Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 167 (2011)

An improving on Gutfreund, Shaltiel, and
Ta-Shma’s paper “If NP Languages are Hard on
the Worst-Case, Then it is Easy to Find Their
Hard Instances”

Nikolay Vereshchagin * E-mail: ver@mccme.ru

Moscow State University, Leninskie gory 1, Moscow 119992, Russia

Abstract. Assume that NP ¢ BPP. Gutfreund, Shaltiel, and Ta-Shma
in [Computational Complexity 16(4):412-441 (2007)] have proved that
for every randomized polynomial time decision algorithm D for SAT
there is a polynomial time samplable distribution such that D errs with
probability at least 1/6 — € on a random formula chosen with respect
to that distribution. In this paper, we show how to increase the error
probability to 1/3 —e.

* The work was in part supported by the RFBR grant 09-01-00709 and the ANR grant
ProjetANR-08-EMER-008

ISSN 1433-8092

1 Introduction

A goal of the Average Case Complexity is to show that one way functions exist
under a worst case hardness assumption like NP ¢ BPP.! Or, at least to show
that SATISFIABILITY (SAT) is hard on average. The latter can be understood
in two quite different ways, both of which use the notion of a sampler. Defining
samplers, we will use the framework of Bogdanov and Trevisan [1] rather than
the original Levin’s one from [2].

Definition 1. A sampler is a polynomial time probabilistic algorithm G that
giwven 1™ as input outputs a Boolean formula. If the length of the output formula
is always exactly n, we call the sampler proper. Sequences fio, f11, fi2, ... of dis-
tributions for which there is a polynomial time sampler are called polynomial
time samplable ensembles of distributions.

In this paper, we consider Boolean formulas in the basis —,V,A,0,1. The
length |p| of a formula ¢ is defined as the number of symbols in it: every vari-
able is counted as one symbol. Actually, in [1] samplers generate binary strings
and not formulas, and samplers are always proper. To generate formulas, it is
more natural to consider non-proper samplers, because this makes the results
encoding-invariant.

The two ways to understand that SAT is hard on average are the following.

(a) There is a sampler G such that for every probabilistic polynomial time
algorithm S, for infinitely many n with probability close to 1, the formula pro-
duced by G(1™) is satisfiable but S does not find its satisfying assignment. (The
probability is with respect to the product of the uniform distribution over G’s
internal tosses and the uniform distribution over S’s internal tosses.)

(b) There is a sampler G such that the following holds: For every probabilistic
polynomial time decision algorithm D, for infinitely many n with probability
close to 1/2, D errs on the formula ¢ produced by G(1™) (which means that D
answers YES while ¢ is not satisfiable or vice verse).

Note that for every decision problem the success probability 1/2 can be ob-
tained by a mere random guessing the result. Decision problems for which the
success probability cannot deviate much from 1/2 are called hard core predicates.
They are used in cryptography and in construction of pseudo random generators.

The goal (a) is also related to constructing (strongly) one-way functions
widely used criptography and derandomization. A polynomial time computable
function f is one-way if for any probabilistic polynomial time algorithm that
given f(z) and 1/*| tries to find a pre-image of f(z) of length |z| errs with
probability close 1 for all sufficiently large |x|. If this happens only for infinitely
many |z| (for every probabilistic polynomial time inverting algorithm), then f is
called “infinitely often” (i.o.) one-way function. Using NP completeness of SAT,
one can show that if i.0. one-way functions exist then (a) is true. On the other

! NP ¢ BPP means that there is no polynomial time randomized algorithm that
given any Boolean formula with probability at least 2/3 correctly decides whether
it is satisfiable.

hand, if there is a sampler as in (a), which generates a satisfiable formula
together with its satisfying assignment a, then the projection (¢, a) — ¢ is an
i.0. one-way function.

