExt(X,Y ), Y )− (Um, Y )| < ε,

where Um is the uniform distribution on m bits independent of (X,Y ).
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3.2 Somewhere Random Sources, Extractors and Condensers

Definition 3.3 (Somewhere Random sources). A source X = (X1, · · · , Xt) is (t × r) somewhere-
random (SR-source for short) if each Xi takes values in {0, 1}r and there is an i such that Xi is
uniformly distributed.

Definition 3.4. An elementary somewhere-k-source is a vector of sources (X1, · · · , Xt), such that
some Xi is a k-source. A somewhere k-source is a convex combination of elementary somewhere-k-
sources.

Definition 3.5. A function C : {0, 1}n × {0, 1}d → {0, 1}m is a (k → l, ε)-condenser if for every
k-source X, C(X,Ud) is ε-close to some l-source. When convenient, we call C a rate-(k/n→ l/m, ε)-
condenser.

Definition 3.6. A function C : {0, 1}n × {0, 1}d → {0, 1}m is a (k → l, ε)-somewhere-condenser
if for every k-source X, the vector (C(X, y)y∈{0,1}d) is ε-close to a somewhere-l-source. When
convenient, we call C a rate-(k/n→ l/m, ε)-somewhere-condenser.

We are going to use condensers recently constructed based on the sum-product theorem. The
following constructions are due to Zuckerman [Zuc07].

Theorem 3.7 ([Zuc07]). There exists a constant α > 0 such that for any constant 0 < δ < 0.9, there
is an efficient family of rate-(δ → (1 + α)δ, ε = 2−Ω(n))-somewhere condensers Scond : {0, 1}n →
({0, 1}m)2 where m = Ω(n).

Theorem 3.8 ([BKS+05, Raz05, Zuc07]). For any constant β, δ > 0, there is an efficient family of
rate-(δ → 1 − β, ε = 2−Ω(n))-somewhere condensers Cond : {0, 1}n → ({0, 1}m)D where D = O(1)
and m = Ω(n).

3.3 Average conditional min-entropy

Dodis and Wichs originally defined non-malleable extractors with respect to average conditional
min-entropy, a notion defined by Dodis, Ostrovsky, Reyzin, and Smith [DORS08].

Definition 3.9. The average conditional min-entropy is defined as

H̃∞(X|W ) = − log
(

Ew←W

[
max
x

Pr[X = x|W = w]
])

= − log
(

Ew←W

[
2−H∞(X|W=w)

])
.

Average conditional min-entropy tends to be useful for cryptographic applications. By taking
W to be the empty string, we see that average conditional min-entropy is at least as strong as
min-entropy. In fact, the two are essentially equivalent, up to a small loss in parameters.

We have the following lemmas.

Lemma 3.10 ([DORS08]). For any s > 0, Prw←W [H∞(X|W = w) ≥ H̃∞(X|W )− s] ≥ 1− 2−s.

Lemma 3.11 ([DORS08]). If a random variable B has at most 2` possible values, then H̃∞(A|B) ≥
H∞(A)− `.

To clarify which notion of min-entropy and non-malleable extractor we mean, we use the term
worst-case non-malleable extractor when we refer to our Definition 1.3, which is with respect to tra-
ditional (worst-case) min-entropy, and average-case non-malleable extractor to refer to the original
definition of Dodis and Wichs, which is with respect to average conditional min-entropy.
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Corollary 3.12. A (k, ε)-average-case non-malleable extractor is a (k, ε)-worst-case non-malleable
extractor. For any s > 0, a (k, ε)-worst-case non-malleable extractor is a (k + s, ε+ 2−s)-average-
case non-malleable extractor.

Throughout the rest of our paper, when we say non-malleable extractor, we refer to the worst-
case non-malleable extractor of Definition 1.3.

3.4 Fourier analysis

We give some basic and standard facts about Fourier analysis here. We normalize as in [DLWZ11].
For functions f, g from a set S to C, we define the inner product 〈f, g〉 =

∑
x∈S f(x)g(x). Let

D be a distribution on S, sometimes we will also view it as a function from S to R. Note that
ED[f(D)] = 〈f,D〉. Now suppose we have functions h : S → T and g : T → C. Then

〈g ◦ h,D〉 = ED[g(h(D))] = 〈g, h(D)〉.

Let G be a finite abelian group, we say φ is a character of G if it is a homomorphism from G
to C×. We call the character that maps all elements to 1 the trivial character. Define the Fourier
coefficient f̂(φ) = 〈f, φ〉, and let f̂ denote the vector with entries f̂(φ) for all φ. Note that for a
distribution D, one has D̂(φ) = ED[φ(D)].

Since the characters divided by
√
|G| form an orthonormal basis, the inner product is preserved

up to scale: 〈f̂ , ĝ〉 = |G|〈f, g〉. As a corollary, we obtain Parseval’s equality:

‖f̂‖2`2 = 〈f̂ , f̂〉 = |G|〈f, f〉 = |G|‖f‖2`2 .

Hence by Cauchy-Schwarz,

‖f‖`1 ≤
√
|G|‖f‖`2 = ‖f̂‖`2 ≤

√
|G|‖f̂‖`∞ . (1)

For functions f, g : S → C, we define the function (f, g) : S ×S → C by (f, g)(x, y) = f(x)g(y).
Thus, the characters of the group G × G are the functions (φ, φ′), where φ and φ′ range over all

characters of G. We abbreviate the Fourier coefficient (̂f, g)((φ, φ′)) by (̂f, g)(φ, φ′). Note that

(̂f, g)(φ, φ′) =
∑

(x,y)∈G×G

f(x)g(y)φ(x)φ′(y) =

(∑
x∈G

f(x)φ(x)

)∑
y∈G

g(x)φ′(x)

 = f̂(φ)ĝ(φ′).

In this paper, in the additive group of Fp we use the characters er(s) = e2πirs/p for r ∈ Fp. It is
easy to verify that {er, r ∈ Fp} indeed are characters and these characters divided by

√
p form an

orthonormal basis. Note that the trivial character corresponds to the case r = 0.
We next generalize the characters to the additive group of the field Fpl . In this case, for any

r ∈ Fpl , we use the character er(s) = e2πi(r·s)/p, where r and s are viewed as vectors in Flp and ·
indicates the inner product function in Flp. Again it is easy to verify that these indeed are characters

and they form an orthonormal basis (up to a normalization factor of pl/2).
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3.5 Non-uniform XOR lemma

The following non-uniform XOR lemmas are proved in [DLWZ11].

Lemma 3.13. Let (W,W ′) be a random variable on G×G for a finite abelian group G, and suppose
that for all characters ψ,ψ′ on G with ψ nontrivial, one has

|E(W,W ′)[ψ(W )ψ′(W ′)]| ≤ ε.

Then the distribution of (W,W ′) is ε|G| close to (U,W ′), where U is the uniform distribution on
G independent of W ′. Moreover, for f : G × G → R defined as the difference of distributions
(W,W ′)− (U,W ′), we have ‖f̂‖`∞ ≤ ε.

Lemma 3.14. For every cyclic group G = ZN and every integer M ≤ N , there is an efficiently
computable function σ : ZN → ZM = H such that the following holds. Let (W,W ′) be a random
variable on G×G, and suppose that for all characters ψ,ψ′ on G with ψ nontrivial, one has

|E(W,W ′)[ψ(W )ψ′(W ′)]| ≤ ε.

Then the distribution (σ(W ), σ(W ′)) is O(εM logN+M/N)-close to the distribution (U,W ′) where
U stands for the uniform distribution over H independent of W ′.

The following non-uniform XOR lemma is proved in [CRS12].

Lemma 3.15. Let X be a random variable over {0, 1}m and Y be a random variable over {0, 1}n.
For any subset σ ⊆ [m] and τ ⊆ [n], let Xσ = ⊕i∈σXi and Yτ = ⊕j∈τYj. Assume that for any
non-empty σ ⊆ [m] and any τ ⊆ [n], we have Xσ ⊕ Yτ ≈ε U . Then

|(X,Y )− (Um, Y )| ≤ ((2m − 1) · 2n)1/2ε.

3.6 Strong non-malleable extractor

The following theorem is proved in [Rao07].

Theorem 3.16. [Rao07] Let TExt : {0, 1}n1 × {0, 1}n2 → {0, 1}m be any two source extractor for
min-entropy k1, k2 with error ε. Then if X is an (n1, k1) source and Y is an independent (n1, k

′
2)

source, we have

|(TExt(X,Y ), Y )− (Um, Y )| ≤ 2m(2k2−k
′
2+1 + ε).

Here we prove a similar theorem that will enable our non-malleable extractor to be “strong”.

Theorem 3.17. Let TExt : {0, 1}n1×{0, 1}n2 → {0, 1}m be a two source extractor for min-entropy
k1, k2 and Ai : {0, 1}n2 → {0, 1}n2 , i = 1, · · · , r be r deterministic functions such that for any
(n1, k1) source X and any independent (n2, k2) source Y ,

|(TExt(X,Y ), {TExt(X,Ai(Y ))})− (Um, {TExt(X,Ai(Y ))})| ≤ ε.

Then for any (n2, k
′
2) source Y ′ independent of X,

|(TExt(X,Y ′), {TExt(X,Ai(Y ′))}, Y ′)− (Um, {TExt(X,Ai(Y ′))}, Y ′)| ≤ 2(r+1)m(2k2−k
′
2+1 + ε).
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Proof. Let W = TExt(X,Y ) and W ′i = TExt(X,Ai(Y )) for any i ∈ [r]. Let W̄ be the vector
(W ′1, · · · ,W ′r). Let z̄ be the vector (z′1, · · · , z′r) ∈ ({0, 1}m)r. For any (z, z̄) ∈ {0, 1}m × ({0, 1}m)r,
define the set of bad y’s for (z, z̄) to be

Bz,z̄ = {y : |Pr[W = z, W̄ = z̄]− 2−m Pr[W̄ = z̄]| > ε}.

Then we must have

Claim 3.18. For every (z, z̄), |Bz,z̄| < 2 · 2k2.

To see this, assume for the sake of contradiction that |Bz,z̄| ≥ 2 · 2k2 for some (z, z̄). Let

B+
z,z̄ = {y : Pr[W = z, W̄ = z̄]− 2−m Pr[W̄ = z̄] > ε}

and

B−z,z̄ = {y : Pr[W = z, W̄ = z̄]− 2−m Pr[W̄ = z̄] < −ε}.

Then |Bz,z̄| = |B+
z,z̄| + |B−z,z̄| and thus one of them must have size ≥ 2k2 . Without loss of

generality assume that |B+
z,z̄| ≥ 2k2 . Then we can let Y to be the uniform distribution over |B+

z,z̄|
and Y is independent of X, but |(W, W̄ )− (Um, W̄ )| > ε, which is a contradiction.

Let B = ∪z,z̄Bz,z̄. We have |B| < 2(r+1)m · 2 · 2k2 = 2(r+1)m+12k2 . Now we can bound
|(W, W̄ , Y ′)− (Um, W̄ , Y ′)| when Y ′ is an independent (n2, k

′
2) source, as follows.

|(W, W̄ , Y ′)− (Um, W̄ , Y ′)|

≤
∑

y∈Supp(Y ′)

2−k
′
2 |(W, W̄ )|Y ′=y − (Um, W̄ )|Y ′=y|

=
∑

y∈Supp(Y ′)∩B

2−k
′
2 |(W, W̄ )|Y ′=y − (Um, W̄ )|Y ′=y|+

∑
y∈Supp(Y ′)\B

2−k
′
2 |(W, W̄ )|Y ′=y − (Um, W̄ )|Y ′=y|

<2−k
′
22(r+1)m+12k2 + 2(r+1)mε

=2(r+1)m(2k2−k
′
2+1 + ε).

3.7 Basic properties of the inner product function

Here we prove some basic properties of the inner product function.

Lemma 3.19. Let Fp be a field and X,Y be two independent random variables over Flp. Assume
that X has min-entropy k1 and Y has min-entropy k2. Let Z = IP(X,Y ) = X · Y be the inner
product function where the operation is in Fp. For any non-trivial character er where r ∈ Fp,

|EX,Y [er(Z)]|2 ≤ pl2−(k1+k2).
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Proof. Note that if a weak random source W has min-entropy k, then ‖W‖`∞ ≤ 2−k, and ‖W‖2`2 =∑
w(Pr[W = w])2 ≤ 2−k

∑
w Pr[W = w] = 2−k.

For a fixed Y = y,

EX [er(x · y)] = EX [ery(X)] = 〈ery, X〉 = X̂(ery).

Thus

EX,Y [er(Z)] = EY [EX [er(x · y)]] = EY [X̂(ery)] = 〈Y, X̂〉.

Therefore by Cauchy-Schwartz,

(EX,Y [er(Z)])2 ≤ 〈Y, Y 〉 · 〈X̂, X̂〉

= ‖Y ‖2`2‖X̂‖
2
`2 = pl‖Y ‖2`2‖X‖

2
`2

≤ pl2−k12−k2 = pl2−(k1+k2).

Now for any weak random source W , we let 2W = W + W stand for the distribution that
is obtained by first sampling w1, w2 from two independent and identical distributions according
to W , and then computing w1 + w2. Similarly W −W is obtained by first sampling w1, w2 and
then computing w1 − w2. Similarly we define cW to be the distribution by sampling wi from c
independent and identical distributions according to W , and then computing the sum. We now
have the following lemma.

Lemma 3.20. Let X,Y be two independent random variables over Flp. For any two integers c1, c2,
let Xc1 = 2c1X − 2c1X and Yc2 = 2c2Y − 2c2Y . Then for any non-trivial character ψ,

|EX,Y [ψ(X · Y )]| ≤ |EXc1 ,Yc2 [ψ(Xc1 · Yc2)]|1/2c1+c2+2
.

Proof. First note

|EX,Y [ψ(X · Y )]| = |EY [EX [ψ(X · Y )]]| ≤ EY |EX [ψ(X · Y )]|.

Note that ψ(s) = e2πirs/p for some r ∈ Fp. Thus by Jensen’s inequality,

(EX,Y [ψ(X · Y )])2 ≤ EY |EX [ψ(X · Y )]|2 = EY [EX [ψ(X · Y )]EX [ψ(X · Y )]]

= |EY
∑
x1,x2

X(x1)X(x2)ψ((x1 − x2) · Y )|

= |EYEX−X [ψ((X −X) · Y )]|
= |EX1,Y [ψ(X1 · Y )]|

where X1 = X −X.
Apply the above procedure again, we get that

(EX,Y [ψ(X · Y )])4 ≤ |EX1,Y [ψ(X1 · Y )]|2 ≤ |EX2,Y [ψ(X2 · Y )]|,
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where X2 = X1 −X1 = 2X − 2X.
Repeat the procedure for c1 times, we get that

(EX,Y [ψ(X · Y )])2c1+1 ≤ |EXc1 ,Y [ψ(Xc1 · Y )]|,

where Xc1 = 2c1X − 2c1X.
similarly, we can apply the argument to Y for another c2 times, and we get

(EX,Y [ψ(X · Y )])2c1+c2+2 ≤ |EXc1 ,Yc2 [ψ(Xc1 · Yc2)]|,

where Xc1 = 2c1X − 2c1X and Yc2 = 2c2Y − 2c2Y . Thus the lemma is proved.

