
Improving on Gutfreund, Shaltiel, and Ta-Shma’s

paper “If NP Languages are Hard on the

Worst-Case, Then it is Easy to Find Their Hard

Instances”

Nikolay Vereshchagin∗†

Abstract

Assume that NP 6= RP. Gutfreund, Shaltiel, and Ta-Shma in
[Computational Complexity 16(4):412-441 (2007)] have proved that
for every randomized polynomial time decision algorithm D for SAT
there is a polynomial time samplable distribution such thatD errs with
probability at least 1/6 − ε on a random formula chosen with respect
to that distribution. In this paper, we show how to increase the error
probability to 1/3 − ε. We also generalize this result to the search
version of SAT: we prove that for every randomized polynomial time
algorithm S searching for a satisfying assignment of a given formula,
there is a polynomial time samplable distribution such that S errs with
probability at least 1 − ε on a random formula chosen with respect to
that distribution.

∗The work was in part supported by the RFBR grant 09-01-00709 and the ANR grant
ProjetANR-08-EMER-008

†Moscow State University, Leninskie gory 1, Moscow 119992, Russia, E-mail:
ver@mccme.ru, WWW home page: http://lpcs.math.msu.su/ever

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 167 (2011)

1 Introduction

A goal of the Average Case Complexity is to show that one way functions
exist under a worst case hardness assumption like NP 6= RP.1 Or, at least
to show that SATISFIABILITY (SAT) is hard on average. The latter can
be understood in two quite different ways:

(1) There is a sampler G such that the following holds: For every proba-
bilistic polynomial time algorithm S, for infinitely many n with probability
close to 1, the formula produced byG(1n) is satisfiable but S does not find its
satisfying assignment. (The probability is with respect to the product of the
uniform distribution over G’s internal tosses and the uniform distribution
over S’s internal tosses.)

(2) There is a sampler G such that the following holds: For every prob-
abilistic polynomial time decision algorithm D, for infinitely many n with
probability close to 1/2, D errs on the formula ψ produced by G(1n) (which
means that D answers YES while ψ is not satisfiable or vice verse).

Let us define samplers; in this paper, we use the framework of Bogdanov
and Trevisan [2] rather than the original Levin’s one from [4].

Definition 1. A sampler is a polynomial time probabilistic algorithm G that
given 1n as input outputs a Boolean formula of length at least n. If the
length of the output formula is always exactly n, we call the sampler proper.

In this paper, we consider Boolean formula in the basis ¬,∨,∧, 0, 1. The
length |ϕ| of a formula ϕ is defined as the number of symbols in it: every
variable is counted as one symbol. Actually, in [2] samplers generate binary
strings and not formulas, and samplers are always proper. To generate
formulas, it is more natural to consider non-proper samplers, because this
makes the results encoding-invariant.

The goal (1) is certainly closer, than the second one, to the initial goal
of constructing one way functions. More specifically, existence of “infinitely
often” (i.o.) one way functions is equivalent to constructing a sampler as
in (1), which generates a satisfiable formula ψ together with its satisfying
assignment a. (The projection (ψ, a) 7→ ψ would be the sought i.o. one-way
function.)

The paper [3] makes a step towards the goal (2). Namely, [3] shows that
the assumption NP 6= RP implies the following weaker version of (2), in
which we allow the sampler G depend on the decision algorithm D:

1NP 6= RP means that there is no polynomial time randomized algorithm that given
any satisfiable Boolean formula with probability at least 1/2 finds its satisfying assignment.

2

(2’) For every probabilistic polynomial time algorithm D there is a proper
sampler G such that the following holds: for almost all n with probability
at least 0.03, D errs on the formula ψ produced by G(1n). Actually, [3]
requires the syntax of formulas allow padding: given a formula ϕ one can
find in polynomial time a formula of length |ϕ| + 1, which is equivalent to
ϕ.

The authors of [3] remark that they do not optimise constants and by
careful calculation the constant 0.03 can be improved; however they do not
see how to get it above 1/3. Indeed, a careful calculation shows that 0.03
may be replaced by 1/24 − ε (for any positive ε). But we do not see how,
using the techniques of [3], to get the constant above 1/24.

In this paper:

• We show that one can generalize the results of [3] to the search version
of SAT. That is, we show that for every polynomial time probabilistic
algorithm S and ε there is a sampler G such that for infinitely many
n, with probability at least 1 − ε the following holds: the formula
ϕ produced by G(1n) is satisfiable, however S(ϕ) does not find its
satisfying assignment. This is our first result.