It is worth to mention that deciding satisfiability reduces to searching a
satisfying assignment and the other way around (use a binary search). By the
result of [3] the same holds in average case complexity, too, which is not trivial
any more. More specifically, if for every polynomial time samplable distribution
over formulas there is a polynomial time algorithm that with probability close
to 1 correctly decides whether a given formula is satisfiable (closeness means
that the difference is less than 1/p(n) for all polynomials p and large enough
n), then for every polynomial time samplable distribution over formulas there is
a polynomial time algorithm that with probability close to 1 correctly decides
whether a given formula is satisfiable and finds a satisfying assignment if this is
the case.

The paper [4] makes a step towards the goal (a). Namely, [4] shows that the
assumption NP ¢ BPP implies the following weaker version of (a), in which we
allow the sampler G depend on the decision algorithm D:

(a’) For every polynomial time probabilistic algorithm S and e there is a
sampler G such that for infinitely many n, with probability at least 1 — ¢ the
following holds: the formula ¢ produced by G(1™) is satisfiable and its length is
at least n, however S(p) does not find its satisfying assignment.

In this result, it is important that the length of the formula produced by
G(1™) tends to infinity, as n tends to infinity. Otherwise, the statement would
become trivial, as G might produce any fixed formula on which S errs with high
probability.

Moreover, in [5], under the same assumption, it is shown that for every such
S there is a sampler G that for infinitely many n, with probability at least 1 — ¢
produces a satisfiable formula ¢ and its satisfying assignment but S(¢) does not
find its satisfying assignment with probability at least 2/3.

The paper [6] (whose conference version appeared two years before [4]) makes
a similar progress regarding the goal (b). Namely, [6] shows that the assumption
NP ¢ BPP implies the following weaker version of (2), in which we again allow
the sampler G depend on the decision algorithm D:

(b”) For every probabilistic polynomial time algorithm D there is a proper
sampler G such that the following holds: for almost all n with probability at
least 0.03, D errs on the formula ¢ produced by G(1™) and its length is at least
n. Actually, [6] requires the syntax of formulas allow padding: given a formula ¢
one can find in polynomial time a formula of length || + 1, which is equivalent
to .

The authors of [6] remark that they do not optimize constants and by careful
calculation the constant 0.03 can be improved; however they do not see how to
get it above the barrier of 1/3. Indeed, a careful calculation shows that 0.03 may
be replaced by 1/24 — e (for any positive €). But we do not see how, using the
techniques of [6], to get the constant above 1/24.

In this paper:

— We notice that, for non-proper samplers, the constant 0.03 in (b’) can be
improved to 1/6 — ¢.

— We show that, using an extra trick, one can get even 1/3 — e (for non-proper
samplers).

In other words, we show how to double the error probability in (b’). However,
our result still does not break the 1/3 barrier and the question whether one can
replace 1/3 by 1/2 remains open. Note that the barrier of 1/2 can be broken for
X7 predicates for every k > 1. A result of [4] states that if X} is not included in
BPP then for every probabilistic polynomial time algorithm A there is a sampler
G such that for infinitely many n, algorithm A errs on G(1™) with probability
close to 1/2. As we said, for k =1 (that is for NP), this is still open.

2 Generating hard instances of search version of SAT

We start with presenting the main construction of [6] so that it be clear what
our contribution is.

Definition 2. The search version of SAT is the following problem: given a
Boolean formula ¢ find its satisfying assignment. A (randomized) SAT solver
is a (randomized) polynomial time algorithm that for every input formula ¢ ei-
ther finds its satisfying assignment, or says “don’t know”. A SAT solver D errs
on) if ¥ is satisfiable and D(v) = “don’t know”.

Theorem 1 ([6]). Assume that NP # P. Given a deterministic SAT solver
S one can construct a deterministic polynomial time procedure that given 1™
produces a formula ¥, of length at least n such that S errs on 1, for infinitely
many n.

Proof. Consider the following search problem in NP.

Search problem P:

Instance: a string 1™ over the unary alphabet.