3.8 Incidence theorems

We need the following theorems about point line incidences. For a field F, we call a subset ` ⊂ F×F
a line if there exist a, b ∈ F such that ` = {(x, ax + b)} for all x ∈ F. Let P ⊂ F × F be a set of
points and L be a set of lines, we say that a point (x, y) has an incidence with a line ` if (x, y) ∈ `.
The following theorem provides a bound on the number of incidences that can be generated from
K points and K lines.

Theorem 3.21. [BKT04, Kon03] There exist universal constants α > 0, 0.1 > β > 0 such that for
any field Fq where q is either prime or 2p for p prime, if L,P are sets of K lines and K points
respectively, with K ≤ q2−β, the number of incidences I(P,L) ≤ O(K3/2−α).

3.9 BCH codes

In this paper we will only focus on BCH codes over F2. Given two parameters m, t ∈ N, a BCH
code is a linear code with block length n = 2m − 1, message length roughly n −mt and distance
d ≥ 2t+ 1. Specifically, we have the following theorem.

Theorem 3.22. For all integers m and t there exists an explicit [n, n − mt, 2t + 1]-BCH code3,
with n = 2m − 1.

Since a BCH code is a linear code, we can take its parity check matrix. Note that this is a
mt × n matrix. Let α be a primitive element in F∗2m , the i’th column of the parity check matrix
is of the form (αi, (αi)3, (αi)5, · · · , (αi)2t−1), for i = 0, 1, · · · , n− 1. Since α is a generator in F∗2m ,
equivalently, for y ∈ F∗2m we can think of the y’th column to be (y, y3, · · · , y2t−1).

4 From Non-Malleable Extractors to Two-Source Extractors

In this section we show that non-malleable extractors can be used to construct two-source extractors.
First we have the following lemmas.

Lemma 4.1. Let X be a probability distribution on {0, 1}n1 and Y, Y1, · · · , Ym be probability dis-
tributions on {0, 1}n2. Assume that there exists a function f : {0, 1}n1 → {0, 1}n2 and positive

3In fact, the message length may not be exactly n−mt, but for simplicity we will assume that it is exactly n−mt.
The small error does not affect our analysis. Also, for small t the message length is exactly n−mt.
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numbers v1, · · · vm with
∑

i vi = 1 such that Y = f(X) and Y =
∑

i viYi. Then there exist proba-
bility distributions X1, · · · , Xm ∈ {0, 1}n1 such that

X =
∑
i

viXi and Yi = f(Xi).

Proof. We define the distributions {Xi} as follows. Let S be the support of Y . For any y ∈ S, let
Sy = {x ∈ Supp(X) : f(x) = y}, i.e., Sy is the set of preimages of y. Let p(y) = Pr[Y = y] and
∀i, pi(y) = Pr[Yi = y]. Thus we have

p(y) =
∑
i

vipi(y)

and

p(y) =
∑
x∈Sy

Pr[X = x].

Now for any x ∈ Supp(X), let y = f(x). Let Pr[Xi = x] = qi(x) = pi(y)
p(y) Pr[X = x]. First note

that ∑
x∈Sy

qi(x) =
∑
x∈Sy

pi(y)

p(y)
Pr[X = x] =

pi(y)

p(y)

∑
x∈Sy

Pr[X = x] =
pi(y)

p(y)
p(y) = pi(y).

Thus we have that Yi = f(Xi). Next note that∑
x

qi(x) =
∑
y

∑
x∈Sy

qi(x) =
∑
y

pi(y) = 1.

Therefore for any i, Xi is indeed a probability distribution. Finally, note that∑
i

viqi(x) =
∑
i

vipi(y)

p(y)
Pr[X = x] = Pr[X = x].

Thus we have that X =
∑

i viXi.

Lemma 4.2. Let X be a probability distribution on {0, 1}n1. Assume that there exists a function
f : {0, 1}n1 → {0, 1}n2 such that Y = f(X) is an (n2, k)-source. Then there exits an integer m
and (flat) (n1, k)-sources X1, · · · , Xm, bijections f1, · · · , fm : {0, 1}n1 → {0, 1}n2, positive numbers
v1, · · · vm with

∑
i vi = 1 such that

X =
∑
i

viXi and f(Xi) = fi(Xi).

Proof. First, note that every (n2, k)-source is a convex combination of flat (n2, k)-sources. By
Lemma 4.1, if Y = f(X) and Y =

∑
i viYi, then there exist probability distributions X1, · · · , Xm

on {0, 1}n1 such that X =
∑

i viXi and Yi = f(Xi). Thus it suffices to consider only the case where
Y is a flat (n2, k)-source.

Now let Y be a flat (n2, k)-source. For any y ∈ Supp(Y ), let Sy = {x ∈ Supp(X) : f(x) = y}.
For any x ∈ Supp(X), let p(x) = Pr[X = x] and for any y ∈ Supp(Y ), let p(y) = Pr[Y = y]. Thus
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we have
∑

x∈Sy p(x) = p(y) = 2−k. We now decompose X into a convex combination and produce
the bijections f1, · · · , fm as follows.

Let i = 1. While ∪ySy is not empty, do the following.

1. Pick x from ∪ySy such that p(x) is the minimum. Assume that x ∈ Sy. Now for all y′ ∈
Supp(Y ), y′ 6= y, pick an arbitrary x′ ∈ Sy′ . Thus for any x′, p(x′) ≥ p(x). We now let the
source Xi be the uniform distribution over the set of the chosen x’s, and we let the bijection
fi be such that fi(x) = y and fi(x

′) = y′ for all y′ 6= y. This clearly satisfies the property
that f(Xi) = fi(Xi). Next, we let vi be the total probability mass of x’s, i.e., vi = 2kp(x).

2. We now want to subtract the probability mass from both X and Y . Thus for any x′, we let
p(x′) = p(x′)− p(x) and if p(x′) = 0, remove x′ from Sy′ . Specifically, we remove x from Sy.
Similarly, for any y ∈ Supp(Y ), let p(y) = p(y) − p(x). Note after this we still have that for
any y ∈ Supp(Y ),

∑
x∈Sy p(x) = p(y).

3. Finally, let i = i+ 1.

Note that in the above algorithm, in each iteration at least one element will be removed from
∪ySy. Thus the algorithm will terminate after finite steps, and we obtain X1, · · · , Xm, f1, · · · , fm
and v1, · · · vm. Note that in each iteration the p(y)’s are always the same. Thus in each step we can
always obtain a flat (n1, k)-source Xi and a bijection fi such that fi(Xi) = f(Xi). Note that the
algorithm terminates only when ∪ySy is empty. Since we always have that for any y ∈ Supp(Y ),∑

x∈Sy p(x) = p(y), when the algorithm terminates we must have that for any y ∈ Supp(Y ),

p(y) = 0. Thus we have decomposed X into a convex combination of flat sources X1, · · · , Xm. In
other words,

∑
i vi = 1.

Lemma 4.3. Let X be a probability distribution over {0, 1}n1, Y be a probability distribution over
{0, 1}n2 and f : {0, 1}n1 → {0, 1}n2 be any deterministic function. Assume that |f(X)− Y | ≤ ε for
some 0 < ε < 1, then there exists a probability distribution X ′ over {0, 1}n1 such that

|X ′ −X| ≤ ε and Y = f(X ′).

Proof. For any y ∈ Supp(Y ), let p(y) = Pr[f(X) = y] and q(y) = Pr[Y = y]. Let Sy = {x ∈
Supp(X) : f(x) = y}. Thus we have that p(y) =

∑
x∈Sy Pr[X = x]. Let W = {y ∈ Supp(Y ) :

p(y) > q(y)} and V = {y ∈ Supp(Y ) : p(y) < q(y)}. Thus we have that
∑

y∈W |p(y) − q(y)| =∑
y∈V |p(y)− q(y)| = ε.
We now gradually change the probability distribution X into X ′, as follows. First let X ′ be the

same probability distribution as X, then, while W is not empty or V is not empty, do the following.

1. Pick y ∈W ∪ V such that |p(y)− q(y)| = min{|p(y′)− q(y′)|, y′ ∈W ∪ V }.

2. If y ∈ W , we decrease p(y) to q(y). Specifically, let δ = τ = p(y) − q(y). We pick the
elements x ∈ Sy one by one in an arbitrary order and while τ > 0, do the following. Let
τ ′ = min(Pr[X ′ = x], τ), Pr[X ′ = x] = Pr[X ′ = x] − τ ′ and τ = τ − τ ′. Note that since
p(y) = δ + q(y) ≥ δ, this process will indeed end when τ = 0 and now p(y) = q(y). Now
to ensure that X ′ is still a probability distribution, we pick any ȳ ∈ V and increase p(ȳ) to
p(ȳ) + δ. To do this, simply pick any x ∈ Sȳ and let Pr[X ′ = x] = Pr[X ′ = x] + δ. Note that
after this change we still have that p(ȳ) ≤ q(ȳ). Finally, remove y from W and if p(ȳ) = q(ȳ),
remove ȳ from V .
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3. If y ∈ V , we increase p(y) to q(y). Specifically, let δ = q(y) − p(y). Pick any x ∈ Sy and
let Pr[X ′ = x] = Pr[X ′ = x] + δ. Now to ensure that X ′ is still a probability distribution,
we pick any ȳ ∈ W and decrease p(ȳ) to p(ȳ) − δ. To do this, let τ = δ. We pick the
elements x ∈ Sȳ one by one in an arbitrary order and while τ > 0, do the following. Let
τ ′ = min(Pr[X ′ = x], τ), Pr[X ′ = x] = Pr[X ′ = x] − τ ′ and τ = τ − τ ′. Note that since
pȳ ≥ δ + qȳ, this process will indeed end when τ = 0 and we still have p(ȳ) ≥ q(ȳ). Finally,
remove y from V and if p(ȳ) = q(ȳ), remove ȳ from W .

Note that in each iteration, at least one element will be removed from W ∪V . Thus the iteration
will end after finite steps. When it ends, we have that ∀y, p(y) = q(y). Thus f(X ′) = Y . Also, it
is clear from the algorithm that |X ′ −X| =

∑
y∈W |p(y)− q(y)| ≤ ε.

We also need the following definition and theorem about non-malleable extractors with weak
random seeds.

Definition 4.4. [DLWZ11] A function nmExt : [N ] × [D] → [M ] is a (k, k′, ε)-non-malleable
extractor if, for any source X with H∞(X) ≥ k, any seed Y with H∞(Y ) ≥ k′, and any function
A : [D]→ [D] such that A(y) 6= y for all y, the following holds:

(nmExt(X,Y ), nmExt(X,A(Y )), Y ) ≈ε (U[M ], nmExt(X,A(Y )), Y ).

A non-malleable extractor with small error will remain to be non-malleable even if the seed is
somewhat weak random.

Lemma 4.5. [DLWZ11] A (k, ε)-non-malleable extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m is
also a (k, k′, ε′)-non-malleable extractor with ε′ = 2d−k

′
ε.

Now we can show how non-malleable extractors can be used to construct two-source extractors.
In [DW09], Dodis and Wichs showed that non-malleable extractors for (n, k)-sources exist when
when k > 2m + 3 log(1/ε) + log d + 9 and d > log(n − k + 1) + 2 log(1/ε) + 7. We now show the
following theorem.

Theorem 4.6. Assume that for any ε > 0, we have explicit constructions of (k, ε)-non-malleable
extractors nmExt with seed length d = 2 log(1/ε) + o(n) and output length m. Then there exists a
constant δ > 0 and an explicit construction of two source extractors that take as input an (n, (1/2−
δ)n) source and an independent (n, k) source, and output m bits with error 2−Ω(n).

Proof. Let Y be an (n, (1/2 − δ)n) source and X be an independent (n, k) source. We construct
the two-source extractor TExt as follows. First we use the somewhere-condenser in Theorem 3.7 to
convert Y into a source Ȳ = Scond(Y )with two rows (Ȳ1, Ȳ2). By Theorem 3.7, Ȳ is 2−Ω(n)-close to
a somewhere rate-(1 +α)(1/2− δ)-source. We choose δ > 0 such that (1 +α)(1/2− δ) = (1/2 + δ).
Thus now Ȳ is 2−Ω(n)-close to a somewhere rate-(1/2 + δ)-source. Note that each row of Ȳ has
l = Ω(n) bits.

Now let Y1 = (Ȳ1 ◦ 0) and Y2 = (Ȳ2 ◦ 1). The two-source extractor is defined as

TExt(X,Y ) = nmExt(X,Y1)⊕ nmExt(X,Y2).

We now show that this is indeed a two-source extractor for X and Y . First note that Scond(Y )
is 2−Ω(n)-close to a somewhere rate-(1/2 + δ)-source. Lemma 4.3 implies that there exists another
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source Y ′ such that |Y − Y ′| ≤ 2−Ω(n) and Scond(Y ′) is a somewhere rate-(1/2 + δ)-source. In the
following analysis we will treat Y as Y ′, and this will add at most 2−Ω(n) to the error.

Thus we now have that Ȳ = Scond(Y ) is a somewhere rate-(1/2 + δ)-source, and we want
to show that TExt(X,Y ) is close to uniform. Note that a somewhere rate-(1/2 + δ)-source is a
convex combination of elementary somewhere rate-(1/2 + δ)-sources. Lemma 4.1 now implies that
there exist sources Y 1, · · · , Y t such that Y is a convex combination of Y 1, · · · , Y t and for each Y i,
Scond(Y i) is an elementary somewhere rate-(1/2 + δ)-source. Thus we only need to show that for
each Y i, TExt(X,Y i) is close to uniform. Equivalently and for simplicity, we can assume without
loss of generality that Scond(Y ) is an elementary somewhere rate-(1/2 + δ)-source.

Now, again without loss of generality we assume that Ȳ1 is a (l, (1/2 + δ)l)-source. Consider
the function f(Y ) = Ȳ1. Lemma 4.2 implies that there exist flat (n, (1/2 + δ)l) sources Y 1, · · · , Y t

and bijections f1, · · · , ft such that Y is a convex combination of Y 1, · · · , Y t, and for each i ∈ [t],
f(Y i) = fi(Y

i). Thus we only need to show that for each Y i, TExt(X,Y i) is close to uniform.
Consider such a Y i. Since f(Y i) = fi(Y

i) and fi is a bijection, Ȳ i
1 is a (l, (1/2 + δ)l)-source.

Moreover, we can take gi to be the inverse function of fi, and now Y i = gi(Ȳ i
1 ). Note that Ȳ i

2 is a

deterministic function of Y i, thus we have that now Ȳ i
2 is a deterministic function of Ȳ i

1 . Finally,

note that Y i
1 ↔ Ȳ i

1 and Y i
2 ↔ Ȳ i

2 are both bijections, we thus have the following claim.

Claim 4.7. Y i
1 is a (l + 1, (1/2 + δ)l) source, Y i

2 = hi(Y
i

1 ) where hi is a deterministic function,
and ∀y ∈ Supp(Y i

1 ), hi(y) 6= y.

In other words, Y i
2 can be viewed exactly as the seed modified by an adversary in a non-

malleable extractor. Now since we are using a non-malleable extractor with seed length d = l+1 =
2 log(1/ε) + o(n) = Ω(n) and the seed has min-entropy (1/2 + δ)l, by Lemma 4.5 the error of the
non-malleable extractor is

2d−k
′
ε = 2l+1−(1/2+δ)l2(o(n)−l−1)/2 = 2−(δl−o(n)) = 2−Ω(n).

