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Abstract

We efficiently solve the optimal multi-dimensional mechanism design problem for independent
bidders with arbitrary demand constraints when either the number of bidders is a constant
or the number of items is a constant. In the first setting, we need that each bidder’s values
for the items are sampled from a possibly correlated, item-symmetric distribution, allowing
different distributions for each bidder. In the second setting, we allow the values of each bidder
for the items to be arbitrarily correlated, but assume that the distribution of bidder types is
bidder-symmetric. These symmetric distributions include i.i.d. distributions, as well as many
natural correlated distributions. E.g., an item-symmetric distribution can be obtained by taking
an arbitrary distribution, and “forgetting” the names of items; this could arise when different
members of a bidder population have various sorts of correlations among the items, but the
items are “the same” with respect to a random bidder from the population.

For all ε > 0, we obtain a computationally efficient additive ε-approximation, when the value
distributions are bounded, or a multiplicative (1−ε)-approximation when the value distributions
are unbounded, but satisfy the Monotone Hazard Rate condition, covering a widely studied
class of distributions in Economics. Our running time is polynomial in max{#items,#bidders},
and not the size of the support of the joint distribution of all bidders’ values for all items,
which is typically exponential in both the number of items and the number of bidders. Our
mechanisms are randomized, explicitly price bundles, and in some cases can also accommodate
budget constraints.

Our results are enabled by establishing several new tools and structural properties of Bayesian
mechanisms. In particular, we provide a symmetrization technique that turns any truthful mech-
anism into one that has the same revenue and respects all symmetries in the underlying value dis-
tributions. We also prove that item-symmetric mechanisms satisfy a natural strong-monotonicity
property which, unlike cyclic-monotonicity, can be harnessed algorithmically. Finally, we pro-
vide a technique that turns any given ε-BIC mechansism (i.e. one where incentive constraints
are violated by ε) into a truly-BIC mechanism at the cost of O(

√
ε) revenue. We expect our

tools to be used beyond the settings we consider here. Indeed there has already been follow-up
research [8, 9] making use of our tools.
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1 Introduction

How can a seller auction off a set of items to a group of interested buyers to maximize profit?
This problem, dubbed the optimal mechanism design problem, has gained central importance in
mathematical Economics over the past decades. The seller could certainly auction off the items
sequentially, using her favorite single-item auction, such as the English auction. But this is not
always the best idea, as it is easy to find examples where this approach leaves money on the table. 1

The chief challenge that the auctioneer faces is that the values of the buyers for the items, which
determine how much each buyer is willing to pay for each item, is information that is private
to the buyers, at least at the onset of the auction. Hence, the mechanism needs to provide the
appropriate incentives for the buyers to reveal “just enough” information for the optimal revenue
to be extracted.

Viewed as an optimization problem, the optimal mechanism design problem is of a rather
intricate kind. First, it is a priori not clear how to evaluate the revenue of an arbitrary mechanism
because it is not clear how rational bidders will play. One way to cope with this is to only consider
mechanisms where rational bidders are properly incentivized to tell the designer their complete
type, i.e. how much they would value each possible outcome of the mechanism (i.e. each bundle
of items they may end up getting). Such mechanisms can be Incentive Compatible (IC), where
each bidder’s strategy is to report a type and the following worst-case guarantee is met: regardless
of the types of the other bidders, it is in the best interest of a bidder to truthfully report her
type. Or the mechanism can be Bayesian Incentive Compatible (BIC), where it is assumed that
the bidders’ types come from a known distribution and the following average-case guarantee is met:
in expectation over the other bidders’ types, it is in the best interest of a bidder to truthfully
report her type, if the other bidders report truthfully. See Sec 2 for formal definitions. We only
note here that, under very weak assumptions, restricting attention to IC/BIC mechanisms in the
aforementioned settings of without/with prior information over bidders’ types is without loss of
generality [21].

But even once it is clear how to evaluate the revenue of a given mechanism, it is not necessarily
clear what benchmark to compare it against. For example, it is not hard to see that the social
welfare, i.e. the sum of the values of the buyers for the items they are allocated, is not the right
benchmark to use, as in general one cannot hope to achieve revenue that is within any constant
factor of the optimal social welfare: why would a buyer with a large value for an item pay an
equally large price to the auctioneer to get it, if there is no competition for this item? Given the
lack of a useful revenue benchmark (i.e. one that upper bounds the revenue that one may hope
to achieve but is not too large to allow any reasonable approximation), the task of the mechanism
designer can only be specified in generic terms as follows: come up with an IC/BIC auction whose
revenue is at least as large as the revenue of any other IC/BIC auction.

Finally, even after restricting the search space to IC/BIC auctions and only comparing to the
optimal revenue achievable by any IC/BIC auction, it is still easy to show that it is impossible
to guarantee any finite approximation if no prior is known over the bidders’ types. Instead, many
solutions in the literature adopt a Bayesian viewpoint, assuming that a prior does exist and is known
to both the auctioneer and the bidders, and targeting the optimal achievable expected revenue.
Once the leap to the Bayesian setting is made the goal is typically this: Design a BIC, possibly
randomized, mechanism whose expected revenue is optimal among all BIC, possibly randomized,

1A simple example is this: Suppose that an auctioneer is selling a Picasso and a Dali painting and there are two
bidders of which one loves Picasso and does not care about Dali and vice versa. Running a separate English auction
for each painting will result in small revenue since there is going to be no serious competition for either painting. But
bundling the paintings together will induce competition and drive the auctioneer’s revenue higher.
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mechanisms. 2

One of the most celebrated results in this realm is Myerson’s optimal auction [19], which achieves
optimal revenue via an elegant design that spans several important settings. Despite its significance,
Myerson’s result is limited to the case where bidders are single-dimensional. In simple terms, this
means that each bidder can be characterized by a single number (unknown to the auctioneer), spec-
ifying the value of the bidder per item received. This is quite a strong assumption when the items
are heterogeneous, so naturally, after Myerson’s work, a large body of research has been devoted
to the multi-dimensional problem, i.e. the setting where the bidders may have different values for
different items/bundles of items. Even though progress has been made in certain restricted settings,
it seems that we are far from an optimal mechanism, generalizing Myerson’s result; see survey [18]
and its references for work on this problem by Economists.

Algorithmic Game Theory has also studied this problem, with an extra eye on the computa-
tional efficiency of mechanisms. Chawla et al. [10] study the case of a single (multidimensional)
unit-demand bidder with independent values for the items. They propose an elegant reduction
of this problem to Myerson’s single-dimensional setting, resulting in a mechanism that achieves a
constant factor approximation to the optimal revenue among all BIC, possibly randomized [12],
mechanisms. For the same problem, Cai and Daskalakis [7] recently closed the constant approxima-
tion gap against all deterministic mechanisms by obtaining polynomial-time approximation schemes
for optimal item-pricing. As for the case of correlated values, it had been known that finding the
optimal pricing (deterministic mechanism) is highly inapproximable by [5], although no hardness
results are known for randomized mechanisms. In the multi-bidder setting, Chawla et al. [11],
Bhattacharya et al. [3] and recently Alaei [1] obtain constant factor approximations in the case of
additive bidders or unit-demand bidders and matroidal constraints on the possible allocations.