Solution: a pair (¢,a) where v is a satisfiable formula of length n such that
S(1) =“don’t know”, and « is its satisfying assignment.

We will call an instance 1™ of P solvable if such pair (¢, a) exists. As SAT is
NP complete, the search problem P reduces to the search version of SAT. This
means that there is a polynomial time algorithm that given 1™ finds a formula,
called ¢, such that:

(1) if the instance 1™ of P is solvable then ¢, is satisfiable, and

(2) given any satisfying assignment of ¢,, we can find (in polynomial time) a
solution to the instance 1™ of problem P.

The length of ¢,, is bounded by a polynomial n¢ and w.l.o.g. we may assume
that |<pn‘ > n.

The procedure works as follows: given 1™, as input
(a) find the formula ¢y;

(b) run S(en);

(¢) if S(p,)=%“don’t know”then output ¢,, and halt;
(d) otherwise S(p,) produces a satisfying assignment for ¢,; given that assign-
ment find in polynomial time a solution (1, a) to the instance 1" of the problem
P; output ¢ and halt.

Since we assume that P # NP, for infinitely many n the instance 1™ of P
is solvable. For such n either S(p,)="“don’t know” (and thus S errs on ¢,), or
(1, a) is a solution to 1™ (and thus S errs on).

The next construction of [6] allows to generalize this theorem to randomized
SAT solvers. This is done as follows. Let S be a randomized SAT solver work-
ing in time n° and let r be string of length at least n®. We will denote by S,
the algorithm S that uses bits of r as coin flips. Note that S, a deterministic
algorithm.

Theorem 2 ([6]). Assume that NP ¢ BPP. Then for some natural constant
d the following holds. Let S be a randomized SAT solver and let n¢ denote its
running time on formulas of length n. Then there is a deterministic polynomial
time procedure that given any binary string v of length ne’d produces a formula
0 of length between n and n°®, where for any positive € for infinitely many n
the following holds. For a fraction at least 1 — ¢ of r’s the algorithm S, errs on

M-

Notice that the length2 of 1, is at most n°®. Therefore the running time of S for
input 7, is at most n® ?. Hence S, (n,) is well defined.

Proof. The proof is very similar to that of the previous theorem. The only change
is that we have to replace the search problem P by the following problem P’
Instance: a binary string 7’ of length n¢ (for some n).

Solution: a satisfiable formula v of length n and its satisfying assignment a such
that Sy (¢) =“don’t know”.

Let ' — ¢, be a reduction of P’ to the search version of SAT. The length
of ¢, is bounded by a polynomial n°? of |r’| = n° and w.l.o.g. we may assume
that || > n.

The procedure required in the theorem, called Procedure A, works as fol-
lows: given r of length nczd, as input,

(a) let 7’ stand for the prefix of r of length n®;

(b) find the formula ¢, ; recall that satisfying assignments of ¢, are basi-
cally pairs (a formula v of length n, its satisfying assignment a) such that
Sy (1) =“don’t know”;

(c) run S, (¢r);

(d) if S, (p,)=“don’t know” then output p,. and halt;

(e) otherwise S,.(¢,) produces a satisfying assignment for ¢,.; given that assign-
ment find in polynomial time a solution (1, a) to the instance r’ of the problem
P’; output 9 and halt. (End of Procedure A.)

Let 7, stand for the formula output by the procedure. Since we assume that
NP ¢ BPP, for every positive € the randomized searching algorithm S errs with
probability at least 1 — ¢ for infinitely many input formulas. This implies that

for infinitely many n the number of solvable instances ' of the problem P’ is at
least (1—¢)2™". For those r’s the formula ¢, is satisfiable. Therefore, for all but
a fraction e of r’s the algorithm S,. errs on ¢,» or S,v errs on v, which implies
that S, errs on 9 as well.

Remark 1. Theorem 2 holds for ¢ = 1/n* for any constant k. Indeed, the as-
sumption NP ¢ BPP implies that the randomized searching algorithm S errs
with probability at least 1 — |¢|~* for infinitely many input formulas ¢.