Therefore, we have that |(nmExt(X,Y i
1 ), nmExt(X,Y i

2 ))− (Um, nmExt(X,Y i
2 ))| ≤ 2−Ω(n). Thus

TExt(X,Y i) = nmExt(X,Y i
1 ) ⊕ nmExt(X,Y i

2 ) is 2−Ω(n)-close to uniform. So TExt(X,Y ) is also
2−Ω(n)-close to uniform.

We can generalize this theorem to work for sources with smaller min-entropy. For this we need
(r, k, ε)-non-malleable extractors with r > 1. We will prove the following theorem in Appendix A.

Theorem 4.8. For any constant r ≥ 1, there exists a (r, k, ε)-non-malleable extractor as long as

d >
3

2
log(n− k) + 3 log(1/ε) +O(1)

k > (r + 1)m+
d

3
+ 2 log(1/ε) + log(d) +O(1).

We can also define (r, k, ε)-non-malleable extractors with weak seed.

Definition 4.9. A function {0, 1}n × {0, 1}d → {0, 1}m is a (r, k, k′, ε)-non-malleable extractor if,
for any source X with H∞(X) ≥ k, any seed Y with H∞(Y ) ≥ k′, and any r function Ai : {0, 1}d →
{0, 1}d, i = 1, · · · , r such that Ai(y) 6= y for all i and y, the following holds:

(nmExt(X,Y ), {nmExt(X,Ai(Y ))}, Y ) ≈ε (Um, {nmExt(X,Ai(Y ))}, Y ).
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Similarly we have the following lemma.

Lemma 4.10. A (r, k, ε)-non-malleable extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m is also a
(r, k, k′, ε′)-non-malleable extractor with ε′ = 2d−k

′
ε.

Proof. For y ∈ {0, 1}d, let εy = ∆((nmExt(X, y), {nmExt(X,Ai(y))}, y), (Um, {nmExt(X,Ai(y))}, y)).
Then for Y chosen uniformly from {0, 1}d,

ε ≥ ∆((nmExt(X,Y ), {nmExt(X,Ai(Y ))}, Y ), (Um, {nmExt(X,Ai(Y ))}, Y )) =
1

2d

∑
y∈{0,1}d

εy.

Thus, for Y ′ with H∞(Y ′) ≥ k′, we get

∆((nmExt(X,Y ′), {nmExt(X,Ai(Y ′))},Y ′), (Um, {nmExt(X,Ai(Y ′))}, Y ′))

=
∑

y∈{0,1}d
Pr[Y = y]εy ≤ 2−k

′ ∑
y∈{0,1}d

εy ≤ 2d−k
′
ε.

Now we have the following theorem.

Theorem 4.11. For any constant b > 2 and any constant 0 < δ < 1, there exists a constant C =
C(δ) = poly(1/δ) such that the following holds. Assume that for any ε > 0 there exists an explicit
construction of (C, k, ε)-non-malleable extractors nmExt with seed length d = b log(1/ε) + o(n) and
output length m. Then there exists an explicit construction of two source extractors that take as
input an (n, δn) source and an independent (n, k) source, and output m bits with error 2−Ω(n).

Proof. Let Y be an (n, δn) source and X be an independent (n, k) source. We construct the two-
source extractor TExt as follows. First we use the somewhere-condenser in Theorem 3.8 to convert
Y into a source Ȳ = Cond(Y ) with D = poly(1/δ) rows (Ȳ1, · · · , ȲD) such that Ȳ is 2−Ω(n)-close
to a somewhere rate- b

b+1 -source. Note that each row of Ȳ has l = Ω(n) bits.
Now for each row j we let Yj be Ȳj concatenated with the binary expression of j − 1. The

two-source extractor is defined as

TExt(X,Y ) =
⊕
j

nmExt(X,Yj).

Let C = D − 1. Again, we want to show that TExt(X,Y ) is close to uniform. The proof is
similar to the proof in Theorem 4.6. Specifically, we can assume that Y is such that Cond(Y ) is
indeed a somewhere rate- b

b+1 -source. This only adds 2−Ω(n) to the error. Next, we can assume that

Cond(Y ) is an an elementary somewhere rate- b
b+1 -source.

Now, without loss of generality we assume that Ȳ1 is a (l, b
b+1 l)-source. Consider the function

f(Y ) = Ȳ1. Lemma 4.2 implies that there exist flat (n, b
b+1 l) sources Y 1, · · · , Y t and bijections

f1, · · · , ft such that Y is a convex combination of Y 1, · · · , Y t, and for each i ∈ [t], f(Y i) = fi(Y
i).

Thus we only need to show that for each Y i, TExt(X,Y i) is close to uniform. Consider such a Y i.
Since f(Y i) = fi(Y

i) and fi is a bijection, Ȳ i
1 is a (l, b

b+1 l)-source. Moreover, we can take gi to be

the inverse function of fi, and now Y i = gi(Ȳ i
1 ). Note that for any j, j 6= 1, Ȳ i

j is a deterministic

function of Y i, thus we have that now Ȳ i
j is a deterministic function of Ȳ i

1 . Finally, note that for

any j, Y i
j ↔ Ȳ i

j is a bijection, we thus have the following claim.
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Claim 4.12. Y i
1 is a (l + O(1), b

b+1 l) source, for any j, j 6= 1, Y i
j = hij(Y

i
1 ) where hij is a deter-

ministic function, and ∀j, j 6= 1,∀y, hij(y) 6= y.

Note that now we have C modified seeds for the non-malleable extractor. Since we are using a
non-malleable extractor with seed length d = l+O(1) = b log(1/ε) + o(n) = Ω(n) and the seed has
min-entropy b

b+1 l, by Lemma 4.10 the error of the non-malleable extractor is

2d−k
′
ε = 2l+O(1)− b

b+1
l2(o(n)−l−O(1))/b ≤ 2

−( 1
b(b+1)

l−o(n))
= 2−Ω(n).

Therefore, we have that |(nmExt(X,Y i
1 ), {nmExt(X,Y i

j )}) − (Um, {nmExt(X,Y i
j )})| ≤ 2−Ω(n).

Thus TExt(X,Y i) =
⊕

j nmExt(X,Y i
j ) is 2−Ω(n)-close to uniform. So TExt(X,Y ) is also 2−Ω(n)-

close to uniform.

5 From Two-Source Extractors to Non-Malleable Extractors

In this section we show how to use a certain kind of two-source extractors to construct non-malleable
extractors.

We first define the following encoding of a string y ∈ {0, 1}d.

Definition 5.1. Given an integer s, we choose a BCH code with t = 2 and m = s + 1, thus the
block length is n = 2s+1 − 1 and the parity check matrix is a mt× n matrix. For any y ∈ {0, 1}s,
let SY stand for the integer whose binary expression is y. We encode y to ȳ such that ȳ is the Sy’th
column in the parity check matrix (i.e., Enc(y) = ȳ = (y, y3) when y is viewed as an element in
F∗2s+1).

We have the following theorem.

Theorem 5.2. Assume that we have a two-source extractor TExt = IP(f(X),W ) such that when
given an (n1, k)-source X and an independent (n2, n2/2 − `)-source W , TExt outputs 1 bit with
error ε. Let n′2 = bn2

2 c − 1 and let Y be the uniform distribution over {0, 1}n′2. Define a seeded
extractor

nmExt(X,Y ) = IP(f(X),Enc(Y )).

Then nmExt is a (k, ε′)-non-malleable extractor with error ε′ = O(2−` + ε).

Proof. First let Y ′ be a source over {0, 1}n′2 with min-entropy n2/2 − ` + 1. Let A : {0, 1}n′2 →
{0, 1}n′2 be any deterministic function such that ∀y,A(y) 6= y.

Note that the BCH code has distance 2t + 1 = 5 > 4, thus any 4 columns in the parity check
matrix must be linearly independent. This in particular implies that every two different columns
must be different. Thus Enc(Y ′) = Ȳ ′ has min-entropy n2/2− `+ 1. Therefore by the assumption
we have that

nmExt(X,Y ′) ≈ε U.

Next, note that

nmExt(X,Y ′)⊕ nmExt(X,A(Y ′)) = IP(f(X),Enc(Y ′))⊕ IP(f(X),Enc(A(Y ′)))

= IP(f(x), Y ′ +A(Y ′)).
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For two different y1, y2, if y1 +A(y1) = y2 +A(y2), then y1,A(y1), y2,A(y2) are linearly depen-
dent. Note that A(y1) = Enc(A(y1)) and A(y2) = Enc(A(y2)) are also some columns of the parity
check matrix. Since A(y1) 6= y1 and A(y2) 6= y2, we have that A(y1) 6= y1 and A(y2) 6= y2. Thus
we must have A(y1) = y2 and A(y2) = y1.

Therefore, the min-entropy of Y ′+A(Y ′) is at least n2/2−` since the probability of getting any
particular element in the support is at most 2 · 2−(n2/2−`+1) = 2−(n2/2−`). Thus by the assumption
we have

nmExt(X,Y ′)⊕ nmExt(X,A(Y ′)) ≈ε U.

Thus by the non-uniform XOR lemma, Lemma 3.13, we have

|(nmExt(X,Y ′), nmExt(X,A(Y ′)))− (U, nmExt(X,A(Y ′)))| ≤ 2ε.

Now note that Y has min-entropy n′2 = bn2
2 c − 1, thus by Theorem 3.17,

|(nmExt(X,Y ), nmExt(X,A(Y )), Y )− (U, nmExt(X,A(Y )), Y )| ≤ 22(2−(`−4) + 2ε) = O(2−` + ε).

Similarly, we can generalize the above theorem to the case of (r, k, ε)-non-malleable extractors.
We have the following definition and theorem.

Definition 5.3. Given two integers r, s, we choose a BCH code with t = r + 1 and m = s + 1,
thus the block length is n = 2s+1 − 1 and the parity check matrix is a mt × n matrix. For any
y ∈ {0, 1}s, let SY stand for the integer whose binary expression is y. We encode y to ȳ such that
ȳ is the Sy’th column in the parity check matrix (i.e., Encr(y) = ȳ = (y, y3, · · · , y2r+1) when y is
viewed as an element in F∗2s+1).

Theorem 5.4. Given two integers r, ` such that ` > r. Assume that we have a two-source extractor
TExt = IP(f(X),W ) such that when given an (n1, k)-source X and an independent (n2, n2/(r +
1) − `)-source W , TExt outputs 1 bit with error ε. Let n′2 = b n2

r+1c − 1 and let Y be the uniform

distribution over {0, 1}n′2. Define a seeded extractor

nmExt(X,Y ) = IP(f(X),Encr(Y )).

Then nmExt is a (r, k, ε′)-non-malleable extractor with error ε′ = O(r2r−` + 2
3r
2 ε).

Proof. First let Y ′ be a source over {0, 1}n′2 with min-entropy n2/(r + 1) − ` + log(r + 1). Let
Ai : {0, 1}n′2 → {0, 1}n′2 , i = 1, · · · , r be r deterministic function such that for any i, ∀y,Ai(y) 6= y.

Note that the BCH code has distance 2t + 1 = 2r + 3 > 2r + 2, thus any 2r + 2 columns in
the parity check matrix must be linearly independent. This in particular implies that every two
different columns must be different. Thus Enc(Y ′) = Ȳ ′ has min-entropy n2/(r+1)− `+log(r+1).
Therefore by the assumption we have that

nmExt(X,Y ′) ≈ε U.

Next, choose any non-empty subset S ⊆ [r], note that
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nmExt(X,Y ′)⊕
⊕
i∈S

nmExt(X,Ai(Y ′)) = IP(f(X),Enc(Y ′))⊕
⊕
i∈S

IP(f(X),Enc(Ai(Y ′)))

= IP(f(x), Y ′ +
∑
i∈S
Ai(Y ′)).

For two different y1, y2, if y1+
∑

i∈S Ai(y1) = y2+
∑

i∈S Ai(y2), then y1, {Ai(y1), i ∈ S}, y2, {Ai(y2),
i ∈ S} are linearly dependent. Without loss of generality we assume that all Ai(y1) are different and
all Ai(y2) are different, since if not then some of them sum to 0 and this only decreases the number
of items. Note that Ai(y1) = Encr(Ai(y1)) and Ai(y2) = Encr(Ai(y2)) are also some columns of the
parity check matrix. Since the columns are 2r+ 2-wise linearly independent, and the total number
of items here is at most 2r+ 2, we must have that the items in {y1, {Ai(y1), i ∈ S}} and the items
in {y2, {Ai(y2), i ∈ S}} form a perfect matching, where an edge in the matching is of the form
y1 = Aj(y2), Ai(y1) = y2 or Ai(y1) = Aj(y2).

Now we claim that for any y, there are at most r different yj ’s such that y +
∑

i∈S Ai(y) =

yj+
∑

i∈S Ai(yj). To see this, assume for the sake of contradiction that there are r+1 such different

yj ’s. Then by the above discussion we see that for each j, there exists an i ∈ S such that yj = Ai(y).

Since |S| ≤ r we must have two different yj and yl and an i ∈ S such that yj = Ai(y) = yl. Note
that Encr is injective, thus we have yj = yl, a contradiction.

Therefore, the min-entropy of Y ′+
∑

i∈S Ai(Y ′) is at least n2/(r+1)−`+log(r+1)−log(r+1) =
n2/(r + 1)− `. Therefore by the assumption we have that

nmExt(X,Y ′)⊕
⊕
i∈S

nmExt(X,Ai(Y ′)) ≈ε U.

Thus by the non-uniform XOR lemma, Lemma 3.15, we have

|(nmExt(X,Y ′), {nmExt(X,Ai(Y ′))})− (U, {nmExt(X,Ai(Y ′))})| ≤ 2
r
2 ε.

Now note that Y has min-entropy n′2 = b n2
r+1c − 1, thus by Theorem 3.17,

|(nmExt(X,Y ), {nmExt(X,Ai(Y ))}, Y )− (U, nmExt(X, {nmExt(X,Ai(Y ))}, Y )|

≤ 2r+1(2−(`−log(r+1)−3) + 2
r
2 ε) = O(r2r−` + 2

3r
2 ε).

6 Improved Constructions of Non-Malleable Extractors

Now we can use the above theorems to construct new non-malleable extractors. As a warm up, we
first give a new construction of non-malleable extractors for min-entropy rate > 1/2.

6.1 A Non-Malleable Extractor for Entropy Rate > 1/2

For this purpose, simply notice that the inner product function itself is a two-source extractor for
an (n, (1/2+δ)n) source and another independent source on n bits with min-entropy slightly below
n/2. Specifically, we have
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Theorem 6.1. [CG88, Vaz85] For every constant δ > 0, if X is an (n, k1) source, Y is an
independent (n, k2) source and k1 + k2 ≥ (1 + δ)n, then

IP(X,Y ) ≈ε U

with ε = 2−Ω(δn).

Thus we can use the following construction. Given an (n, k)-source X with k = (1/2+δ)n, take
an independent uniform seed Y ∈ {0, 1}n/2−1 and encode Y to Ȳ such that Ȳ = Enc(Y ) = (Y, Y 3)
when Y is viewed as an element in F∗

2n/2
. Our non-malleable extractor is now defined as

nmExt(X,Y ) = IP(X,Enc(Y )) = IP(X, Ȳ ),

where IP is the inner product function over F2.

Theorem 6.2. For any constant δ > 0, the function nmExt defined as above is a ((1/2+δ)n, 2−Ω(δn))
non-malleable extractor.