In this result, it is important that the length of the formula produced
by G(1n) tends to infinity, as n tends to infinity. Otherwise, the state-
ment would become trivial, as G might produce any fixed formula on
which S errs with high probability. The same applies to the other
results in this paper.

• We notice that, for non-proper samplers, the constant 0.03 in (2’) can
be improved to 1/6 − ε.

• We show that, using an extra trick, one can get even 1/3− ε (for non-
proper samplers). This is our second result. The question whether one
can replace 1/3 by 1/2 remains open.

In other words, we show how to double the error probability in (2’) and
prove a version (1’) of (1), in which sampler G is allowed to depend on the
algorithm S.

2 Generating hard instances of search version of

SAT

We start with explaining the main idea of [3] so that it be clear what our
contribution is.

3

Definition 2. The search version of SAT is the following problem: given
a Boolean formula ϕ find its satisfying assignment. A (randomized) SAT
solver is a (randomized) polynomial time algorithm that for every input
formula ϕ either finds its satisfying assignment, or says “don’t know”. A
SAT solver D errs on ψ if ψ is satisfiable and D(ψ) =“don’t know”.

Theorem 1 ([3]). Assume that NP 6= P. Given a deterministic SAT solver
S one can construct a deterministic polynomial time procedure that given
1n produces a formula ψn of length at least n such that S errs on ψn for
infinitely many n.

Proof. Consider the following search problem in NP.
Search problem P :

Instance: a string 1n over the unary alphabet.
Solution: a pair (ψ, a) where ψ is a satisfiable formula of length n such that
S(ψ) =“don’t know”, and a is its satisfying assignment.

We will call an instance 1n of P solvable if such pair (ψ, a) exists. As
SAT is NP complete, the search problem P reduces to the search version of
SAT. This means that there is a polynomial time algorithm that given 1n

finds a formula, called ϕn, such that:
(1) if the instance 1n of P is solvable then ϕn is satisfiable, and
(2) given any satisfying assignment of ϕn we can find (in polynomial time)
a solution to the instance 1n.
The length of ϕn is bounded by a polynomial nd and w.l.o.g. we may assume
that |ϕn| ≥ n.

The procedure works as follows: given 1n, as input
(a) find the formula ϕn;
(b) run S(ϕn);
(c) if S(ϕn)=“don’t know”then output ϕn and halt;
(d) otherwise S(ϕn) produces a satisfying assignment for ϕn; given that
assignment find (in polynomial time) a solution (ψ, a) to the instance 1n of
the problem P ; output ψ and halt.

Since we assume that P 6= NP, for infinitely many n the instance 1n of
P is solvable. For such n either S(ϕn)=“don’t know”(and thus S errs on
ϕn), or (ψ, a) is a solution to 1n (and thus S errs on ψ).

The next idea of [3] is to generalize this theorem to randomized SAT
solvers. This is done as follows. Let S be a randomized SAT solver working
in time nc and let r be string of length at least nc. We will denote by Sr
the algorithm S that uses bits of r as coin flips.

4

Theorem 2 ([3]). Assume that NP 6= RP. Then for some natural constant
d the following holds. Let S be a randomized SAT solver and let nc denote
its running time on formulas of length n. Then there is a deterministic
polynomial time procedure that given any binary string r of length nc

2d pro-
duces a formula ηr of length between n and ncd, where for any positive ε for
infinitely many n the following holds. For a fraction at least 1− ε of r’s the
algorithm Sr errs on ηr.

Notice that the length of ηr is at most ncd. Therefore the running time
of S for input ηr is at most nc

2d. Hence Sr(ηr) is well defined.

Proof. The proof is very similar to that of the previous theorem. The only
change is that we have to replace the search problem P by the following
problem P ′:
Instance: a binary string r′ of length nc (for some n).
Solution: a satisfiable formula ψ of length n and its satisfying assignment a
such that Sr′(ψ) =“don’t know”.

Let r′ 7→ ϕr′ be a reduction of P ′ to the search version of SAT. The
length of ϕr′ is bounded by a polynomial ncd of |r′| = nc and w.l.o.g. we
may assume that |ϕr′ | ≥ n.

