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Abstract

Let A ∈ Ωn be doubly-stochastic n × n matrix. Alexander Schrijver proved in
1998 the following remarkable inequality

per(Ã) ≥
∏

1≤i,j≤n

(1−A(i, j)); Ã(i, j) =: A(i, j)(1−A(i, j)), 1 ≤ i, j ≤ n (1)

We prove in this paper the following generalization (or just clever reformulation)
of (1):
For all pairs of n × n matrices (P,Q), where P is nonnegative and Q is doubly-
stochastic

log(per(P )) ≥
∑

1≤i,j≤n

log(1−Q(i, j))(1−Q(i, j))−
∑

1≤i,j≤n

Q(i, j) log
(

Q(i, j)
P (i, j)

)
(2)

The main co rollary of (2) is the following inequality for doubly-stochastic matrices:

per(A)
F (A)

≥ 1;F (A) =:
∏

1≤i,j≤n

(1−A(i, j))1−A(i,j) .

We use this inequality to prove Friedland’s conjecture on monomer-
dimer entropy, so called Asymptotic Lower Matching Conjecture
We present explicit doubly-stochastic n×n matrices A with the ratio per(A)

F (A) =
√

2
n

and conjecture that

max
A∈Ωn

per(A)
F (A)

≈
(√

2
)n

.

If true, it would imply a deterministic poly-time algorithm to approximate the per-
manent of n× n nonnegative matrices within the relative factor

(√
2
)n

.
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1 The permanent

Recall that a n × n matrix A is called doubly stochastic if it is nonnegative entry-wise
and its every column and row sum to one. The set of n × n doubly stochastic matrices
is denoted by Ωn. The set of n × n of row stochastic(i.e. when every row sum to one)
is denoted by RSn, the set of column stochastic(i.e. when every column sum to one) is
denoted by CSn.

Let Λ(k, n) denote the set of n × n matrices with nonnegative integer entries and
row and column sums all equal to k . We define the following subset of rational doubly
stochastic matrices: Ωk,n = {k−1A : A ∈ Λ(k, n)}.

Recall that the permanent of a square matrix A is defined by

per(A) =
∑

σ∈Sn

n∏
i=1

A(i, σ(i)).

The following inequality was conjectured by B.l. van der Waerden in 1926 and proved
independently in 1981 by D.L. Falikman [13] and G.P. Egorychev [12]:

min
A∈Ωn

per(A) =
n!

nn
=: vdw(n). (3)

1.1 Schrijver-Valiant Conjecture and (main) Schrijver’s perma-
nental inequality

Define

λ(k, n) = min{per(A) : A ∈ Ωk,n} = k−n min{per(A) : A ∈ Λ(k, n)};

θ(k) = limn→∞(λ(k, n))
1
n .

It was proved in [2] (also earlier in [1]) that, using our notations, θ(k) ≤ G(k) =:
(k−1

k
)k−1 and conjectured that θ(k) = G(k). Though the case of k = 3 was proved by

M. Voorhoeve in 1979 [20] , this conjecture was settled only in 1998 [3] (17 years af-
ter the published proof of the Van der Waerden Conjecture). The main result of [3] (as
many people, including myself, wrongly thought) is the remarkable (Schrijver-bound) :

min{per(A) : A ∈ Ωk,n} ≥
(

k − 1

k

)(k−1)n

(4)

The bound (4) is a corollary of another inequality for doubly-stochastic matrices:

per(Ã) ≥
∏

1≤i,j≤n

(1− A(i, j)); A ∈ Ωn; Ã(i, j) =: A(i, j)(1− A(i, j)), 1 ≤ i, j ≤ n. (5)
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The proof of (5) in [3] is, in the words of its author, ”highly complicated”. Surprisingly,
the only known to me application of (5) is the bound (4), which applies only to ”very”
rational doubly-stochastic matrices. The main goal of this paper is to show the amazing
power of (5), which has been overlooked for 13 years.

2 A Generalization of Schrijver’s permanental in-

equality

We prove in this section the following theorem, stated in [10] in a rather cryptic way.Fortunately,
the paper cites [11] and M. Chertkov is my colleague in Los Alamos.
The statement in the current paper has been communicated to me by Misha Chertkov,
to whom I am profoundly grateful.

Definition 2.1: Define for a pair (P, Q) of non-negative matrices the following func-
tional:

CW (P, Q) =:
∑

1≤i,j≤n

log(1−Q(i, j))(1−Q(i, j))−
∑

1≤i,j≤n

Q(i, j) log

(
Q(i, j)

P (i, j)

)
. (6)

(Note that for fixed P the functional CW (P, Q) =
∑

1≤i,j≤n Fi,j(Q(i, j)) and Fi,j(0) = 0.
If Q ∈ Ωn is doubly-stochastic and P = Diag(a1, ..., an)TDiag(b1, ..., bn) then

CW (P, Q) =
∑

1≤i≤n

log(aibi) + CW (T, Q). (7)

Therefore, WLOG we can consider only doubly-stochastic matrices P .
The functional CW (P, Q) is concave in P and, rather surprisingly (see the 2011 arxiv
version of [10]), concave in Q ∈ Ωn.

Theorem 2.2: Let P be non-negative n×n matrix. If Per(P ) > 0 then maxQ∈ΩnCW (P, Q)
is attained and

log(Per(P )) ≥ maxQ∈ΩnCW (P, Q) (8)

(It is assumed that 00 = 1.)
An equivalent statement of this theorem is

log(Per(P )) ≥
∑

1≤i,j≤n

log(1−Q(i, j))(1−Q(i, j))−
∑

1≤i,j≤n

Q(i, j) log

(
Q(i, j)

P (i, j)

)
: P ≥ 0, Q ∈ Ωn

(9)
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Proof: We will prove, to avoid trivial technicalities, just the positive case, i.e when
P (i, j) > 0, 1 ≤ i, j ≤ n.
We compute first partial derivatives:

∂

∂Q
CW (P, Q) = {−2− log(1−Q(i, j))− log(Q(i, j)) + log(P (i, j)) : 1 ≤ i, j ≤ n} (10)

In the positive case, i.e. for the fixed positive P , the functional CW (P, Q) is bounded and
continuous on Ωn. Therefore the maximum exists. Let V ∈ Ωn be one of argmaximums,
i.e.