Proof. By Theorem 6.1, IP(X,Y ) is a two-source extractor for an (n, (1/2 + δ)n) source and an
independent (n, (1/2− δ/2)n) source with error 2−Ω(δn). Thus by Theorem 5.2, nmExt is a ((1/2 +
δ)n, ε) non-malleable extractor with ε = O(2−δn/2 + 2−Ω(δn)) = 2−Ω(δn).

6.2 Non-Malleable Extractors for Entropy Rate < 1/2

In this section we give one of our main constructions, namely a non-malleable extractor for weak
sources with min-entropy rate 1/2 − δ for some universal constant δ > 0. We have the following
construction.

Given an (n, k)-source X with k = (1/2 − δ)n, we first pick a prime p that is close to n. By
Bertrand’s postulate and [BHP01], there exists n0 ∈ N such that for every n ≥ n0, there exists a
prime between n and n+O(n0.525). We will pick a prime p in this range. Note that the prime can
be found in polynomial time in n. Take the field Fq where q = 2p and let g be a generator in F∗q .
The construction is as follows.

• Treat X as an element in F∗q and encode X such that Enc(X) = (X, gX).

• Take an independent and uniform seed Y ∈ {0, 1}p−1 and encode Y to Ȳ such that Ȳ =
(Y, Y 3) when Y is viewed as an element in F∗2p .

• Output nmExt(X,Y ) = IP(Enc(X), Ȳ ) where IP is the inner product function over F2.

To prove our construction is a non-malleable extractor, we are going to use Theorem 5.2. To
this end, we first prove the following lemma.

Lemma 6.3. There exists a constant δ > 0 such that for any (n, k)-source X with k = (1/2− δ)n,
and any independent (2p, k2) source Y with k2 ≥ (1− δ)p,

|IP(Enc(X), Y )− U | ≤ ε,

where ε = 2−Ω(n).
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Proof. We think of X as a distribution in F∗q that has min-entropy k. This increases the error by

at most 2−k (for the element 0). By the XOR lemma, we only need to show that for the only
non-trivial character ψ (since we only output 1 bit),

|EX,Y [ψ(IP(Enc(X), Y ))]| ≤ 2−Ω(n).

Let X ′ = 4Enc(X)− 4Enc(X), by Lemma 3.20 we have

|EX,Y [ψ(IP(Enc(X), Y ))]| ≤ |EX′,Y [ψ(X ′ · Y )]|
1
8 .

We next bound |EX′,Y [ψ(X ′ · Y )]|. First we show that X ′ is close to a source with min-entropy
rate > 1/2. We have the following claim.

Claim 6.4. There is a universal constant δ > 0 such that if X is any weak source with min-entropy
(1/2− δ)n, 3Enc(X) is 2−Ω(n)-close to a source with min-entropy (1/2 + δ)(2p).

Proof of the claim. Note that k = (1/2 − δ)n and p is between n and n(1 + 1
2 ln2 n

). Thus for
sufficiently large n we have that k ≥ (1/2−1.01δ)p. Note that we choose the field Fq where q = 2p.

Thus the sum of Enc(X) + Enc(X) when viewing Enc(X) as a vector in F2p
2 is the same as when

viewing Enc(X) as a vector in F2
q . In the following we will view Enc(X) as a vector in F2

q . We show
that 3Enc(X) has a larger min-entropy rate.

First consider the distribution 2Enc(X). Note that the distribution is of the form (X+X, gX +
gX). Let X̄ = gX and note that gx is a bijection in F ∗q . Thus X̄ has the same min-entropy as X.
Now the support of 2Enc(X) is of the form (logg(x̄1x̄2), x̄1 + x̄2). For any (b, a) in this support,

we have that x̄1x̄2 = gb and x̄1 + x̄2 = a. Thus there are at most 2 different pairs of (x̄1, x̄2) that
satisfy both equations. Therefore the min-entropy of 2Enc(X) is at least 2H∞(X)−1. We can also
assume that a 6= 0 since this only increases the error by at most 2−H∞(X). Now let k = H∞(X)−1,
we have that Enc(X) has min-entropy at least k and 2Enc(X) has min-entropy at least 2k.

Now consider 3Enc(X). Every element in the support of 3Enc(X) has the form (logg(x̄1x̄2x̄3), x̄1+
x̄2 + x̄3), which determines the point (x̄1x̄2x̄3, x̄1 + x̄2 + x̄3). Let a = x̄1 + x̄2 and b = x̄1x̄2, this
point is

(bx̄3, a+ x̄3).

Let x̃3 = a+ x̄3, then

(a+ x̄3, bx̄3) = (x̃3, bx̃3 − ab).

For a fixed (a = x̄1 + x̄2, b = x̄1x̄2) define the line

`a,b = {(x, bx− ab)|x ∈ Fq}.

Thus we have a set of lines L = {`a,b}. Note that a 6= 0 and b 6= 0. Thus for different (a, b),
the line `a,b is also different. Note that x3 is sampled from X3, which has min-entropy k and
(a, b) is sampled from Enc(X1) + Enc(X2), which has min-entropy 2k. Further note that these two
distributions are independent. Since every weak source with min-entropy k is a convex combination
of flat k sources, without loss of generality we can assume that X3 and Enc(X1)+Enc(X2) are both
flat sources. Thus L has size 22k.
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Now let α, β be the two constants in Theorem 3.21. Assume that 3Enc(X) is ε-far from any
source with min-entropy (1 + α/2)2k. Since 3Enc(X) determines the distribution (A + X̄3, BX̄3),
this distribution is also ε-far from any source with min-entropy (1 +α/2)2k. Thus there must exist
some set M of size at most 2(1+α/2)2k such that

Pr
(a,b)←2Enc(X),x3←X

[(a+ x̄3, bx̄3) ∈M ] ≥ ε.

Note that whenever (a + x̄3, bx̄3) ∈ M , this point has an incidence with the line `a,b. Further
note that whenever (a, b) is different or x3 is different, the incidence is also different. Thus by the
above inequality the number of incidences between the set of points M and the set of lines L is at
least

Pr
(a,b)←2Enc(X),x3←X

[(a+ x̄3, bx̄3) ∈M ]2k22k ≥ ε23k.

On the other hand, since L has size 22k and M has size 2(1+α/2)2k ≤ 2(1+α/2)2(1/2−δ)p <
2(1+α/2)p ≤ q2−β, by Theorem 3.21, the number of incidences between M and L is at most
O(2(3/2−α)(2+α)k) < 23k(1−α/6) = 2−αk/223k.

Thus we must have ε < 2−αk/2.
Thus we have shown that 3Enc(X) is 2−αk/2-close to having min-entropy (1 + α/2)2k. By

choosing δ appropriately, we get that 3Enc(X) is 2−Ω(n)-close to having min-entropy (1/2+δ)2p.

Now note that Y is a weak source over {0, 1}2p with min-entropy k2 ≥ (1− δ)p. Also note that
the min-entropy of X ′ is at least the min-entropy of 3Enc(X). Thus by Lemma 3.19 we have that

|EX′,Y [ψ(X ′ · Y )]| ≤ 22p2−(1/2+δ)2p2−(1−δ)p + 2−Ω(n) = 2−Ω(n).

Therefore
|EX,Y [ψ(IP(Enc(X), Y ))]| ≤ 2−Ω(n).

Now we can prove our construction is a non-malleable extractor.

Theorem 6.5. For any (n, k)-source X with k = (1/2− δ)n, the function nmExt defined above is
a (k, ε)-non-malleable extractor with ε = 2−Ω(n).

Proof. By Lemma 6.3, IP(Enc(X), Y ) is a two-source extractor for an (n, k) source and an indepen-
dent (p, (1−δ)p) source with error 2−Ω(n). Therefore by Theorem 5.2, nmExt is a (k, ε)-non-malleable
extractor with error ε = O(2−δp + 2−Ω(n)) = 2−Ω(n).

6.3 Achieving Even Smaller Min-Entropy

In this section we show that we can construct non-malleable extractors for even smaller min-entropy
rate (potentially any constant arbitrarily close to 0), if we assume that we have affine extractors with
large enough output size, and the Approximate Duality Conjecture (or the Polynomial Freiman-
Ruzsa Conjecture) as in [BSZ11].

Recall the definition of an affine extractor.
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Definition 6.6. An [n,m, ρ, ε] affine extractor is a deterministic function f : {0, 1}n → {0, 1}m
such that whenever X is the uniform distribution over some affine subspace over Fn2 with dimension
ρn, we have that for every z ∈ {0, 1}m,

|Pr[f(X) = z]− 2−m| < ε.

Now we define the duality measure of two sets as in [BSZ11].

Definition 6.7. [BSZ11] Given two sets A,B ⊆ Fn2 , their duality measure is defined as

µ⊥(A,B) =
∣∣∣Ea∈A,b∈B[(−1)〈a,b〉]

∣∣∣ .
The following conjecture is introduced in [BSZ11] and is shown in that paper to be implied by

the well-known Polynomial Freiman-Ruzsa Conjecture in additive combinatorics.

Conjecture 6.8. (Approximate Duality (ADC)) [BSZ11] For every pair of constants α, δ > 0 there
exist a constant ζ > 0 and an integer r, both depending on α and δ such that the following holds
for sufficiently large n. If A,B ⊆ Fn2 satisfy |A|, |B| ≥ 2αn and µ⊥(A,B) ≥ 2−ζn, then there exists
a pair of subsets

A′ ⊆ A,A′ ≥ |A|
2δn+1

and B′ ⊆ B, |B′| ≥
(
µ⊥(A,B)

2

)r
· |B|

2δn

such that µ⊥(A′, B′) = 1.

We now have the following construction.

Construction 6.9. Given any (n, k) source X and a constant 0 < λ < 1, let f : {0, 1}n′ → {0, 1}m′

be an [n′,m′ = (1 − λ)2
3n
′, 2

3 , 2
−m′ ] affine extractor such that n = n′ −m′. For any z ∈ {0, 1}m′ ,

let f−1(z) = {x : f(x) = z}. Then there exists z ∈ {0, 1}m′ such that |f−1(z)| ≥ 2n. Let F :
{0, 1}n → f−1(z) be (any) injective map. Now take an independent uniform seed Y ∈ {0, 1}n′/2−1

and encode Y to Ȳ such that Ȳ = Enc(Y ) = (Y, Y 3) when Y is viewed as an element in F∗
2n
′/2 . Our

non-malleable extractor is now defined as

nmExt(X,Y ) = IP(F (X),Enc(Y )) = IP(F (X), Ȳ ),

where IP is the inner product function taken over F2.

Remark 6.10. Note that here the function F may not be efficiently computable (in time poly(n)).
However, the time to compute F is polynomial in the length of the truth table of our final extractor.

Again, we will show that our construction is a non-malleable extractor by using Theorem 5.2.
To this end, we first show the lemma.

Lemma 6.11. For any (n, k) source X with k = 2.5λ
1+2λn and any independent (n′, n

′

3 + 1) source Y ,
IP(F (X), Y ) is non-constant.

Proof. As usual we can assume without loss of generality that X and Y are flat sources. If
IP(F (X), Y ) is a constant, then Supp(F (X)) and Supp(Y ) must be contained in two affine sub-
spaces with dimension d1, d2 such that d1 + d2 ≤ n′. Note that d2 >

n′

3 since Y has min-entropy
n′

3 + 1. We next show that d1 >
2
3n
′ and thus reach a contradiction.
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To see this, let S = Supp(F (X)). It suffices to show that S is not contained in any affine
subspace of dimension 2

3n
′. Let A be such an affine subspace. We have

|A ∩ S| ≤ |A ∩ f−1(z)| < 2 · 2−m′2
2
3
n′ = 2

2λ
3
n′+1,

where the last inequality follows from the fact that f is an affine extractor. Now note that |S| =

2
2.5λ
1+2λ

n = 2
2.5λ
3
n′ . Thus we have that |A ∩ S| < |S| and therefore S cannot be contained in A.

Now we have the following lemma.

Lemma 6.12. There exists a constant ζ = ζ(λ) such that for any (n, k) source X with k = 3λ
1+2λn

and any independent (n′, 7n′

15 ) source Y , IP(F (X), Y ) is 2−ζn-close to uniform.

Proof. Let v = n
n′ = 1+2λ

3 , α = min{λ, 1
3} and δ = λ

8 . Let ζ ′ and r be the constant and the integer

guaranteed by conjecture 6.8 for α and δ. Let ζ = min{ ζ
′

v ,
1−λ
8r }. We will prove the lemma by way

of contradiction.
Let X and Y be two independent sources as in the statement of the lemma. Again we assume

without loss of generality that both X and Y are flat sources. Let A = Supp(X) and Ā =
{F (a)|a ∈ A} ⊆ Fn′2 . Let B̄ = Supp(Y ) ⊆ Fn′2 . Note that F is an injective function. Thus

|Ā| = 2
3λ

1+2λ
n = 2λn

′ ≥ 2αn
′

and |B̄| = 2
7n′
15 > 2

n′
3 ≥ 2αn

′
.

Assume for the sake of contradiction that the error of IP(F (X), Y ), which is equal to 1
2µ
⊥(Ā, B̄),

is greater than 2−ζn ≥ 2−ζ
′n′ . Then by the ADC conjecture (conjecture 6.8) there exist A′ ⊆ Ā

and B′ ⊆ B̄ such that

|A′| ≥ |Ā|
2δn′+1

≥ 2
5λ
6
n′ = 2

2.5λ
1+2λ

n and |B′| ≥ |B̄|
2δn′+rζn

≥ 2
7n′
15

2
n′
8

> 2
n′
3

+1,

and µ⊥(A′, B′) = 1.

Let A′′ be the preimages of A′ under F . Since F is injective, we must have |A′′| ≥ 2
2.5λ
1+2λ

n. Thus if
we let X ′ and Y ′ be the uniform distribution over A′′ and B′ respectively, we get two independent
sources that satisfy the conditions in Lemma 6.11. However IP(F (X ′), Y ′) is a constant, which
contradicts Lemma 6.11. Thus we must have that IP(F (X), Y ) is 2−ζn-close to uniform.

Now we can prove the following theorem.

Theorem 6.13. nmExt is a (k, ε)-non-malleable extractor with k = 3λ
1+2λn, seed length d = 3

2+4λn−
1 and ε = 2−Ω(n).

Proof. The seed length is clearly d = n′/2− 1 = 3
2+4λn− 1. Let ζ = ζ(λ) be as in Lemma 6.12. By

Lemma 6.12, IP(F (X), Y ) is a two-source extractor for an (n, k = 3λ
1+2λn) source and an independent

(n′, 7n′

15 ) source with error 2−ζn. Thus by Theorem 5.2, nmExt is a (k, ε)-non-malleable extractor

with error ε = O(2−n
′/30 + 2−ζn) = 2−Ω(n).

Similarly, we can generalize our construction to (r, k, ε)-non-malleable extractors. We have the
following construction and theorem.

30



Construction 6.14. Given a constant integer r, any (n, k) source X and a constant 0 < λ < 1,
let f : {0, 1}n′ → {0, 1}m′ be an [n′,m′ = (1 − λ) r+1

r+2n
′, r+1
r+2 , 2

−m′ ] affine extractor such that

n = n′−m′. For any z ∈ {0, 1}m′ , let f−1(z) = {x : f(x) = z}. Then there exists z ∈ {0, 1}m′ such
that |f−1(z)| ≥ 2n. Let F : {0, 1}n → f−1(z) be (any) injective map. Now take an independent
uniform seed Y ∈ {0, 1}n′/(r+1)−1 and encode Y to Ȳ such that Ȳ = Encr(Y ) = (Y, Y 3, · · · , Y 2r+1)
when Y is viewed as an element in F∗

2n
′/(r+1) . Define a seeded extractor

nmExt(X,Y ) = IP(F (X),Encr(Y )) = IP(F (X), Ȳ ),

where IP is the inner product function taken over F2.