3 Generating hard instances of the decision version of
SAT

We say that a randomized decision algorithm D with randomness r errs on a
formula ¢ if D,.(¢) =YES and ¢ is not satisfiable or vice verse.
Here is our main result.

Theorem 3. If NP ¢ BPP then for every probabilistic polynomial time decision
algorithm D and every positive € there is a sampler G such that for infinitely
many n with probability at least 1 — e the decision algorithm D errs on the
formula produced by G(1™) with probability at least 1/3 — e and the length of the
formula is at least n.

Remark 2. This result strengthens a result that is implicit in [6], which states the
same with 1/6 in place of 1/3. In the proof we will explain what is the difference
between the construction in [6] and ours. For proper samplers the constant 1/6
should be reduced to 1/24 by the following reason. Using a padding we may
assume that the formula output by the sampler has length either n, or n° (and
not in between). Consider a new sampler G that runs G(1™) and G(l”l/Cd) and
if either of the runs produces a formula of length n, then we output that formula
(if both runs produce a formula of length n then we output each of them with
probability 1/2). This yields the constant 1/24 — e. Indeed, assume that G(1™)
produces a formula ¢ such that D(p) errs with probability 1/6 —e. Then either
the event “D(p) errs and the length of ¢ is m” or the event “D(y) errs and
the length of ¢ is m®” has probability at least 1/12 — £/2. In the first case the
probability of the event “D errs on the output of G(1™)” is at least 1/24 — /4.
In the second case the probability of the event “D errs on the output of G(lmud)”
is at least 1/24 — ¢/4.

Proof (of Theorem 3). Let D and e be given. First we use the standard ampli-
fication, as in [7], to transform the algorithm D into another decision algorithm
D with a smaller error probability.

Given a formula ¢ of length n as input the algorithm D invokes D(¢) poly-
nomial number K of times and outputs the most frequent result among all the
results obtained in those runs. If K is large enough (but still polynomial in n)
then the probability that the frequency of the result YES in those K runs differs
from the probability that D(¢) = YES by more than ¢ is exponentially small in

n. This follows from the Chernoff bound. Note that the number of formulas of
length n is also exponential in n. Moreover, we can choose K = poly(n) so that
with probability at least 1 — 27" there is no formula ¢ of length n for which the
frequency of the result YES deviates from the probability that D(¢) = YES by
at most €.

Using the standard binary search techniques we transform the algorithm D
to a SAT solver S. That is, given a formula ¢ the algorithm S first runs D(y).
If the result is YES then it substitutes first z = 0 and then x = 1 for the first
variable x in ¢ and runs D on the resulting formulas p,—q, @y=1. If at least
one of these runs outputs YES, we replace ¢ by the corresponding formula and
recurse. Otherwise we return “don’t know”and halt.

If D returns NO for the input formula ¢, we return “don’t know”and halt.
Finally, if we have substituted Os and 1s for all variables and the resulting formula
is true, we return the satisfying assignment we have found, and otherwise we
return “don’t know”.

Let n¢ be the upper bound of S’s running time for input formulas of length
n and let r be a string of length n° used as randomness for S. In its run for
input ¢ the algorithm S, uses parts of 7 as coin flips for D. With some abuse
of notation we will denote by D, the algorithm D with that randomness. In the
same way the notation D, is understood.

The heart of the construction is a procedure that given any formula v and
randomness 7 such that S, errs on i returns at most three formulas such that
the algorithm D errs on at least one of those formulas with high probability.

Procedure B. Given a satisfiable input formula ¢ and r such that S, (1)) =“don’t
know”, run S,.(¢) to find the place in the binary search tree where S, is stuck.
By the construction of S this may happen in the following three cases:

(1) D,(¢)=NO. In this case output 1.

(2) Sp(v) performs the binary search till the very end, it finds a formula 7
obtained from original formula by substituting all its variables by 0,1 such that
n is false while D, claims that 7 is true. In this case output 7.