CW (P, V ) = maxQ∈ΩnCW (P, Q).

Then, after some column/row permutations

V =


V1,1 0 ... 0
0 V2,2 0 ...0
. . . .
0 ... 0 Vk,k

 ;

P =


P1,1 . ... .
. P2,2 . ....
. . . .
. ... . Pk,k

 ;

The diagonal blocks Vi,i are indecomposable doubly-stochastic di × di matrices;∑
1≤i≤k di = n and 1 ≤ k ≤ n. Clearly,

CW (P, V ) =
∑

1≤i≤k

CW (Pi,i, Vi,i).

As log(per(P )) ≥ ∑
1≤i≤k log(per(Pi,i)) it is sufficient to prove that

log(Per(Pi,i)) ≥ CW (Pi,i, Vi,i); 1 ≤ i ≤ k.

For blocks of size one, the inequality is trivial: (1− 1)1−1 − 1 log( 1
a
) = log(a).

Consider a (indecomposable) block Vi,i of size di ≥ 2 and define its support

Supp(Vi,i) = {(k, l) : Vi,i(k, l) > 0}.

Note that 1 > Vi,i(k, l) > 0, (k, l) ∈ Supp(Vi,i). Consider the following functional

L(Wi,i) =:
∑

(k,l)∈Supp(Wi,i

log(1−Wi,i(k, l))(1−Wi,i(k, l))−
∑

(k,l)∈Supp(Vi,i

Wi,i(k, l) log

(
Wi,i(k, l)

P (i, j)

)

defined on compact convex subset of doubly-stochastic matrices which are zero outside
of Supp(Pi,i). We conclude that the functional L()̇ is differentiable at Vi,i. Note that
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L(Vi,i) = CW (Pi,i, Vi,i)).
We now can express the local extremality condition not on full Ωdi

but rather on its
compact convex subset of doubly-stochastic matrices which are zero outside of Supp(Pi,i).
Using (10) and doing standard Lagrange multipliers respect to variables Vi,i(k, l), (k, l) ∈
Supp(Vi,i), we get that there exists real numbers (αk; βl) such that

−2− log(1− Vi,i(k, l))− log(Vi,i(k, l)) + log(Pi,i(k, l)) = αk + βl : (k, l) ∈ Supp(Vi,i).

Which gives for some positive numbers ak, bl the following scaling:

Pi,i(k, l) = akblVi,i(k, l)(1− Vi,i(k, l)); (k, l) ∈ Supp(Vi,i). (11)

It follows from the definition of the support that

1.
Pi,i ≥ Diag(ak)Ṽi,iDiag(bl); Ṽi,i(k, l) = Vi,i(k, l)(1− Vi,i(k, l)). (12)

2. Using the scalability (7) property, we get that

CW (Pi,i, Vi,i) =
∑

log(ak) +
∑

log(bl) +
∑

(k,l)∈Supp(Vi,i)

log(1− Vi,i(k, l)). (13)

Finally it follows from (13) and Schriver’s permanental inequality (5) that

log(per(Diag(ak)Ṽi,iDiag(bl)) ≥ CW (Pi,i, Vi,i);

and that

log(per(Pi,i)) ≥ log(per(Diag(ak)Ṽi,iDiag(bl)) ≥ CW (Pi,i, Vi,i).

Remark 2.3: Note that the proof does not use concavity of CW (P, V ) in V ∈ Ωn.

3 Corollaries

1. Schrijver’s permanental inequality (5) is a particular case of (9). Indeed

CW (Ṽ , V ) =
∑

1≤i,j≤n

log(1− V (i, j)) : V ∈ Ωn.
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2. Let P ∈ Ωn be doubly-stochastic n× n matrix. Then

log(per(P )) ≥ CW (P, P ) =
∑

1≤i,j≤n

log(1− P (i, j))(1− P (i, j)).

We get the following important inequality, perhaps the main observation
in this paper:

per(P )

F (P )
≥ 1; F (P ) =:

∏
1≤i,j≤n

(1− P (i, j))1−P (i,j) ; P ∈ Ωn (14)

The lower bound (14) suggests the importance of the following quantity:

UB(n) =: maxP∈Ωn

per(P )

F (P )
.

It is easy to show that the limit

UB =: lim
n→∞

(UB(n))
1
n

exists and 1 ≤ UB ≤ e. There is obvious deterministic poly-time algorithm to
approximate the permanent of nonnegative matrices within relative factor UB(n).
The current best rate is en. Therefore proving that UB < e is of major algorithmic
importance.

Remark 3.1: All previous lower bounds on the permanent of doubly-stochastic
matrices P ∈ Ωn depend only on the dimension n and the support of P . I.e. the
previous bounds are structural. The beauty (and potential power) of our lower
bound (14) is in its explicit dependence on the entries of P . We use (14) in Section
5 to settle important conjecture on the monomer-dimer entropy.

Example 3.2: I. Let P = aJn + bIn, a = 1
2(n−1)

, b = n−2
2(n−1)

, i.e. the diagonal

P (i, i) = 1
2
, 1 ≤ i ≤ n and the off-diagonal entries are equal to 1

2(n−1)
.

It is easy to see that for these (a, b):

2−n+1 ≤ per(aJn + bIn) = n!an
∑

0≤i≤n

1

i!

(
b

a

)i

≤ n!anexp

(
b

a

)
.

Non-difficult calculations show that for this P ∈ Ωn

per(P )

F (P )
≈
(√

e

2

)n

(15)

II.Let P ∈ Ω2 = 1
2
J2 be 2 × 2 “uniform” doubly-stochastic matrix. The direct

inspection gives that

CW (P, Q) ≡ −2 log(2) = F (P ), Q ∈ Ωn.
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Consider now the direct sum P2n ∈ Ω2n = 1
2
J2 ⊕ ...⊕ 1

2
J2. Then

maxQ∈Ω2nCW (P2n, Q) = log(F (P2n)) = −2n log(2). (16)

Therefore in this case
per(P2n)

F (P2n)
= 2n. (17)

Which gives the following lower bound on UB(k) for even k:

UB(k) ≥ (
√

2)k. (18)

As maxQ∈Ω2nCW (P2n, Q) = log(F (P2n)), this class of matrices also provides a
counter-example to the non-trivial part of Conjecture 15 in [10].
Is the bound (18) sharp?