Theorem 6.15. nmExt is a (r, k, ε)-non-malleable extractor with k = (r+2)λ
1+(r+1)λn, seed length d =

r+2
r+1+(r+1)2λ

n− 1 and ε = 2−Ω(n).

By using Theorem 5.4 instead of Theorem 5.2, the proof of this theorem is very similar to the
proof of Theorem 6.13. We thus omit the proof here.

6.4 Increasing the Output Size and Reducing the Seed Length

In this section we show that we can increase the output size and reduce the seed length for the
constructions in Subsection 6.1, Subsection 6.2 and Subsection 6.3. All these constructions share
the same pattern: the seed Y is encoded using the parity check matrix of a BCH code, and then
the output is the inner product function of the encoded source and the encoded seed over F2.

We only discuss the construction in Subsection 6.2, but the method can be applied to all the
other constructions in the same way. We start by showing how to increase the output size to
m = Ω(n).

6.4.1 Increasing the output size

Recall that in the construction we used a field F2p for a prime p. Given the finite filed F2p , the
elements of this field form a vector space of dimension p over F2. Let b1, · · · , bp ∈ F2p be a basis
for this vector space. Now recall that in the construction we encode the seed Y to Ȳ = (Y, Y 3),
when viewing Y as an element in F∗2p . Now for each bi, let Ȳ i = (biY, biY

3) and define one bit
Zi = IP(Enc(X), Ȳ i). We now show that {Zi} satisfy the conditions of a non-uniform XOR lemma.

Lemma 6.16. Given any (n, k)-source X with k = (1/2 − δ)n and an independent seed Y ∈
{0, 1}p−1 with min-entropy (1− δ)p+ 2, let A : {0, 1}p−1 → {0, 1}p−1 be any deterministic function
such that ∀y,A(y) 6= y. For any i, let Z ′i = IP(Enc(X), Ȳ i′), where Ȳ i′ = (biY

′, biY
′3) and Y ′ =

A(Y ). Then for any non-empty subset S1 ⊆ [p] and any subset S2 ⊆ [p], we have that

|
⊕
i∈S1

Zi ⊕
⊕
j∈S2

Z ′j − U | ≤ 2−Ω(n).

Proof. Note that ⊕
i∈S1

Zi = IP(Enc(X),
∑
i∈S1

Ȳ i) = IP(Enc(X), t1(Y, Y 3)),

where t1 =
∑

i∈S1
bi ∈ F2p , and
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⊕
j∈S2

Z ′j = IP(Enc(X),
∑
j∈S2

Ȳ j′) = IP(Enc(X), t2(Y ′, Y ′3)),

where t2 =
∑

j∈S2
bj ∈ F2p .

Thus ⊕
i∈S1

Zi ⊕
⊕
j∈S2

Z ′j = IP(Enc(X), Ỹ ),

where Ỹ = t1(Y, Y 3) + t2(Y ′, Y ′3).
We now bound the min-entropy of Ỹ and have the following claim.

Claim 6.17. H∞(Ỹ ) > (1− δ)p.

Proof. We have two cases.
Case 1: S2 = φ. In this case Ỹ = t1(Y, Y 3). Since S1 6= φ, we have t1 6= 0. Thus Ỹ has the

same min-entropy as Y , which is (1− δ)p+ 2 > (1− δ)p.
Case 2: S2 6= φ. In this case we have t1 6= 0 and t2 6= 0. We need to bound the min-entropy of

Ỹ = t1(Y, Y 3) + t2(Y ′, Y ′3). Again, if for every two different y1, y2, we have t1(y1, y
3
1) + t2(y′1, y

′3
1 ) 6=

t1(y2, y
3
2)+ t2(y′2, y

′3
2 ), then Ỹ will have the same min-entropy of Y . We now show that any element

in Supp(Ỹ ) can come from at most 3 different elements in Supp(Y ).
To show this, assume for the sake of contradiction that there are 4 different y1, y2, y3, y4 such

that t1(yi, y
3
i ) + t2(y′i, y

′3
i ) are the same for i = 1, 2, 3, 4. First consider y1, y2, we have t1(y1, y

3
1) +

t2(y′1, y
′3
1 ) = t1(y2, y

3
2) + t2(y′2, y

′3
2 ). Since t1 6= 0, let r = t2/t1 ∈ F2p . Thus r 6= 0 and we have

(y1, y
3
1) + r(y′1, y

′3
1 ) = (y2, y

3
2) + r(y′2, y

′3
2 ). We first consider the case where r = 1. In this case, the

vectors (y1, y
3
1), (y′1, y

′3
1 ), (y2, y

3
2) and (y′2, y

′3
2 ) are linearly dependent over F2. However we know

that the columns of the parity check matrix of the BCH code are 4-wise linearly independent. Thus
we must have y′1 = y2 and y′2 = y1. Thus in this case the element in Supp(Ỹ ) comes from at most
2 different elements in Supp(Y ). Now if r 6= 1, we have

y1 + ry′1 = y2 + ry′2

and

(y1)3 + r(y′1)3 = (y2)3 + r(y′2)3.

Hence we get

y1 − y2 = r(y′2 − y′1)

and

(y2
1 + y1y2 + y2

2)(y1 − y2) = r(y′22 + y′1y
′
2 + y′21 )(y′2 − y′1).

Since y1 6= y2 and r 6= 0, we must have that y′1 6= y′2. Thus we get

y2
1 + y1y2 + y2

2 = y′22 + y′1y
′
2 + y′21 .

Similarly we can get
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y2
1 + y1y3 + y2

3 = y′23 + y′1y
′
3 + y′21 .

Thus

(y1 + y2 + y3)(y2 − y3) = (y′1 + y′2 + y′3)(y′2 − y′3).

Also, from y2 + ry′2 = y3 + ry′3 we get

y2 − y3 = r(y′3 − y′2).

Since y2 6= y3, we have

y′1 + y′2 + y′3 = −r(y1 + y2 + y3).

Similarly we can get

y′1 + y′2 + y′4 = −r(y1 + y2 + y4).

Therefore

y′4 − y′3 = r(y3 − y4).

On the other hand, from y3 + ry′3 = y4 + ry′4 we get

y′4 − y′3 = 1/r(y3 − y4).

Thus

(r2 − 1)(y3 − y4) = 0.

Since r 6= 1, r2 − 1 6= 0. Thus we have y3 = y4, a contradiction.
Therefore, the min-entropy of Ỹ is at least H∞(Y )− log 3 = (1− δ)p+ 2− log 3 > (1− δ)p.

Now, by Lemma 6.3, the lemma follows.

Now we have the following theorem.

Theorem 6.18. There exists a constant 0 < δ < 1 such that for any n ∈ N, k = (1/2− δ)n, there
exists an explicit (k, ε)-non-malleable extractor nmExt : {0, 1}n × {0, 1}n → {0, 1}m with m = Ω(n)
and ε = 2−Ω(n).

Proof. By Lemma 6.16 and Lemma 3.13, we can choose m = Ω(n) bits from {Zi} such that when
we have nmExt output Z1 ◦ · · · ◦ Zm, we get

|(nmExt(X,Y ), nmExt(X,A(Y )))− (Um, nmExt(X,A(Y )))| ≤ 2−Ω(n).

Note that in Lemma 6.16 the seed Y only has min-entropy (1−δ)p+2. Thus if we use a uniform
seed Y ∈ {0, 1}p−1, by Theorem 3.17 we have that

|(nmExt(X,Y ), nmExt(X,A(Y )), Y )− (Um, nmExt(X,A(Y )), Y )| ≤ ε,

where ε = 22m(2−δp+4 + 2−Ω(n)) = 2−Ω(n) when m = Ω(n) and is small enough.
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6.4.2 Reducing the seed length

In the constructions mentioned above, we use a BCH code with distance 5. Thus the columns of
the parity check matrix are 4-wise linearly independent. To reduce the seed length, we are going to
use a BCH code with larger distance. Specifically, we will choose a [2`− 1, 2`− 1− 2t`, 4t+ 1]-BCH
code with ` = p/t for some parameter t to be chosen later. Note that the parity check matrix is a
2p× (2` − 1) matrix4. Thus the columns of the matrix are D = 4t-wise linearly independent. The
detailed construction is as follows.

• Given an (n, k)-source X with k = (1/2− δ)n, pick a prime p such that n ≤ p ≤ n(1 + 1
2 ln2 n

).

• Let q = 2p and g be a generator in F∗q . Treat X as an element in F∗q and encode X such that

Enc(X) = (X, gX).

• Let ` = p/t. Take the parity check matrix of a [2` − 1, 2` − 1 − 2t`, 4t + 1]-BCH code. Note
that it is a 2p × (2` − 1) matrix. Take an independent and uniform seed Y ∈ {0, 1}`−1 and
let SY stand for the integer whose binary expression is Y . We encode Y to Ȳ such that Ȳ is
the SY ’th column in the parity check matrix.

• Output nmExt(X,Y ) = IP(Enc(X), Ȳ ) where IP is the inner product function taken over F2.

As in Subsection 6.2, we have Claim 6.4. We now want to argue about the min-entropy of tȲ
and t(Ȳ + ¯A(Y )).

Lemma 6.19. Assume Y has min-entropy k2, then tȲ is t22−(k2+1)-close to having min-entropy
t(k2− log t), and t(Ȳ + Ȳ ′) is t22−(k2+2) + t(t2−

2
3
k2)log t-close to having min-entropy t((1− log t

3t )k2−
3 log t).

Proof. Without loss of generality assume that Y is a flat source. Let K = 2k2 . First consider tȲ .
Note that Ȳ has the same min-entropy as Y and is also a flat source, since every two columns of
the parity check matrix are different. The support of tȲ has the form ȳ1 + · · · + ȳt. Consider the
case where all ȳi’s are different. This takes up a probability mass of

K!

(K − t)!
·K−t = 1 · (1− 1

K
) · · · (1− t− 1

K
) > 1−

t−1∑
i=1

i

K
> 1− t2

2K
.

Since the columns of the parity check matrix are 4t-wise linearly independent. For every two
different sets {ȳi}’s, their sum cannot be the same. Therefore, the probability mass of getting a
particular value is at most t!K−t ≤ 2−t(k2−log t). Thus tȲ is t22−(k2+1)-close to having min-entropy
t(k2 − log t).

Next consider t(Ȳ + ¯A(Y )). Let A(Y ) = Y ′ and Y ′′ = Ȳ +Ȳ ′. Note that for every s ∈ Supp(Y ′′),
s 6= 0 since ∀y,A(y) 6= y. Also note that Y ′′ has min-entropy at least k2−1 since if ȳ1+ȳ′1 = ȳ2+ȳ′2
for y1 6= y2, then we must have ȳ′1 = ȳ2 and ȳ′2 = ȳ1. Without loss of generality assume that Y ′′ is
a flat source with min-entropy k2 − 1. Let K2 = 2k2−1. Note that now in the support of Y ′′ there
are no two different y1, y2 such that ȳ1 + ȳ′1 = ȳ2 + ȳ′2 (since this will be absorbed into the same
element).

4Actually p is not divisible by t, thus `t < p. However for simplicity we will assume that the matrix has 2p rows.
For example we can add 0’s in the end, the small error does not affect our analysis.
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We now consider tY ′′. An element in its support has the form
∑t

i=1(ȳi+ ȳ′i). We first get rid of
those elements in Supp(tY ′′) such that some of the {ȳi+ ȳ′i}’s are the same. By the same argument

as above this takes up a probability mass of at most t2

2K2
. Now, for a particular set {ȳi + ȳ′i}i∈[t],

we consider how many different sets can have the same sum.
Since the columns of the parity check matrix are 4t-wise linearly independent, if the sum of

two different sets {ȳi + ȳ′i}i∈[t] are the same, then except those ȳi + ȳ′i’s that are common in
both sets, the rest of ȳi + ȳ′i’s must form cycles. By cycle we mean a set of l elements such that
ȳ′1 = ȳ2, ȳ′2 = ȳ3, · · · , ȳ′l = ȳ1 so that the sum is 0. Note that l ≥ 3 since the support of Y ′′ has
no 2-cycles. Let S1, S2 be the two sets {ȳi + ȳ′i}i∈[t]. Now, the elements in a cycle can come from
both sets or just from one set. If the elements from a cycle comes only from S2, then this cycle can
be replaced by any other cycle with the same length, and the sum of S1 and S2 are still the same.
On the other hand, if the elements of a cycle comes from both S1 and S2, then the elements in this
cycle are completely determined by S1 since cycles are disjoint. Therefore, let r be the number of
common elements in S1, S2, and let l be the total length of cycles whose elements only come from
the rest elements of S2, and note that cycles have length at least 3, we have that if l ≥ log t, then
the total probability mass of these elements in Supp(tY ′′) is at most

∑
log t≤l≤t

(
t

l

)(K2
3
l
3

)
l!(K2)−l ≤

∑
log t≤l≤t

tl(
K2

3
)
l
3 (K2)−l <

∑
log t≤l≤t

(t(K2)−
2
3 )l < t(t2−

2
3
k2)log t.

On the other hand, if l < log t, then the probability that tY ′′ gets a particular value is at most

∑
0≤l≤log t

∑
0≤r≤t−l

(
t

l

)(
t− l
r

)(K2
3
l
3

)
t!(K2)−t < t log t · t2t(K2

3
)
log t
3 (K2)−t < t log t(t2(K2)−(1− log t

3t
))t.

Thus the min-entropy is at least t((1− log t
3t )k2 − 3 log t).

Now for an (n, k)-source X with k = (1/2−δ)n, we know that 3Enc(X) is 2−Ω(n)-close to having
min-entropy (1/2+δ)(2p). Assume that we want our non-malleable extractor to have error ε ≤ 1/n.
We’ll choose a parameter t < n/C log n for a sufficiently large constant C > 1. When Y is uniform
over ` = p/t bits, tȲ is close to having min-entropy t(k2− log t) > (1−1/C)p > (1/2−δ/2)(2p), and
t(Ȳ +Ȳ ′) is close to having min-entropy t((1− log t

3t )k2−3 log t) > (1−1/C)p > (1/2−δ/2)(2p). When
tȲ and t(Ȳ + Ȳ ′) indeed have this min-entropy, by Lemma 3.19 we have that both IP(3Enc(X), tȲ )
and IP(3Enc(X), t(Ȳ + Ȳ ′)) are 2−Ω(n)-close to uniform. Thus we can take t = Ω(n/(log(1/ε))) and
by Lemma 3.20 and Theorem 3.17 we have that the error of the non-malleable extractor is at most
ε, and the seed length is roughly p/t = O(n/t) = O(log(1/ε)). Thus we have the following theorem.

Theorem 6.20. There exists a universal constant δ > 0 such that for every n ∈ N and ε such that
2−Ω(n) ≤ ε ≤ 1/poly(n), there exists an explicit (k, ε) non-malleable extractor nmExt : {0, 1}n ×
{0, 1}d → {0, 1} for k = (1/2− δ)n and seed length d = O(log n+ log(1/ε)).
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7 An Optimal Privacy Amplification Protocol for Arbitrarily Lin-
ear Entropy

In this section we present our privacy amplification protocol for (n, k)-sources X with k = δn for
any constant δ > 0. Following [KR09] and [DLWZ11], we define a privacy amplification protocol
(PA, PB). The protocol is executed by two parties Alice and Bob, who share a secret X ∈ {0, 1}n.
An active, computationally unbounded adversary Eve might have some partial information E about
X satisfying H̃∞(X|E) > k. Since Eve is unbounded, we can assume without loss of generality
that she is deterministic. Informally, we want the protocol to be such that whenever a party
(Alice or Bob) does not reject, the key R output by this party is random and independent of Eve’s
view. Moreover, if both parties do not reject, they must output the same keys RA = RB with
overwhelming probability.