(3) In the remaining case Sy (v) is stuck in the middle of the binary search
and thus has found a formula ¢ and its variable z such that D,.(¢) =YES while
both D, (p,—0) and D,(¢,—1) are NO. In this case return o, ,—g, pz—1. (End
of Procedure B.)

We will call formulas returned by this procedure by «, 3,7.2 They depend
on input formula v and on randomness 7.

By Theorem 2 applied to the search algorithm S there is a polynomial pro-
cedure (called Procedure A in the proof) with the following property. Given a
string r of length nc’d the procedure returns a formula 7, of length between n
and n°? such that for infinitely many n, S, errs on 7, (except for a fraction at
most ¢ of 7's).

The sampler G from [6] works as follows. For input 1™ choose a random
string r of length n®’d. Then apply Procedure A to r to obtain 7,.. Then apply

2 Without loss of generality we may assume that Procedure B always outputs three
formulas.

Procedure B to S, r and 7, to obtain three formulas «, 3, 7. Finally choose one
of these formulas at random, each with probability 1/3, and output it.

Fix a positive e. We claim that for infinitely many n with probability at least
1 — 2¢ the algorithm D errs on the formula produced by G(1™) with probability
at least 1/6 — e. To prove this claim notice that S,.(n,) calls D, at most 2n°?
times (two times for each variable). Each time D, is called on an input formula
@ of length between n and n°®. Call a string r of length n? bad if in at least
one of these runs of D, the frequency of YES answers of D for input ¢ differs
from the probability of the event D(¢)=YES by more than ¢ (recall that D,.(¢)
runs D(p) some K times). By construction of D a fraction at most

’ILCd

Z Incdo—l < pedg—nt2 < o

l=n

r’s are bad (for all large enough n). If r is good and S, errs on 7, then the error
probability of D on the formula output by Procedure B is at least 1/3(1/2 —¢).
And for infinitely many n the probability that S, does not err on 7, is at most
g. Thus for infinitely many n with probability at least 1 — 2¢ both S, errs on
1 and 7 is good hence D errs on the output formula with probability at least
1/3(1/2 —¢).

Up to now we have just recited the arguments from [6]. Now we will present
a new trick, which improves the constant 1/6 to 1/3. We will change in the
work of this sampler the very last step. This time we will output «, 3,y with
different probabilities. Recall that Procedure B has run the algorithm D, on
inputs «, 3, v, and algorithm D, has done majority vote among some number K
of runs of the algorithm D, on «, 3, v, respectively. The algorithm D,. has output
the most frequent answer produced in those runs and we know that at least one
of results D,.(«), D,.(B), D,.(7y) is incorrect for all r’s except for a fraction at most
e. Let u,v,w stand for the frequencies of the most frequent results of D,. in the
runs of D, on a, 3,7, respectively. Obviously, all the numbers u, v, w are at least
1/2. If uw < 2/3, we just output a (with probability 1) and halt, as in this case
the probabilities of both events D(«) =NO, D(«) =YES are greater than 1/3—¢
(assuming that r is good). We proceed similarly if v or w is less than 2/3.

Otherwise find non-negative rational numbers p, ¢, s such that p+¢+s=1
and all the numbers

putq(l—v)+s(l-w), p(l-u)+qu+s(l-w), p(l—u)+q(l—v)+sw (1)

are at least 1/3 (we will argue later that such p, ¢, s exist). Then output «, 3,
with probabilities p, q, s, respectively, and halt.
Assume that at least one of the results

Dr(a)v DT(B)? DT’(’Y)

is wrong and 7 is good. If the answer D,.(a) is wrong, then the probability that
D errs on « is at least u—e. The probability that D errs on 3 is at least 1 —v—e.

The same holds for v. Thus the overall probability that D errs on the resulting
formula is at least

plu—e)+ql—v—e)+s(l-—w—-¢e)>1/3—c¢.