3. Recall the main function from [7]:

G(x) =
(

x− 1

x

)x−1

, x ≥ 1.

Note that for P ∈ Ωn the column product

CPRj(P ) =:
∏

1≤i≤n

(1− P (i, j))1−P (i,j) ≥ G(n). (19)

Define Cj as the number of non-zero entries in the jth column then

CPRj(P ) =:
∏

1≤i≤n

(1− P (i, j))1−P (i,j) ≥ G(Cj). (20)

The inequality (19) gives a slightly weaker version of the celebrated Falikman-
Egorychev-van der Waerden lower bound (3):

per(P ) ≥
∏

1≤j≤n

CPRj(P ) ≥
(

n− 1

n

)n(n−1)

The inequality (20) gives a non-regular real-valued version of (Schrijver-bound):

per(P ) ≥
∏

1≤j≤n

CPRj(P ) ≥
∏

1≤j≤n

G(Cj) (21)

In the worst case, the author’s bound from [7] is better:

per(P ) ≥
∏

1≤j≤n

G (min(j, Cj)) (22)

Perhaps, it is true that

Conjecture 3.3:
per(P ) ≥

∏
1≤j≤n

G (min(j, ECj))?

where the effective real-valued degree ECj = G−1(CPRj(P )).
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4 Some historical remarks

The column products CPRj(P ) =:
∏

1≤i≤n(1−P (i, j))1−P (i,j) ≥ G(Cj) have appeared in
the permanent context before. Let P = [a|b, .., |b] ∈ Ωn be doubly-stochastic matrix with
2 distinct columns. Then (Proposition 2.2 in [17])

Per(P ) ≥ CPR(1)vdw(n− 1). (23)

Let us recall a few notations from [7] and [5]:

1. The linear space of homogeneous polynomials with real (complex) coefficients of
degree n and in m variables is denoted HomR(m, n) (HomC(m, n)).
We denote as Hom+(m, n) (Hom++(n, m)) the closed convex cone of polynomials
p ∈ HomR(m, n) with nonnegative (positive) coefficients.

2. For a polynomial p ∈ Hom+(n, n) we define its Capacity as

Cap(p) = inf
xi>0,

∏
1≤i≤n

xi=1
p(x1, . . . , xn) = inf

xi>0

p(x1, . . . , xn)∏
1≤i≤n xi

. (24)

3. The following product polynomial is associated with a n× n matrix P :

ProdP (x1, . . . , xn) =:
∏

1≤i≤n

∑
1≤j≤n

P (i, j)xj. (25)

The permanent per(P ) is the mixed derivative of the polynomial ProdP :

Per(P ) =
∂n

∂x1∂x2 . . . ∂xn

ProdP (0). (26)

4.

q(j) =:
∂

∂xj

ProdP (x1, . . . , xn) : xj = 0.

Note that the polynomials q(j) ∈ Hom+(n− 1, n− 1)
For example, q(n) = ∂

∂xn
ProdP (x1, . . . , xn−1, 0).

The following lower bound, which holds for all P ∈ Ωn, was proved in [5]:

Cap(q(j)) ≥ CPRj(P ), 1 ≤ j ≤ n. (27)

Combining results from [7] (i.e. Per(P ) ≥ vdw(n − 1)Cap(q(j)), 1 ≤ j ≤ n) and (27)
gives a different version of (14)

per(P ) ≥

 ∏
1≤j≤n

CPRj(P )

 1
n

vdw(n− 1), P ∈ Ωn. (28)
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Or better
per(P ) ≥ (max1≤j≤nCPRj(P )) vdw(n− 1), P ∈ Ωn. (29)

Perhaps, it is even true that

Conjecture 4.1:
per(P ) ≥

∏
1≤j≤n

Cap(q(j)), P ∈ Ωn?

A general, i.e. not doubly-stochastic and not just “permanental”, version of Conjecture(4.1)
is the following one:

Conjecture 4.2: Let p ∈ Hom+(n, n) be H-Stable, i.e. p(z1, ..., zn) 6= 0 if the real
parts RE(zi) > 0, 1 ≤ i ≤ n. In other words, the homogeneous polynomial p does not
have roots with positive real parts. Then the following inequality holds

∂n

∂x1∂x2 . . . ∂xn

p(0) ≥ Cap(p)
∏

1≤j≤n

Cap(q(j))

Cap(p)
(30)

5 Some Partial Results Towards the Main Conjec-

ture(s)

Let us formalize the main new question in the following Conjecture.

Conjecture 5.1: Let P ∈ Ωn be doubly-stochastic matrix. Is it true that

1. “Optimizational” Conjecture

per(P ) ≤ (
√

2)nexp(max
Q∈Ωn

CW (P, Q)).

It will be explained below that “Optimizational” Conjecture gives provable
deterministic polynomial(but not strongly) algorithm to approximate per(P ) with
the factor (

√
2)n

2. Strong Conjecture

per(P ) ≤ (
√

2)nF (P ), F (P ) =:
∏

1≤i,j≤n

(1− P (i, j))1−P (i,j) .

Strong Conjecture obviously gives deterministic strongly-polynomial algorithm
to approximate per(P ) with the factor (

√
2)n
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3. Mild Conjecture
per(P ) ≤ (

√
2)n(F (P ))c,

where 0 < c < 1 is some universal constant. The case c = 1
2

seems believable. As
per(P ) ≥ F (P ) thus Mild Conjecture gives deterministic strongly-polynomial
algorithm to approximate per(P ) with the factor
(F (P ))c−1 ≤≈ en(1−c) < en.

5.1 Some Basic Properties of CW (P, Q)

The “odd entropy” function OE(p) = p log(p)−(1−p) log(1−p), 0 ≤ p ≤ 1 is not convex
on [0, 1]. Yet, when lifted to the Simplex it becomes convex. This non-obvious result was
proved in recent extended version of [10]. We present below a simpler and more general
proof.