More formally, we assume that Eve has full control of the communication channel between the
two parties. This means that Eve can arbitrarily insert, delete, reorder or modify messages sent
by Alice and Bob to each other. In particular, Eve’s strategy PE defines two correlated executions
(PA, PE) and (PE , PB) between Alice and Eve, and Eve and Bob, called “left execution” and “right
execution”, respectively. Alice and Bob are assumed to have fresh, private and independent random
bits Y and W , respectively. Y and W are not known to Eve. In the protocol we use ⊥ as a special
symbol to indicate rejection. At the end of the left execution (PA(X,Y ), PE(E)), Alice outputs a
key RA ∈ {0, 1}m ∪ {⊥}. Similarly, Bob outputs a key RB ∈ {0, 1}m ∪ {⊥} at the end of the right
execution (PE(E), PB(X,W )). We let E′ denote the final view of Eve, which includes E and the
communication transcripts of both executions (PA(X,Y ), PE(E)) and (PE(E), PB(X,W ). We can
now define the security of (PA, PB).

Definition 7.1. An interactive protocol (PA, PB), executed by Alice and Bob on a communication
channel fully controlled by an active adversary Eve, is a (k,m, ε)-privacy amplification protocol if
it satisfies the following properties whenever H̃∞(X|E) ≥ k:

1. Correctness. If Eve is passive, then Pr[RA = RB ∧ RA 6=⊥ ∧ RB 6=⊥] = 1.

2. Robustness. We start by defining the notion of pre-application robustness, which states that
even if Eve is active, Pr[RA 6= RB ∧ RA 6=⊥ ∧ RB 6=⊥] 6 ε.

The stronger notion of post-application robustness is defined similarly, except Eve is addition-
ally given the key RA the moment she completed the left execution (PA, PE), and the key
RB the moment she completed the right execution (PE , PB). For example, if Eve completed
the left execution before the right execution, she may try to use RA to force Bob to output
a different key RB 6∈ {RA,⊥}, and vice versa.

3. Extraction. Given a string r ∈ {0, 1}m∪{⊥}, let purify(r) be ⊥ if r =⊥, and otherwise replace
r 6=⊥ by a fresh m-bit random string Um: purify(r) ← Um. Letting E′ denote Eve’s view of
the protocol, we require that

∆((RA, E
′), (purify(RA), E′)) ≤ ε and ∆((RB, E

′), (purify(RB), E′)) ≤ ε

Namely, whenever a party does not reject, its key looks like a fresh random string to Eve.

The quantity k − m is called the entropy loss and the quantity log(1/ε) is called the security
parameter of the protocol.
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7.1 Prerequisites from previous work

One-time message authentication codes (MACs) use a shared random key to authenticate a message
in the information-theoretic setting.

Definition 7.2. A function family {MACR : {0, 1}d → {0, 1}v} is a ε-secure one-time MAC for
messages of length d with tags of length v if for any w ∈ {0, 1}d and any function (adversary)
A : {0, 1}v → {0, 1}d × {0, 1}v,

Pr
R

[MACR(W ′) = T ′ ∧W ′ 6= w | (W ′, T ′) = A(MACR(w))] ≤ ε,

where R is the uniform distribution over the key space {0, 1}`.

Theorem 7.3 ([KR09]). For any message length d and tag length v, there exists an efficient
family of (ddv e2

−v)-secure MACs with key length ` = 2v. In particular, this MAC is ε-secure when
v = log d+ log(1/ε).
More generally, this MAC also enjoys the following security guarantee, even if Eve has partial
information E about its key R. Let (R,E) be any joint distribution. Then, for all attackers A1 and
A2,

Pr
(R,E)

[MACR(W ′) = T ′ ∧W ′ 6= W |W = A1(E),

(W ′, T ′) = A2(MACR(W ), E)] ≤
⌈
d

v

⌉
2v−H̃∞(R|E).

(In the special case when R ≡ U2v and independent of E, we get the original bound.)

Remark 7.4. Note that the above theorem indicates that the MAC works even if the key R has
average conditional min-entropy rate > 1/2.

Sometimes it is convenient to talk about average case seeded extractors, where the source X has
average conditional min-entropy H̃∞(X|Z) ≥ k and the output of the extractor should be uniform
given Z as well. The following lemma is proved in [DORS08].

Lemma 7.5. [DORS08] For any δ > 0, if Ext is a (k, ε) extractor then it is also a (k+log(1/δ), ε+δ)
average case extractor.

For a strong seeded extractor with optimal parameters, we use the following extractor con-
structed in [GUV09].

Theorem 7.6 ([GUV09]). For every constant α > 0, and all positive integers n, k and any ε > 0,
there is an explicit construction of a strong (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with
d = O(log n + log(1/ε)) and m ≥ (1 − α)k. It is also a strong (k, ε) average case extractor with
m ≥ (1− α)k −O(log n+ log(1/ε)).

We need the following construction of strong two-source extractors in [Raz05].

Theorem 7.7 ([Raz05]). For any n1, n2, k1, k2,m and any 0 < δ < 1/2 with

• n1 ≥ 6 log n1 + 2 log n2

37



• k1 ≥ (0.5 + δ)n1 + 3 log n1 + log n2

• k2 ≥ 5 log(n1 − k1)

• m ≤ δmin[n1/8, k2/40]− 1

There is a polynomial time computable strong 2-source extractor Raz : {0, 1}n1 × {0, 1}n2 →
{0, 1}m for min-entropy k1, k2 with error 2−1.5m.

Theorem 7.8. [DLWZ11, CRS12, Li12] For every constant δ > 0, there exists a constant β > 0
such that for every n, k ∈ N with k ≥ (1/2 + δ)n and ε > 2−βn there exists an explicit (k, ε)
non-malleable extractor with seed length d = O(log n+ log ε−1) and output length m = Ω(n).

The following standard lemma about conditional min-entropy is implicit in [NZ96] and explicit
in [MW97].

Lemma 7.9 ([MW97]). Let X and Y be random variables and let Y denote the range of Y . Then
for all ε > 0, one has

Pr
Y

[
H∞(X|Y = y) ≥ H∞(X)− log |Y| − log

(
1

ε

)]
≥ 1− ε.

7.2 The privacy amplification protocol

We first define the following alternating extraction protocol.

Quentin: Q,S0 Wendy: X, X̄ = (X1, · · · , Xt)

S0

S0

−−−−−−−−−−−−−→
R0

←−−−−−−−−−−−−− R0 = Raz(S0, X)

S1 = Extq(Q,R0)
S1

−−−−−−−−−−−−−→
R1

←−−−−−−−−−−−−− R1 = Extw(X,S1), V1 = Extv(X1, S1)

S2 = Extq(Q,R1)
S2

−−−−−−−−−−−−−→
R2

←−−−−−−−−−−−−− R2 = Extw(X,S2), V2 = Extv(X2, S2)

· · ·

St = Extq(Q,Rt−1)
St

−−−−−−−−−−−−−→
Rt = Extw(X,St), Vt = Extv(Xt, St)

Figure 1: Alternating Extraction.

Alternating Extraction. Assume that we have two parties, Quentin and Wendy. Quentin
has a source Q, Wendy has a source X and a source X̄ = (X1 ◦ · · · ◦Xt) with t rows. Also assume
that Quentin has a weak source S0 with entropy rate > 1/2 (which may be correlated with Q).
Suppose that (Q,S0) is kept secret from Wendy and (X, X̄) is kept secret from Quentin. Let Extq,
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Extw, Extv be strong seeded extractors with optimal parameters, such as that in Theorem 7.6. Let
Raz be the strong two-source extractor in Theorem 7.7. Let s, d be two integer parameters for the
protocol. The alternating extraction protocol is an interactive process between Quentin and Wendy
that runs in t+ 1 steps.

In the 0’th step, Quentin sends S0 to Wendy, Wendy computes R0 = Raz(S0, X) and replies R0

to Quentin, Quentin then computes S1 = Extq(Q,R0). In this step R0, S1 each outputs d bits. In the
first step, Quentin sends S1 to Wendy, Wendy computes V1 = Extv(X1, S1) and R1 = Extw(X,S1).
She sends R1 to Quentin and Quentin computes S2 = Extq(Q,R1). In this step V1 outputs 2t−1s
bits, and R1, S2 each outputs d bits. In each subsequent step i, Quentin sends Si to Wendy, Wendy
computes Vi = Extv(Xi, Si) and Ri = Extw(X,Si). She replies Ri to Quentin and Quentin computes
Si+1 = Extq(Q,Ri). In step i, Vi outputs 2t−is bits, and Ri, Si+1 each outputs d bits. Therefore,
this process produces the following sequence:

S0, R0 = Raz(S0, X),S1 = Extq(Q,R0), V1 = Extv(X1, S1), R1 = Extw(X,S1), · · · ,
St = Extq(Q,Rt−1), Vt = Extv(Xt, St), Rt = Extw(X,St).

Look-Ahead Extractor. Now we can define our look-ahead extractor. Let Y = (Q,S0) be a
seed, the look-ahead extractor is defined as

laExt((X, X̄), Y ) = laExt((X, X̄), (Q,S0))
def
= V1, · · · , Vt.

Note that the look-ahead extractor can be computed by each party (Alice or Bob) alone in our
final protocol. Now we give our protocol for privacy amplification.

7.2.1 The protocol

Now we give our privacy amplification protocol for the setting when H̃∞(X|E) = k > δn. We
assume that the error ε we seek satisfies 2−Ω(δn) < ε < 1/n. In the description below, it will be
convenient to introduce an “auxiliary” security parameter s. Eventually, we will set s = log(C/ε)+
O(1) = log(1/ε) +O(1), so that O(C)/2s < ε, for a sufficiently large O(C) constant related to the
number of “bad” events we will need to account for. We will need the following building blocks:

• Let Cond : {0, 1}n → ({0, 1}n′)C be a rate-(δ → 0.9, 2−s)-somewhere-condenser. Specifically,
we will use the one from Theorem 3.8, where C = poly(1/δ) = O(1), n′ = poly(δ)n = Ω(n)
and 2−s � 2−Ω(δn).

• Let nmExt : {0, 1}n′ × {0, 1}d′ → {0, 1}m′ be a (0.8n′, 2−s)-non-malleable extractor. Specifi-
cally, we will use the one from Theorem 7.8 and set the output length m′ = 6 · 2Cs.

• Let Ext,Extq,Extw,Extv be seeded extractors with error 2−s, seed length d = O(log n+s) and
optimal entropy loss O(s) as in Theorem 7.6. Extq,Extw,Extv will be used in laExt.

• Let Raz be the strong two-source extractor in Theorem 7.7. This will be used in laExt.

• Let lrMAC be a one-time (“leakage-resilient”) MAC for d-bit messages, with key length 2C(6s)
and tag length 2C(3s). We will later use the second part of Theorem 7.3 to argue good security
of this MAC even when some bits of partial information about its key is leaked to the attacker.
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Using the above building blocks, the protocol is given in Figure 2. To emphasize the presence of
Eve, we will use ‘prime’ to denote all the protocol values seen or generated by Bob; e.g., Bob picks
W ′, but Alice sees potentially different W , etc.

Alice: X Eve: E Bob: X

(X1, . . . XC) = Cond(X). (X1, . . . XC) = Cond(X).
Sample random Y = (Y1, Y2, Y3)
such that
|Y1| = max{d, d′}, |Y3| = 30max{d, d′}+ 3s,
|Y2| = 4Cd+ 31max{d, d′}+ 4s

(Y1, Y2, Y3) −→ (Y ′1 , Y
′
2 , Y

′
3)

Sample random W ′ with d bits.
Z ′ = Ext(X;Y ′1) with 2C(6s) bits.
X̄ ′ = (X̄ ′1, . . . , X̄

′
C),

where X̄ ′i = nmExt(Xi, Y
′
1).

V ′ = (V ′1 , . . . , V
′
C) = laExt((X, X̄ ′), (Y ′2 , Y

′
3))

with parameters (2s, d).
T ′ = lrMACZ′(W ′).
Set final RB = Ext(X;W ′).

(W,T, V̄ )←− (W ′, T ′, V ′)

Z = Ext(X;Y1) with 2C(6s) bits.
X̄ = (X̄1, . . . , X̄C),
where X̄i = nmExt(Xi, Y1).
V = (V1, . . . , VC) = laExt((X, X̄), (Y2, Y3))
with parameters (2s, d).
If T 6= lrMACZ(W ) or
V 6= V̄ reject.
Set final RA = Ext(X;W ).

Figure 2: 2-round Privacy Amplification Protocol for H̃∞(X|E) ≥ δn.

Theorem 7.10. For any constant δ > 0, the above protocol is a privacy amplification protocol with
security parameter log(1/ε), entropy loss 2poly(1/δ) log(1/ε), randomness complexity poly(1/δ) log(1/ε)
and communication complexity 2poly(1/δ) log(1/ε).

Proof. The proof can be divided into two cases: whether the adversary changes Y1 or not. Note
that Y1, Y2, Y3 and W all have size O(s).

Case 1: The adversary does not change Y1. In this case, note that Z = Z ′ and is 2−s-close to
uniform in Eve’s view (even conditioned on Y1, Y2, Y3). Note that the size of (V ′1 , . . . , V

′
C) is at most∑

i 2C−i(2s) < 2C(2s), and the size of Z is 2C(6s). Therefore, by Lemma 3.11 even if conditioned
on (V ′1 , . . . , V

′
C), the average conditional min-entropy of Z is at least 2C(6s) − 2C(2s) = 2C(4s).

Therefore by theorem 7.3 the probability that Eve can change W ′ to a different W without causing
Alice to reject is at most ⌈

O(s)

2C(3s)

⌉
22C(3s)−2C(4s) + 2−s ≤ O(2−s).
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When W = W ′, by theorem 7.6 RA = RB and is 2−s-close to uniform in Eve’s view.
Case 2: The adversary does change Y1. In this case, first note that by Theorem 3.8, Cond(X) =

(X1, . . . XC) is 2−s-close to a somewhere rate-0.9-source with C rows, and each row has length Ω(n).
In the following we will simply treat it as a somewhere rate-0.9-source, since this only adds 2−s to
the error. We assume that Xg, 1 ≤ g ≤ C is a rate 0.9-source 5.

Now since the adversary changes Y1 to Y ′1 6= Y1, by Theorem 7.8 we have that

(X̄g, X̄
′
g, Y1) ≈2−s (Um′ , X̄

′
g, Y1).

As the first step for the following analysis, we now fix Y1, Y ′1 and Z ′, X̄ ′g. Note that Y ′1 is a
deterministic function of (Y1, Y2, Y3), and after fixing Y ′1 , (Z ′, X̄ ′g) is a deterministic function of X.
Thus by Lemma 3.11 we have the following claim.

Claim 7.11. After the fixings of (Y1, Y
′

1 , Z
′, X̄ ′g), X̄g is a deterministic function of X and is 2−s

close to a source with average conditional min-entropy m′ − 2C(6s).