While our algorithmic understanding of the optimal mechanism design problem is solid, at
least as far as constant factor approximations go, there has been virtually no result in designing
computationally efficient revenue-optimal mechanisms for multi-dimensional settings, besides the
single-bidder result of [7]. In particular, one can argue that the previous approaches [1, 3, 10, 11] are
inherently limited to constant factor approximations, as ultimately the revenue of these mechanisms
is compared against the optimal revenue in a related single-dimensional setting [10, 11], or a convex
programming relaxation of the problem [1, 3]. Our focus in this work is to fill this important gap in
the algorithmic mechanism design literature, i.e. to obtain computationally efficient near-optimal
multi-dimensional mechanisms, coming ε-close to the optimal revenue in polynomial time, for any
desired accuracy ε > 0. We obtain a Polynomial-Time Approximation Scheme (PTAS) for the
following two important cases of the general problem.

The BIC k-items problem. Given as input an arbitrary (possibly correlated) distribution F
over valuation vectors for k items, a demand bound C, and an integer m, the number of bidders,
output a BIC mechanism M whose expected revenue is optimal relative to any other, possibly
randomized, BIC mechanism, when played by m additive bidders with demand constraint C whose
valuation vectors are sampled independently from F .

2In view of the results of [4, 12], to achieve optimal, or even near-optimal, revenue in correlated settings, or even
i.i.d. multi-item settings, we are forced to explore randomized mechanisms.

2



The BIC k-bidders problem. Given as input k item-symmetrica distributions F1, . . . ,Fk, de-
mand bounds C1, . . . , Ck (one for each bidder), and an integer n, the number of items, output a BIC
mechanism M whose expected revenue is optimal relative to any other, possibly randomized, BIC
mechanism, when played by k additive bidders with demand constraints C1, . . . , Ck respectively
whose valuation vectors for the n items are sampled independently from F1, . . . ,Fk.

aA distribution over Rn is symmetric if, for all ~v ∈ Rn, the probability it assigns to ~v is equal to the probability
it assigns to any permutation of ~v.

In other words, the problems we study are where either the number of bidders is large, but they
come from the same population, i.e. each bidder’s value vector is sampled from the same, arbitrary,
possibly correlated distribution, or the number of items is large, but each bidder’s value distribution
is item-symmetric (possibly different for each bidder). While these do not capture the problem of
Bayesian mechanism design in its complete generality, they certainly represent important special
cases of the general problem and indeed the first interesting cases for which computationally efficient
near-optimal mechanisms have been obtained. Before stating our main result, it is worth noting
that:

• When the number of bidders is large, it does not make sense to expect that the auctioneer has a
separate prior distribution for the values of each individual bidder for the items. So our assumption
in the k-items problem that the bidders are drawn from the same population of bidders is a realistic
one, and—in our opinion—the practically interesting case of the general problem. Indeed, there
are hardly any practical examples of auctions using bidder-specific information (think, e.g., eBay,
Sotheby’s etc.) A reasonable extension of our model would be to assume that bidders come from
a constant number of different sub-populations of bidders, and that the auctioneer has a prior for
each sub-population. Our results extend to this setting.

•When the number of items is large, it is still hard to imagine that the auctioneer has a distribution
for each individual item. In the k-bidders problem, we assume that each bidder’s value distribution
is item-symmetric. This certainly contains the case where each bidder has i.i.d. values for the
items, but there are realistic applications where values are correlated, but still item-symmetric.
Consider the following scenario: the auctioneer has the same number of Yankees, Red Sox, White
Sox, and Mariners baseball caps to sell. Each bidder is a fan of one of the four teams and has
non-zero value for exactly one of the four kinds of caps, but it is unknown to the auctioneer which
kind that is and what the value of the bidder for that kind is. Hence, the values of a random bidder
for the caps are certainly non i.i.d., as if the bidder likes a Red Sox cap then she will equally like
another, but will have zero value for a Yankees cap. Suppose now that we are willing to make
the assumption that all teams have approximately the same number of fans and those fans have
statistically the same passion for their team. Then a random bidder’s values for the items is drawn
from an item-symmetric distribution, or close to one, so we can handle such distributions. In
this case too, our techniques still apply if we deviate from the item-symmetric model to models
where there is a constant number of types of objects, e.g. caps and jerseys, and symmetries do not
permute types, but permute objects within the same type.

Theorem 1. (Additive approximation) For all k, if F samples values from [0, 1]k there exists a
PTAS with additive error ε for the BIC k-items problem. For all k, if Fi samples vectors from
[0, 1]n, there exists a PTAS with additive error ε ·max{Ci} for the BIC k-bidders problem.

Remark 1. Some qualifications on Theorem 1 are due.

• The mechanism output by our PTAS is truly BIC, not ε-BIC, and there are no extra assump-
tions necessary to achieve this.
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• We make no assumptions about the size of the support of Fi or F , as the runtime of our
algorithms does not depend on the size of the support. This is an important distinction
between our work and the literature where it is folklore knowledge that if one is willing to
pay computational time polynomial in the size of the support of the value distribution, then
the optimal mechanism can be easily computed via an LP (see, e.g., [3, 4, 13]). However,
exponential size supports are easy to observe. Take, e.g., our k-bidders problem and assume
that every bidder’s value for each of the items is i.i.d. uniform in {$5, $10}. The näıve LP
based approach would result in time polynomial in 2n, while our solution needs time polynomial
in n.

• If we are willing to replace BIC by ε-BIC (or ε-IC) in Thm 1 and compare our revenue to the
best revenue achievable by any BIC (or IC) mechanism, then we can also accommodate budget
constraints. The only step of our algorithm that does not respect budgets is the ε-BIC to BIC
reduction (Thm 4). For space considerations, we restrict our attention to BIC throughout the
main body of the paper and prove the related claims for IC in App K.

• If the value distributions are discrete and every marginal has constant-size support, then
our algorithms achieve exactly optimal revenue in polynomial time, even though the support
of such a distribution may well be exponential. For instance, in the example given in the
second bullet our algorithm obtains exactly optimal revenue in time polynomial in n. In these
cases, we can find optimal truly BIC or truly IC mechanisms that also accommodate budget
constraints.

• The mechanisms produced by our techniques satisfy the demand constraints of each bidder
in a strong sense (and not in expectation). Moreover, the user of our theorem is free to
choose whether they want to satisfy ex-interim individual rationality, that the expected value
of a bidder for the received bundle of items is larger than the expected price she pays, or
ex-post individual rationality, where this constraint is true with probability 1 (and not just in
expectation). We focus the main presentation on producing mechanisms that are ex-interim
IR. In App D we explain the required modification for producing ex-post IR mechanisms
without any loss in revenue.

• The assumption that Fi,F sample from [0, 1]n as opposed to some other bounded set is w.l.o.g.
and previous work has made the same assumption [16, 17] on the input distributions.

One might prefer to assume that the value distributions are not upper bounded, but satisfy some
tail condition, such as the Monotone Hazard Rate condition (see App J). 3 Using techniques
from [7], we can extend our theorems to MHR distributions. All the relevant remarks still apply.

Corollary 1. (Multiplicative approximation for MHR distributions) For all k, if the k marginals
of F all satisfy the MHR condition, there exists a PTAS obtaining at least a (1 − ε)-fraction of
the optimal revenue for the BIC k-items problem (whose runtime does not depend on F or C).
Likewise, for all k, if every marginal of Fi is MHR for all i, there exists a PTAS obtaining at least
a (1 − ε)-fraction of the optimal revenue for the BIC k-bidders problem (whose runtime does not
depend on Fi or Ci).