Definition 5.2 : Call a function f : [0, 1] → R simplex-convex if the functional
fSim(1)(p1, ..., pn) =: f(p1) + ... + f(pn) is convex on the simplex Simn(1) = {(p1, ..., pn) :
pi ≥ 0, 1 ≤ i ≤ n;

∑
1≤i≤n pi = 1.

Clearly, if f is convex then it is simplex-convex as well. We describe a much wider
class of simplex-convex functions.

We need two simple facts.

Fact 5.3: Let g : [0, 1] → R be convex function; g(0) = 0. Then this function g is
super-additive:

g(t1 + ... + tn) ≥ g(t1) + ... + g(tn) : ti ≥ 0, 1 ≤ i ≤ n; t1 + ... + tn ≤ 1.

Proof: Let ti ≥ 0, 1 ≤ i ≤ n; t1 + ... + tn = s ≤ 1. Lift g to the simplex sSimn(1) =:
Simn(s) = {ti ≥ 0, 1 ≤ i ≤ n; t1 + ... + tn = s}:

ḡ(t1, ..., tn) = g(t1) + ... + g(tn).

The functional ḡ is convex on the simplex Simn(s). Therefore, its maximium is attained
at the extreme points, i.e at the vectors (s, 0, ..., 0), ..., (0, 0, ..., s). As g(0) = 0 we get
that

max
Simn(s)

ḡ(t1, ..., tn) = g(s),

which finishes the proof.
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Fact 5.4 : Consider the linear subspace Sum0 ⊂ Rn+1, Sum0 = {(x0, x1, ..., xn) :∑
0≤i≤n xi = 0.

Let a0 > 0; ai > 0, 1 ≤ i ≤ n. The diagonal matrix D = Diag(−a0, a1, ..., an) is positive
semidefinite on Sum0, i.e < DX, X >≥ 0, X ∈ Sum0 iff∑

1≤i≤n

1

ai

≤ 1

a0

; ai > 0, 1 ≤ i ≤ n. (31)

Proof: The proof directly follows from the following easily checkable equality:

min
y1+....+yn=1

∑
1≤i≤n

aiy
2
i =

 ∑
1≤i≤n

a−1
i

−1

.

Theorem 5.5: Let f : [0, 1] → R be continuous and twice differentiable on (0, 1) func-
tion. Define g(t) = f(1

2
+ t), t ∈ [−1

2
, 1

2
]. Assume that the second derivative g(2) satisfies

the following properties:

1. g(2)(t) > 0, 0 > t > −1
2
; g(2)(0) ≥ 0.

2. g(2)(t) ≥ −g(2)(−t), 0 < t < 1
2
.

3. limt→− 1
2

1
g(2)(t)

= 0.

4. The function 1
g(2)(t)

is convex on [−1
2
, 0).

Then the function f is simplex-convex.

Remark 5.6: The “odd entropy” function OE(p) = p log(p)−(1−p) log(1−p), 0 ≤ p ≤ 1
satisfies the above properties:
Indeed, 1

g(2)(t)
= 1

OE(2)( 1
2
+t)

= − 1
8t

+ t
2
.

Proof: As f is continuous it is sufficient to prove that f(t0) + ...+ f(tn) is convex in the
interior of the simplex Simn+1(1), i.e when 0 < ti < 1. Define di =: f (2)(ti). We need to
prove that D =: Diag(d0, d1, ..., dn) is positive semidefinite on Sum0.
If ti ≤ 1

2
then di ≥ 0 and D is positive semidefinite. Otherwise, there is only one ti > 1

2
,

say

t0 =
1

2
+ s0,

1

2
≥ s0 > 0; ti =

1

2
− si;

1

2
> si > 0, 0 ≤ i ≤ n.

Note that di > 0, 1 ≤ i ≤ n. If f (2)(t0) = g(2)(s0) ≥ 0 we are done. Assume that
−β =: f (2)(t0) = g(2)(s0) < 0, β > 0. Our goal, using Fact(5.4), is to prove that

(β)−1 ≥
∑

1≤i≤n

d−1
i . (32)
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Note that
1

2
− s0 =

∑
1≤i≤n

(
1

2
− si).

Using the properties(2-4) above and Fact(5.3), applied to the convex function α(t) =:
1

g(2)(t)
, t ∈ [0, 1

2
], we get that

(f (2)(
1

2
− s0))

−1 ≥
∑

1≤i≤n

(di)
−1.

As f (2)(1
2

+ s0) < 0 we get from property(2) above that

β = −f (2)(
1

2
+ s0) ≤ f (2)(

1

2
− s0).

Which gives the desired inequality (32).

Remark 5.7: Recall the definition of the Bregman Distance associated with a convex
functional f :

0 ≤ Df (X||Y ) = f(X)− f(Y )− < 5FY , X − Y > .

For instance, the Kullback-Leibler Divergence is the Bregman Distance associated
with

f(p1, ..., pn) =
∑

1≤i≤n

pi log(pi).

As we know that the “odd entropy” functional

OE(p1, ..., pn)) =
∑

1≤i≤m

pi log(pi)− (1− pi) log(1− pi)

is convex on the simplex Simn(1), we can define a new divergence, which we call Bethe
Divergence:

BD(X||Y ) =
∑

1≤i≤n

(
xi log(

xi

yi

)− (1− xi) log

(
1− xi

1− yi

))
; X, Y ∈ Simn(1). (33)

It would be interesting to investigate statistical (or learning) applications of the Bethe
Divergence.

5.2 Some easy exact computations of maxQ∈Ωn
CW (P, Q)

The following fact is easy corollary of the simplex-convexity of the “odd entropy”
function OE(p) = p log(p)− (1− p) log(1− p), 0 ≤ p ≤ 1.

Fact 5.8:
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1. Let pi > 0, 1 ≤ i ≤ n be a positive vector, n ≥ 2. Define

OD(q, p) =
∑

1≤i≤n

(1− qi) log(1− qi)− qi log(
qi

pi

), q ∈ Simn(1).

Then
max

(q1,...,qn)∈Simn(1)
OD(q, p) = log(pj)

iff pj ≥
∑

i6=j pi. We call such index j dominant.
Note that if n ≥ 3 then there exists at most one dominant index.
If there is no dominant index then the maximum is attained in the interior of the
simplex Simn(1).