Note that by Lemma 3.11, after this fixing, the average conditional min-entropy of X is at least
k −m′ − 2C(6s). Now we analyze the sequences (V1, . . . , VC) produced by laExt, or equivalently,
the alternating extraction process. Note here (Q,S0) = (Y2, Y3) and (Q′, S′0) = (Y ′2 , Y

′
3). First we

have the following claim.

Lemma 7.12. In step 0, we have

(R0, S0, S
′
0) ≈2−s (Ud, S0, S

′
0)

and
(S1, R0, S0, R

′
0, S
′
0) ≈5·2−s (Ud, R0, S0, R

′
0, S
′
0).

Moreover, conditioned on (S0, S
′
0), (R0, R

′
0) are both deterministic functions of X; conditioned on

(R0, S0, R
′
0, S
′
0), (S1, S

′
1) are both deterministic functions of Q.

Proof of the claim. Note that previously we have fixed Y1, Y
′

1 . Since Y1 is independent of Y3 and Y ′1
is a deterministic function of Y , by Lemma 7.9 we have that S0 = Y3 is 2−s-close to a source with
min-entropy 29max{d, d′} + 2s. Note that Y3 and X are still independent. Thus by Theorem 7.7
we have that

(R0, S0) ≈2−s (Ud, S0).

Since conditioned on S0, R0 is a deterministic function of X, which is independent of Y , we
also have that

(R0, S0, S
′
0) ≈2−s (Ud, S0, S

′
0).

Now we fix (S0, S
′
0) and (R0, R

′
0) are both deterministic functions of X. Note that S0 = Y3 is

independent of Y2 and S′0 = Y ′3 is a deterministic function of Y . Thus by Lemma 7.9 we have that
conditioned on these fixings Q = Y2 is 2−s-close to a source with entropy 4Cd. Since R0, R

′
0 are

both deterministic functions of X, they are independent of Q. Therefore by Theorem 7.6 we have

5In general a somewhere rate-0.9-source is a convex combination of elementary somewhere rate-0.9-sources, but
without loss of generality we can assume it is an elementary somewhere rate-0.9-source.
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(S1, R0, R
′
0) ≈2−s (Ud, R0, R

′
0).

Thus altogether we have that

(S1, R0, S0, R
′
0, S
′
0) ≈5·2−s (Ud, R0, S0, R

′
0, S
′
0)

Moreover, conditioned on (R0, S0, R
′
0, S
′
0), (S1, S

′
1) are both deterministic functions of Q.

Now we fix (R0, S0, R
′
0, S
′
0). Note that after this fixing, S1, S

′
1 are both functions of Q = Y2.

Note that Q has min-entropy at least 4Cd.
For i = 0, · · · , C, let V iewi = (S0, · · · , Si, R0, · · · , Ri, V1, · · · , Vi). Similarly define V iew′i to be

the corresponding variables produced by Bob. We now have the following lemma.

Lemma 7.13. For any i, we have that

(Ri, V iewi−1, V iew
′
i−1, Si, S

′
i) ≈(2i+4)2−s (Ud, V iewi−1, V iew

′
i−1, Si, S

′
i)

and

(Si+1, V iewi, V iew
′
i) ≈(2i+5)2−s (Ud, V iewi, V iew

′
i).

Moreover, conditioned on (V iewi−1, V iew
′
i−1, Si, S

′
i), (Ri, R

′
i, Vi, V

′
i ) are all deterministic functions

of X; conditioned on (V iewi, V iew
′
i), (Si+1, S

′
i+1) are both deterministic functions of Q.

Proof. We prove the lemma by induction on i. When i = 0, the statements are already proved in
Lemma 7.12. Now we assume that the statements hold for i = j and we prove them for i = j + 1.

We first fix (V iewj , V iew
′
j). Since now (Sj+1, S

′
j+1) are both deterministic functions of Q,

they are independent of X. Moreover Sj is (2j + 5)2−s-close to uniform. Note that the average
conditional min-entropy of X is at least k−m′− 2C(6s)− 2C(4s)− 2Cd = k−m′− 2C(10s)− 2Cd.
Therefore by Theorem 7.6 we have that

(Rj+1, V iewj , V iew
′
j , Sj+1, S

′
j+1) ≈(2j+6)2−s (Ud, V iewj , V iew

′
j , Sj+1, S

′
j+1).

Moreover, conditioned on (V iewj , V iew
′
j , Sj+1, S

′
j+1), (Rj+1, R

′
j+1, Vj+1, V

′
j+1) are all determin-

istic functions of X.
Next, since conditioned on (V iewj , V iew

′
j , Sj+1, S

′
j+1), (Rj+1, R

′
j+1) are both deterministic func-

tions of X, they are independent of Q. Moreover Rj+1 is (2j + 6)2−s-close to uniform. Note that
the average conditional min-entropy of Q is at least 4Cd− 2Cd = 2Cd. Therefore by Theorem 7.6
we have that

(Sj+2, V iewj , V iew
′
j , Sj+1, S

′
j+1, Rj+1, R

′
j+1, Vj+1, V

′
j+1)

≈(2j+7)2−s(Ud, V iewj , V iew
′
j , Sj+1, S

′
j+1, Rj+1, R

′
j+1, Vj+1, V

′
j+1).

Namely,

(Sj+2, V iewj+1, V iew
′
j+1) ≈(2(j+1)+5)2−s (Ud, V iewj+1, V iew

′
j+1).

Moreover, conditioned on (V iewj+1, V iew
′
j+1), (Sj+2, S

′
j+2) are deterministic functions of Q.

42



Now we consider step g in the alternating extraction protocol. By Claim 7.11, conditioned
on (Y1, Y

′
1 , Z

′, X̄ ′g), X̄g is a deterministic function of X and is 2−s close to a source with average

conditional min-entropy m′ − 2C(6s). Since m′ = Ω(δn), when s is significantly smaller than
δn (but we can still achieve up to s = Ω(δn)), we have that m′ ≥ 2C(12s) + 2Cd and thus
m′ − 2C(6s) ≥ 2C(6s) + 2Cd.

We now have the following lemma.

Lemma 7.14. Conditioned on the fixing of (V iewg−1, V iew
′
g−1), X̄g is a deterministic function of

X, and the average conditional min-entropy of X̄g is at least 2C(2s).

Proof. We first use induction to prove that for any i, conditioned on the fixing of (V iewi, V iew
′
i),

X̄g is a deterministic function of X. When i = 0, we first fix (S0, S
′
0), which is independent of

X̄g. After this fixing (R0, R
′
0) is a deterministic function of X. Thus we can now fix (R0, R

′
0) and

conditioned on this fixing, X̄g is still a deterministic function of X. Thus the statement holds for
i = 0.

Now assume that the statement holds for i = j, we show that it also holds for i = j + 1.
Specifically, when (V iewj , V iew

′
j) is fixed, (Sj+1, S

′
j+1) is a deterministic function of Q, which is

independent of X. Thus we can fix (Sj+1, S
′
j+1). Now after this fixing, (Rj+1, R

′
j+1, Vj+1, V

′
j+1) is a

deterministic function of X. Thus we can now fix (Rj+1, R
′
j+1, Vj+1, V

′
j+1) and conditioned on this

fixing, X̄g is still a deterministic function of X. Thus the statement holds for i = j + 1. Therefore,
for any i, conditioned on the fixing of (V iewi, V iew

′
i), X̄g is a deterministic function of X.

Finally, note that only the fixings of (Rj , R
′
j , Vj , V

′
j ) can cause X̄g to lose entropy. Since the

total size of {(Rj , R′j , Vj , V ′j )} is at most
∑C

i=1 2C−i(4s) + 2Cd < 2C(4s) + 2Cd, by Lemma 3.11 the

average conditional min-entropy of X̄g is at least 2C(2s).

Now by Lemma 7.13, conditioned on the fixing of (V iewg−1, V iew
′
g−1), Sg ≈(2g+3)2−s Ud and

Sg, S
′
g are both deterministic functions of Q, which is independent of X. Thus Sg and X̄g are

independent. Therefore by Theorem 7.6 we have

(Vg, Sg, S
′
g) ≈2−s (U2C−g(2s), Sg, S

′
g).

Adding back all the errors, and note that we have fixed (Y1, Y
′

1 , Z
′, X̄ ′g) and (V iewg−1, V iew

′
g−1),

we have that

(Vg, Sg, S
′
g, V iewg−1, V iew

′
g−1, Z

′, X̄ ′g) ≈O(C2−s) (U2C−g(2s), Sg, S
′
g, V iewg−1, V iew

′
g−1, Z

′, X̄ ′g).

In particular, note that V ′g = Extv(X̄
′
g, S

′
g) and for a fixed message w′, T ′ = lrMACZ′(w

′) is a
function of Z ′. Thus we have that

(Vg, V iew
′
g−1, T

′, V ′g) ≈O(C2−s) (U2C−g(2s), V iew
′
g−1, T

′, V ′g).

This implies that

(Vg, T
′, V ′1 , · · · , V ′g) ≈O(C2−s) (U2C−g(2s), T

′, V ′1 , · · · , V ′g).

Now note the size of (V ′g+1, · · · , V ′C) is at most
∑C

i=g+1 2C−i(2s) = 2C−g(2s)− 2s, and that Vg
has size 2C−g(2s). Therefore, if Vg is uniform conditioned on (T ′, V ′1 , · · · , V ′g), then by Lemma 7.9
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we have that with probability 1− 2−s over the fixings of (T ′, V ′1 , · · · , V ′C), Vg is a source with min-
entropy s. Thus the probability that Eve can come up with the correct Vg is at most 2 ·2−s. Adding
back the error, we have that in the case that Eve changes Y1, the probability that Alice does not
reject is at most O(C2−s). For an appropriately chosen s = log(1/ε) +O(1) this is at most ε.

Finally, note that the entropy loss of the protocol is O(2Cs) = 2poly(1/δ) log(1/ε) = O(log(1/ε)),
the randomness complexity is O(Cd + s) = O(Cs) = poly(1/δ) log(1/ε) = O(log(1/ε)) and the
communication complexity is O(2Cs) = 2poly(1/δ) log(1/ε) = O(log(1/ε)).

8 Conclusions and Open Problems

In this paper we present a strong connection between non-malleable extractors and two-source
extractors. First, we show that non-malleable extractors can be used to construct two-source
extractors. If the non-malleable extractor works for small min-entropy and has a short seed length
with respect to the error, then the resulted two-source extractor beats the best known construction
of two-source extractors. Second, we show that two-source extractors of the form IP(f(X), Y ) can
be used to construct non-malleable extractors. Using this connection, we give the first explicit
constructions of non-malleable extractors for min-entropy k < n/2.

The most important message from this part is perhaps that, non-malleable extractors and two-
source extractors, although seemingly different, are closely related. Thus, future research should
probably consider these two kinds of extractors together, as improvements in one kind may lead
to improvements in the other. Our connection also suggests that it may be hard to construct
non-malleable extractors for small entropy. However, strictly speaking, our result only shows that
it may be hard to construct non-malleable extractors for small entropy with short seed length with
respect to the error. It is totally possible that we can get explicit non-malleable extractors for
small entropy with large seed length. Moreover, the weaker notion of non-malleable condensers
introduced in [Li12] is a hopeful alternative.

We also give the first privacy amplification protocol for k = δn that simultaneously achieves
optimal round complexity (2 rounds), asymptotically optimal entropy loss and communication
complexity. However, our entropy loss is 2poly(1/δ)s, which has a large hidden constant for small
δ. As a comparison, the protocol in [DLWZ11] runs in poly(1/δ) rounds but only has entropy loss
poly(1/δ)s. Thus for practical purposes it is interesting to see if we can reduce the hidden constant.
In particular, it remains an interesting open problem to construct non-malleable extractors or non-
malleable condensers for arbitrarily linear min-entropy.
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A The Existence of Generalized Non-Malleable Extractors

In this section we prove the existence of non-malleable extractors with more than one adversarial
seeds. First, we have the following definition.

Definition A.1. A function nmExt : {0, 1}n×{0, 1}d → {0, 1}m is a (r, k, ε)-non-malleable extrac-
tor if, for any source X with H∞(X) ≥ k and any r function Ai : {0, 1}d → {0, 1}d, i = 1, · · · , r
such that Ai(y) 6= y for all i and y, the following holds. When Y is chosen uniformly from {0, 1}d
and independent of X,

(nmExt(X,Y ), {nmExt(X,Ai(Y ))}, Y ) ≈ε (Um, {nmExt(X,Ai(Y ))}, Y ).

We will prove the following theorem.

Theorem A.2. For any constant r ≥ 1, there exists a (r, k, ε)-non-malleable extractor as long as

d >
3

2
log(n− k) + 3 log(1/ε) +O(1)

k > (r + 1)m+
d

3
+ 2 log(1/ε) + log(d) +O(1)

We prove the theorem by using the probabilistic method, similar to the existence proof in
[DW09]. A function f : {0, 1}n × {0, 1}d → {0, 1}m is a (r, k, ε)-non-malleable extractor if for all
(n, k) sources X, all adversarial functions {Ai} and all distinguishers D, we have
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|Pr[D(f(X,Y ), {f(X,Ai(Y ))}, Y ) = 1]− Pr[D(Um, {f(X,Ai(Y ))}, Y ) = 1]| ≤ ε.
As usual, it suffices to consider flat sources X. For the purpose of a union bound, we fix

some D, {Ai} and a source X which is uniformly distributed on some subset Supp(X) ⊆ {0, 1}n
with |Supp(X)| = 2k. We use F to denote the uniform distribution over the space of all functions
f : {0, 1}n × {0, 1}d → {0, 1}m.

For each u ∈ {0, 1}rm and y ∈ {0, 1}d, define

Count(u, y) = |{u2 ∈ {0, 1}m : D(u2, u, y) = 1}|.
For each x ∈ Supp(X), y ∈ {0, 1}d, define the following random variables (where the randomness

comes from F).

L(x, y) = D(F(x, y), {F(x,Ai(y))}, y)

R(x, y) =
Count({F(x,Ai(y))}, y)

2m

Q(x, y) = L(x, y)−R(x, y)

and let

Q =

∑
x,y Q(x, y)

2k+d
.

Thus, Q is essentially the quantity

p(f) = Pr
f←F

[D(f(X,Y ), {f(X,Ai(Y ))}, Y ) = 1]− Pr
f←F

[D(Um, {f(X,Ai(Y ))}, Y ) = 1].

Therefore, we want to upper bound

Pr[|Q| > ε] = Pr
f←F

[|p(f)| > ε].

Again, it is easy to notice that for any (x, y), E(L(x, y)) = E(R(x, y)) and thus E(Q(x, y)) = 0
and E(Q) = 0. However, the variables Q(x, y) are not necessarily independent of each other (in
particular, the adversarial seeds can form cycles), so we cannot use a simple Chernoff bound here.
Now we represent the functions {Ai} as a directed graph G = (V,E) where the vertex set is
V = {0, 1}d and there is an edge from y to y′ iff ∃i,Ai(y) = y′. Note that each Ai is a function,
thus the out-degree of every vertex is exactly r. The following lemma is proved in [CRS12].

Lemma A.3. Let G = (V,E) be a directed graph without self-loops. Assume that the out-degree of
each vertex is at most r, where parallel edges are allowed. Then, there exists a subset of the vertices
V ′ ⊆ V , such that the induced graph H = (V ′, E′) of G is acyclic, and |V ′| ≥ |V |/(r + 1).

