
LIE ALGEBRA CONJUGACY

JOSHUA A. GROCHOW
UNIVERSITY OF CHICAGO

JOSHUAG@CS.UCHICAGO.EDU

Abstract. We study the problem of matrix Lie algebra conjugacy. Lie algebras arise
centrally in areas as diverse as differential equations, particle physics, group theory,
and the Mulmuley–Sohoni Geometric Complexity Theory program. A matrix Lie
algebra is a set L of matrices such that A, B ∈ L =⇒ AB−BA ∈ L. Two matrix Lie
algebras are conjugate if there is an invertible matrix M such that L1 = ML2M

−1.
We show that certain cases of Lie algebra conjugacy are equivalent to graph iso-

morphism. On the other hand, we give polynomial-time algorithms for other cases of
Lie algebra conjugacy, which allow us to mostly derandomize a recent result of Kayal
on affine equivalence of polynomials. Affine equivalence is related to many complex-
ity problems such as factoring integers, graph isomorphism, matrix multiplication,
and permanent versus determinant.

Specifically, we show:
• Abelian Lie algebra conjugacy is as hard as graph isomorphism. A Lie algebra

is abelian if all of its matrices commute pairwise.
• Abelian diagonalizable Lie algebra conjugacy of n × n matrices can be solved

in poly(n) time when the Lie algebras have dimension O(1). The dimension
of a Lie algebra is the maximum number of linearly independent matrices it
contains. A Lie algebra L is diagonalizable if there is a single matrix M such
that for every A in L, MAM−1 is diagonal.

• Semisimple Lie algebra conjugacy is equivalent to graph isomorphism. A Lie
algebra is semisimple if it is a direct sum of simple Lie algebras.

• Semisimple Lie algebra conjugacy of n×n matrices can be solved in polynomial
time when the Lie algebras consist of only O(log n) simple direct summands.

• Conjugacy of completely reducible Lie algebras—that is, a direct sum of an
abelian diagonalizable and a semisimple Lie algebra—can be solved in polyno-
mial time when the abelian part has dimension O(1) and the semisimple part
has O(log n) simple direct summands.

1. Introduction

A matrix Lie algebra is defined as a set of n× n matrices closed under the following operations:
multiplication by scalars, the usual matrix addition, and a multiplication-like operation denoted
[A, B] := AB −BA. Lie algebras are an important tool in areas as diverse as differential equations
[Olv93, Ste07], particle physics [Geo82], group theory [FH91, Che46, OV90], and the Mulmuley–
Sohoni Geometric Complexity Theory program [MS01].

In complexity theory, Kayal [Kay11a] has recently used Lie algebras in the so-called affine equiv-
alence problem, which arises in many areas of complexity: factoring integers, permanent versus
determinant, matrix multiplication, lower bounds for depth-three circuits, and several more (see
[Kay11a, §1.1]). Kayal essentially used Lie algebra conjugacy to give a randomized polynomial-time

RESEARCH PARTIALLY SUPPORTED BY NSF GRANTS DMS-0652521 AND CCF-1017760.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 168 (2011)

2 Lie Algebra Conjugacy—Joshua A. Grochow

algorithm to decide when a function can be gotten from the determinant by an invertible linear
change of variables. This is the affine equivalence problem for the determinant.

The following are examples of Lie algebras, which should help give their flavor, and intro-
duces some of those Lie algebras on which we prove results, namely abelian, diagonalizable, and
(semi-)simple:

(1) The collection of all n × n matrices.
(2) The collection of all diagonal n × n matrices is a Lie algebra of dimension n. Any two

diagonal matrices D1, D2 commute. Since D1D2 −D2D1 = 0 this is a Lie algebra. Any Lie
algebra in which all matrices commute is called abelian.

(3) In fact, any collection of diagonal matrices that is closed under taking linear combinations
is a Lie algebra, for the same reason as above. Furthermore, if D is such a Lie algebra,
then ADA−1 is as well, since conjugating by A preserves the fact that all the matrices in D
commute. Any Lie algebra conjugate to a set of diagonal matrices is called diagonalizable.

(4) The collection of all n × n matrices with trace zero. Since tr(AB − BA) = 0 for any A, B,
this is also a Lie algebra. This is an example of a simple Lie algebra.

(5) The collection of all 2n×2n matrices of the form

(

C 0
0 D

)

where C, D are n×n matrices

and trC + trD = 0.

Two Lie algebra L1,L2 are conjugate if there is an invertible matrix A such that L1 = AL2A
−1,

that is, for every matrix M in L2, AMA−1 is in L1, and L1 and L2 have the same dimension.
Although it was not phrased this way, Kayal gave a randomized reduction from the affine equivalence
problem for the determinant to the Lie algebra conjugacy problem for Lie algebras isomorphic to
example (5). However, where he uses properties very specific to the Lie algebras associated to
permanent and determinant that can be computed using randomization, we are able to instead use
a deterministic approach to the more general problem of Lie algebra conjugacy.

1.1. Results. We show that certain cases of Lie algebra conjugacy are solvable in polynomial time.
We also show that extending these cases is difficult, as such an extension is equivalent to graph
isomorphism in one case and at least as hard as graph isomorphism in the other case. One of these
cases is strong enough to mostly derandomize Kayal’s result [Kay11a] on testing affine equivalence
to the determinant (see §5 for details).

We now give the formal definition of Lie algebra conjugacy. Since Lie algebras are closed under
taking linear combinations, we can give them as input to algorithms by providing a linear basis.

Problem: Lie Algebra Conjugacy (LAC)

Input: Two Lie algebras L1 and L2 of n × n matrices, given by basis elements.

Output: An invertible n × n matrix A such that AL1A
−1 = L2, if such A exists,

otherwise “the Lie algebras are not conjugate.”

Recall the definitions of abelian and diagonalizable from examples (2) and (3) above, respectively.

Theorem 2.2. Abelian diagonalizable Lie algebra conjugacy of n × n matrices can be solved in
poly(n) time when the Lie algebras have dimension O(1).

Abelian Lie algebras are one of two fundamental building blocks of all Lie algebras. The other
fundamental building blocks are the semisimple Lie algebras. A Lie algebra is semisimple if it is a
direct sum of simple Lie algebras. Example (4) above is a simple Lie algebra; see Appendix A for
the full definition, and the discussion leading up to Remark A.8 for what we mean by “building
blocks.” For this other building block, we show a similar result:

Theorem 3.6. Semisimple Lie algebra conjugacy of n × n matrices can be solved in poly(n) time
when the Lie algebras have only O(log n) simple direct summands.

Lie Algebra Conjugacy—Joshua A. Grochow 3

Despite the O(log n) restriction, Theorem 3.6 is already strong enough to mostly derandomize
Kayal’s result (Corollary 5.1 below). Also, note that even a single simple Lie algebra can have un-
bounded dimension, as in example (4), let alone a semisimple one with O(log n) simple summands.
Theorem 3.7 gives another class on which Lie algebra conjugacy is solvable in polynomial time.

For both results above, we show that removing the quantitative restrictions is likely to be difficult:

Theorem 2.1. Graph isomorphism polynomial-time reduces to abelian diagonalizable Lie algebra
conjugacy, when the Lie algebras may have unbounded dimension.

Theorem 3.1. Graph isomorphism is equivalent to semisimple Lie algebra conjugacy, when the
Lie algebras may contain an unbounded number of simple direct summands.

In fact, we show that abelian diagonaliable Lie algebra conjugacy is equivalent to the code
equivalence problem. The code equivalence problem is to test whether two subspaces of a vector
space can be made equal by permuting their coordinates. For codes over F2, code equivalence
was known to be as hard as graph isomorphism [PR97]; we extend their proof to show that code
equivalence over any field is as hard as graph isomorphism.