2. Let pi = const > 0, 1 ≤ i ≤ n . Then

max
(q1,...,qn)∈Simn(1)

OD(q, p) = OD(
e

n
, p) = (n− 1) log(1− n−1) + log(n) + log(const).

Remark 5.9: The first item of Fact (5.8) says that for n ≥ 3 the extremum of OD(q, p), p >
0 is either an extreme point of the simplex(when the unique dominant index exists) or
a point in the interior. This is in stark contrast with KLD-minimization, where the
extremum has largest possible support.

We will take advantage of the following corollary.

Corollary 5.10: Let RSn denote the set of n× n row-stochastic matrices.
Let P be n× n diagonally dominant non-negative matrix. i.e. P (i, i) ≥ ∑

j 6=i P (i, j); 1 ≤
i ≤ n. Then

max
Q∈Ωn

CW (P, Q) = max
Q∈RSn

CW (P, Q) =
∑

1≤i≤n

log(P (i, i)). (34)

The following observation follows now from the scalability property (7).

Corollary 5.11: Assume that there exist two diagonal matrices D1, D2 such that the
matrix P = D1AD2 is diagonally dominant, i.e. B(i, i) ≥ ∑

j 6=i B(i, j). Then

max
Q∈Ωn

CW (P, Q) =
∑

1≤i≤n

log(P (i, i)).
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5.3 Regular Bipartite Graphs

Let RB(r, n) denote the set of n × n boolean matrices with row and column sums all
equal to r. Note that if A ∈ RB(r, n) then 1

r
A is doubly-stochastic and

F (
1

r
A) =

(
r − 1

r

)n(r−1)

= G(r)n.

The celebrated Bregman’s upper bound [14] gives that

per(
1

r
A) ≤

r!
1
r

r

n

=: Bn
r .

Therefore
per(1

r
A)

F (1
r
A)

≤
(

Br

G(r)

)n

≤
(

B2

G(2)

)n

= (
√

2)n.

Therefore, Strong Conjecture holds on the sets RB(r, n).
Let CO(1

r
RB(r, n)) be the convex hull. It follows from linearity of the permanent in

individual rows that

per(
1

r
A) ≤

r!
1
r

r

n

= Bn
r , A ∈ CO(

1

r
RB(r, n)).

The following observation(most likely known) follows fairly directly from the classical
J.Edmonds’ result that the intersection of two matroid polytopes is the polytope of the
intersection of the corresponding two matroids with the same ground set.

Proposition 5.12: The convex hull

CO(
1

r
RB(r, n)) = {A ∈ Ωn : A(i, j) ≤ 1

r
; 1 ≤ i, j ≤ n}.

Corollary 5.13:

CO(
1

r + 1
RB(r + 1, n)) ⊂ CO(

1

r
RB(r, n)), 1 ≤ r ≤ n− 1.

We only can state (rather trivial) upper bound

per(P )

F (P )
≤ Bn

r

G(n)n
≤

r!
1
r e

r

n

: P ∈ CO(
1

r
RB(r, n)). (35)

It follows from (35) that Strong Conjecture holds on CO(1
r
RB(r, n)), r ≥ 6.
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5.4 Diagonally Dominant Matrices

Lemma 5.14: Let A be n× n non-negative matrix. Then

Per(A) ≤
∏

1≤i≤n

(A(i, i)2 + (
∑
j 6=i

A(i, j)2))
1
2 . (36)

Proof: Follows from linearity of the permanent in individual rows and the following
generalized Holder’s inequality

|
∏

1≤i≤n

ai +
∏

1≤i≤n

bi| ≤
∏

1≤i≤n

(|ai|n + |bi|n)
1
n . (37)

Corollary 5.15: If A is Diagonally Dominant then the “Optimizational” Conjecture
holds, i.e.

per(A) ≤ (
√

2)nexp(max
Q∈Ωn

CW (A, Q)).

6 A proof of Friedland’s Asymptotic Lower Matching

Conjecture

6.1 Two models for random regular bipartite graphs with mul-
tiple edges

We denote as RI(r, n) the set of n×n non-negative integer matrices with row and column
sums all equal r:

RI(r, n) = {{A(i, j); 1 ≤ i, j ≤ n} : A(i, j) ∈ Z+; Ae = AT e = re}.

1. The Pairing Model: Consider a random, respect to uniform distribution, per-
mutation π ∈ Srn of length rn and its standard matrix representation, pictured as
a block matrix:

Mπ =

 Mπ(1, 1) Mπ(1, 2) ... Mπ(1, r)
... ... ... ...

Mπ(r, 1) Mπ(r, 2) ... Mπ(r, r)

 ,

where each block is a (boolean) n× n matrix. The Pairing Model for a random
matrix in RI(r, n) corresponds to a random matrix BM(r, n) =:

∑
1≤i,j≤r Mπ(i, j).

This model was used in the context of the permanent in [2].
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2. The sum of r independent permutation matrices: Another model is just the
sum of r independent permutation matrices:

HW (r, n) =:
∑

1≤i≤r

Mσi
,

where σi ∈ Sn, 1 ≤ i ≤ r are independent uniformly disributed permutations of
length n. This model was used by Herbert Wilf [1]. As in [2], the main goal and
result of [1] was the asymptotics of the expected value of the permanent:

lim
n→∞

(E(per(HW (r, n)))
1
n = lim

n→∞
(E(per(BM(r, n)))

1
n = rG(r). (38)

It is worth noticing that the proof in [1] is much more involved than in [2]. One of the
corollaries of (38) is the following inequality

lim
n→∞

( min
A∈RI(r,n)

(per(A))
1
n ≤ rG(r), (39)

which was proved much later to be equality.
Let prob1(r, n) be the probability of the event BM(r, n) ∈ RB(r, n), where RB(r, n) is
the set of n×n boolean matrices with r ones in each row and column; prob2(r, n) be the
probability of the event HW (r, n) ∈ RB(r, n). Brian McKay conjectured in [23] that for
fixed r(we present here a simplified expression)

prob1(r, n) = exp

(
−(r − 1)2

2
+ O(n−1)

)
. (40)

This conjecture was proved almost 20 years after in [22], moreover it holds for r = o(
√

n).
The proof in [23] is rather involved and has nothing to do with the permanent.
On the other hand, it is easy to see that

