An improving on Gutfreund, Shaltiel, and Ta-Shma's paper "If NP Languages are Hard on the Worst-Case, Then it is Easy to Find Their Hard Instances"

Nikolay Vereshchagin * E-mail: ver@mccme.ru
Moscow State University, Leninskie gory 1, Moscow 119992, Russia

Abstract

Assume that NP $\not \subset$ BPP. Gutfreund, Shaltiel, and Ta-Shma in [Computational Complexity 16(4):412-441 (2007)] have proved that for every randomized polynomial time decision algorithm D for SAT there is a polynomial time samplable distribution such that D errs with probability at least $1 / 6-\varepsilon$ on a random formula chosen with respect to that distribution. In this paper, we show how to increase the error probability to $1 / 3-\varepsilon$.

[^0]
1 Introduction

A goal of the Average Case Complexity is to show that one way functions exist under a worst case hardness assumption like NP $\not \subset \mathrm{BPP} .{ }^{1}$ Or, at least to show that SATISFIABILITY (SAT) is hard on average. The latter can be understood in two quite different ways, both of which use the notion of a sampler. Defining samplers, we will use the framework of Bogdanov and Trevisan [1] rather than the original Levin's one from [2].

Definition 1. A sampler is a polynomial time probabilistic algorithm G that given 1^{n} as input outputs a Boolean formula. If the length of the output formula is always exactly n, we call the sampler proper. Sequences $\mu_{o}, \mu_{1}, \mu_{2}, \ldots$ of distributions for which there is a polynomial time sampler are called polynomial time samplable ensembles of distributions.

In this paper, we consider Boolean formulas in the basis $\neg, \vee, \wedge, 0,1$. The length $|\varphi|$ of a formula φ is defined as the number of symbols in it: every variable is counted as one symbol. Actually, in [1] samplers generate binary strings and not formulas, and samplers are always proper. To generate formulas, it is more natural to consider non-proper samplers, because this makes the results encoding-invariant.

The two ways to understand that SAT is hard on average are the following.
(a) There is a sampler G such that for every probabilistic polynomial time algorithm S, for infinitely many n with probability close to 1 , the formula produced by $G\left(1^{n}\right)$ is satisfiable but S does not find its satisfying assignment. (The probability is with respect to the product of the uniform distribution over G 's internal tosses and the uniform distribution over S 's internal tosses.)
(b) There is a sampler G such that the following holds: For every probabilistic polynomial time decision algorithm D, for infinitely many n with probability close to $1 / 2, D$ errs on the formula ψ produced by $G\left(1^{n}\right)$ (which means that D answers YES while ψ is not satisfiable or vice verse).

Note that for every decision problem the success probability $1 / 2$ can be obtained by a mere random guessing the result. Decision problems for which the success probability cannot deviate much from $1 / 2$ are called hard core predicates. They are used in cryptography and in construction of pseudo random generators.

The goal (a) is also related to constructing (strongly) one-way functions widely used criptography and derandomization. A polynomial time computable function f is one-way if for any probabilistic polynomial time algorithm that given $f(x)$ and $1^{|x|}$ tries to find a pre-image of $f(x)$ of length $|x|$ errs with probability close 1 for all sufficiently large $|x|$. If this happens only for infinitely many $|x|$ (for every probabilistic polynomial time inverting algorithm), then f is called "infinitely often" (i.o.) one-way function. Using NP completeness of SAT, one can show that if i.o. one-way functions exist then (a) is true. On the other

[^1]hand, if there is a sampler as in (a), which generates a satisfiable formula ψ together with its satisfying assignment a, then the projection $(\psi, a) \mapsto \psi$ is an i.o. one-way function.