Finally, we combine the abelian and semisimple cases together, to show results on Lie algebra
conjugacy when the Lie algebras are the direct sum of an abelian Lie algebra and a semisimple one:

Theorem 4.2. Conjugacy of Lie algebras of n × n matrices can be determined in poly(n) time
when the Lie algebras are a direct sum of an O(1)-dimensional abelian diagonalizable Lie algebra
and a semisimple Lie algebra with O(log n) simple direct summands.

Since abelian is a special case of abelian-plus-semisimple, this more general case is obviously as
hard as code equivalence when we drop the quantitative restrictions of the above theorem.

1.2. Outline. In §2 we prove Theorems 2.2 and 2.1 on abelian LAC; this section can be understood
without any background on Lie algebras. Our other results require more knowledge of Lie algebras;
we collect the necessary background in Appendix A. In §3 we prove Theorems 3.1, 3.6, and 3.7 on
semisimple LAC. In §4 we prove our results on direct sums of abelian and semisimple Lie algebras,
including Theorem 4.2. In §5 we show how to use the above machinery to mostly derandomize
Kayal’s result on testing affine equivalence to the determinant. In the final section, we discuss
how close the abelian-plus-semisimple case is to the general case, directions toward the general
case, and other future work, including potential ways to solve important special cases of the affine
equivalence problem efficiently without having to efficiently solve GI.

2. Abelian diagonalizable Lie algebra conjugacy and code equivalence

In this section we show that conjugacy of abelian diagonalizable matrix Lie algebras is Karp-
equivalent to the code equivalence problem, and hence is at least as hard as GI. The reduction
to code equivalence allows us to solve abelian diagonalizable LAC for constant-dimensional Lie
algebras in polynomial time.

A d-dimensional code of length n over a field F is a d-dimensional subspace of Fn. Codes are
represented algorithmically by giving bases for them as subspaces. The symmetric group Sn acts on
Fn by permutation of coordinates: for π ∈ Sn and ~α = (α1, . . . , αn) ∈ Fn, π · ~α = (απ(1), . . . , απ(n)).
Sn then acts on a subspace V ⊆ Fn by π · V = {π · v : v ∈ V }. The code equivalence problem is:
given two codes C1, C2, determine whether there is a permutation π ∈ Sn such that π · C1 = C2.

Theorem 2.1. Abelian dagonalizable Lie algebra conjugacy for d-dimensional subspaces of n × n
matrices is equivalent to code equivalence for d-dimensional subspaces of Fn, for any field F.

Before proving this theorem we give some of its consequences.

Corollary 2.2. Conjugacy of abelian diagonalizable O(1)-dimensional Lie algebras of n×n matrices
over any field can be solved in poly(n) time.

4 Lie Algebra Conjugacy—Joshua A. Grochow

Proof. Babai (see [BCGQ11, Theorem 7.1]) showed that, over any field F, equivalence of d-dimensional
linear codes of length n reduces to

(

n
d

)

instances of d × (n − d) edge-colored bipartite graph iso-
morphism. Each such instance can be solved in poly(n) · min{d!, (n − d)!} time, so when d = O(1)
code equivalence can be solved in polynomial time. By Theorem 2.1, d-dimensional diagonalizable
Lie algebra conjugacy can be solved in polynomial time when d = O(1). �

Corollary 2.3. Abelian diagonalizable Lie algebra conjugacy over any field is GI-hard.

Proof. Petrank and Roth [PR97] showed that GI Karp-reduces to code equivalence over F2. Over
an arbitrary field we use the same reduction, but an extension of their proof is required, which we
give in Lemma 2.4 below. Theorem 2.1 then shows that abelian diagonalizable LAC is GI-hard. �

Lemma 2.4. Graph isomorphism Karp-reduces to code equivalence over any field F.

Proof. Given a graph G, we construct the generator matrix for a code over F such that two graphs
are isomorphic if and only if the codes are equivalent. Let M(G) = [Im|Im|Im|D] where m = |E(G)|,
Im is the m × m identity matrix, and D is the incidence matrix of G:

De,v =

{

1 if v ∈ e

0 otherwise

The Hamming weight of a vector over F is the number of non-zero entries. The following claim is
essentially the crux of Petrank and Roth’s argument, but generalized so as to apply over any field.

Claim: up to permutation and scaling of the rows, M(G) is the unique generator matrix of its
code which satisfies the following properties:

(1) it is a |E| × (3|E| + |V |) generator matrix;
(2) each row has Hamming weight ≤ 5;
(3) any nondegenerate linear combination of two or more rows has Hamming weight ≥ 6

A linear combination of k rows is nondegenerate if all k of its coefficients are nonzero.
Proof of claim: First, M(G) satisfies (1)–(3). The only part to check is (3): in the first 3m

columns, any nondegenerate linear combination of k ≥ 2 rows will have 3k ≥ 6 nonzero entries.
Next, let C denote the code generated by the rows of M(G). By (2) and (3) the rows of M(G) are
the unique vectors in C (up to scaling) of Hamming weight ≤ 5. Hence if M ′ is any other generator
matrix of C satisfying (1)–(3), its rows must be scaled versions of the rows of M(G) in some order.
This proves the claim.

Now, suppose that M(G1) and M(G2) generate equivalent codes. Then there is a nonsingular
matrix S and a permutation matrix P such that M(G1) = SM(G2)P . By the claim, S = ∆S′

where ∆ is diagonal and S′ is a permutation matrix. However, since the first 3|E| columns of M(G1)
and M(G2) only contain 0, 1-entries, ∆ = I. The rest of the proof of the reduction, including the
other direction, proceeds exactly as in Petrank and Roth [PR97]. �

Proof of Theorem 2.1. Let (A1, . . . , Ad), (B1, . . . , Bd) be an instance of abelian diagonalizable LAC.
Standard techniques in linear algebra can be used to simultaneously diagonalize the Ai in polynomial
time, so we may now assume that the Ai are in fact diagonal, rather than merely diagonalizable.
Similarly for the Bi. Let A, resp. B, denote the Lie algebras spanned by the Ai, resp. Bi.

Claim: If A and B are diagonal, then they are conjugate if and only if they are conjugate by a
permutation matrix.

By “flattening out” the entries of the diagonal matrices into “row” vectors the claim shows
that diagonalizable d-dimensional LAC of n×n matrices is Karp-equivalent to d-dimensional code
equivalence of codes of length n. Thus the claim will complete the proof of the theorem.

Proof of claim: Suppose gAg−1 = B. Since B is diagonal, g must preserve the eigenspaces of
every matrix in A. The formalization of this notion will allow us to prove our claim. Let λi : A → F

be the linear function λi(A) = Aii. We can think of λi as a “simultaneous eigenvalue for the space
A of matrices,” generalizing the notion of an eigenvalue of a single matrix. Such functions are called

Lie Algebra Conjugacy—Joshua A. Grochow 5

weights in the theory of Lie algebras, and they will play a significant role here and in the case of
semisimple Lie algebras as well. Analogous to an eigenspace corresponding to an eigenvalue, there
are weight spaces corresponding to weights. Namely, if λ : A → F is a weight, the corresponding
weight space is

Vλ(A) := {v ∈ Fn : Av = λ(A)v for all A ∈ A}

It is these weight spaces that g must preserve in order for gAg−1 to be diagonal. For example, if
every weight space is 1-dimensional—or equivalently, if for every pair of indices 1 ≤ i < j ≤ n there
is some matrix A ∈ A with Aii 6= Ajj—then g must be a permutation matrix.