1

(n!)r−1

∏
1≤i≤r−1

min
A∈RB(n−i,n)

per(A) ≤ prob2(r, n) ≤ 1

(n!)r−1

∏
2≤i≤r

max
A∈RB(n−i,n)

per(A). (41)

We can use now various lower bounds on minA∈RB(n−i,n) per(A) and the Bregman’s upper

bound ((n− i)!)
n

n−i on maxA∈RB(n−i,n) per(A).
Using just the Van Der Waerden-falikman-Egorychev (or even Bang-Friedland) bound
we get that ∏

1≤i≤r−1

(
n− i

n
)n ≤ prob2(r, n) ≤

∏
1≤i≤r−1

((n− i)!)
i

n−i

(n− i + 1)...n
(42)

The best current lower bound (22) gives

∏
1≤i≤r−1

G(n− i)i (n− i)i

(n− i + 1)...n
≤ prob2(r, n) ≤

∏
1≤i≤r−1

((n− i)!)
i

n−i

(n− i + 1)...n
(43)
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For a fixed r, as 42 as well 43 give the following asymptotic for prob2(r, n)

prob2(r, n) ≈ exp

(
−r(r − 1)

2

)
,

which is less than (40).
Ian Wanless noticed in [21] that

min
A∈RB(r,n)

per(A) ≤ (prob1(r, n))−1E(per(BM(r, n)).

Together with (40) it implies that

lim
n→∞

( min
A∈RB(r,n)

(per(A))
1
n ) ≤ rG(r), (44)

which is the main conclusion of [21]. We sketched above an alternative, simpler way
to get the same result by combining Herbert Wilf’s 1966 paper and Van Der Waerden-
Falikman-Egorychev Inequality and their recent refinements.

6.2 Monomer-Dimer Problem

.

Let perm(A) denote the sum of permanents of all m×m submatrices of A:

perm(A) =:
∑

|S|=|T |=m

per(AS,T ).

Define the following two quantities

EMD1(r, n; m) = E(perm(BM(r, n))), EMD2(r, n; m) = E(perm(HW (r, n))).

A rather direct generalization of derivations in [2] and [1] gives the following asymptotics

lim
n→∞, m

n
→t∈[0,1]

log(EMD1(r, n; m))

n
= gr(t) =: t log(

r

t
)−2(1−t) log(1−t)+(r−t) log(1− t

r
),

and

lim
n→∞, m

n
→t∈[0,1]

log(EMD2(r, n; m))

n
= gr(t).

It follows that

lim
n→∞, m

n
→t∈[0,1]

minA∈RI(r,n) log(perm(A))

n
≤ gr(t). (45)

The Wanless argument gives the same inequality for the boolean case

lim
n→∞, m

n
→t∈[0,1]

minAinRB(r,n) log(perm(A)

n
≤ gr(t). (46)
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The Friedland’s Asymptotic Lower Matching Conjecture asserts (after [2], [3]) that

lim
n→∞, m

n
→t∈[0,1]

minA∈RB(r,n) log(perm(A))

n
≥ gr(t). (47)

We prove in this paper a slightly stronger result:

lim
n→∞, m

n
→t∈[0,1]

minAinRI(r,n) log(perm(A)

n
≥ gr(t). (48)

Of course, as we explained above using Wanless argument, the inequalities (≥) in (47,
48) imply equalities.
The Lower Matching Conjecture asserts that

perm(A) ≥ D(r; m, n) =:

(
n

m

)2

(
r − t

r
)n(r−t)(tr)t; A ∈ RB(r, n), t =:

m

n
. (49)

We prove in this paper the wollowing weeker inequality but for more general class of
matrices, i.e for A ∈ RI(r, n):

perm(A) ≥ SF (r, n, m) =:
( r−t

r
)n(r−t)(1− n−1)(1−n−1)2n2(1−t)

( t
r
)ntn−2n(1−t)((n(1− t))!)2

(50)

We note that
D(r; m, n)

SF (r, n, m)
=

(
G(n)n−m

G(m + 1)...G(n)

)2

> 1, m < n, (51)

where G(x) = (x−1
x

)x−1, x ≥ 1.

The following simple Fact will be used below.

Fact 6.1:

1. Define the following function G(x, t) = (x−t
x

)x−t, x ≥ t ≥ 0. For a fixed t > 0 the
function G(x, t) is decreasing in x.

2. Let (a1, ..., ak be positive numbers,
∑

1≤i≤k ai = 1. Then∏
1≤i≤k

(1− tai)
1−tai ≥ G(k, t); 0 ≤ t ≤ 1.

Theorem 6.2: Let A ∈ RI(r, n). For a positive integer m ≤ n define

t =
m

n
, α =

t

r
.

Then the following lower bound holds:

perm(A) ≥ SF (r, n, m) =:
(1− α)(1−α)nr(1− n−1)(1−n−1)2n2(1−t)

αntn−2n(1−t)((n(1− t))!)2
(52)

(Notice that (1− α)(1−α)nr = G(r, t)n.)
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Proof:

1. Step 1.
Consider the following 2n−m× 2n−m matrix

K =

(
aA bJn,n−m

(bJn,n−m)T 0

)
, (53)

where a = α = t
r
, b = 1

n
, and Jn,n−m is n× n−m matrix of all ones.

It is easy to check that this matrix K is doubly-stochastic. Importantly, the fol-
lowing identity holds:

perm(A) =
per(K)

amb2(n−m)((n−m)!)2
. (54)

2. Step 2.
We apply the inequality (14) to the doubly-stochastic matrix K

per(K) ≥

 ∏
1≤i,j≤n

(1− t

r
A(i, j))(1− t

r
)A(i,j)

(1− 1

n

)(1− 1
n

)2n2(1−t)

. (55)

3. Step 3.
Let dj be the number of non-zero entries in the jth column of A. Notice that dj ≤ r

and
∑

A(i,j) 6=0
A(i,j)

r
= 1. It follows from Fact (6.1) that

∏
1≤i,j≤n

(
1− t

r
A(i, j)

)(1− t
r
)A(i,j)

≥
∏

1≤j≤n

G(dj, t) ≥ G(r, t)n (56)

Which gives the following lower bound on the permanent of K:

per(K) ≥ G(r, t)n(1− 1

n
)(1− 1

n
)2n2(1−t) (57)

4. Step 3.
Finally, we get (52) by combining the (nontrivial, new) inequality (57) with the
(trivial, well known) identity (54).