The rest of the paper is organized as follows: Sec 2 provides a few standard definitions from
Mechanism Design. Sec 3 gives an overview of our proof of Thm 1, explaining the different com-
ponents that get into our proof and guiding through the rest of the paper. The rest of the main
body and the appendix provide all technical details. App J provides the proof of Corollary 1.

3The class of Monotone Hazard Rate distributions is a family of distributions that is commonly used in Economics
applications, and contains such familiar distributions as the Normal, Exponential and Uniform distributions.
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2 Preliminaries and notation

We assume that the seller has a single copy of n (heterogeneous) items that she wishes to auction
to m bidders. Each bidder i has some non-negative value for item j which we denote vij . We can
think of bidder i’s type as an n-dimensional vector ~vi, and denote the entire profile of bidders as ~v,
or sometimes (~vi ; ~v−i) if we want to emphasize its decomposition to the type ~vi of bidder i and
the joint profile ~v−i of all other bidders. We denote by D the distribution from which ~v is sampled.
We also denote by Di the distribution of types for bidder i, and by D−i the distribution of types
for every bidder except i. The value of a bidder with demand C for any subset of items is the sum
of her values for her favorite C items in the subset; that is, we assume bidders are additive up to
their demand.

Since we are shooting for BIC/IC mechanisms, we will only consider (direct revelation) mech-
anisms where each bidder’s strategy is to report a type. When the reported bidder types are ~v, we
denote the (possibly randomized) outcome of mechanism M as M(~v). The outcome can be sum-
marized in: the expected price charged to each bidder (denoted pi(~v)), and a collection of marginal
probabilities ~φ(~v) = (φij(~v))ij , where φij(~v) denotes the marginal probability that bidder i receives
item j.

A collection of marginal probabilities ~φ(~v) := (φij(~v))ij is feasible iff there exists a consistent
with them joint distribution over allocations of items to bidders so that in addition, with probability
1, no item is allocated to more than one bidder, and no bidder receives more items than her demand.
A straightforward application of the Birkhoff-von Neumann theorem [14] reveals that a sufficient
condition for the above to hold is that in expectation no item is given more than once, and all
bidders receive an expected number of items less than or equal to their demand. Note that this
sufficient condition is expressible in terms of the φij ’s only. Moreover, under the same conditions,
we can efficiently sample a joint distribution with the desired φij ’s. (See App C for details.)

The outcome of mechanism M restricted to bidder i on input ~v is denoted Mi(~v) = (~φi(~v), pi(~v)).
Assuming that bidder i is additive (up to her demand) and risk-neutral and that the mechanism
is feasible (so in particular it does not violate the bidder’s demand constraint) the value of bidder
i for outcome Mi(~w) is just (her expected value) ~vi · ~φi(~w), while the bidder’s utility for the same
outcome is U(~vi,Mi(~w)) := ~vi · ~φi(~w)− pi(~w). Such bidders subtracting price from expected value
are called quasi-linear. Moreover, for a given value vector ~vi for bidder i, we write: πij(~vi) =
E~v−i∼D−i [φij(~vi ; ~v−i)].

We proceed to formally define incentive compatibility of mechanisms in our notation:

Definition 1. (BIC/ε-BIC/IC/ε-IC Mechanism) A mechanism M is called ε-BIC iff the following
inequality holds for all i, ~vi, ~wi:

E~v−i∼D−i [U(~vi,Mi(~v))] ≥ E~v−i∼D−i [U(~vi,Mi(~wi ; ~v−i))]− εvmax ·
∑
j

πij(~wi),

where vmax is the maximum possible value of any bidder for any item in the support of the value
distribution. In other words, M is ε-BIC iff when a bidder lies by reporting ~wi instead of ~vi, they do
not expect to gain more than εvmax times the expected number of items that ~wi receives. Similarly,
M is called ε-IC iff for all i, ~vi, ~wi, ~v−i: U(~vi,Mi(~v)) ≥ U(~vi,Mi(~wi ; ~v−i))−εvmax·

∑
j φij(~wi ; ~v−i).

A mechanism is called BIC iff it is 0-BIC and IC iff it is 0-IC. 4

4Any feasible mechanism that we call ε-BIC, respectively ε-IC, by our definition is certainly an ε · max{Ci}-
BIC, respectively ε ·max{Ci}-IC, mechanism by the more standard definition, which omits the factors

∑
j πij(~wi),

respectively
∑
j φij(~wi ; ~v−i), from the incentive error. We only include these factors here for convenience.
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In our proof of Thm 1 throughout this paper we assume that vmax = 1. If vmax < 1, we can scale
the value distribution so that this condition is satisfied. We also define individual rationality of
BIC/ε-BIC mechanisms:

Definition 2. A BIC/ε-BIC mechanism M is called ex-interim individually rational (ex-interim
IR) iff for all i, ~vi:

E~v−i∼D−i [U(~vi,Mi(~v))] ≥ 0.

It is called ex-post individually rational (ex-post IR) iff for all i, ~vi and ~v−i, U(~vi,Mi(~v)) ≥ 0 with
probability 1 (over the randomness in the mechanism).

While we focus the main presentation to obtaining ex-interim IR mechanisms, in Appendix D we
describe how without any loss in revenue we can turn these mechanisms into ex-post IR.

For a mechanism M , we denote by RM (D) the expected revenue of the mechanism when bidders
sampled from D play M truthfully. We also let ROPT (D) (resp. ROPTε (D)) denote the maximum
possible expected revenue attainable by any BIC (resp. ε-BIC) mechanism when bidders are sam-
pled from D and play truthfully. For all cases we consider, these terms are well-defined.

We state and prove our results assuming that we can exactly sample from all input distributions
efficiently and exactly evaluate their cumulative distribution functions. Our results still hold even
if we only have oracle access to sample from the input distributions, as this is sufficient for us to
approximately evaluate the cumulative functions to within the right accuracy in polynomial time
(by making use of our symmetry and discretization tools, described in the next section). The
approximation error on evaluating the cumulative functions is absorbed into loss in revenue. See
discussion in App A.

Finally, we denote by Sm, Sn the symmetric groups over the sets [m] := {1, . . . ,m} and [n]
respectively. Moreover, for σ = (σ1, σ2) ∈ Sm×Sn, we assume that σ maps element (i, j) ∈ [m]×[n]
to σ(i, j) := (σ1(i), σ2(j)). We extend this definition to map a value vector ~v = (vij)i∈[m],j∈[n] to
the vector ~w such that ~wσ(i,j) = ~vij , for all i, j. Likewise, if D is a value distribution, σ(D) is the
distribution that first samples ~v from D and then outputs σ(~v).