More generally, g may send v ∈ Vλ1
into Vλ2

if and only if gVλ1
= Vλ2

. Within each weight space,
g may act in an arbitrary invertible manner. In other words, g is composed of invertible blocks of
dimension dimVλi

, the pattern in which these blocks appear is a permutation, and that permutation
may send i 7→ j if and only if dimVλi

= dimVλj
. However, if g′ has the same permutation pattern as

g but all the blocks in g′ are the identity, then gAg−1 = g′Ag′−1. Hence, without loss of generality,
we may take g to be a permutation matrix, proving the claim. �

3. Semisimple Lie algebra conjugacy and graph isomorphism

Theorem 3.1. Semisimple Lie algebra conjugacy is equivalent to graph isomorphism.

Proof. We break the proof into four lemmas. By Lemma 3.2, semisimple Lie algebra conjugacy is
equivalent to deciding whether two representations of a semisimple Lie algebra are equivalent up
to outer automorphism. By Lemma 3.3, the latter problem reduces to a special case of twisted
code equivalence with multiplicities, which we refer to as Problem A. Finally, Lemma 3.4 reduces
Problem A to graph isomorphism, and Lemma 3.5 reduces graph isomorphism to semisimple Lie
algebra conjugacy. �

Lemma 3.2 (de Graaf1). Semisimple Lie algebra conjugacy is equivalent to—nearly just a restate-
ment of—the following problem (see Appendix A.4 for definitions):

Problem: Outer equivalence of Lie algebra representations
Input: Two faithful representations ρ1, ρ2 : L → Mn of a semisimple (abstract)
Lie algebra L. The ρi are given by the matrices ρi(bj) for some basis b1, . . . , bd of
L, and L is given by structural constants in the bi basis (see Appendix A).
Output: An outer automorphism α ∈ Out(L) such that ρα

1 is equivalent to ρ2, or
“the two representations are not equivalent up to automorphism.”

Proof. Suppose L1,L2 ⊆ Mn is an instance of semisimple Lie algebra conjugacy, that is, they
are both semisimple matrix Lie algebras. Using techniques given in de Graaf [dG00, §5.11], we
can determine if the Li are isomorphic as abstract Lie algebras; if not, they are not conjugate as
matrix Lie algebras, or if so, we can construct an abstract Lie algebra L that they are isomorphic
to, together with isomorphisms ρi : L → Li for i = 1, 2. Since Li ⊆ Mn, the ρi are faithful
representations of L. We claim that the ρi are equivalent up to an outer automorphism of L if and
only if the Li are conjugate.

Suppose L2 = gL1g
−1 for some invertible matrix g. Let cg : Mn → Mn be defined by cg(X) =

gXg−1. Then α = ρ−1
2 ◦ cg ◦ ρ1 is a map from L to L. Since the ρi are isomorphisms, and

cg|L1
: L1 → L2 is an isomorphism, the composition α is an automorphism of L. Then ρ2 ◦ α =

ρ2 ◦ ρ−1
2 ◦ cg ◦ ρ1 = cg ◦ ρ1, which is by definition equivalent to ρ1. By the discussion following

Lemma A.3, ρα
2 is thus equivalent to ρ1, where α is the outer automorphism corresponding to α.

1This lemma is essentially present in de Graaf’s book [dG00], especially the content leading up to the discussion at
the end of his Section 8.5. However, de Graaf’s discussion is presented in terms of weights and the choice of Cartan
subalgebra, whereas the aspect we wish to highlight requires no mention of these topics, and can be explained by
completely elementary means.

6 Lie Algebra Conjugacy—Joshua A. Grochow

Conversely, suppose ρα
1 is equivalent to ρ2 for some outer automorphism α. Let α ∈ Aut(L) be

a representative of α; then there is an invertible matrix g such that ρ2 = cg ◦ ρ1 ◦ α. Then we have

L2 = Im(ρ2) = Im(cg ◦ ρ1 ◦ α) = cg(Im(ρ1 ◦ α)).

Since α is an automorphism it is onto, so Im(ρ1 ◦ α) = Im(ρ1) = L1, and we have L2 = gL1g
−1.

The preceding argument gives a reduction from semisimple Lie algebra conjugacy to the outer
equivalence of Lie algebra representations. The reduction in the other direction is as follows:
suppose L is a semisimple Lie algebra and ρ1, ρ2 : L → Mn are two faithful representations. We
reduce this to the instance of semisimple Lie algebra conjugacy given by Li = Im(ρi) (i = 1, 2).
The proof that this is a reduction is identical to the proof above. �

Lemma 3.3. Outer equivalence of Lie algebra representations reduces to the following problem:

Problem: Problem A
Input: Two r×s integer matrices M1, M2; a partition of the columns into consec-
utive ranges [1, . . . , k1], [k1 + 1, . . . , k1 + k2], . . . [k1 + · · · + kt−1 + 1, . . . , s]; for each
range, a group Gℓ acting on the integers appearing in the corresponding columns,
where each Gℓ is abstractly isomorphic to one of: 1, S2, or S3.
Output: A permutation π ∈ Sr, a permutation σ ∈ Sk1

× Sk2
× · · · × Skt

, and for
each column an element gj in the group Gℓ associated to that column range, such
that for all i, j, M1(i, j) = gj(M2(π(i), σ(j))), or “the matrices are not equivalent.”
In other words, after applying π to the rows, σ to the columns, and each gj to the
values of the entries in the j-th column, M1 and M2 become equal.

Proof. Let L be a semisimple Lie algebra, and let ρ1, ρ2 : L → Mn be two faithful representations
of L. Compute the direct sum decomposition of L; suppose it is L = L1,1 ⊕ · · · ⊕ L1,k1

⊕ L2,1 ⊕
· · · ⊕ L2,k2

⊕ · · · ⊕ Lt,kt
where each Li,j is a simple summand of L, and the Li,j are grouped by

isomorphism type, so that Li1,j1 and Li2,j2 are isomorphic if and only if i1 = i2. For each i, let Li

be a simple Lie algebra isomorphic to Li,j for all j.
To each ρi we will associate a matrix Mi, as well as the other data necessary for Problem A. The

columns correspond to the direct summands Li,j , and the column partition is along the isomorphism
types of the summands.

Next, we define the permutation groups Gℓ. To each simple type Lℓ, we fix once and for all an
encoding of its representations as integers; both the encoding and decoding should be polynomial-
time. That this can be done follows from the standard description of the representations of the
simple Lie algebras. The integer 0 will always stand for the (trivial) zero representation. The
permutation action of Out(Lℓ) on the representations of Lℓ, encoded as integers, can be easily
computed, as follows. Given α ∈ Out(Lℓ) and an integer, convert it to the corresponding repre-
sentation as above. This representation is a linear map Lℓ → Mn for some n. Pre-compose this
map with a representative α ∈ Aut(Lℓ) of α; this can be done because the outer automorphisms
of all simple Lie algebras are known explicitly and are easy to compute. For example, the unique
outer automorphisms of sln, the trace zero matrices, is given by the map A 7→ −AT . The outer
automorphism groups of simple Lie algebras are all trivial, S2, or S3. Finally, convert this new,
“twisted-by-α” representation back to an integer. The group Gℓ associated to the ℓ-th isomor-
phism type (=ℓ-th column grouping) is then Out(Lℓ), and the action on the integers is the action
described above.

Finally, we describe the rows and the entries of the matrices Mi. Decompose the representations
ρi into their direct sum decompositions ρi = ρi,1 ⊕ · · · ⊕ ρi,r, where each ρi,r is an irreducible
representation of L. Corollary A.2 says that this can be done in polynomial time. The q-th row of
Mi corresponds to the irreducible representations ρi,q. An irreducible representation of a direct sum
of Lie algebras is completely specified by its restriction to each summand. Hence, the representation
ρi,q is specified by a representation of each summand L·,·, that is, an integer in each column.