The procedure required in the theorem, called Procedure A, works as
follows: given r of length nc

2d, as input,
(a) let r′ stand for the prefix of r of length nc;
(b) find the formula ϕr′ ;
(c) run Sr(ϕr′);
(d) if Sr(ϕr′)=“don’t know”then output ϕr′ and halt;
(e) otherwise Sr(ϕr′) produces a satisfying assignment for ϕr′ ; given that
assignment find (in polynomial time) a solution (ψ, a) to the instance r′ of
the problem P ′; output ψ and halt. (End of Procedure A.)

Let ηr stand for the formula output by the procedure. Since we assume
that NP 6= RP, for every positive ε the randomized searching algorithm S
errs with probability at least 1− ε for infinitely many input formulas. This
implies that for infinitely many n the number of solvable instances r′ of the
problem P ′ is at least (1− ε)2n

c
. For those r′s the formula ϕr′ is satisfiable.

Therefore, for all but a fraction ε of r’s the algorithm Sr errs on ϕr′ or Sr′

errs on ψ, which implies that Sr errs on ψ as well.

Remark 1. Theorem 2 holds for ε = 1/nk for any constant k. Indeed, the
assumption NP 6= RP implies that the randomized searching algorithm S
errs with probability at least 1−|ϕ|−k for infinitely many input formulas ϕ.

With this machinery at hand we are able to prove our first result.

5

Theorem 3. If NP 6= RP then for every probabilistic polynomial time search
algorithm S and for every positive ε there is a sampler G such that for
infinitely many n the algorithm S errs on the formula produced by G(1n)
with probability at least 1 − ε.

Proof. Let us try first the following sampler G: for input 1n toss a coin nc
2d

(where nc is S’s running time for input formulas of length n and d is the
constant from Theorem 2), then apply Procedure A from Theorem 2 to r.
Unfortunately, this sampler is poor, as Sr errs on ηr only and might not err
on ηs for s 6= r. Thus we can show only that S errs on ηr with probability

at least (1 − ε)2−n
c2d

.
Roughly speaking, this problem can be handled as follows. Let K stand

for the number of formulas of length between n and ncd. On average, the

same formula ψ appears 2n
c2d
/K times as ηr. If each formula appeared

exactly 2n
c2d
/K times, then our sampler would produce the uniform distri-

bution and the probability of error of S on the generated random formula
would be close to 1/K. Assume now that we have applied Theorem 2 to
the amplified version S̄ of S in place of S (the algorithm S̄ applies S for the
same input, say, t times). The probability of error of S̄ for every particular
formula is the tth power of that of S. Hence the probability of error of S on
the generated formula would be close to (1/K)1/t. Choosing an appropriate
polynomial t(n) we can get this number close to 1.

In what follows we make this reasoning precise. More or less we show
that the analysed case (when the sampler generates the uniform distribution)
is the worst one.

Let N(n) stand for the number of formulas of length n. Choose a poly-
nomial t(n) so that (1/N(n))1/t(n) be greater than, say, 1 − ε. As N(n) is
bounded by an exponent of n, such polynomial t(n) does exist. Consider
the following randomized SAT solver S̄: given a formula ϕ, as input, invoke
t(|ϕ|) times the algorithm S(ϕ); if at least one of the results is different from
“don’t know”, then output it and halt; otherwise halt with “don’t know”
result.

Let nc stand for the running time of S̄. The sampler G works as follows:
given 1n, as input, toss a fair coin nc

2d times to get a random string r of
length nc

2d and output the formula ηr produced by the procedure A from
Theorem 2 applied to S̄ in place of S.

Let pn denote the probability distribution generated by G(1n):

pn(ψ) = P [G(1n) = ψ] =
#{r | ηr = ψ}

2n
c2d

6

(where P [A] denotes the probability if the event A). By Theorem 2 only
formulas of lengths between n and ncd may have positive probability.

An analysis of G’s work. Obviously for every formula ψ,

P [S(ψ) errs] = P [S̄(ψ) errs]1/t(|ψ|).

Thus the error probability of S for a random input formula generated by
sampler G(1n) equals

ncd
∑

i=n

∑

|ψ|=i

pn(ψ)P [S̄(ψ) errs]1/t(i).

Let qn(ψ) stand for the ratio

#{r | ηr = ψ, S̄r(ψ) errs}

2n
c2d

.