It is worth to mention that deciding satisfiability reduces to searching a satisfying assignment and the other way around (use a binary search). By the result of [3] the same holds in average case complexity, too, which is not trivial any more. More specifically, if for every polynomial time samplable distribution over formulas there is a polynomial time algorithm that with probability close to 1 correctly decides whether a given formula is satisfiable (closeness means that the difference is less than $1 / p(n)$ for all polynomials p and large enough n), then for every polynomial time samplable distribution over formulas there is a polynomial time algorithm that with probability close to 1 correctly decides whether a given formula is satisfiable and finds a satisfying assignment if this is the case.

The paper [4] makes a step towards the goal (a). Namely, [4] shows that the assumption NP $\not \subset \mathrm{BPP}$ implies the following weaker version of (a), in which we allow the sampler G depend on the decision algorithm D :
(a') For every polynomial time probabilistic algorithm S and ε there is a sampler G such that for infinitely many n, with probability at least $1-\varepsilon$ the following holds: the formula φ produced by $G\left(1^{n}\right)$ is satisfiable and its length is at least n, however $S(\varphi)$ does not find its satisfying assignment.

In this result, it is important that the length of the formula produced by $G\left(1^{n}\right)$ tends to infinity, as n tends to infinity. Otherwise, the statement would become trivial, as G might produce any fixed formula on which S errs with high probability.

Moreover, in [5], under the same assumption, it is shown that for every such S there is a sampler G that for infinitely many n, with probability at least $1-\varepsilon$ produces a satisfiable formula φ and its satisfying assignment but $S(\varphi)$ does not find its satisfying assignment with probability at least $2 / 3$.

The paper [6] (whose conference version appeared two years before [4]) makes a similar progress regarding the goal (b). Namely, [6] shows that the assumption NP $\not \subset$ BPP implies the following weaker version of (2), in which we again allow the sampler G depend on the decision algorithm D :
(b') For every probabilistic polynomial time algorithm D there is a proper sampler G such that the following holds: for almost all n with probability at least $0.03, D$ errs on the formula ψ produced by $G\left(1^{n}\right)$ and its length is at least n. Actually, [6] requires the syntax of formulas allow padding: given a formula φ one can find in polynomial time a formula of length $|\varphi|+1$, which is equivalent to φ.

The authors of [6] remark that they do not optimize constants and by careful calculation the constant 0.03 can be improved; however they do not see how to get it above the barrier of $1 / 3$. Indeed, a careful calculation shows that 0.03 may be replaced by $1 / 24-\varepsilon$ (for any positive ε). But we do not see how, using the techniques of [6], to get the constant above $1 / 24$.

In this paper:

- We notice that, for non-proper samplers, the constant 0.03 in (b') can be improved to $1 / 6-\varepsilon$.
- We show that, using an extra trick, one can get even $1 / 3-\varepsilon$ (for non-proper samplers).

In other words, we show how to double the error probability in (b'). However, our result still does not break the $1 / 3$ barrier and the question whether one can replace $1 / 3$ by $1 / 2$ remains open. Note that the barrier of $1 / 2$ can be broken for Σ_{k}^{p} predicates for every $k>1$. A result of [4] states that if Σ_{k}^{p} is not included in BPP then for every probabilistic polynomial time algorithm A there is a sampler G such that for infinitely many n, algorithm A errs on $G\left(1^{n}\right)$ with probability close to $1 / 2$. As we said, for $k=1$ (that is for NP), this is still open.

2 Generating hard instances of search version of SAT

We start with presenting the main construction of [6] so that it be clear what our contribution is.

Definition 2. The search version of SAT is the following problem: given a Boolean formula φ find its satisfying assignment. A (randomized) SAT solver is a (randomized) polynomial time algorithm that for every input formula φ either finds its satisfying assignment, or says "don't know". A SAT solver D errs on ψ if ψ is satisfiable and $D(\psi)=$ "don't know".

Theorem 1 ([6]). Assume that $N P \neq P$. Given a deterministic SAT solver S one can construct a deterministic polynomial time procedure that given 1^{n} produces a formula ψ_{n} of length at least n such that S errs on ψ_{n} for infinitely many n.

Proof. Consider the following search problem in NP.