3 Overview of our Approach

A Näıve LP Formulation. Let D be the distribution of all bidders’ values for all items (supported
on a subset of Rm×n, where m is the number of bidders and n is the number of items). For a
mechanism design problem with unit-demand bidders whose values are distributed according to D,
it is folklore knowledge how to write a linear programming relaxation of size polynomial in |supp(D)|
optimizing revenue. The relaxation keeps track of the (marginal) probability φij(~v) ∈ [0, 1] that
item j is given to bidder i if the bidders’ values are ~v, and enforces feasibility constraints (no item is
given more than once in expectation, no bidder gets more than one item in expectation), incentive
compatibility constraints (in expectation over the other bidders’ values for the items, no bidder has
incentive to misreport her values for the items, if the other bidders don’t), while optimizing the
expected revenue of the mechanism. Notice that all constraints and the objective function can be
written in terms of the marginals φij . Moreover, using the Birkhoff-von Neumann decomposition
theorem, it is possible to convert the solution of this LP to a mechanism that has the same revenue
and satisfies the feasibility constraints strongly (i.e. not in expectation, but prob. 1). We give the
details of the linear program in App B, and also describe how to generalize this LP to incorporate
demand and budget constraints.

Despite its general applicability, the näıve LP formulation has a major drawback in that
|supp(D)| could in general be infinite, and when it is finite it is usually exponential in both m
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and n. For the settings we consider, this is always the case. For example, in the very simple setting
where D samples each value i.i.d. uniformly from {$5, $10}, the support of the distribution becomes
2m×n. Such support size is obviously prohibitive if we plan to employ the näıve LP formulation to
optimize revenue.

A Comparison to Myerson’s Setting. What enables succinct and computationally efficient
mechanisms in the single-item setting of Myerson? Indeed, the curse of dimensionality discussed
above arises even when there is a single item to sell; e.g., if every bidder’s distribution has support
2 and the bidders are independent, then the number of different bidder profiles is already 2m. What
drives Myerson’s result is the realization that there is structure in a BIC mechanism coming in the
form of monotonicity: for all i, for all vi1 ≥ v′i1: E~v−i(φi1(vi1 ; ~v−i)) ≥ E~v−i(φi1(v′i1 ; ~v−i)), i.e.
the expected probability that bidder i gets the single item for sale in the auction increases with
the value of bidder i, where the expectation is taken over the other bidders’ values. Unfortunately,
such crisp monotonicity property of BIC mechanisms fails to hold if there are multiple items, and
even if it were present it would still not be sufficient in itself to reduce the size of the näıve LP to
a manageable size.

So what next? We argued earlier that the symmetric distributions considered in the BIC k-items
and the BIC k-bidders problems are very natural cases of the general optimal mechanism design
problem. We argue next that they are natural for another reason: they enable enough structure
for (i) the optimal mechanism to have small description complexity, instead of being an unusable,
exponentially long list of what the mechanism ought to do for every input value vector ~v; and
(ii) the succinct solution to be efficiently computable, bypassing the exponentially large näıve LP.
Our structural results are discussed in the following paragraphs. The first is enabled by exploiting
randomization to transfer symmetries from the value distribution to the optimal mechanism. The
second is enabled by proving a strong-monotonicity property of all BIC mechanisms. Our notion of
monotonicity is more powerful than the notion of cyclic-monotonicity, which holds more generally
but can’t be exploited algorithmically. Together our structural results bring to light how the
item- and bidder-symmetric settings are mathematically more elegant than general settings with
no apparent structure.

Structural Result 1: The Interplay Between Symmetries and Randomization. Since the inception
of Game Theory scientists were interested in the implications of symmetries in the structure of
equilibria [15, 6, 20]. In his seminal paper [20], Nash showed a rather interesting structural result,
informally reading as follows: “If a game has any symmetry, there exists a Nash equilibrium
satisfying that symmetry.” Indeed, something even more powerful is true: “There always exists a
Nash equilibrium that simultaneously satisfies all symmetries that the game may have.”

Inspired by Nash’s symmetry result, albeit in our different setting, we show a similar structural
property of randomized mechanisms. 5 Our structural result is rather general, applying to settings
beyond those addressed in Thm 1, and even beyond MHR or regular distributions. The following
theorem holds for any (arbitrarily correlated) joint distribution D.

Theorem 2. Let D be the distribution of bidders’ values for the items (supported on a subset of
Rm×n). Let also S ⊆ Sm×Sn be an arbitrary set such that D ≡ σ(D), for all σ ∈ S; that is, assume
that D is invariant under all permutations in S. Then any BIC mechanism M can be symmetrized
into a mechanism M ′ that respects all symmetries in S without any loss in revenue. I.E. for all
bid vectors −→v the behavior of M ′ under −→v and σ(−→v ) is identical (up to permutation by σ) for all
σ ∈ S. The same result holds if we replace BIC with ε-BIC, IC, or ε-IC.

While we postpone further discussion of this theorem and what it means for M to behave

5We emphasize ‘randomized’, since none of the symmetries we describe holds for deterministic optimal mechanisms.
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“identically” to Sec 4, we give a quick example to illustrate the symmetries that randomization
enables in the optimal mechanism. Consider a single bidder and two items. Her value for each
item is drawn i.i.d. from the uniform distribution on {4, 5}. It is easy to see that the only optimal
deterministic mechanism assigns price 4 to one item and 5 to the other. However, there is an
optimal randomized mechanism that offers each item at price 41

2 , and the uniform lottery (1/2
chance of getting item 1, 1/2 chance of getting item 2) at price 4. While item 1 and item 2 need
to be priced differently in the deterministic mechanism to achieve optimal revenue, they can be
treated identically in the optimal randomized mechanism. Thm 2 applies in an extremely general
setting: distributions can be continuous with arbitrary support and correlation, bidders can have
budgets and demands, we could be maximizing social welfare instead of revenue, etc.

Structural Result 2: Strong-Monotonicity. Even though the näıve LP formulation is not com-
putationally efficient, Thm 2 certifies the existence of a compact solution for the cases we consider.
This solution lies in the subspace of Rm×n spanned by the symmetries induced by D. Still Thm 2
does not inform us how to locate such a symmetric optimal solution. Indeed, the symmetry of the
optimal solution is not a priori capable in itself to decrease the size of our näıve LP to a man-
ageable one. For this purpose we establish a strong monotonicity property of item-symmetric BIC
mechanisms (an item-symmetric mechanism is one that respects every item symmetry; see Sec 4
for a definition).

Theorem 3. If D is item-symmetric, every item-symmetric BIC mechanism is strongly monotone:

for all bidders i, and items j, j′: vij ≥ vij′ =⇒ E~v−i(φij(~v)) ≥ E~v−i(φij′(~v)).

i.e., if i likes item j more than item j′, her expected probability (over the other bidders’ values)
of getting item j is higher. We give an analogous monotonicity property of IC mechanisms in
Appendix K.

From ε- to truly-BIC. Exploiting the aforementioned structural theorems we are able to efficiently
compute exactly optimal mechanisms for value distributions D whose marginals on every item have
constant-size support. (D itself can easily have exponentially-large support if, e.g., the items are
independent.) To adapt our solution to continuous distributions or distributions whose marginals
have non-constant support, we attempt the obvious rounding idea that changes D by rounding all
values sampled from D down to the nearest multiple of some accuracy ε, and solves the problem on
the resulting distribution Dε. While we can argue that the optimal BIC mechanism for Dε is also
approximately optimal for D, we need to also give up on the incentive compatibility constraints,
resulting in an approximately-BIC mechanism where bidders may have an incentive to misreport
their values, but the incentive to misreport is always smaller than some function of ε. A natural
approach to eliminate those incentives to misreport is to appropriately discount the prices for
items or bundles of items charged by the mechanism computed for Dε, generalizing the single-
bidder rounding idea attributed to Nisan in [10]. Unfortunately, this approach fails to work in the
multi-bidder settings, destroying both the revenue and truthfulness. Simply put, even though the
discounts encourage bidders to choose more expensive options, these choices affect not only the price
they pay us, but the prices paid by other bidders as well as the incentives of other bidders. Once
we start rounding the prices, we could completely destroy any truthfulness the original mechanism
had, leaving us with no guarantees on revenue.