By Theorem 2 for infinitely many n for all but a fraction ε of r’s the
algorithm S̄r errs for input formula ηr. This means that for infinitely many
n we have

∑

ψ

qn(ψ) =
#{r | S̄r(ηr) errs}

2nc2d
≥ 1 − ε. (1)

On the other hand, qn(ψ) is a lower bound for both P [S̄(ψ) errs] and pn(ψ).
Therefore, the error probability of S on the random formula produced by
G(1n) is at least

ncd
∑

i=n

∑

|ψ|=i

qn(ψ)1+1/t(i). (2)

We claim that the inequality (1) together with the choice of the polyno-
mial t(n) imply that the sum (2) is at least 1 − 3ε for all large enough n.
Indeed, by the convexity of the function x 7→ xα (for α > 1) for all a1, . . . , ak
we have

aα1 + · · · + aαk ≥ k
(a1 + · · · + ak

k

)α
= (a1 + · · · + ak)

α(1/k)α−1.

In other words, the sum aα1 + · · · + aαk is minimal when all the summands
are equal.

Applying this inequality to the inner sum in (2) we see that it is at least

(

∑

|ψ|=i

qn(ψ)
)1+1/t(i)

(1/N(i))1/t(i)

7

Here N(i) stands for the number of formulas of length i and by the choice of
the polynomial t(i) the second factor in the displayed inequality is at least
1 − 1/i. Therefore the inner sum in (2) is greater than

(1 − 1/i)
(

∑

|ψ|=i

qn(ψ)
)1+1/t(i)

,

which is more than

(1 − ε)
(

∑

|ψ|=i

qn(ψ)
)1+1/t(n)

for all large enough n. Applying the convexity inequality to the outer sum
in (2) we see that it is at least

(1 − ε)
(

∑

ψ

qn(ψ)
)1+1/t(n)(1

ncd − n+ 1

)1/t(n)

Recall that
∑

ψ qn(ψ) ≥ 1 − ε for infinitely many n. Thus the sum (2) is at
least

(1 − ε)(1 − ε)1+1/t(n)
(1

ncd − n+ 1

)1/t(n)
.

The term
(

1−ε
ncd−n+1

)1/t(n)
tends to 1, as n tends to infinity. Hence for

infinitely many n the sum (2) is at least (1−ε)(1−ε)2. Hence the probability
that S errs on the formula produced by G(1n) is at least (1 − ε)3 ≥ 1 − 3ε.
Starting with ε/3 in place of ε we obtain the result.

Remark 2. One can easily verify that Theorem 3 holds for ε = 1/nk for any
constant k.

3 Generating hard instances of the decision ver-

sion of SAT

Again we start with the following result, which is implicit in [3], so that our
contribution be clear. We say that a (randomized) decision algorithm D
errs on a formula ϕ if D(ϕ) =YES and ϕ is not satisfiable or vice verse.

Theorem 4 ([3]). If NP 6= RP then for every probabilistic polynomial time
decision algorithm D and every positive ε there is a sampler G such that for
infinitely many n the decision algorithm D errs on the formula produced by
G(1n) with probability at least 1/6 − ε.

8

Proof. Let D and ε be given. First we use the standard amplification, as
in [1], to transform D into decision algorithm D̄: given a formula ϕ of length
n as input the algorithm D̄ invokes D(ϕ) polynomial number K of times
and outputs the most frequent result. The number K = K(n) should be so
large that the probability of the following event be less than 2−n: there is
a formula ψ of length n such that the frequency of YES answers in the run
of D̄(ψ) differs from the probability of the event D(ψ)=YES by at most ε.
By Chernoff bound, there is such polynomial K(n).

Using the standard binary search techniques we transform D̄ to a SAT
solver S. That is, given a formula ϕ the algorithm S first runs D̄(ϕ). If the
result is YES then it substitutes both x = 0 and x = 1 for the first variable
x in ϕ and runs D̄ on the resulting formulas ϕx=0, ϕx=1. If at least one
of these runs outputs YES, we replace ϕ by the corresponding formula and
recurse. Otherwise we return “don’t know”and halt.

If D̄ returns NO for the input formula ϕ, we return “don’t know”and halt.
Finally, if we have substituted 0s and 1s for all variables and the resulting
formula is true, we return the satisfying assignment we have found, and
otherwise we return “don’t know”.

Let nc be the upper bound of S’s running time for input formulas of
length n and let r be a string of length nc used as randomness for S. In its
run for input ϕ the algorithm S uses parts of r as coin flips for D̄. The part
used in ith call of D̄ depends on the length n and on i. We will denote that
part by r(n, i). When n and i are clear from the context we will write D̄r

in place of D̄r(n,i).
The heart of the construction is a procedure that given any formula ψ

and randomness r such that Sr errs on ψ returns at most three formulas
such that the algorithm D errs on at least one of these formulas with high
probability.