Lie Algebra Conjugacy—Joshua A. Grochow 7

Since the outer automorphism group of L is
∏t

i=1 Out(Li) ≀Ski
=

(
∏t

i=1 Out(Li)
ki

)

⋊
(
∏t

i=1 Ski

)

,
the representations ρ1, ρ2 are equivalent up to an outer automorphism if and only if there is a
permutation of the columns (=direct summands of the Lie algebra), for each column an element
gℓ ∈ Gℓ (=an outer automorphism of each direct summand), and a permutation of the rows
(=irreducible constituents of ρi) that will make M1 equal to M2. Conversely, any such equivalence
of M1 and M2 according to Problem A corresponds to an outer automorphism of L that makes ρ1

and ρ2 equivalent. �

Lemma 3.4. Problem A reduces to graph isomorphism.

Proof. This is a fun exercise we invite the reader to try for him- or herself. We include the details
in Appendix B. �

Lemma 3.5. Graph isomorphism reduces to semisimple Lie algebra conjugacy.

Proof. Let (G1, G2) be an instance of graph isomorphism, and let Di be the 0-1 incidence matrix
of Gi, where the rows correspond to edges and the columns correspond to vertices. The Gi are
isomorphic if and only if there is a permutation of the rows and the columns that makes the Di

equal. Then (D1, D2) is an instance of Problem A where the column partition is trivial, and the
column groups Gℓ are also trivial. We show how to reduce such an instance of Problem A to outer
equivalence of Lie algebra representations, and hence to semisimple Lie algebra conjugacy.

Given an instance of Problem A as above—in particular, it only contains the entries 0 and
1, it contains exactly two non-zero entries per row, every column contains a non-zero entry, and
the column partition and column groups are all trivial—let L = sl⊕n

2 , where n is the number
of vertices of the Gi (=columns of the matrices). Let a 1 in the matrix Di correspond to the
adjoint representation of sl2 (the Lie algebra of 2 × 2 trace zero matrices), which is faithful and
has dimension 3. Then, by reversing the reduction in Lemma 3.3, we get an instance of outer
equivalence of Lie algebra representations.

Since each column contains a non-zero entry, these representations are faithful. Since each row
contains exacty two 1’s, the corresponding irreducible representation has dimension 32 = 9, hence
the representations we get are matrices of dimension 9m × 9m, where m is the number of edges
of Gi. Since sl⊕n

2 is generated by 3n elements, the representations can be specified by 3n × (9m)2

numbers, which is polynomial in the size of the original graphs.
Finally, although sl2 has an outer automorphism, this outer automorphism acts trivially on the

representations of sl2, so the corresponding column groups are trivial, as desired. �

Theorem 3.6. Conjugacy of semisimple Lie algebras of n×n matrices can be solved in polynomial
time, when the Lie algebras consist of O(log n) simple direct summands.

Proof. If there are only O(log n/ log log n) simple summands, then an elementary brute-force ap-
proach to Problem A works in poly(n) time, since the number of outer automorphisms is poly(n).

However, when there are O(log n) simple summands, the number of outer automorphisms is nO(log n),
so we instead use a more sophisticated approach to twisted code equivalence, due to Babai, Co-
denotti, and Qiao [BCQ11] (cf. [Cod11, Theorem 4.2.1]). Problem A is in fact a special case of
twisted code equivalence with multiplicities, in which each row corresponds to a codeword. On the
instance of Problem A corresponding to semisimple Lie algebras with O(log n) simple summands,
their algorithm runs in poly(n) time. Translating between their terminology and ours, the size of
the code is the number of rows of the Mi, which is the number irreducible representations of the
Li, which is at most n, the size of the original matrices. Furthermore, the column groups Gi all
have bounded size. These two facts together imply that their algorithm runs in poly(n) time. �

Theorem 3.7. Conjugacy of semisimple Lie algebras of n × n matrices can be solved in poly-
nomial time, when the Lie algebras consist of O(log n/ log log n) irreducible representations, and
unboundedely many simple direct summands, at most O(log(n)) of which have nontrivial outer
automorphism actions on their representations.

8 Lie Algebra Conjugacy—Joshua A. Grochow

In Appendix A.5 we list the simple Lie algebras and their outer automorphism groups, and
mention which have trivial actions on their representations. Three of the four infinite families of
simple Lie algebras have this property, as well as four of the five exceptional simple Lie algebras.

Proof. In this case, the Mi in the instance of Problem A have only f(n) ≤ O(log n/ log log n)
rows. Although the size of the automorphism group may be more than polynomial, there are
only polynomially many row permutations, so we only have to handle the outer automorphisms in
each column exhaustively, and not the permutations between the columns. Specifically, try each
combination of outer automorphisms of each column; since there are at most O(log n) columns with
nontrivial outer automorphisms, and the outer automorphism group of a simple Lie algebra has
size at most 6, there are only poly(n) possibilities. For each such possibility, try each of the poly(n)
many permutations of the rows, and for each check whether the set of columns of M1 is equal to
the set of columns of M2. �

4. Abelian plus semisimple (i. e., completely reducible)

In this section, we describe how the algorithms and reductions for the abelian diagonalizable and
semisimple cases fit into a single general framework and can be combined to handle the case of a
direct sum of an abelian diagonalizable matrix Lie algebra with a semisimple matrix Lie algebra.
This class of matrix Lie algebras is exactly the class of completely reducible matrix Lie algebras. In
the case of semisimple Lie algebras we used heavily the fact that all representations of semisimple
Lie algebras can be written as a direct sum of irreducible representations (see Appendix A.4). The
class we study in this section is the largest class of Lie algebras with this property (cf. Theorem A.1).

Lemma 4.1. Lemma 3.2 applies to the class of abelian Lie algebras and the class of completely
reducible matrix Lie algebras.

Proof. The proof of Lemma 3.2 only required two ingredients: that the isomorphism problem for
abstract Lie algebras of the class under consideration be efficiently solvable, and that twisting a
representation by an inner automorphism leads to an equivalent representation. Both of these
ingredients hold for abelian Lie algebras: two abelian Lie algebras are abstractly isomorphic if
and only if they have the same dimension, and abelian Lie algebras have no non-trivial inner
automorphisms.

Similarly, a completely reducible matrix Lie algebra L is a direct sum A⊕S where A is abelian di-
agonalizable and S is semisimple. The isomorphism problem for this class of Lie algebras is solvable
in polynomial time. Finally, Inn(L) = Inn(A) × Inn(S) ∼= Inn(S) since abelian Lie algebras have
no non-trivial inner automorphisms. Hence twisting a representation by an inner automorphism
leads to an equivalent representation. �

Although it was not originally phrased this way, we can now see that the algorithms and equiv-
alences for abelian Lie algebra conjugacy in fact follow the same lines as those for semisimple Lie
algebra conjugacy. The main difference is that the outer automorphism group of a d-dimensional
abelian Lie algebra is the full general linear group GLd of d×d invertible matrices—leading to linear
code equivalence—whereas the outer automorphism group of a semisimple Lie algebra is close to
Sn—leading to graph isomorphism.

Furthermore, we can view Babai’s reduction (see [BCGQ11, Theorem 7.1]) from code equivalence
as a sort of “list normal form” algorithm for the action of GLd by automorphisms. Since GLd acts
by change of basis, we would like reduced row echelon form to be a normal form for this action.
However, since one may permute the coordinates in the code equivalence problem, computing
reduced row echelon form requires first picking the pivots. Babai’s algorithm picks these pivots in
all

(

n
d

)

possible ways, reduces to row echelon form, and then uses graph isomorphism to handle the
permutation action on the remaining coordinates of the code.