Our approach is entirely different, comprising a non-trivial extension of the main technique
of [16]. We run simultaneous VCG auctions, one per bidder, where each bidder competes with
make-believe replicas of himself, whose values are drawn from the same value distribution where his
own values are drawn from. The goods for sale in these per-bidder VCG auctions are replicas of the
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bidder drawn from the modified distribution Dε. These replicas are called surrogates. The intention
is that the surrogates bought by the bidders in the per-bidder VCG auction will compete with each
other in the optimal mechanism M designed for the modified distribution Dε. Accordingly, the
value of a bidder for a surrogate is the expected value of the bidder for the items that the surrogate
is expected to win in M minus the price the surrogate is expected to pay. This is exactly our
approach, except we modify mechanism M to discount all these prices by a factor of 1 − O(ε).
This is necessary to argue that bidders choose to purchase a surrogate with high probability, as
otherwise we cannot hope to make good revenue. There are several technical ideas coming into the
design and analysis of our two-phase auction (surrogate sale, surrogate competition). We describe
these ideas in detail in Sec 6.2, emphasizing several important complications departing from the
setting of [16]. Importantly, the approach of [16] is brute force in |supp(Di)|. While this is okay for
k-items, this takes exponential time for k-bidders. In addition to showing the following theorem,
we show how to make use of Thm 3 to get the reduction to run in polynomial time in both settings.

Theorem 4. Consider a generic setting with n items and m bidders who are additive up to some
capacity. Let D := ×iDi and D′ := ×iD′i be product distributions, sampling every bidder inde-
pendently from [0, 1]n. Suppose that, for all i, D′i samples vectors whose coordinates are integer
multiples of some δ ∈ (0, 1) and that Di and D′i can be coupled so that, with probability 1, a value
vector ~vi sampled from Di and a value vector ~v′i sampled from D′i satisfy that vij ≥ v′ij ≥ vij − δ, ∀j.
Then, for all η, ε > 0, any ε-BIC mechanism M1 for D′ can be transformed into a BIC mechanism
M2 for D such that RM2(D) ≥ (1 − η) · RM1(D′) − ε+2δ

η T , where T is the maximum number of

items that can be awarded by a feasible mechanism. Furthermore, if D and D′ are both valid inputs
to the BIC k-bidders or k-items problem, the transformation runs in time polynomial in n and m.
Moreover, for the BIC k-items problem, T = k and, for the BIC k-bidders problem, T ≤ kmaxiCi,
where Ci is the demand of bidder i.

Figure 1 shows how the various components discussed above interact with each other to prove
Theorem 1. The proof of Corollary 1 is given in Appendix J.

Naïve LP 
formulation 

Rich Subgroup of 
Symmetries in   .    D

Optimal Mechanism 
rich in symmetries 

Monotonicity of 
Optimal Mechanisms   

Theorem 2 

Theorem 3 

Succinct LP 
formulation 

Surrogate 
Auction 

Efficient Solution 
for discrete. 

Section 5 

D

+ 

Efficient Solution 
for continuous  . D

Theorem 4 

Figure 1: Our Proof Structure

4 Symmetry Theorem

We provide the necessary definitions to understand exactly what our symmetry result is claiming.

Definition 3. (Symmetry in a Distribution) We say that a distribution D has symmetry σ ∈
Sm × Sn if, for all ~v ∈ Rm×n, PrD[~v] = PrD[σ(~v)]. We also write D ≡ σ(D).
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Definition 4. (Symmetry in a Mechanism) We say that a mechanism respects symmetry σ ∈
Sm × Sn if, for all ~v ∈ Rm×n, M(σ(~v)) = σ(M(~v)).

Definition 5. (Permutation of a Mechanism) For any σ ∈ Sm×Sn, and any mechanism M , define
the mechanism σ(M) as [σ(M)](~v) = σ(M(σ−1(~v))).

We proceed to state our symmetry theorem; its proof can be found in App E.

Theorem 2. (Restated from Sec 3) For all D, any BIC (respectively IC, ε-IC, ε-BIC) mech-
anism M can be symmetrized into a BIC (respectively IC, ε-IC, ε-BIC) mechanism M ′ such that,
for all σ ∈ Sm × Sn, if D has symmetry σ, M ′ respects σ, and RM (D) = RM

′
(D).

We note that Thm 2 is an extremely general theorem. D can have arbitrary correlation between
bidders or items, and can be continuous. One might wonder why we had to restrict our theorem
to symmetries in Sm×Sn and not arbitary permutations of the set [m]× [n]. In fact, after reading
through our proof, one can see that the same inequalities that make symmetries in Sm × Sn work
also hold for symmetries in S[m]×[n]. However, the mechanism resulting from our proof is not a
feasible one, since our transformation can violate feasibility constraints for symmetries σ /∈ Sm×Sn.

We also emphasize a subtle property of our symmetrizing transformation: the transformation
takes as input a set of symmetries satisfied by D and a mechanism, and symmetrizes the mechanism
so that it satisfies all symmetries in the given set of symmetries. Our transformation does not work
if the given set of symmetries is not a subgroup. Luckily the maximal subset of symmetries in
Sm × Sn satisfied by a value distribution is always a subgroup, and this enables our result.

5 Optimal Symmetric Mechanisms for Discrete Distributions

In this section, we solve the following problem: “Given a distribution D with constant support
per dimension and a subgroup of symmetries S ⊆ Sm × Sn satisfied by D, find a BIC mechanism
M that respects all symmetries in S and maximizes RM (D).” By Thm 2, such M will in fact be
optimal with respect to all mechanisms. Intuitively, optimizing over symmetric mechanisms should
require less work than over general mechanisms, since we should be able to exploit the symmetry
constraints in our optimization. Indeed, suppose that every bidder can report c different values
for each item, where c is some absolute constant. Then the näıve LP of Section 3/App B has
size polynomial in cmn, where m,n are the number of bidders and items respectively. In Sec 5.1
we give a simple observation that reduces the number of variables and constraints of this LP for
any given S. This observation in itself is sufficient to provide an efficient solution to the BIC
k-items problem (in our constant-support-per-dimension setting), but falls short from solving the
BIC k-bidders problem. For the latter, we need another structural consequence of symmetry, which
comes in the form of a strong-monotonicity property satisfied by all symmetric BIC mechanisms.
Strong-monotonicity and symmetry together enable us to obtain an efficient solution to the BIC
k-bidders problem in Sec 5.2 (still for our constant-support-per-dimension setting). We explicitly
write the LPs that find the optimal BIC mechanism. Simply tacking on a −ε ·∑j πij(~wi) to the
correct side of the BIC constraints yields an LP to find the optimal ε-BIC mechanism for any ε.
Efficiently solving non-constant/infinite supports per dimension is postponed to Sec 6.