Search problem P :

Instance: a string 1^{n} over the unary alphabet.
Solution: a pair (ψ, a) where ψ is a satisfiable formula of length n such that $S(\psi)=$ "don't know", and a is its satisfying assignment.

We will call an instance 1^{n} of P solvable if such pair (ψ, a) exists. As SAT is NP complete, the search problem P reduces to the search version of SAT. This means that there is a polynomial time algorithm that given 1^{n} finds a formula, called φ_{n}, such that:
(1) if the instance 1^{n} of P is solvable then φ_{n} is satisfiable, and
(2) given any satisfying assignment of φ_{n} we can find (in polynomial time) a solution to the instance 1^{n} of problem P.
The length of φ_{n} is bounded by a polynomial n^{d} and w.l.o.g. we may assume that $\left|\varphi_{n}\right| \geq n$.

The procedure works as follows: given 1^{n}, as input
(a) find the formula φ_{n};
(b) run $S\left(\varphi_{n}\right)$;
(c) if $S\left(\varphi_{n}\right)=$ "don't know" then output φ_{n} and halt;
(d) otherwise $S\left(\varphi_{n}\right)$ produces a satisfying assignment for φ_{n}; given that assignment find in polynomial time a solution (ψ, a) to the instance 1^{n} of the problem P; output ψ and halt.

Since we assume that $\mathrm{P} \neq \mathrm{NP}$, for infinitely many n the instance 1^{n} of P is solvable. For such n either $S\left(\varphi_{n}\right)=$ "don't know" (and thus S errs on φ_{n}), or (ψ, a) is a solution to 1^{n} (and thus S errs on ψ).

The next construction of [6] allows to generalize this theorem to randomized SAT solvers. This is done as follows. Let S be a randomized SAT solver working in time n^{c} and let r be string of length at least n^{c}. We will denote by S_{r} the algorithm S that uses bits of r as coin flips. Note that S_{r} a deterministic algorithm.

Theorem 2 ([6]). Assume that NP $\not \subset B P P$. Then for some natural constant d the following holds. Let S be a randomized SAT solver and let n^{c} denote its running time on formulas of length n. Then there is a deterministic polynomial time procedure that given any binary string r of length $n^{c^{2} d}$ produces a formula η_{r} of length between n and $n^{c d}$, where for any positive ε for infinitely many n the following holds. For a fraction at least $1-\varepsilon$ of r 's the algorithm S_{r} errs on η_{r}.

Notice that the length of η_{r} is at most $n^{c d}$. Therefore the running time of S for input η_{r} is at most $n^{c^{2} d}$. Hence $S_{r}\left(\eta_{r}\right)$ is well defined.

Proof. The proof is very similar to that of the previous theorem. The only change is that we have to replace the search problem P by the following problem P^{\prime} : Instance: a binary string r^{\prime} of length n^{c} (for some n).
Solution: a satisfiable formula ψ of length n and its satisfying assignment a such that $S_{r^{\prime}}(\psi)=$ "don't know".

Let $r^{\prime} \mapsto \varphi_{r^{\prime}}$ be a reduction of P^{\prime} to the search version of SAT. The length of $\varphi_{r^{\prime}}$ is bounded by a polynomial $n^{c d}$ of $\left|r^{\prime}\right|=n^{c}$ and w.l.o.g. we may assume that $\left|\varphi_{r^{\prime}}\right| \geq n$.

The procedure required in the theorem, called Procedure A, works as follows: given r of length $n^{c^{2} d}$, as input,
(a) let r^{\prime} stand for the prefix of r of length n^{c};
(b) find the formula $\varphi_{r^{\prime}}$; recall that satisfying assignments of $\varphi_{r^{\prime}}$ are basically pairs (a formula ψ of length n, its satisfying assignment a) such that $S_{r^{\prime}}(\psi)=$ "don't know";
(c) run $S_{r}\left(\varphi_{r^{\prime}}\right)$;
(d) if $S_{r}\left(\varphi_{r^{\prime}}\right)=$ "don't know" then output $\varphi_{r^{\prime}}$ and halt;
(e) otherwise $S_{r}\left(\varphi_{r^{\prime}}\right)$ produces a satisfying assignment for $\varphi_{r^{\prime}}$; given that assignment find in polynomial time a solution (ψ, a) to the instance r^{\prime} of the problem P^{\prime}; output ψ and halt. (End of Procedure A.)