Let s = 1/(r+1). We now use Lemma A.3 to decompose G into t+1 subgraphs Hj as follows. In
each step j, 1 ≤ j ≤ t, we use the lemma to pick a s fraction of vertices from the remaining vertices
to form a subset Vj and an induced graph Hj , and delete these vertices from G. After t steps the
remaining graph is Ht+1. Thus we have that |Vj | = s(1−s)j−1|V | for j ≤ t and |Vt+1| = (1−s)t|V |.

The following lemma is proved in [DW09].
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Lemma A.4. For V ′ ⊆ V , let H be the restriction of G to the vertices V ′ and assume that the
graph H is acyclic. Then the set {Q(x, y)x∈Supp(X),y∈V ′} of random variables can be enumerated

by Q1, · · · ,Q` for l = |V ′|2k such that E[Qi|Q1, · · · ,Qi−1] = 0 for all 1 ≤ i ≤ l.

We can now prove the theorem.

Proof of Theorem A.2. By Lemma A.3 and Lemma A.4, we can partition {Q(x, y)} into t (enumer-
ated) sets {Qj

1, · · · ,Q
j
lj
} where lj = |Vj |2k for j = 1, · · · , t and a remaining set {Q(x, y)x∈Supp(X),y∈Vt+1

}.
For each j ≤ t, 1 ≤ i ≤ lj , we have that E[Qj

i |Q
j
1, · · · ,Q

j
i−1] = 0. Now for each j ≤ t, 1 ≤ i ≤ lj ,

define Sji =
∑i

`=1 Qj
i . Then for any j ≤ t, Sj1, · · · , S

j
lj

is a martingale.

We first show that if for any j ≤ t, |Sjlj | ≤
ε
2 lj and |Vt+1| ≤ ε

42d, then |Q| ≤ ε. Indeed, note

that for any (x, y), Q(x, y) ≤ 2. Thus in this case we have that

|Q| =

∣∣∣∣∣
∑t

j=1 S
j
lj

+
∑

x∈Supp(X),y∈Vt+1
Qx,y

2k+d

∣∣∣∣∣ ≤ 1

2k+d

 t∑
j=1

∣∣∣Sjlj ∣∣∣+

∣∣∣∣∣∣
∑

x∈Supp(X),y∈Vt+1

Qx,y

∣∣∣∣∣∣


≤ 1

2k+d

 t∑
j=1

ε

2
lj + 2 · ε

4
2d+k

 =
1

2k+d

 ε

2

 t∑
j=1

lj

+
ε

2
2d+k


≤ 1

2k+d

( ε
2

2d+k +
ε

2
2d+k

)
= ε.

Next, by Azuma’s inequality we have that for any j ≤ t,

Pr[|Sjlj | >
ε

2
lj ] ≤ e−

1
32
ljε

2 ≤ e−
1
32
s(1−s)t−12d+kε2

since lj = |Vj |2k ≥ s(1− s)t−12d+k.
Therefore, by the union bound,

Pr[∃j ≤ t, |Sjlj | >
ε

2
lj ] ≤ te−

1
32
s(1−s)t−12d+kε2 .

Now we will apply the union bound to all possible X, {Ai},D. Let N = 2n,K = 2k, D =
2d,M = 2m. Then there are

(
N
K

)
possible sources X, there are DrD possible adversaries {Ai} and

there are 2DM
r+1

possible distinguishers D : {0, 1}m× ({0, 1}m)r×{0, 1}d → {0, 1}. Thus to ensure
that there exists a function that is a (r, k, ε)-non-malleable extractor, all we need is to satisfy the
following inequalities: (

N

K

)
DrD2DM

r+1
te−

1
32
s(1−s)t−12d+kε2 < 1

and

|Vt+1| = (1− s)t2d ≤ ε

4
2d.

Choose t such that (1 − s)t = 2−
d
3 . Now it is easy to check that both of these conditions are

satisfied when the statements in the theorem hold.
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B Another Construction of Non-Malleable Extractors for Entropy
Rate 1/2− δ

Here we give another construction of non-malleable extractors for (n, k) sources with k = (1/2−δ)n
for some constant δ > 0.

Given an (n, k)-source X with k = (1/2− δ)n, we first pick a prime p such that 2n < p < 2n+1.
By Bertrand’s postulate, there is always such a prime. Now treat X as an element in the field Fp.
Next we take an independent and uniform seed Y ∈ {0, 1}n and again treat Y as an element in Fp.
Encode X,Y such that Enc(X) = (X,X2) and Enc(Y ) = (Y, Y 2). The operations are in Fp. Our
non-malleable extractor is defined as

nmExt(X,Y ) = IP(Enc(X),Enc(Y )) mod M

for some integer M = 2m that we will choose later. Note that Enc(X) and Enc(Y ) are vectors in
F2
p and IP is the inner product function taken over Fp.

Again, we show that for any weak source X with min-entropy (1/2 − δ)n, 3Enc(X) is close to
a weak source that has min-entropy (1/2 + δ) log(p2).

Lemma B.1. Let F = Fp for p prime and X be a random variable over F. There is a universal
constant δ > 0 such that if X is any weak source with min-entropy (1/2− δ)n, 3Enc(X) is p−Ω(1)-
close to a source with min-entropy (1/2 + δ) log(p2).

Proof. Note that X has min-entropy (1/2−δ)n > (1/2−δ) log p−1. First consider the distribution
2Enc(X). Note that the distribution is of the form (X+X,X2 +X2). For any (a, b) in the support
of 2Enc(X), we have that a = x1 + x2 and b = x2

1 + x2
2. Thus there are at most 2 different pairs of

(x1, x2) that satisfy both equations. Therefore the min-entropy of 2Enc(X) is at least 2H∞(X)−1.
Now let k = H∞(X) − 1, we have that Enc(X) has min-entropy at least k and 2Enc(X) has
min-entropy at least 2k. We now have the following claim.

Claim B.2. Let α, β be the two constants in Theorem 3.21. Then 3Enc(X) is 2−Ω(k)-close to a
source with min-entropy (1 + α/2)2k.

Proof of the claim. Note that an element in the support of 3Enc(X) has the form (x1 +x2 +x3, x
2
1 +

x2
2 + x2

3). This determines the point

(x1 + x2 + x3, (x1 + x2 + x3)2 − (x2
1 + x2

2 + x2
3))

=((x1 + x2) + x3, 2(x1 + x2)x3 + (x1 + x2)2 − (x2
1 + x2

2))

Let a = x1 + x2 and b = x2
1 + x2

2, this point is

(a+ x3, 2ax3 + a2 − b).

Let x̄3 = a+ x3, then

(a+ x3, 2ax3 + a2 − b) = (x̄3, 2ax̄3 − a2 − b).

For a fixed (a = x1 + x2, b = x2
1 + x2

2) define the line

50



`a,b = {(x, 2ax− a2 − b)|x ∈ F}.

Note that for different (a, b), the line `a,b is also different. Thus we have a set of lines L =
{`a,b}. Note that x3 is sampled from X3, which has min-entropy k and (a, b) is sampled from
Enc(X1) + Enc(X2), which has min-entropy 2k. Further note that these two distributions are
independent. Since every weak source with min-entropy k is a convex combination of flat k sources,
without loss of generality we can assume that X3 and Enc(X1) + Enc(X2) are both flat sources.
Thus L has size 22k.

Now assume that 3Enc(X) is ε-far from any source with min-entropy (1+α/2)2k. Since 3Enc(X)
determines the distribution (A+X3, 2AX3 +A2−B), this distribution is also ε-far from any source
with min-entropy (1 + α/2)2k. Thus there must exist some set M of size at most 2(1+α/2)2k such
that

Pr
(a,b)←2Enc(X),X3←X

[(a+ x3, 2ax3 + a2 − b) ∈M ] ≥ ε.

Note that whenever (a+ x3, 2ax3 + a2 − b) ∈M , this point has an incidence with the line `a,b.
Further note that whenever (a, b) is different or x3 is different, the incidence is also different. Thus
by the above inequality the number of incidences between the set of points M and the set of lines
L is at least

Pr
(a,b)←2Enc(X),X3←X

[(a+ x3, 2ax3 + a2 − b) ∈M ]2k22k ≥ ε23k.

On the other hand, since L has size 22k and M has size 2(1+α/2)2k ≤ 2(1+α/2)2(1/2−δ) log p <
2(1+α/2) log p ≤ p2−β, by Theorem 3.21, the number of incidences between M and L is at most
O(2(3/2−α)(2+α)k) < 23k(1−α/6) = 2−αk/223k.

Thus we must have ε < 2−αk/2.

By choosing δ appropriately and noting that k ≥ (1/2− δ) log p− 2, the lemma is proved.

Now we can use the non-uniform XOR lemma to argue that our extractor is non-malleable.
Specifically, we have the following lemma.

Lemma B.3. Let δ be the constant in Lemma B.1. Given any (n, k)-source X with k = (1/2−δ)n,
and Y an independent source over {0, 1}n with min-entropy (1− δ)n, let W = IP(Enc(X),Enc(Y ))
and W ′ = IP(Enc(X),Enc(Y ′)) where Y ′ = A(Y ) and ∀y ∈ {0, 1}n,A(y) 6= y. For any two
characters ψ(s) = e2πits/p and ψ′(s) = e2πit′s/p where t, t′ ∈ Fp and t 6= 0,

|EW,W ′ [ψ(W )ψ′(W ′)]| ≤ 2−Ω(n).

Proof. Note that W,W ′ are deterministic functions of X,Y . Thus

EW,W ′ [ψ(W )ψ′(W ′)] = EX,Y [ψ(W )ψ′(W ′)].

Depending on whether ψ′ is trivial, we have two cases.
Case 1: t′ = 0. This corresponds to the case where ψ′ is the trivial character. In this case

ψ′(W ′) is always 1. Thus
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EW,W ′ [ψ(W )ψ′(W ′)] = EX,Y [ψ(W )] = EX,Y [ψ(Enc(X) · Enc(Y ))].

Note that Enc(Y ) has the same min-entropy as Y , which is (1 − δ)n. Now consider Enc(X).
Since X has min-entropy (1/2− δ)n, by Lemma B.1 3Enc(X) is p−Ω(1)-close to having min-entropy
(1/2 + δ) log(p2). Now note that the min-entropy of 4Enc(X)−4Enc(X) is at least the min-entropy
of 4Enc(X), and which in turn is at least the min-entropy of 3Enc(X). Thus 4Enc(X) − 4Enc(X)
is p−Ω(1)-close to having min-entropy (1/2 + δ) log(p2). Since (1/2 + δ) log(p2) + (1 − δ)n > (1 +
2δ) log p+ (1− δ)(log p− 1) > (2 + δ) log p− 1, by Lemma 3.20 we have

|EW,W ′ [ψ(W )ψ′(W ′)]| = |EX,Y [ψ(Enc(X) · Enc(Y ))]| ≤ (p221−(2+δ) log p)1/16 + p−Ω(1) = 2−Ω(n).

Case 2: t′ 6= 0. This corresponds to the case where ψ′ is non-trivial. In this case, note that

ψ(W )ψ′(W ′) = e2πit(Enc(X)·Enc(Y ))e2πit′(Enc(X)·Enc(Y ′)) = e2πit(Enc(X)·(Enc(Y )+rEnc(Y ′)),

where r = t′/t ∈ Fp and r 6= 0 since t 6= 0 and t′ 6= 0.

Let Ẽnc(Y ) = Enc(Y ) + rEnc(Y ′), then

EW,W ′ [ψ(W )ψ′(W ′)] = EX,Y [ψ(W )ψ′(W ′)] = EX,Y [ψ(Enc(X) · Ẽnc(Y ))].

Now again by the same argument as above we have that 4Enc(X)− 4Enc(X) is p−Ω(1)-close to

having min-entropy (1/2 + δ) log(p2). Now we only need to bound the min-entropy of Ẽnc(Y ).
If for every two different y1, y2, we have that Enc(y1) + rEnc(y′1) 6= Enc(y2) + rEnc(y′2), then

obviously Ẽnc(Y ) will have the same min-entropy as Y . Now assume that for some two different
y1, y2, we have Enc(y1) + rEnc(y′1) = Enc(y2) + rEnc(y′2).

This gives us

y1 + ry′1 = y2 + ry′2

and

(y1)2 + r(y′1)2 = (y2)2 + r(y′2)2.

Hence we get

y1 − y2 = r(y′2 − y′1)

and

(y1 + y2)(y1 − y2) = r(y′2 + y′1)(y′2 − y′1).

Since y1 6= y2 and r 6= 0, we must have that y′1 6= y′2. Thus we get

y1 + y2 = y′2 + y′1.

Therefore we can completely solve the equations and get
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y′1 = ((r + 1)y2 + (r − 1)y1)/2r, y′2 = ((r + 1)y1 + (r − 1)y2)/2r.

Thus any element in Supp(Ẽnc(Y )) can come from at most 2 elements in Supp(Y ). To see
this, assume for the sake of contradiction that we have Enc(y1) + rEnc(y′1) = Enc(y2) + rEnc(y′2) =
Enc(y3) + rEnc(y′3) for three different y1, y2, y3. Thus by above we have

y′1 = ((r + 1)y2 + (r − 1)y1)/2r

and

y′1 = ((r + 1)y3 + (r − 1)y1)/2r.

Note that r 6= −1 since otherwise this would imply that y′1 = y1 which contradicts the assump-
tion that ∀y,A(y) 6= y. Thus we get y2 = y3, another contradiction.

Therefore the min-entropy of Ẽnc(Y ) is at least H∞(Y )− 1 = (1 − δ)n− 1. Now since (1/2 +
δ) log(p2) + (1− δ)n− 1 > (1 + 2δ) log p+ (1− δ)(log p− 1)− 1 > (2 + δ) log p− 2, by Lemma 3.20
we have

|EW,W ′ [ψ(W )ψ′(W ′)]| = |EX,Y [ψ(Enc(X) · Ẽnc(Y ))]| ≤ (p222−(2+δ) log p)1/16 + p−Ω(1) = 2−Ω(n).

Now we can prove the following theorem.

Theorem B.4. Let δ be the constant from Lemma B.1. Given any (n, k) source X with k =
(1/2 − δ)n and an independent uniform seed Y ∈ {0, 1}n, as well as any deterministic function
A : {0, 1}n → {0, 1}n such that ∀y,A(y) 6= y,

|(nmExt(X,Y ), nmExt(X,A(Y )), Y )− (Um, nmExt(X,A(Y )), Y )| ≤ ε,

where ε = 2−Ω(n) and output size m = Ω(n).

Proof. Let Z = nmExt(X,Y ) and Z ′ = nmExt(X,A(Y )). By Lemma B.3 and Lemma 3.14, we can
choose an m = Ω(n) and M = 2m such that when nmExt(X,Y ) = IP(Enc(X),Enc(Y )) mod M and
Y is an (n, (1− δ)n) source independent of X, we have

|(Z,Z ′)− (Um, Z
′)| ≤ ε′,

where ε′ = O(n2m2−Ω(n) + 2m−n) = 2−Ω(n).
Therefore when Y is an independent uniform distribution over {0, 1}n, by Theorem 3.17 we

have

|(Z,Z ′, Y )− (Um, Z
′, Y )| ≤ ε,

where ε = 22m(21−δn + ε′).
Note that ε′ = O(n2m2−Ω(n) + 2m−n). Thus we can take m = Ω(n) and ε = 22m(21−δn + ε′) =

2−Ω(n). Thus the theorem is proved.
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