Remark 6.3: We can express SF (r, n, m) in terms of the function G, G(x) =
(

x−1
x

)x−1
, x ≥

1:

SF (r, n, m) =
(1− α)(1−α)nr

αnt

G(n)2n(1−t)

(G(1)...G(n(1− t)))2(1− t)2n(1−t)
(58)
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The following more general result is proved in the very same way.

Theorem 6.4: Let P ∈ Ωn. Then

perm(P ) ≥

(∏
1≤i≤n(1− m

n
P (i, j))1−m

n
P (i,j)

)
G(n)2(n−m)

(m
n
)mn−2n(1−t)((n(1− t))!)2

. (59)

Using Fact(6.1) one can get various corollaries of Theorem(6.4) expressed in terms of the
support of doubly-stochastic matrix P .

Corollary 6.5: Fix a positive integer r and consider a sequence of pairs (n, m) such that

n →∞,
m

n
→ t ∈ (0, 1).

Then

log(SF (r, n, m))

n
→ gr(t) = t log(

r

t
)− 2(1− t) log(1− t) + (r − t) log(1− t

r
) (60)

Together with inequalities (45, 46) this solves Asymptotic Lower Matching Conjecture

lim
n→∞

log(minA∈RB(r,n) perm(A))

n
= lim

n→∞

log(minA∈RI(r,n) perm(A))

n
= gr(t). (61)

Proof: We only need to prove (60). The proof follows either from the Stirling approx-
imation of the factorial or from the representation (58), using the well known fact that
limn→∞G(n) = e−1.

Remark 6.6:

1. The representation n!
nn =

∏
1≤i≤n G(i) provides very simple derivation of the Stirling

formula.

2. The first published statement of Asymptotic Lower Matching Conjecture appeared
in [15].The author learned about the statement of (61) from Shmuel Friedland in
2005.
The main result of [6] (and of 2006 arxiv version) was the limit equality (61) for
t = r

r+s
, s = 0, 1, 2, .... The fairly self-contained and simple proof in [6] was based

on the “hyperbolic polynomials approach” introduced first in [17]. The actual re-
sult in [6] was stated in terms of sums of mixed derivatives of general positive
hyperbolic polynomials (the same as H-Stable in [7]), albeit for a restricted range
of the parameter t. The proof in the present paper is not general at all, it works

20



only for the m-permanent, i.e. for the class of polynomials Symm(y1, ..., yn), where
yi are linear forms with non-negative coefficients. But in this case the full range of
densities t ∈ [0, 1] is covered.
Whether it can be generalized to general H-Stable polynomials remains open.
Our proof of Asymptotic Lower Matching Conjecture illustrates once more how
badly had the “Bethe Restatement” of Schrijver’s inequality (5) been overlooked.
The author did some search on Google Scholar and found, to his amazement, that
the Bethe approximation is one the oldest heuristics for the monomer-dimer prob-
lem, goes back to 1930s. So, the recent Bethe Approximation approach(as a heuris-
tic) to the permanent is, in a way, a rediscovery. Apparently, the first recent pub-
lication in this direction was [16].
How cool is it that this classical statistical physics stuff was one of the main keys to
rigorously settle the Asymptotic Lower Matching Conjecture! Of course, it would
have been rather useless without the amazing Schrijver’s inequality (5). Note that
the validity of Conjecture 4.1 also implies Asymptotic Lower Matching Conjecture.
It would be great to prove Conjecture 4.1 using H-Stable polynomials.

3. The following equality holds for the doubly-stochastic matrices K as in (53):

F (K) = max
Q∈Ωn

CW (K, Q)

7 A disproof of a positive correlation conjecture due

to [Lu,Mohr,Szekely]

Let A be n × n stochastic matrix, i.e. the rows of A are probabilistic distributions on
{1, ..., n}; (e1, ..., en) is the standard basis in Rn.
Let V =: (V1, ..., Vn) be a n-tuple of independent random vectors:

Prob(Vi = ek) = A(i, k); 1 ≤ i, k ≤ n.

The distribution of the sum V1 + ... + Vn coincides with the vector of the coefficients of
the product polynomial

ProdA, P rodA(x1, ..., xn) =
∏

1≤i≤n

∑
1≤j≤n

A(i, j)xj,

i.e. the probability Prob(V1 + ... + Vn = (ω1, ..., ωn)) is the coefficient aω1,...,ωn of the
monomial

∏
1≤i≤n xωi

i in the polynomial ProdA. In particular,

per(A) = Prob(V1 + ... + Vn = e), (62)
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where e = (1, 1, ..., 1) is the vector of all ones.
Notice that the expected value E(V1 + ... + Vn) = (c1, ..., cn), where cj is the sum of the
jth column of A. Thus in the doubly-stochastic case

per(A) = Prob(V1+...+Vn = E(V1+...+Vn)) = Prob(||V1+...+Vn−E(V1+...+Vn)||22 < 2),
(63)

and the lower bounds on the permanent of doubly-stochastic matrices can be viewed as
concentration inequalities for sums of independent random vectors. This interpretation
raises a number of natural questions:

1. What are the lower bounds on Prob(||V1+...+Vn−E(V1+...+Vn)||22 ≤ R ≤ n(n−1)
in the doubly-stochastic case? Van Der Waerden-Falikman-Egorychev gives the
lower bound n!

nn ≈ exp(−n) for R < 2.
This question, albeit for distributions associated with H-Stable polynomials, was
asked by the author in [9].

2. Is it possible to use this probabilistic interpretation to get new lower bounds, like
(14) in this paper?

3. Is there a lower bound, similar to Van Der Waerden-Falikman-Egorychev, on Prob(||V1+
...+Vn−E(V1+ ...+Vn)||22 ≤ 2) for stochastic matrices,perhaps with some different,
yet small, radius?

4. The coefficients of the products polynomials ProdA, A ≥ 0, and of more general H-
Stable and Strongly Log-Concave polynomials [?], satisfy a lot of log-concave
like inequalities. Perhaps one use them to prove new concentration inequalies of
type we listed above?