Combining these techniques yields:

Lie Algebra Conjugacy—Joshua A. Grochow 9

Theorem 4.2. Conjugacy of completely reducible matrix Lie algebras with an abelian diagonalizable
part of dimension a, s simple direct summands, and r irreducible representation constituents reduces
to

(

r
a

)

instances of Problem A of size r × s. In particular, completely reducible matrix Lie algebra
conjugacy of n× n matrices can be solved in poly(n) time under either of the following conditions:

• a = O(log n), r = O(1), s unbounded, and the number of simple summands with non-trivial
outer automorphism action is at most O(log n);

• a = O(1), r unbounded, s = O(log n).

5. Application to equivalence of polynomials

Corollary 5.1. Given the Lie algebra of the symmetry group of a polynomial f on n2 variables,
one can determine whether f is linearly equivalent to detn in deterministic poly(n) time.

Remark 5.2. Computing the Lie algebra of the symmetry group of a polynomial is in fact equiva-
lent to polynomial identity testing, and hence cannot be derandomized without proving significant
lower bounds [KI04]. Kayal [Kay11a, Lemma 26] shows how to compute the Lie algebra of the sym-
metry group of a polynomial given as a black-box, using the algorithm from [Kay11b] for computing
the linear dependincies between a set of polynomials. Kayal [Kay11b] noted that computing such
linear dependencies reduces to the search version of polynomial identity testing. The search and
decision versions of polynomial identity testing are equivalent for low-degree functions. Conversely,
a polynomial is constant if and only if its symmetry group consists of all invertible transformations
of the variables. This holds if and only if the Lie algebra of its symmetry group consists of all linear
transformations of the variables. Once this has been determined, evaluating the polynomial at any
single point will determine whether it is zero or a non-zero constant.

In some sense, we have thus derandomized Kayal’s algorithm as far as is possible in the black-box
setting without derandomizing polynomial identity testing. Kayal uses randomization at several
points, not just in the computation of the Lie algebra of the symmetry group, and we derandomize
those using our deterministic algorithm for semisimple Lie algebra conjugacy from Theorem 3.6.

However, even in the dense, non-black-box setting this represents an improvement from 2O(n2)

to 2O(n log n). This is essentially optimal, since a generic function that is equivalent to detn will
include nearly all monomials of degree n in n2 variables, of which there are 2Θ(n log n). By the dense
setting we mean the setting in which f is given by a list of coefficients of all monomials of degree n
in n2 variables (without loss of generality, f is homogeneous of degree n). Naive derandomization

of Kayal’s algorithm takes time 2O(n2), since step (ii) of his §6.2.1 guesses a random element of a
space of dimension Θ(n2). Similarly, testing affine equivalence to the determinant can be solved
using quantifier elimination (see, e. g., Basu, Pollack, and Roy [BPR06, Ch. 14]), again in time

2O(n2), because the witness to equivalence is an n × n matrix together with an n-dimensional
vector. However, computing the Lie algebra of the symmetry group of f only requires solving a
linear system of n2 equations in a number of variables equal to the number of monomials possible,

which is roughly
(

n2

n

)

≤ n2n = 2O(n log n).

Proof of Corollary 5.1. The Lie algebra of the symmetry group of detn is sln ⊕ sln, which has only
two simple factors. By Theorem 3.6 we can test if the Lie algebra of the symmetry group of f is
conjugate to that of detn. If it is, then act on f by the conjugating matrix so that the Lie algebra
is now equal to that of detn. One might expect to then have to check whether f(X) = f(XT),
since this is also part of the symmetry group of detn, however, this is not necessary: in the case of
the determinant, any function whose symmetry group has a Lie algebra conjugate to that of the
determinant is in fact linearly equivalent to the determinant. Note that we have combined here
all three main steps of Kayal’s algorithm into a single reduction to Lie algebra conjugacy: Kayal
uses the Lie algebra to reduce to permutational and scaling equivalence, then solves permutational
equivalence and scaling equivalence separately. �

10 Lie Algebra Conjugacy—Joshua A. Grochow

6. Conclusion and future work

Lie algebra conjugacy arises in Geometric Complexity Theory and the affine equivalence prob-
lem. We solved Lie algebra conjugacy over C in polynomial time for several important classes of
Lie algebras—namely abelian, semisimple, and completely reducible (=abelian diagonalizable ⊕
semisimple)—under various quantitative constraints. We showed that without these quantitative
constraints, these cases of Lie algebra conjugacy all become at least as hard as graph isomorphism.

The completely reducible case is not far from the general case, though significant obstacles
remain. Levi’s Theorem says that every Lie algebra is the semi-direct product of a solvable Lie
algebra by a semisimple one; a solvable Lie algebra is an iterated extension of abelian Lie algebras
(see Appendix A.7 for definitions). The completely reducible case, which we resolved, restricts the
solvable part to be abelian, and restricts the semidirect product to be direct. The complexity of
Lie algebra conjugacy in general remains open, but we believe the following is an achievable next
target:

Open Question 6.1. What is the complexity of matrix Lie algebra conjugacy for Lie algebras
that are semidirect products of abelian by semisimple?

For the abelian diagonalizable case, our results hold over any field. But for the semisimple and
completely reducible cases, we only worked over C. The representation theory of semisimple Lie
algebras changes in positive characteristic or over non-algebraically closed fields.

Open Question 6.2. What is the complexity of Lie algebra conjugacy over algebraically closed
fields of positive characteristic? Over R, Q, number fields, or finite fields?

We essentially derandomized Kayal’s algorithm for testing equivalence to the determinant, except
for a part of the algorithm that is equivalent to polynomial identity testing. It would be nice to
know whether there is a way around this, though we suspect there is not:

Open Question 6.3. Show that testing equivalence to the determinant is as hard as polynomial
identity testing, or give a deterministic polynomial-time algorithm for it in the black-box setting.
In the dense setting, can equivalence to the determinant be tested in time poly(t) where t is the
number of non-zero monomials of the input function?

Finally, there are two avenues for futher progress on the affine equivalence problem using Lie
algebra conjugacy. First, although GI-hardness may seem to be the “final” word in the short
term, in the application to affine equivalence we may be able to avoid GI altogether. Lie algebra
conjugacy is most directly useful for testing affine equivalence to symmetry-characterized functions
such as the determinant. A function f is symmetry-characterized if for any function g, if g has the
same symmetries as f—that is, f(Ax) = f(x) implies g(Ax) = g(x)—then g is a scalar multiple of
f . Not every Lie algebra can arise as the Lie algebra of the symmetries of a symmetry-characterized
function. It is possible that the properties of such Lie algebras are strong enough to avoid graph
isomorphism. Second, in addition to the Lie algebra of the symmetries of a function, a function
may have a finite group of symmetries “sitting on top of” the Lie algebra.

Open Question 6.4. What is the complexity of testing conjugacy of finite groups of symmetries,
arising from symmetry-characterized functions?

Acknowledgments

The author would like to thank the following people for useful discussions regarding this work:
Neeraj Kayal, Pascal Koiran, Arakadev Chattopadhyay, J. M. Landsberg, Shrawan Kumar, and
Jerzy Weyman. Many of these conversations took place at the Brown-ICERM Workshop on Math-
ematical Aspects of P vs. NP and its Variants in August 2011, for which the author would like
to thank ICERM and the organizers of the workshop—J. M. Landsberg, Saugata Basu, and J.

Lie Algebra Conjugacy—Joshua A. Grochow 11

Maurice Rojas—for the invitation and support to attend the workshop. The author would like
to thank Lance Fortnow, Ketan Mulmuley and Benson Farb for their discussions, support, and
advice. The author finds it incredibly useful to talk through mathematics with others, and it is
his great pleasure to thank Benson Farb, Thomas Church, Ian Shipman, and Jonah Blasiak for
not only useful and interesting discussions of this work, but also for their infectious enthusiasm for
and injection of fruitful new ideas into this work. In particular, Jonah helped the author clarify
his thoughts and together realize the equivalence with graph isomorphism. Finally, this work was
partially supported by Ketan Mulmuley’s NSF Grant CCF-1017760, Lance Fortnow et al.’s NSF
Grant DMS-0652521 and fellowships from the U. Chicago Department of Computer Science.