Procedure B. Given an input formula ψ, run Sr(ψ) to find the place
in the binary search tree where Sr is stuck. By the construction of S this
may happen in the following three cases:

(1) D̄r(ψ)=NO. In this case output ψ.
(2) Sr(ψ) performs the binary search till the very end but the resulting

formula η is false. In this case output η.
(3) In the remaining case Sr(ψ) is stuck in the middle of the binary search

and thus has found a formula ϕ and its variable x such that D̄r(ϕ) =YES
while both D̄r(ϕx=0) and D̄r(ϕx=1) are NO. In this case return ϕ,ϕx=0, ϕx=1.
(End of Procedure B.)

Apply Theorem 2 to S. We obtain Procedure A that given a string r of
length nc

2d returns a formula ηr of length between n and ncd such that for

9

infinitely many n, Sr errs on ηr (except for a fraction at most ε of r’s).
The sampler G works as follows. For input 1n choose a random string

r of length nc
2d. Then apply Procedure A to r to obtain ηr. Then apply

Procedure B to S, r and ηr to obtain at most three formulas. Finally choose
one of these formulas at random and output it.

We claim that for infinitely many n the algorithm D errs on the formula
produced by G(1n) with probability close to 1/6. To prove this claim notice
that Sr(ηr) calls D̄ at most 2ncd times. Let i ≤ 2ncd be a number of a call
and ϕ a formula of length between n and ncd. Call a string r of length nc

2d

bad for the pair (i, ϕ) if the frequency of YES answers of D for input ϕ in
the run of D̄r(|ϕ|,i)(ϕ) differs from the probability of the event D(ϕ)=YES

by more than ε. Call a string r of length nc
2d bad for the pair (i, l) if it is

bad for a pair ϕ, i where the length of ϕ is l. By construction of D for every
pair (i, l) a fraction at most 2−l of r’s are bad for (i, l). Call a string r of
length nc

2d bad if there is l between n and ncd and a number i ≤ 2ncd such
that r is bad for i, l (and call r good otherwise). An easy calculation shows
that r is bad with probability at most

ncd
∑

l=n

2ncd2−l < ncd2−n+2.

Notice that all formulas in the search tree of Sr(ηr) have the same length,
as that of ηr. Thus, if r is good and Sr errs on ηr then the error probability
of D on the formula output by Procedure B is at least 1/3(1/2 − ε). We
need to subtract from this number the probability that r is bad and also
the probability that Sr does not err on ηr. The latter one is at most ε for
infinitely many n, so we are done.

Remark 3. For proper samplers the constant 1/6 should be reduced to 1/24
by the following reason. Using a padding we may assume that the formula
output by the sampler constructed in Theorem 4 has length either n, or
ncd (and not in between). Consider a new sampler G̃ that runs G(1n) and

G(1n
1/cd

) and if either of the runs produces a formula of length n, then we
output that formula (if both runs produce a formula of length n then we
output each of them with probability 1/2). This yields the constant 1/24−ε.
Indeed, assume that G(1m) produces a formula ϕ such that D(ϕ) errs with
probability 1/6− ε. Then either the event “D(ϕ) errs and the length of ϕ is
m” or the event “D(ϕ) errs and the length of ϕ is mcd” has probability at
least 1/12−ε/2. In the first case the probability of the event “D errs on the

10

output of G(1m)” is at least 1/24 − ε/4. In the second case the probability

of the event “D errs on the output of G(1m
cd

)” is at least 1/24 − ε/4.

Now we are able to present our second result, which improves the con-
stant 1/6 to 1/3 in the above theorem.

Theorem 5. If NP 6= RP then for every probabilistic polynomial time de-
cision algorithm D and every positive ε there is a sampler G such that for
infinitely many n the decision algorithm D errs on the formula produced by
G(1n) with probability at least 1/3 − ε.

Proof. The proof is similar to that of the previous theorem. We just change
the final stage of the sampler G as follows. Instead of choosing one of the
three formulas at random with equal probabilities, we select the output
formula based on the frequencies of YES answer in the run of Dr on them.
More specifically, let ϕ be a formula such that D̄(ϕ) =YES while both
D̄r(ϕx=0) and D̄r(ϕx=1) are NO. Let u, v,w be the frequencies of the results
YES, NO, NO in the runs of Dr on ϕ,ϕx=0, ϕx=1 which the algorithm D̄r

has observed. By assumption, all the numbers u, v,w are at least 1/2. If
u < 2/3 we output ϕ and halt, as in this case the probabilities of both events
D̄(ϕ) =NO, D̄(ϕ) =YES are greater than 1/3−ε (assuming that r is good).
We proceed similarly if v or w is less than 2/3.