Let η_{r} stand for the formula output by the procedure. Since we assume that NP $\not \subset \mathrm{BPP}$, for every positive ε the randomized searching algorithm S errs with probability at least $1-\varepsilon$ for infinitely many input formulas. This implies that
for infinitely many n the number of solvable instances r^{\prime} of the problem P^{\prime} is at least $(1-\varepsilon) 2^{n^{c}}$. For those r^{\prime} s the formula $\varphi_{r^{\prime}}$ is satisfiable. Therefore, for all but a fraction ε of r 's the algorithm S_{r} errs on $\varphi_{r^{\prime}}$ or $S_{r^{\prime}}$ errs on ψ, which implies that S_{r} errs on ψ as well.

Remark 1. Theorem 2 holds for $\varepsilon=1 / n^{k}$ for any constant k. Indeed, the assumption NP $\not \subset \mathrm{BPP}$ implies that the randomized searching algorithm S errs with probability at least $1-|\varphi|^{-k}$ for infinitely many input formulas φ.

3 Generating hard instances of the decision version of SAT

We say that a randomized decision algorithm D with randomness r errs on a formula φ if $D_{r}(\varphi)=\mathrm{YES}$ and φ is not satisfiable or vice verse.

Here is our main result.
Theorem 3. If NP $\not \subset B P P$ then for every probabilistic polynomial time decision algorithm D and every positive ε there is a sampler G such that for infinitely many n with probability at least $1-\varepsilon$ the decision algorithm D errs on the formula produced by $G\left(1^{n}\right)$ with probability at least $1 / 3-\varepsilon$ and the length of the formula is at least n.

Remark 2. This result strengthens a result that is implicit in [6], which states the same with $1 / 6$ in place of $1 / 3$. In the proof we will explain what is the difference between the construction in [6] and ours. For proper samplers the constant $1 / 6$ should be reduced to $1 / 24$ by the following reason. Using a padding we may assume that the formula output by the sampler has length either n, or $n^{c d}$ (and not in between). Consider a new sampler \tilde{G} that runs $G\left(1^{n}\right)$ and $G\left(1^{n^{1 / c d}}\right)$ and if either of the runs produces a formula of length n, then we output that formula (if both runs produce a formula of length n then we output each of them with probability $1 / 2$). This yields the constant $1 / 24-\varepsilon$. Indeed, assume that $G\left(1^{m}\right)$ produces a formula φ such that $D(\varphi)$ errs with probability $1 / 6-\varepsilon$. Then either the event " $D(\varphi)$ errs and the length of φ is m " or the event " $D(\varphi)$ errs and the length of φ is $m^{c d "}$ has probability at least $1 / 12-\varepsilon / 2$. In the first case the probability of the event " D errs on the output of $G\left(1^{m}\right)$ " is at least $1 / 24-\varepsilon / 4$. In the second case the probability of the event " D errs on the output of $G\left(1^{m^{c d}}\right)$ " is at least $1 / 24-\varepsilon / 4$.

Proof (of Theorem 3). Let D and ε be given. First we use the standard amplification, as in [7], to transform the algorithm D into another decision algorithm \bar{D} with a smaller error probability.

Given a formula φ of length n as input the algorithm \bar{D} invokes $D(\varphi)$ polynomial number K of times and outputs the most frequent result among all the results obtained in those runs. If K is large enough (but still polynomial in n) then the probability that the frequency of the result YES in those K runs differs from the probability that $D(\varphi)=$ YES by more than ε is exponentially small in
n. This follows from the Chernoff bound. Note that the number of formulas of length n is also exponential in n. Moreover, we can choose $K=\operatorname{poly}(n)$ so that with probability at least $1-2^{-n}$ there is no formula φ of length n for which the frequency of the result YES deviates from the probability that $D(\varphi)=$ YES by at most ε.