In the case when one of the results D,.(3), D,.() is incorrect, we need that the
second and the third numbers in (1) be at least 1/3.

Take into account a fraction at most € of bad r’s and also a fraction at most
€ of r’s such that S, does not err on 7,. We obtain that with probability at least
1 — 2¢ the algorithm D errs on the formula produced by G(1™) with probability
at least 1/3 —e.

It remains to show that there are non-negative p, q, s such that p+qg+s=1
and all the numbers in (1) are at least 1/3. Note that the arithmetic mean of
those numbers is equal

1+p(l—u)+q(l—v)+s(l—w) >1
3 -3
Thus it suffices to show that there are non-negative p, ¢, s such that all the three

numbers in (1) are equal (and thus the maximum equals to the arithmetical
mean):

pu+qg(l—v)+s(l—w)=p(l—u)+quv+s(l—w)=p(l—u)+q(l—v)+sw.

The first inequality means that p(2u — 1) = ¢(2v — 1) and the second one means
that ¢(2v — 1) = r(2w — 1). Thus all the three numbers are equal, if p,q, s are
proportional to 1/(2u — 1),1/(2v — 1),1/(2w — 1). As all u,v,w are bounded
away from 1/2 (we are assuming that these numbers are at least 2/3), all these
numbers are bounded by a constant. Thus we are able to find in polynomial time
the desired p, g, s.

Remark 3. Theorem 3 remains true for € = 1/n* for any constant k.

Remark 4. Say that NP ¢ BPP everywhere if there is a constant ¢ such that for
every randomized SAT solver S and all n > 1, S errs on a formula of length be-
tween n and n°. (A randomized SAT solver S errs on a formula ¢ if S(¢) =“don’t
know” with probability more 1/2.)

If instead of NP ¢ BPP we assume that NP ¢ BPP everywhere then all our
result holds in a stronger form: the quantifier “for infinitely many n” may be
replaced by the universal quantifier.

Theorem 4. If NP ¢ BPP everywhere then for every probabilistic polynomial
time decision algorithm D and every positive € there is a sampler G such that
for all n the decision algorithm D errs on G(1™) with probability at least 1/3 —¢e
and the length of the formula is at least n.

The proofs of this theorem is entirely similar to that of Theorem 3 and thus
we omit it. We only have to replace, in the definition of the search problem P,
the requirement “the length of v is n” by the requirement “the length of 1 is
between n and n°” (and make a similar change in the definition of problem P’).
The constructed sampler will work for almost all n, which is enough, as we can
change its behavior for the remaining n.

References

1. Andrej Bogdanov and Luca Trevisan, Average-Case Complexity, Foundations and
Trends in Theoretical Computer Science 1(2) (2006) 1-106.

2. Leonid A. Levin, Average Case Complete Problems. SIAM J. Comput. 15:1 (1986)
285-286.

3. Shai Ben-David, Benny Chor, Oded Goldreich. Michael Luby, On the Theory of
Average Case Complexity. STOC 1989 204-216

4. D. Gutfreund, Worst-Case Vs. Algorithmic Average-Case Complexity in the
Polynomial-Time Hierarchy, Proceedings of the 10th International Workshop on
Randomization and Computation, RANDOM 2006, Lecture Notes in Computer Sci-
ence Volume 4110, 2006, pp 386-397.

5. Andrej Bogdanov , Kunal Talwar , Andrew Wan. Hard instances for satisfiability
and quasi-one-way functions. Proceedings of Innovations in Computer Science (ICS
2009). Tsinghua University Press 2009, pp. 290-300.

6. D. Gutfreund, R. Shaltiel, A. Ta-Shma, If NP Languages are Hard on the Worst-
Case, Then it is Easy to Find Their Hard Instances. Computational Complexity
(CC), 16:4 (2007) 412-441.

7. L. M. Adleman. Two Theorems on Random Polynomial Time. FOCS 1978: 75-83

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