5.1 Reducing the LP size for any S, and Solving the discrete BIC k-items
Problem

We provide an LP formulation that works for any S. Our LP is the same as the näıve LP of
Figure 2, except we drop some constraints of that LP and modify its objective function as follows.
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Since our mechanism needs to respect every symmetry in S, it must satisfy

φij(~v) = φσ(i,j)(σ(~v)),∀i, j, ~v, σ ∈ S and pi(~v) = pσ(i)(σ(~v)),∀i, ~v, σ ∈ S.
Therefore, if we define an equivalence relation by saying that ~v ∼S σ(~v), for all σ ∈ S, we only
need to keep variables φij(~v), pi(~v) for a single representative from each equivalence class. We can
then use the above equalities to substitute for all non-representative ~v’s into the näıve LP. This will
cause some constraints to become duplicates. If we let E denote the set of representatives, then we
are left with the LP of Figure 3 in App G, after removing duplicates. In parentheses at the end of
each type of variable/constraint is the number of distinct variables/constraints of that type.

Lemma 1. The LP of Fig. 3 in App G has polynomial size for the BIC k-items problem, if the
support of every marginal of the value distribution is an absolute constant.

5.2 Strong-Monotonicity, and Solving the discrete BIC k-bidders Problem

Unfortunately, the reduction of the previous section is not strong enough to make the LP polynomial
in the number of items n, even if S contains all item permutations and there is a constant number
of bidders. This is because a bidder can deviate to an exponential number cn of types, and our LP
needs to maintain an exponential number of BIC constraints. To remedy this, we prove that every
item-symmetric BIC mechanism for bidders sampled from an item-symmetric distribution satisfies
a natural monotonicity property:

Definition 6. (Strong-Monotonicity of a BIC mechanism) A BIC or ε-BIC mechanism is said to
be strongly monotone if for all i, j, j′, vij ≥ vij′ ⇒ πij(~vi) ≥ πij′(~vi). That is, bidders expect to
receive their favorite items more often.

Theorem 3. (Restated from Sec 3) If M is BIC and D and M are both item-symmetric, then
M is strongly monotone. If M is ε-BIC and D and M are both item-symmetric, there exists a
ε-BIC mechanism of the same expected revenue that is strongly monotone.

The proof of Thm 3 can be found in App F. We note again that our notion of strong-monotonicity
is different than the notion of cyclic-monotonicity that holds more generally, but is not sufficient
for obtaining efficient algorithms. Instead strong-monotonicity suffices due to the following:

Observation 1. When playing an item-symmetric, strongly monotone BIC mechanism, bidder ~vi
has no incentive to report any ~wi with wij > wij′ unless vij ≥ vij′.
Lemma 2. There exists a polynomial-size LP for the BIC k-bidders problem, if the support of
every marginal of the value distribution is an absolute constant. The LP is shown in Fig. 4 of App
G.

We note that Theorem 3 is also true for IC and ε-IC mechanisms with the appropriate definition
of strong-monotonicity. The definition and proof are given in Appendix K.

6 Efficient Mechanisms for General Distributions

We use the results of Sec 5 to prove Thm 1. First, it is not hard to see that discretizing the
value distribution to multiples of δ, for sufficiently small δ = δ(ε), and applying Lemmas 1 and 2
yields an algorithm for computing an ε-BIC ε-optimal mechanism for the k-items and k-bidders
problems. The resulting technical difficulty is turning these mechanisms into being 0-BIC. To do
this, we employ a non-trivial modification of the construction in [16] to improve the truthfulness
of the mechanism at the cost of a small amount of revenue. We present our construction and its
challenges in Sec 6.2.
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6.1 A Warmup: ε-Truthful Near-Optimal Mechanisms

Discretization: Let D be a valid input to the BIC k-items or the BIC k-bidders problem. For
each i, create a new distribution D′i that first samples a bidder from Di, and rounds every value
down to the nearest multiple of δ. Let D′ be the product distribution of all D′i’s. Let also T
denote the maximum number of items that can be awarded by a feasible mechanism. We show the
following lemma whose proof can be found in App H.

Lemma 3. For all δ, let M ′ be the optimal δ-BIC mechanism for D′. Then RM
′
(D′) ≥ ROPT (D)−

δT . Moreover, let M be the mechanism that on input ~v rounds every vij down to the nearest multiple
v′ij of δ and implements the outcome M ′(~v′). Then M is 2δ-BIC for bidders sampled from D, and

has revenue at least ROPT (D)− δT .

Now notice that our algorithms of Sec 5 allow us to find an optimal δ-BIC mechanism M ′ for
D′. So an application of Lemma 3 allows us to obtain a 2δ-BIC mechanism for D whose revenue is
at least ROPT (D)− δT .

6.2 Truthful Near-Optimal Mechanisms: Proof of Theorems 4 and 1

We start this section with describing our ε-BIC to BIC transformation result (Thm 4) arguing
that it can be implemented efficiently in the BIC k-items and k-bidders settings. 6 Combining our
transformation with the results of the previous sections we obtain Thm 1 in the end of this section.
Our transformation is inspired by [16], but has several important differences. We explicitly describe
our transformation, point out the key differences between our setting and that considered in [16],
and outline the proof of correctness, postponing the complete proof of Theorem 4 to Appendix I.

Algorithm Phase 1: Surrogate Sale

1. Recall from the statement of Theorem 4 that D′ samples values that are integer multiples of
δ and that D and D′ can be coupled so that, whenever we have ~v sampled from D and ~v′

sampled from D′, we have vij ≥ v′ij ≥ vij−δ, for all i, j. Moreover, M1 is an ε-BIC mechanism
for D′, for some ε.

2. Modify M1 to multiply all prices it charges by a factor of (1 − η). Call M the mechanism
resulting from this modification. Interpret the η-fraction of the prices given back as rebates.

3. For each bidder i, create r− 1 replicas sampled i.i.d. from Di and r surrogates sampled i.i.d.
from D′i. Use r = (ηδ )2 · m2 · β̂, where β̂ = (1δ + 1)k, for the k-items transformation, and

β̂ = (n+ 1)1/δ+1, for the k-bidders transformation.

4. Ask each bidder to report ~vi. For k-bidders only: Fix a permutation σ such that viσ(j) ≥ viσ(j+1),∀j.
For each surrogate and replica ~wi, permute ~wi into ~wi

′ satisfying w′
iσ(j)

≥ w′
iσ(j+1)

, ∀j.
5. Create a weighted bipartite graph with replicas (and bidder i) on the left and surrogates on

the right. The weight of an edge between replica (or bidder i) with type ~ri and surrogate of
type ~si is ~ri’s utility for the expected outcome of ~si when playing M (where the expectation
is taken over the randomness of M and of the other bidders assuming they are sampled from
D′−i).

6. Compute the VCG matching and prices. If a replica (or bidder i) is unmatched in the VCG
matching, add an edge to a random unmatched surrogate. The surrogate selected for bidder
i is whoever she is matched to.

6We will explicitly describe the transformation for the BIC k-items and k-bidders settings. For an arbitrary setting
where m bidders sample their valuation vectors for n items independently (but not necessarily identically) from [0, 1]n

(allowing correlation among items), simply employ the BIC k-items transformation, replacing k with n.
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Algorithm Phase 2: Surrogate Competition

1. Let ~si denote the surrogate chosen to represent bidder i in phase one, and let ~s denote the
entire surrogate profile. Have the surrogates ~s play M .