Using the standard binary search techniques we transform the algorithm \bar{D} to a SAT solver S. That is, given a formula φ the algorithm S first runs $\bar{D}(\varphi)$. If the result is YES then it substitutes first $x=0$ and then $x=1$ for the first variable x in φ and runs \bar{D} on the resulting formulas $\varphi_{x=0}, \varphi_{x=1}$. If at least one of these runs outputs YES, we replace φ by the corresponding formula and recurse. Otherwise we return "don't know" and halt.

If \bar{D} returns NO for the input formula φ, we return "don't know" and halt. Finally, if we have substituted 0 s and 1 s for all variables and the resulting formula is true, we return the satisfying assignment we have found, and otherwise we return "don't know".

Let n^{c} be the upper bound of S 's running time for input formulas of length n and let r be a string of length n^{c} used as randomness for S. In its run for input φ the algorithm S_{r} uses parts of r as coin flips for \bar{D}. With some abuse of notation we will denote by \bar{D}_{r} the algorithm \bar{D} with that randomness. In the same way the notation D_{r} is understood.

The heart of the construction is a procedure that given any formula ψ and randomness r such that S_{r} errs on ψ returns at most three formulas such that the algorithm D errs on at least one of those formulas with high probability.

Procedure B. Given a satisfiable input formula ψ and r such that $S_{r}(\psi)=$ "don't know", run $S_{r}(\psi)$ to find the place in the binary search tree where S_{r} is stuck. By the construction of S this may happen in the following three cases:
(1) $\bar{D}_{r}(\psi)=$ NO. In this case output ψ.
(2) $S_{r}(\psi)$ performs the binary search till the very end, it finds a formula η obtained from original formula by substituting all its variables by 0,1 such that η is false while \bar{D}_{r} claims that η is true. In this case output η.
(3) In the remaining case $S_{r}(\psi)$ is stuck in the middle of the binary search and thus has found a formula φ and its variable x such that $\bar{D}_{r}(\varphi)=\mathrm{YES}$ while both $\bar{D}_{r}\left(\varphi_{x=0}\right)$ and $\bar{D}_{r}\left(\varphi_{x=1}\right)$ are NO. In this case return $\varphi, \varphi_{x=0}, \varphi_{x=1}$. (End of Procedure B.)

We will call formulas returned by this procedure by $\alpha, \beta, \gamma .{ }^{2}$ They depend on input formula ψ and on randomness r.

By Theorem 2 applied to the search algorithm S there is a polynomial procedure (called Procedure A in the proof) with the following property. Given a string r of length $n^{c^{2} d}$ the procedure returns a formula η_{r} of length between n and $n^{c d}$ such that for infinitely many n, S_{r} errs on η_{r} (except for a fraction at most ε of r 's).

The sampler G from [6] works as follows. For input 1^{n} choose a random string r of length $n^{c^{2} d}$. Then apply Procedure A to r to obtain η_{r}. Then apply

[^2]Procedure B to S, r and η_{r} to obtain three formulas α, β, γ. Finally choose one of these formulas at random, each with probability $1 / 3$, and output it.

Fix a positive ε. We claim that for infinitely many n with probability at least $1-2 \varepsilon$ the algorithm D errs on the formula produced by $G\left(1^{n}\right)$ with probability at least $1 / 6-\varepsilon$. To prove this claim notice that $S_{r}\left(\eta_{r}\right)$ calls \bar{D}_{r} at most $2 n^{c d}$ times (two times for each variable). Each time \bar{D}_{r} is called on an input formula φ of length between n and $n^{c d}$. Call a string r of length $n^{c^{2} d} b a d$ if in at least one of these runs of \bar{D}_{r} the frequency of YES answers of D for input φ differs from the probability of the event $D(\varphi)=$ YES by more than ε (recall that $\bar{D}_{r}(\varphi)$ runs $D(\varphi)$ some K times). By construction of \bar{D} a fraction at most