5. We invite the reader to raise more questions.

Remark 7.1: We presented above very simple and effective “classical” generator to
sample the distribution Dist = {aω1,...,ωn : (ω1, ..., ωn) ∈ Zn

+, ω1 + ... + ωn = n}. The
similar problem for the doubly-stochastic polynomial

PerU(x1, ..., xn) = per(UDiag(x1, ..., xn)U∗),

where U is n × n complex unitary matrix, is of major importance in Quantum Com-
puting. The generator in this paper can be viewed as a classical approximation.
If p ∈ Hom+(n, n) is doubly-stochastic and log-concave on Rn

+ then its coefficients satisfy
the inequality

pω1,...,ωn ≤
∏

1≤i≤n

ω−ωi
i .

The permanental polynomials PerU(x1, ..., xn) have much veaker upper bounds:

qω1,...,ωn ≤
∏

1≤i≤n

(ωi)!

ωωi
i

.
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Define the following n events:

NEi = {(V1, ..., Vn) : Vi 6∈ {Vj, j 6= i}}; 1 ≤ i ≤ n.

Equivalently
per(A) = Prob(∩1≤i≤nNEi). (64)

The authors of [19] noticed that Prob(NEi) =
∑

1≤j≤n A(i, j)
∏

k 6=i(1−A(k, j) and conjec-
tured the following beautiful positive correlation inequality for doubly-stochastic matrices
A ∈ Omegan:

per(A) ≥ G(A) =:
∏

1≤i≤n

Prob(EVi) =
∏

1≤i≤n

∑
1≤j≤n

A(i, j)
∏
k 6=i

(1− A(k, j). (65)

It is easy to see that G(A) ≥ F (A), A ∈ Ωn and G(A) = F (A) in the regular case, i.e.
when A ∈ r−1RB(r, n); 1 ≤ r ≤ n. Therefore in this regular case the inequality (65)
holds and is equivalent to the (Schrijver-bound) (4).
Apparently the authors of [19] did a substantial numerical validation of the conjecture
on random matrices of modest size.
Surprisingly, the Monomer-Dimer Problem provides a probabilistic counter-example.
We will present finite families Fn ⊂ Ωn such that G(A) = Const, A ∈ F (n) but the
average with some weigths of the permanent over Fn is exponentially smaller than Const.

7.1 The Construction

Consider either of two random models in RI(r, n), say a random matrix BM(r, n) ∈
RI(r, n). In induces a conditional distribution on RB(r, n), i.e. a random matrix
CBM(r, n) ∈ RB(r, n) with the distribution

Prob(CBM(r, n) = A ∈ RB(r, n)) =
prob(CBM(r, n) = A ∈ RB(r, n))

prob{BM(r, n) ∈ RB(r, n)}
.

The Wanless argument gives that

lim
n→∞, m

n
→t∈[0,1]

log(E(perm(CBM(r, n))))

n
≤ gr(t).

Let K ∈ Ω2n−m be the following random doubly-stochastic matrix

K =

(
aCBM(r, n) bJn,n−m

(bJn,n−m)T 0

)
, (66)
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a = t
r
, t = m

n
; b = 1

n
. By the direct inspection, we get that

G(K) =
(
t(1− t

r
)r−1(1− 1

n
)n(1−t)) + (1− t)(1− 1

n
)n−1

)n (
(1− 1

n
)n(1−t)−1(1− t

r
)r(1−t)

)n(1−t)

,

and

F (K) =
(
1− t

r

)(r−t)n (
1− 1

n

)(n−1)2n(1−t)

.

Recall that

perm(CBM(r, n)) =
per(K)

amb2(n−m)((n−m)!)2
. (67)

The conjecture (65) would imply, if true, that

perm(CBM(r, n))amb2(n−m)((n−m)!)2 ≥ G(K). (68)

Which would give

f(r, n, m) =: E(perm(CBM(r, n))amb2(n−m)((n−m)!)2) ≥ G(K). (69)

But

lim
n→∞, m

n
→t∈[0,1]

log(f(r, n, m))

n
= (r − t) log(1− t

r
)− 2(1− t) =: M(t)

And

lim
n→∞, m

n
→t∈[0,1]

log(G(K))

n
= log

(
t(1− t

r
)r−1e−(1−t) + (1− t)e−1

)
−(1−t)2+r(1−t) log

(
1− t

r

)
=: S(t).

The final observation is the following strict inequality

S(t) > M(t), 0 < t < 1,

which follows from the strict concavity of the logarithm and the inequality

(1− t

r
)r−1e−(1−t) > e−1, 0 < t ≤ 1.

8 Credits and Conclusion

The Definition (2.1) apparently has rich and important stat-physics meaning centered
around so called Bethe Approximation.Bethe Approximation is also one of the main
Heuristics in modern practice of Machine Learning, especially in inference on graphi-
cal models (it is quite rare for a Heuristic from Machine Learning to have such amazing
proof power).
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Although this stat-physics background was not used in the current paper, it and its de-
velopers(to be named in the final version) deserve a lot of praise: don’t forget that many
very good mathematicians have completely overlooked seemingly simple Theorem 2.2.
It would be fantastic to have a rigorous and readable proof of Theorem 2.2 based on
new(age) methods. The author is a bit skeptical at this point: any such proof would es-
sentially reprove very hard Schrijver’s permanental bound. The other avenue is to better
understand and possibly to simplify the original Schrijver’s proof, perhaps it has some
deep stat-physics meaning.
It is possible that one can use higher order approximation(the Bethe Approximation be-
ing of order two, it involves marginals of subsets of cardinality two). Luckily, this order
two case is covered by Schrijver’s lower bound (5). The higher order cases will probably
need new lower bounds (involving subpermanents?). It looks like a beginning of a beau-
tiful(and hard) new line of research.
Our proof of Friedland’s monomer-dimer entropy conjecture illustrates the power of
Theorem 2.2. Interestingly, monomer-dimer entropy is the classical topic in stat-
physics. The author is not a physicist,passionately so, even after 11 years at Los Alamos.
Yet, there is a certain justice in the coincidence that some roots of this paper can be
traced back to Hans Bethe...what a great group of creative people worked in New Mexico
back then!
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