References

[BCGQ11] László Babai, Paolo Codenotti, Joshua A. Grochow, and Youming Qiao, Code equivalence and group

isomorphism, ACM-SIAM Symposium on Discrete Algorithmas (SODA11), 2011.
[BCQ11] László Babai, Paolo Codenotti, and Youming Qiao, Testing isomorphism of groups with no abelian normal

subgroups, 2011, In preparation.
[BPR06] Saugata Basu, Richard Pollack, and Marie-Françoise Roy, Algorithms in real algebraic geometry, second

ed., Algorithms and Computation in Mathematics, vol. 10, Springer-Verlag, Berlin, 2006.
[Che46] Claude Chevalley, Theory of Lie Groups. I, Princeton Mathematical Series, vol. 8, Princeton University

Press, Princeton, N. J., 1946.
[Cod11] Paolo Codenotti, Testing isomorphism of combinatorial and algebraic structures, Ph.D. thesis, University

of Chicago, Chicago, IL, 2011.
[dG00] Willem A. de Graaf, Lie algebras: theory and algorithms, North-Holland Mathematical Library, vol. 56,

North-Holland Publishing Co., Amsterdam, 2000.
[FH91] William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-

Verlag, New York, 1991, A first course, Readings in Mathematics.
[Geo82] Howard Georgi, Lie algebras in particle physics, Frontiers in Physics, vol. 54, Benjamin/Cummings Pub-

lishing Co. Inc. Advanced Book Program, Reading, Mass., 1982, From isospin to unified theories, With
an introduction by Sheldon L. Glashow.

[Hum78] James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathe-
matics, vol. 9, Springer-Verlag, New York, 1978, Second printing, revised.

[Jac62] Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience
Publishers (a division of John Wiley & Sons), New York-London, 1962.

[Kay11a] Neeraj Kayal, Affine projections of polynomials, Tech. Report TR11-061, Electronic Colloquium on Com-
putational Complexity, 2011.

[Kay11b] Neeraj Kayal, Efficient algorithms for some special cases of the polynomial equivalence problem, ACM-
SIAM Symposium on Discrete Algorithmas (SODA11), 2011.

[KI04] Valentine Kabanets and Russell Impagliazzo, Derandomizing polynomial identity tests means proving

circuit lower bounds, Comput. Complexity 13 (2004), no. 1-2, 1–46.
[Kna02] Anthony W. Knapp, Lie groups beyond an introduction, second ed., Progress in Mathematics, vol. 140,

Birkhäuser Boston Inc., Boston, MA, 2002.
[MS01] Ketan D. Mulmuley and Milind Sohoni, Geometric complexity theory I: an approach to the P vs. NP and

related problems, SIAM J. Comput. 31 (2001), no. 2, 496–526.
[Olv93] Peter J. Olver, Applications of Lie groups to differential equations, second ed., Graduate Texts in Math-

ematics, vol. 107, Springer-Verlag, New York, 1993.

[OV90] A. L. Onishchik and È. B. Vinberg, Lie groups and algebraic groups, Springer Series in Soviet Mathematics,
Springer-Verlag, Berlin, 1990, Translated from the Russian and with a preface by D. A. Leites.

[PR97] Erez Petrank and Ron M. Roth, Is code equivalence easy to decide?, IEEE Transactions on Information
Theory 43 (1997), 1602–1604.

[Ste07] Willi-Hans Steeb, Continuous symmetries, Lie algebras, differential equations and computer algebra, sec-
ond ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.

Appendix A. Lie algebra background

For the purposes of this paper, we highly recommend the book of de Graaf [dG00]. We summarize
the necessary highlights here. For more general background on Lie algebras we recommend any of
several standard books [FH91, Jac62, Hum78, Kna02]. Since we are only working over C for much
of this paper, we omit further mention of the field. However, some of the statements and results

12 Lie Algebra Conjugacy—Joshua A. Grochow

below hold only if the characteristic of the field is zero, and some only if the field is furthermore
algebraically closed.

A.1. Basic definitions. A Lie algebra is a vector space L together with a bilinear operation,
referred to as the Lie bracket and written [·, ·] : L × L → L satisfying:

(1) Skew-symmetry: [v1, v2] = −[v2, v1] (or equivalently, [v, v] = 0 for all v ∈ L)
(2) Bi-linearity: [αv + βw, u] = α[v, u] + β[w, u], and similarly for the second coordinate.
(3) The Jacobi identity: [u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0. This is the “Lie algebra” version

of associativity, and can be thought of as “the derivative of the associative law.”

A matrix Lie algebra is a set of matrices where taking [A, B] := AB − BA makes the set into a
Lie algebra. In particular, the collection Mn of all n × n matrices is a matrix Lie algebra.

A homomorphism between Lie algebras L1,L2 is a linear map ρ : L1 → L2 that preserves the
brackets, that is, where ρ([u, v]L1

) = [ρ(u), ρ(v)]L2
. An isomorphism is a bijective homomorphism;

an automorphism is an isomorphism of L with itself.
Note that conjugate matrix Lie algebras are isomorphic as abstract Lie algebras, since g[M1, M2]g

−1 =
[gM1g

−1, gM2g
−1], that is, conjugation by g is a Lie algebra homomorphism whose inverse is con-

jugation by g−1.

A.2. Describing Lie algebras as input to algorithms. An abstract Lie algebra is specified in
an algorithm by giving a basis for it as a vector space, say v1, . . . , vd, and its structure constants

c
(k)
ij :

[vi, vj] =
n

∑

k=1

c
(k)
ij vk.

Because of the bilinearity of the bracket, the structure constants are enough to determine the value

of the bracket on any elements of the Lie algebra: [
∑

αivi,
∑

βjvj] =
∑

ijk αiβjc
(k)
ij vk. Each of

the axioms of a Lie algebra translates into a condition on the structure constants, for example,

skew-symmetry is equivalent to c
(k)
ij = −c

(k)
ji for all i, j, k.

A.3. Structure theory of Lie algebras. Given any two Lie algebras L1,L2, their direct sum is
the Lie algebra L1 ⊕ L2 whose underlying vector space is the direct sum of the underlying vector
spaces of the Li. The bracket [v1, v2] for any elements v1 ∈ L1 and v2 ∈ L2 is defined to be zero.

An ideal in a Lie algebra is a subspace I ⊆ L such that [u, v] ∈ I for any u ∈ L and v ∈ I.
Ideals are the Lie-algebraic analogue of normal subgroups of groups. Given any ideal, one can form
the quotient Lie algebra L/I whose elements are additive cosets of I, that is, of the form v + I;
conversely, given any homomorphism of Lie algebras its kernel is an ideal.

A Lie algebra is abelian if [u, v] = 0 for all u, v ∈ L. Any vector space can thus be given the
structure of an abelian Lie algebra. Every subspace of an abelian Lie algebra is an ideal.

0 is the trivial ideal. An ideal is proper if it is not the whole Lie algebra. In a direct sum
L = L1 ⊕ L2, each Li is a proper ideal of L. A Lie algebra is simple if it contains no proper
non-trivial ideals, and is non-abelian. (This last condition excludes, for technical reasons, the 1-
dimensional abelian Lie algebra.) A Lie algebra is semisimple if it is a direct sum of simple Lie
algebras.