$$
\sum_{l=n}^{n^{c d}} 2 n^{c d} 2^{-l}<n^{c d} 2^{-n+2} \leq \varepsilon
$$

r 's are bad (for all large enough n). If r is good and S_{r} errs on η_{r} then the error probability of D on the formula output by Procedure B is at least $1 / 3(1 / 2-\varepsilon)$. And for infinitely many n the probability that S_{r} does not err on η_{r} is at most ε. Thus for infinitely many n with probability at least $1-2 \varepsilon$ both S_{r} errs on η_{r} and r is good hence D errs on the output formula with probability at least $1 / 3(1 / 2-\varepsilon)$.

Up to now we have just recited the arguments from [6]. Now we will present a new trick, which improves the constant $1 / 6$ to $1 / 3$. We will change in the work of this sampler the very last step. This time we will output α, β, γ with different probabilities. Recall that Procedure B has run the algorithm \bar{D}_{r} on inputs α, β, γ, and algorithm \bar{D}_{r} has done majority vote among some number K of runs of the algorithm D_{r} on α, β, γ, respectively. The algorithm \bar{D}_{r} has output the most frequent answer produced in those runs and we know that at least one of results $\bar{D}_{r}(\alpha), \bar{D}_{r}(\beta), \bar{D}_{r}(\gamma)$ is incorrect for all r 's except for a fraction at most ε. Let u, v, w stand for the frequencies of the most frequent results of D_{r} in the runs of \bar{D}_{r} on α, β, γ, respectively. Obviously, all the numbers u, v, w are at least $1 / 2$. If $u<2 / 3$, we just output α (with probability 1) and halt, as in this case the probabilities of both events $D(\alpha)=\mathrm{NO}, D(\alpha)=$ YES are greater than $1 / 3-\varepsilon$ (assuming that r is good). We proceed similarly if v or w is less than $2 / 3$.

Otherwise find non-negative rational numbers p, q, s such that $p+q+s=1$ and all the numbers

$$
\begin{equation*}
p u+q(1-v)+s(1-w), \quad p(1-u)+q v+s(1-w), \quad p(1-u)+q(1-v)+s w(1 \tag{1}
\end{equation*}
$$

are at least $1 / 3$ (we will argue later that such p, q, s exist). Then output α, β, γ with probabilities p, q, s, respectively, and halt.

Assume that at least one of the results

$$
\bar{D}_{r}(\alpha), \quad \bar{D}_{r}(\beta), \quad \bar{D}_{r}(\gamma)
$$

is wrong and r is good. If the answer $\bar{D}_{r}(\alpha)$ is wrong, then the probability that D errs on α is at least $u-\varepsilon$. The probability that D errs on β is at least $1-v-\varepsilon$.

The same holds for γ. Thus the overall probability that D errs on the resulting formula is at least

$$
p(u-\varepsilon)+q(1-v-\varepsilon)+s(1-w-\varepsilon) \geq 1 / 3-\varepsilon .
$$

In the case when one of the results $\bar{D}_{r}(\beta), \bar{D}_{r}(\gamma)$ is incorrect, we need that the second and the third numbers in (1) be at least $1 / 3$.

Take into account a fraction at most ε of bad r 's and also a fraction at most ε of r 's such that S_{r} does not err on η_{r}. We obtain that with probability at least $1-2 \varepsilon$ the algorithm D errs on the formula produced by $G\left(1^{n}\right)$ with probability at least $1 / 3-\varepsilon$.