2. If bidder i was matched to their surrogate through VCG, charge them the VCG price and
award them Mi(~s). (Recall that this has both an allocation and a price component; the price
is added onto the VCG price.) If bidder i was matched to a random surrogate after VCG,
award them nothing and charge them nothing.

There are several differences between our transformation and that of [16]. First, observe that,
because D′ and M1 are explicitly given as input to our transformation (via an exact sampling
oracle from D′i and explicitly specifying the outcome awarded to every type ~vi sampled from D′i,
for all i), we do not have to worry about approximation issues in calculating the edge weights of
our VCG auctions in Phase 1. Second, in [16], the surrogates are taking part in an algorithm
rather than playing a mechanism, and every replica has non-negative value for the outcome of an
algorithm because there are no prices charged. Here, however, replicas may have negative value
for the outcome of a mechanism because there are prices charged. Therefore, some edges may have
negative weights, and the VCG matching may not be perfect. We have modified M to give rebates
(phase 1, step 2) so that the VCG matching cannot be far from perfect, and show that we do
not lose too much revenue from unmatched bidders. Finally, in the k-bidders problem, the vanilla
approach that does not permute sampled replicas and surrogates (like we do in phase 1, step 4 of
our reduction) would require exponentially many replicas and surrogates to preserve revenue. To
maintain the computational efficiency of our reduction, we resort to sampling only polynomially
many replicas/surrogates and permuting them according to the permutation induced by the bidder’s
reported values. This may seem like it is giving a bidder control over the distribution of replicas
and surrogates sampled for her. We show, exploiting the monotonicity results of Sec 5, that our
construction is still BIC despite our permuting the replicas and surrogates. We overview the main
steps of the proof of Thm 4 and give its complete proof in App I. We conclude this section with
the proof of Thm 1.

Proof of Theorem 1: Choose D′ to be the distribution that samples from D and rounds every vij
down to the nearest multiple of δ. Let then M1 be the optimal δ-BIC mechanism for D′ as computed
by the algorithms of Section 5. By Lemma 3, RM1(D′) ≥ ROPT (D) − δT . Applying Thm 4 we
obtain a BIC mechanism M2 such that

RM2(D) ≥ (1− η) ·RM1(D′)− 3δ

η
T (1)

≥ ROPT (D)− η ·ROPT (D)− (1− η)δT − 3δ

η
T. (2)

Notice that ROPT (D)≤ T . Hence, choosing η = ε and δ = ε2, (2) gives

RM2(D) ≥ ROPT (D)−O(ε · k) (for k-items); and (3)

RM2(D) ≥ ROPT (D)−O(ε ·
∑
i

Ci) (for k-bidders). (4)

The proof of Theorem 1 is concluded by noticing that
∑

iCi ≤ kmaxiCi and k is an absolute
constant. 2
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A Input Distribution Model

We discuss two models for accessing a value distribution D, and explain what modifications are
necessary, if any, to our algorithms to work with each model:

• Exact Access: We are given access to a sampling oracle as well as an oracle that exactly
integrates the pdf of the distribution over a specified region.

• Sample-Only Access: We are given access to a sampling oracle and nothing else.

The presentation of the paper focuses on the first model. In this case, we can exactly evaluate
probabilities of events without any special care. If we have sample-only access to the distribution, we
need to be a bit more careful, and proceed to sketch what modifications are necessary to the LP of
Section 5 and the reduction of Section 6 to obtain our results. For this discussion to be meaningful,
the reader should be familiar with the notation of Sections 5 and 6 and their appendices. Let
{E`}` denote the partition of [0, 1]nm induced by rounding and symmetries. That is, let ~v ∼ ~w
if there exists a symmetry σ that D has, and there exist integers c11, . . . , cmn such that cijδ >
vσ(i,j), wij ≥ (cij − 1)δ, for all i, j; let then {E`}` denote the partition of [0, 1]mn induced by this

equivalence relation. In the settings we consider, we have counted at most max{n,m}(1/δ+1)min{n,m}

different E`’s. Hence, we can take Õ
(

1/ζ2 ·max{n,m}(1/δ+1)min{n,m}
)

samples from the oracle to

simultaneously estimate all probabilities {Pr[~v ∈ E`]}` to within additive accuracy ζ, with high

probability. W.l.o.g. we can assume that the estimated probabilities {P̂r[~v ∈ E`]}` sum to exactly
1 (as our estimator is just the histogram of the equivalence classes in which the samples from D
have fallen). Given these estimates, let Dδ,ζ be the discrete distribution that samples an event E`
with probability P̂r[~v ∈ E`], and then outputs an arbitrary vector whose coordinates are all integer
multiples of δ within E`, after having permuted that vector according to a random σ ∈ S where
S ⊆ Sm×Sn is the set of symmetries satisfied by D. Given Dδ,ζ we modify our algorithm as follows.
First, we apply the algorithms of Section 5 to the distribution Dδ,ζ (that is known explicitly) to
compute the optimal mechanism M1 for this distribution. Then we skip the rounding of Section 6.1;
and most importantly, in our reduction of Section 6.2 we make sure to sample surrogates from Dδ,ζ
and not sample from D and then round down to multiples of δ. This is because we need the
expected outcomes of M1 when played by surrogates sampled by Dδ,ζ to be exactly as they were
computed by the LPs of Section 5. On the other hand, we still sample replicas directly from D.
The error coming from using Dδ,ζ instead of the discretized (to multiples of δ) version of D in the
reduction of Section 6.2 can be folded into the revenue approximation error. With the appropriate
choice of ζ we can still obtain Theorem 1 and Corollary 1. We skip further details.
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B A Näıve Linear Programming Formulation

Let D be the joint distribution of all bidders’ values for all items; this distribution is supported
on some subset of Rm×n, where m is the number of bidders and n is the number of items. It has
long been known that finding the optimal randomized BIC (or IC) mechanism is merely solving a
linear program of size polynomial in n,m, and |supp(D)|. 7 The simple linear program to find the
optimal BIC mechanism for a distribution with finite support D where bidder i has demand Ci and
budget Bi is shown in Figure 2. Set Bi = +∞ for bidders with no budget constraints.

Variables:

• φij(~v), for all bidders i, items j, and bidder profiles ~v ∈ supp(D), denoting the probability
that bidder i receives item j when the bidder profile is ~v.

• πij(~vi), for all bidders i, items j, and types ~vi ∈ supp(Di) for bidder i, denoting the expected
probability that bidder i receives item j when reporting type ~vi (where the expectation is
taken with respect to the types of the other bidders).

• pi(~v), for all bidders i, and bidder profiles ~v ∈ supp(D), denoting the expected price that
bidder i pays when the bidder profile is ~v.

• qi(~vi), for all bidders i, and types ~vi ∈ supp(Di) for bidder i, denoting the expected price
that bidder i pays when reporting type ~vi (where the expectation is taken with respect to the
types of the other bidders and the randomness in the mechanism).

Constraints:

• πij(~vi) =
∑

~w|~wi=~vi Pr[~w|~wi = ~vi]φij(~w), for all i, j, ~vi, guaranteeing that πij(~vi) is computed
correctly.