Over C, the simple Lie algebras have been completely classified for nearly a century. They fall
into four infinite families, referred to as type An (sln, consisting of all trace zero n × n matrices),
Bn (so2n+1, consisting of all (2n + 1) × (2n + 1) skew-symmetric matrices M = −MT), Cn (sp2n

consisting of all 2n × 2n matrices M satisfying JM = −MT J where J =

(

0 In

−In 0

)

), and Dn

(so2n), and there are five exceptional simple Lie algebras, known as e6, e7, e8, f4, and g2.

Lie Algebra Conjugacy—Joshua A. Grochow 13

A.4. Representations. A representation of a Lie algebra L is a homomorphism ρ : L → Mn

for some n. A representation is faithful if this homomorphism is injective. Two representations
ρ1, ρ2 : L → Mn are equivalent if there is an invertible n × n matrix g such that ρ1(v) = gρ2(v)g−1

for all v ∈ L.
Equivalence of representations is similar to, but not the same as, conjugacy of matrix Lie algebras.

Given two representations ρ1, ρ2 : L → Mn, their images Li := Im(ρi) are matrix Lie algebras. The
representations ρi are equivalent if they are conjugate as maps, whereas the matrix Lie algebras
forget the maps and only care about their images. In fact, Lemma 3.2 shows that L1 and L2 are
conjugate matrix Lie algebras if and only if ρ1 and ρ2 are equivalent up to an automorphism of L,
that is, ρ1 is equivalent to ρ2 ◦ α for some automorphism α : L → L. These automorphisms are
what cause all the computational difficulties, and allow the equivalences with graph isomorphism
and code equivalence.

If L is specified by a basis and structure constants as above, then a representation ρ : L → Mn

may be specified by giving the k matrices ρ(vi) for each basis element.
Given two representations ρi : L → Mni

for i = 1, 2, their direct sum ρ1 ⊕ ρ2 : L → Mn1+n2
is

defined by the block-matrix:

(ρ1 ⊕ ρ2)(v) =

(

ρ1(v)
ρ2(v)

)

.

A representation is called decomposable if it is (equivalent to) a non-trivial direct sum; otherwise
it is called indecomposable.

The set Mn of n×n matrices acts on the vector space Fn by the usual matrix-vector multiplication.
Given a subset S ⊆ Mn, if V ⊆ Fn is a subspace such that S ·V ⊆ V , then V is called an S-invariant
subspace. The 0 subspace and the whole space Fn are S-invariant for any S.

A representation ρ : L → Mn is called irreducible if 0 and Fn are the only Im(ρ)-invariant
subspaces. Otherwise a representation is called reducible. Note that a decomposable representation
is reducible, but the converse need not be true, as illustrated by the example:

{

(

1 x
1

)

: x ∈ F}.

A representation is completely reducible if it can be decomposed into a direct sum of irreducible
representations. Every representation can be decomposed into indecomposable representations; in
a completely reducible representation these indecomposables must also be irreducible.

A matrix Lie algebra L ⊆ Mn, can be viewed as the image of a faithful representation of L,
namely, take ρ : L → Mn to be the inclusion (i. e., identity) map. Via this identification, we also
apply the terms (in)decomposable and (ir)reducible to matrix Lie algebras. If L is a completely
reducible matrix Lie algebra, then it is equivalent (conjugate) to a matrix Lie algebra consisting of
block-diagonal matrices, where the restriction to each block is irreducible.

Theorem A.1 (see Theorem III.10 on p. 81 of Jacobson [Jac62]). A matrix Lie algebra L is
completely reducible if and only if L is isomorphic to the direct sum of an abelian, diagonalizable
Lie algebra and a semisimple Lie algebra.

The proof of this theorem given in Jacobson [Jac62] is algebraic in nature and can be made
effective. All that is required is the solution of a few polynomially sized linear systems of equations.
In other words, in polynomial time one can find the irreducible direct summands of a completely
reducible representation:

Corollary A.2. Given a completely reducible matrix Lie algebra L ⊆ Mn, one can find in poly(n)
time a matrix g so that gLg−1 is the direct sum of an abelian diagonal Lie algebra and a semisim-
ple Lie algebra, where the semisimple part consists of block-diagonal matrices, each block being
irreducible.

14 Lie Algebra Conjugacy—Joshua A. Grochow

A.5. Inner and Outer Automorphisms. The collection of automorphisms of a Lie algebra L
form a group Aut(L) under composition of maps. Given a Lie algebra L and v ∈ L, the Jacobi
identity implies that the map adv : L → L defined by adv(u) := [v, u] is a homomorphism of

Lie algebras. If adk
v := adv ◦ · · · ◦ adv is the zero map for k sufficiently large, then exp(adv) :=

I +adv + 1
2ad2

v + · · ·+ 1
(k−1)!adk−1

v is an automorphism of L. Automorphisms arising in this way are

called inner automorphisms. The inner automorphisms form a normal subgroup Inn(L) ≤ Aut(L).
The quotient group Aut(L)/ Inn(L) is called the outer automorphism group and is denoted Out(L).

The outer automorphism groups of the simple Lie algebras are completely known:

Out(sln) = S2 Out(sp2n) = 1
(n 6= 4) Out(so2n) = S2 Out(so2n+1) = 1

Out(so8) = S3 Out(e7) = 1
Out(e6) = S2 Out(e8) = 1

Out(f4) = 1
Out(g2) = 1

The action of Out(sln) on the representations of sln is trivial. The action technically takes a repre-
sentation to its dual, but for sln, the dual of a representation is equivalent to that representation.

A.6. Twisting representations by automorphisms. Given an automorphism α : L → L and

a representation ρ : L → Mn, we get another representation ρ ◦ α : L
α
→ L

ρ
→ Mn, given by

(ρ ◦ α)(v) = ρ(α(v)). Since α is an automorphism, it is, in particular, onto, so Im(ρ ◦ α) = Im(ρ).
However, ρ ◦ α and ρ need not be equivalent as representations, despite having the same image.
We call ρ ◦ α the twist of the representation ρ by the automorphism α.

For semisimple Lie algebras, twisting by inner automorphisms does in fact lead to equivalent
representations:

Lemma A.3 (see Lemma 8.5.1 in de Graaf [dG00]). Let ρ : L → Mn be a representation of a
semisimple Lie algebra L and let α be an inner automorphism of L. Then ρ ◦ α is equivalent to ρ.

Since twisting a representation by an inner automorphism sends it to an equivalent representa-
tion, we find that the outer automorphism group Out(L) acts on the set of representations-up-to-
equivalence. If α ∈ Out(L), we denote the image of ρ under the action of α by ρα. Equivalently,
let α∗ ∈ Aut(L) be a representative of α ∈ Out(L); then ρα is the equivalence class of ρ ◦ α∗, and
by the lemma, this equivalence class is independent of the choice of representative α∗.

We note that the same result is vacuously true for abelian Lie algebras, since if L is abelian then
it has no non-trivial inner automorphisms. Hence it also holds for Lie algebras that are a direct
sum of abelian and semisimple.

A.7. More structure theory. Given two ideals A, B ⊆ L, their commutator is defined as [A, B] :=
Span{[a, b] : a ∈ A, b ∈ B}; the commutator of two ideals is again an ideal (this is an exercise in

the Jacobi identity). The derived series of L is defined as follows: L(0) := L, L(i+1) := [L(i),L(i)].

L(1) = [L,L] is called the derived or commutator subalgebra.

Definition A.4. A Lie algebra L is solvable if the derived series terminates at L(k) = 0 for some
k.

Each step in the derived series, L(i)/L(i+1) is abelian, so solvable Lie algebras are “iterated
extensions of abelian Lie algebras.”

The lower central series is defined by L0 := L and Li+1 := [L,Li]. Note that here we take the
commutator of Li with the whole of L, rather than just with Li (as in the derived series). Hence
the lower central series decreases more slowly than the derived series.

Definition A.5. A Lie algebra L is nilpotent if the lower central series terminates at Lk = 0 for
some k.