It remains to show that there are non-negative p, q, s such that $p+q+s=1$ and all the numbers in (1) are at least $1 / 3$. Note that the arithmetic mean of those numbers is equal

$$
\frac{1+p(1-u)+q(1-v)+s(1-w)}{3} \geq \frac{1}{3}
$$

Thus it suffices to show that there are non-negative p, q, s such that all the three numbers in (1) are equal (and thus the maximum equals to the arithmetical mean):
$p u+q(1-v)+s(1-w)=p(1-u)+q v+s(1-w)=p(1-u)+q(1-v)+s w$.
The first inequality means that $p(2 u-1)=q(2 v-1)$ and the second one means that $q(2 v-1)=r(2 w-1)$. Thus all the three numbers are equal, if p, q, s are proportional to $1 /(2 u-1), 1 /(2 v-1), 1 /(2 w-1)$. As all u, v, w are bounded away from $1 / 2$ (we are assuming that these numbers are at least $2 / 3$), all these numbers are bounded by a constant. Thus we are able to find in polynomial time the desired p, q, s.
Remark 3. Theorem 3 remains true for $\varepsilon=1 / n^{k}$ for any constant k.
Remark 4. Say that NP $\not \subset \mathrm{BPP}$ everywhere if there is a constant c such that for every randomized SAT solver S and all $n>1, S$ errs on a formula of length between n and n^{c}. (A randomized SAT solver S errs on a formula φ if $S(\varphi)=$ "don't know" with probability more $1 / 2$.)

If instead of NP $\not \subset \mathrm{BPP}$ we assume that NP $\not \subset \mathrm{BPP}$ everywhere then all our result holds in a stronger form: the quantifier "for infinitely many n " may be replaced by the universal quantifier.
Theorem 4. If NP $\not \subset B P P$ everywhere then for every probabilistic polynomial time decision algorithm D and every positive ε there is a sampler G such that for all n the decision algorithm D errs on $G\left(1^{n}\right)$ with probability at least $1 / 3-\varepsilon$ and the length of the formula is at least n.

The proofs of this theorem is entirely similar to that of Theorem 3 and thus we omit it. We only have to replace, in the definition of the search problem P, the requirement "the length of ψ is n " by the requirement "the length of ψ is between n and $n^{c "}$ (and make a similar change in the definition of problem P^{\prime}). The constructed sampler will work for almost all n, which is enough, as we can change its behavior for the remaining n.

References

1. Andrej Bogdanov and Luca Trevisan, Average-Case Complexity, Foundations and Trends in Theoretical Computer Science 1(2) (2006) 1-106.
2. Leonid A. Levin, Average Case Complete Problems. SIAM J. Comput. 15:1 (1986) 285-286.
3. Shai Ben-David, Benny Chor, Oded Goldreich. Michael Luby, On the Theory of Average Case Complexity. STOC 1989 204-216
4. D. Gutfreund, Worst-Case Vs. Algorithmic Average-Case Complexity in the Polynomial-Time Hierarchy, Proceedings of the 10th International Workshop on Randomization and Computation, RANDOM 2006, Lecture Notes in Computer Science Volume 4110, 2006, pp 386-397.
5. Andrej Bogdanov, Kunal Talwar, Andrew Wan. Hard instances for satisfiability and quasi-one-way functions. Proceedings of Innovations in Computer Science (ICS 2009). Tsinghua University Press 2009, pp. 290-300.
6. D. Gutfreund, R. Shaltiel, A. Ta-Shma, If NP Languages are Hard on the WorstCase, Then it is Easy to Find Their Hard Instances. Computational Complexity (CC), 16:4 (2007) 412-441.
7. L. M. Adleman. Two Theorems on Random Polynomial Time. FOCS 1978: 75-83

[^0]: * The work was in part supported by the RFBR grant 09-01-00709 and the ANR grant ProjetANR-08-EMER-008

[^1]: ${ }^{1}$ NP $\not \subset \mathrm{BPP}$ means that there is no polynomial time randomized algorithm that given any Boolean formula with probability at least $2 / 3$ correctly decides whether it is satisfiable.

[^2]: ${ }^{2}$ Without loss of generality we may assume that Procedure B always outputs three formulas.