Otherwise find non-negative rational numbers p, q, s such that p+q+s =
1 and all the numbers

pu+q(1−v)+s(1−w), p(1−u)+qv+s(1−w), p(1−u)+q(1−v)+sw (3)

are at least 1/3 (we will argue later that such p, q, s exist). Then output
ϕ,ϕx=0, ϕx=1 with probabilities p, q, s respectively and halt.

Obviously, at least one of the answers of

D̄(ϕ) = YES, D̄(ϕx=0) = NO, D̄(ϕx=1) = NO

is wrong. If the answer D̄(ϕ)=YES is wrong, that is, the formula ϕ is not
satisfiable, then the probability that D errs on ϕ is at least u − ε. The
probability that D errs on ϕx=0 is at least 1 − v − ε. The same holds for
ϕx=1. Thus the overall probability that D errs on the resulting formula is
at least

p(u− ε) + q(1 − v − ε) + s(1 − w − ε) ≥ 1/3 − ε.

In the case when one of the formulas ϕx=0, ϕx=1 is satisfiable we need that
the second and the third numbers in (3) be at least 1/3.

11

This analysis is valid only for good r’s. Take into account a fraction
at most ncd2−n+2 of bad r’s and also a fraction at most ε of r’s such that
Sr does not err on ηr. We obtain that the probability that D errs on the
formula produced by G(1n) is at least to

1/3 − 2ε− ncd2−n+2.

It remains to show that there are nonnegative p, q, s such that p+q+s = 1
and all the numbers (3) are at least 1/3. This happens for p, q, s such that
all the three numbers (3) are equal. It is easy to see that this holds when
p, q, s are proportional to 1/(2u − 1), 1/(2v − 1), 1/(2w − 1). As all u, v,w
are bounded away from 1/2 (we are assuming that these numbers are at
least 2/3), all these numbers are bounded by a constant. Thus we are ably
to find in polynomial time the desired p, q, s. For these p, q, s all the three
numbers (3) are equal to their arithmetic mean, which equals to

1 + p(1 − u) + q(1 − v) + s(1 − w)

3
≥

1

3
.

Remark 4. Theorem 5 remains true for ε = 1/nk for any constant k.

Remark 5. Say that NP 6= RP everywhere if there is a constant c such that
for every randomized SAT solver S and all n > 1, S errs on a formula of
length between n and nc. (A randomized SAT solver S errs on a formula ϕ
if S(ϕ) =“don’t know”with probability more 1/2.)

If instead of NP 6= RP we assume that NP 6= RP everywhere then all
our results hold in a stronger form: the quantifier “for infinitely many n”
may be replaced by the universal quantifier.

Theorem 6. If NP 6= RP everywhere then (1) for every probabilistic SAT
solver S and for every positive ε there is a sampler G such that for all n the
algorithm S errs on the formula produced by G(1n) with probability at least
1 − ε, and (2) for every probabilistic polynomial time decision algorithm D
and every positive ε there is a sampler G such that for all n the decision
algorithm D errs on G(1n) with probability at least 1/3 − ε.

The proofs of the items of this theorem is entirely similar to those of
Theorems 3 and 5 and thus we omit them. We only have to replace, in the
definition of the search problem P , the requirement “the length of ψ is n” by
the requirement “the length of ψ is between n and nc” (and make a similar
change in the definition of problem P ′). The constructed sampler will work
for almost all n, which is enough, as we can change its behaviour for the
remaining n.

12

References

[1] L. M. Adleman. Two Theorems on Random Polynomial Time. FOCS
1978: 75-83

[2] Andrej Bogdanov and Luca Trevisan, Average-Case Complexity, Foun-
dations and Trends in Theoretical Computer Science 1(2), 2006: 1–106.

[3] D. Gutfreund, R. Shaltiel, A. Ta-Shma If NP Languages are Hard on
the Worst-Case, Then it is Easy to Find Their Hard Instances. Compu-
tational Complexity (CC) 16(4):412-441 (2007)

[4] Leonid A. Levin, Average Case Complete Problems. SIAM J. Comput.
15(1): 285–286 (1986)

13

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