Lie Algebra Conjugacy—Joshua A. Grochow 15

Finally, in order to state the main structural theorems of Lie algebras, we define semidirect
products and derivations. A derivation on a Lie algebra L is a linear map d : L → L such that
d([u, v]) = [u, d(v)] + [d(u), v]. Note the similarity with the product rule for differentiation. Since a
derivation is a linear map, we may compose two derivations as linear maps; then defining [d1, d2] :=
d1 ◦ d2 − d2 ◦ d1 makes the collection of derivations of L into a Lie algebra denoted Der(L).

Given two Lie algebras L1,L2 and a homomorphism ϕ : L2 → Der(L1), we define the semi-direct
product L1 ⋊ϕ L2 as follows. The underlying vector space is the direct sum of L1 and L2. On each
of these subspaces, the Lie bracket is defined as it was originally. If v ∈ L1 and d ∈ L2 we define

[v, d] := d(v).

Extending by linearity and skew-symmetry, we find

[v1 + d1, v2 + d2] = [v1, v2] + d2(v1) − d1(v2) + [d1, d2]

where vi ∈ L1 and di ∈ L2.
The following two theorems are quite strong structural theorems. For example, nothing even

close to these holds in the case of finite groups, despite the similarity in the definitions of all the
notions (nilpotent, solvable, semidirect product).

Theorem A.6 (Levi’s Theorem, cf. §III.9, p. 91 of Jacobson [Jac62]). Every Lie algebra is the
semidirect product of a solvable Lie algebra by a semisimple one. (That is, the semisimple one acts
as derivations on the solvable one.)

Theorem A.7 (see Corollary II.7.1 on p. 51 of Jacobson [Jac62]). A Lie algebra is solvable if and
only if its derived subalgebra is nilpotent.

Remark A.8. Since solvable Lie algebras are iterated extensions of abelian ones (see above), and
considering Theorem A.6, we may say that abelian and simple Lie algebras form the “building
blocks” of all Lie algebras.

Appendix B. Reduction from Problem A to graph isomorphism

Proof of Lemma 3.4. First, if the permutation groups Gℓ are all trivial, then we can take each Mi

as the bipartite adjacency matrix of a vertex-colored and edge-colored bipartite graph. The vertices
corresponding to the columns are colored according to their part in the column partition; we refer
to these vertices as column-vertices. The edges are colored by the integer entries of each Mi. It is
clear that the Mi are equivalent if and only if the corresponding vertex- and edge-colored bipartite
graphs are bipartite-color-isomorphic, that is, isomorphic by an isomorphism which preserves the
two parts of the bipartition and preserves each color class of vertices and each color class of edges.

To handle the permutation groups Gi we make one additional step in the reduction. Since there
is one Gi for each column i, we must encode its action on the edge-labels incident to the column-
vertex i. To do this we add a “color palette” gadget for each column-vertex, which will encode both
the edge-labels, as well as enforcing the action of Gi on these labels. That is, the color palette will
be such that the way automorphisms of the resulting graph act on the encoding of the edge-labels
is exactly the same as Gi acts on them.

To encode the edge-labels with the color palette, we divide each edge by a new vertex, and attach
this new vertex to the vertex of the color palette which encodes the appropriate edge color. We
only need color palettes capable of encoding permutation actions of the trivial group, S2, and S3.

Gi trivial. If some Gi is trivial, the corresponding color palette is simply a line of vertices with
a marked vertex at the end. The marked vertex prevents reversing the order of the line, and the
different vertices in the line encode the different edge labels on the edges incident to column-vertex
i.

Gi
∼= S2. S2 has two possible orbit types (=transitive actions): a single fixed point, or an orbit

of size two. The color palette is the disjoint union of two graphs corresponding to the two possible

16 Lie Algebra Conjugacy—Joshua A. Grochow

orbit types. Each of these graphs has its own marked vertex at the end. One of these two graphs is
simply a line as in the previous case: the vertices of this line correspond to those edge-labels that
are fixed by the action of S2. The other graph is the disjoint union of two lines, each of which is
joined at the end to the marked vertex. The action of S2 swaps the i-th vertex of one of these lines
with the i-th vertex of the other. This enforces that the action of the edge group Gi either swaps
all of the edge labels (that is, via the nontrivial element of S2) or none of them.

For the sake of the next case, it is useful to think of this color palette as gluing together in a line
multiple copies of the “color gadget” consisting of two disconnected vertices.

Gi
∼= S3. S3 has four orbit types: 1) the trivial action, 2) the action on two points by which odd

permutations swap the points and even permutations fix them, 3) the natural action of S3 on three
points, and 4) the regular action of S3 on itself (6 points). However, these last three orbit types
must be linked, since if an element of S3 swaps two points according to (2), it must also have some
action according to (3) and (4). Thus the color palette in this case is the disjoint union of two
palettes: the trivial, line palette as before, and a more complicated palette encoding the actions
(2)–(4).

This more complicated palette is given by a “color gadget,” multiple copies of which are glued
together in a line, as in all the other cases. The color gadget is as follows:

1

2

3

A12

A23

A

B21

B32

B

Multiple copies of this color gadget are glued together along three lines, one connecting the “1”
vertices, one connecting the “2” vertices, and one connecting the “3” vertices. At one end of these
lines, every vertex in the color gadget is connected to a new marked vertex, to prevent the line
from being swapped end-to-end.

A set of edge colors corresponding to an orbit of type (2) is encoded by the A and B vertices.
A set of edge colors correspondgin to an orbit of type (3) is encoded by the vertices 1, 2, and 3.
A set of edge colors corresponding to an orbit of type (4) is encoded by the vertices A12, A23,

A31, B21, B32, and B13. A31 and B13 are not labelled in the diagram due to space, but there are
directed edges 3 → A31 → 1 and 1 → B13 → 3.

It remains to show that this color gadget really works as desired. Let us examine the auto-
morphisms of the color gadget. We claim that the automorphism group is S3, that it acts on the
vertices 1, 2, 3 in its natural action (3), it acts on the Aij ’s and Bji’s together in its regular action
(4), and it acts on A, B in its odd-even action (2).

1, 2, and 3 are the only vertices with in-degree and out-degree 1, so at most they can be swapped
amongst each other. Hence the automorphism group is at most S3. To show the above claim, it
suffices to show that the generating set (123) and (12) of S3 provides automorphisms of the color
gadget that act as described.

Consider first (123). It acts on 1, 2, and 3 as described by the cycle notation: 1 7→ 2 7→ 3 7→ 1.
To be an automorphism, it is then forced to send A12 7→ A23 7→ A31 7→ A12 and B21 7→ B32 7→
B13 7→ B21. Note that (123) cannot possibly swap the Aij ’s and the Bji’s, since the directed edges
determine an orientation that is preserved by (123). Moreover, its action on these vertices is exactly
the action of (123) by right multiplication on S3 itself. This implies that (123), and hence all the
even permutations, fix the vertices A and B.

Lie Algebra Conjugacy—Joshua A. Grochow 17

Next, consider (12). Since (12) reverses the orientation determined by the directed edges, it must
swaps the Aij ’s and Bji’s, as follows: A12 ↔ B21, A23 ↔ B13, and A31 ↔ B32. This also implies
that A ↔ B. Hence odd permutations swap A and B. Finally, the action of (12) on the Aij ’s and
Bji’s is in accordance with the right regular action of (12) on S3, compatible with that of (123)
above. We can put this together through the correpsondence:

() ∼ A12

(123) ∼ A23

(132) ∼ A31

(12) ∼ B21

(13) ∼ B32

(23) ∼ B13

�

We suspect that these ideas can be extended to show that the general twisted code equivalence
problem, as defined in Codenotti [Cod11] Karp-reduces to graph isomorphism.

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