• qi(~vi) =
∑

~w|~wi=~vi Pr[~w|~wi = ~vi]pi(~w), for all i, ~vi, guaranteeing that qi(~vi) is computed
correctly.

• 0 ≤ φij(~v) ≤ 1, for all i, j, ~v, guaranteeing that each φij(~v) is a probability.

• ∑i φij(~v) ≤ 1, for all j, ~v, guaranteeing that no item is awarded more than once in expectation.

• ∑j φij(~v) ≤ Ci, for all i, ~v, guaranteeing that no bidder is awarded more than Ci items in
expectation.

• pi(~v) ≤ Bi, for all i, ~v, guaranteeing that no bidder ever pays more than Bi in expectation.

• ∑j vijπij(~vi)− qi(~vi) ≥ 0, for all i, ~vi, guaranteeing that the mechanism is ex-interim individ-
ually rational (IR).

• ∑j vijπij(~vi) − qi(~vi) ≥
∑

j vijπij(~v
′
i) − qi(~v

′
i), for all i, ~vi, and ~v′i, guaranteeing that the

mechanism is BIC.

Maximizing:

• ∑i,~v pi(~v)Pr[~v], the expected revenue.

Figure 2: Näıve LP for bidders with demand and budget constraints.

A simple application of the Birkhoff-Von Neumann theorem tells us that as long that marginals
φij(~v) satisfy the demand and supply constraints in expectation, then we can find in polynomial time
a distribution over allocations that satisfies the demand and supply constraints deterministically
and induces these marginals. In addition, a nice trick allows us to switch between ex-post IR and

7Such formulation is folklore and appears among other places in [4, 3, 13].
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ex-interim IR with no hurt in the value of the LP. These methods are described in Appendix C and
D, respectively.

C Feasible Randomized Allocations

Here, we show how to efficiently turn the φs of a mechanism into an actual randomized outcome.
We start with unit-demand bidders (i.e. Ci = 1 for all i) and explain what modifications are
necessary for non-unit demand bidders. We note that this procedure was also used in [13], but we
include it again here for completeness. Given a collection {φij}i,j we explicitly find a distribution
over feasible deterministic outcomes (a deterministic outcome assigns each item to some bidder,
or possibly the trash) that assigns bidder i item j with probability φij using the Birkhoff-Von
Neumann decomposition of a doubly stochastic matrix. To do this, we put the φij ’s into a matrix,
Φ. We observe that Φ is almost doubly-stochastic, except that the sums of rows or columns can be
less than 1, and Φ isn’t square. We can change Φ into Φ′ that is doubly-stochastic in the following
way: First, add dummy items or dummy bidders to make Φ square. Next, step through each entry
of Φ one by one and increase Φij as much as possible without making row i or column j sum to
greater than 1. Now we have a Φ′ that is doubly stochastic.

Next, we run a constructive algorithm for the Birkhoff-Von Neumann theorem ([14]) to decom-
pose Φ′ into the weighted sum of at most (max{m,n})2 permutation matrices in poly(max{m,n})
time. Now our sampling scheme is as follows. Pick a permutation matrix with probability equal to
it’s weight in the decomposition of Φ′, and call this matrix P . If Pij = 1, then give bidder i item j
with probability Φij/Φ

′
ij .

For any i, j, let’s explicitly compute the probability that bidder i gets item j in this sampling
procedure. The probability that Pij = 1 is exactly Φ′ij . And the probability that bidder i gets item
j is exactly Φij/Φ

′
ij times the probability that Pij = 1, which is exactly Φij .

Handling Non-Unit Demand Bidders. If bidder i has demand Ci (instead of 1), we can
replace her in the matrix Φ with min(n,Ci) copies (where n is the number of items), each receiving
at most one item in expectation. Then we can run the same decomposition and give each bidder
all the items awarded to her copies. This solution still runs in polynomial time, and always awards
each bidder at most Ci items.

D Modifications Required for Ex-Post Individually Rational Mech-
anisms

Here, we describe how to turn an ex-interim IR mechanism into an ex-post IR mechanism. If M
is ex-interim IR, then we just have

∑
j vijπij(~vi) ≥ qi(~vi) for all i, ~vi. Our modification is this: Let

ci(~vi) := qi(~vi)/(
∑

j vijπij(~vi)), for some specific i, ~vi. Then whenever bidder i receives bundle J
when his bid was ~vi, charge him

∑
j∈J ci(~vi) · vij . This is clearly ex-post IR because ci(~vi) ≤ 1.

Also, let’s compute the expected price bidder i pays when bidding ~vi:∑
j

ci(~vi)vijπij(~vi) = ci(~vi)
∑
j

vijπij(~vi) = qi(~vi).

So we can do this simple transformation to turn an ex-interim IR mechanism into an ex-post
IR mechanism without any loss in revenue. One should observe that this transformation may
cause bidders to sometimes pay more than their budget (even though the budget constraint is still
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respected in expectation after our transformation). Unfortunately, this problem is unavoidable in
the following sense: the optimal ex-post IR mechanism that respects budget constraints may make
strictly less revenue than the optimal ex-interim IR mechanism that respects budget constraints.
Here is a simple example that illustrates this on a single item and two bidders. Each bidder always
values the item at 10, but has a budget of 5. Then the optimal ex-interim IR mechanism that
respects budgets is to give the item to each player with probability 1/2 and charge them 5 no
matter who gets the item. The optimal ex-post IR mechanism that respects budgets is to give the
item to each player with probability 1/2 and charge the winner 5.

E Proof of Theorem 2

We provide a proof of our symmetry theorem (Theorem 2). The outline of our approach is this:

1. We show that for an arbitrary σ, if M is BIC and D has symmetry σ, σ(M) is BIC and
RM (D) = Rσ(M)(D).

2. We extend the result to distributions of permutations. That is, let G be any distribution over
permutations in Sn × Sm that only samples σ such that D has symmetry σ. Then define the
mechanism G(M) to first sample a σ from G, then use σ(M). Then if M is BIC, then G(M)
is BIC and RG(M)(D) = RM (D).

3. We show that if G uniformly samples a permutation from a subgroup S ⊆ Sm×Sn, then G(M)
respects every permutation in S, for all subgroups S and mechanisms M .

4. We put everything together and observe that if G uniformly samples from the subgroup of
symmetries that D has, then for any mechanism M , we can create G(M) that has the same
expected revenue as M and respects every symmetry that D has.

Next we prove the above steps one-by-one. We prove more general statements catering also for IC,
ε-IC and ε-BIC mechanisms.

Lemma 4. If M is an arbitrary IC (BIC,ε-IC, ε-BIC) mechanism, then for any σ ∈ Sm × Sn:

1. σ(M) is an IC (BIC,ε-IC,ε-BIC) mechanism; and

2. Rσ(M)(D) =
∑

~v∈supp(D)R
M (σ−1(~v))Pr[~v ← D].

Furthermore, if D has symmetry σ, then RM (D) = Rσ(M)(D).

Proof of Lemma 4: It is clear that part 2 is true given part 1. If all bidders play truthfully, then
on bidder profile ~v, σ(M) makes revenue equal to exactly RM (σ−1(~v)). Therefore the sum exactly
computes the expected revenue. The last part of the lemma is also clear given part 2. If D has
symmetry σ, then the sum exactly computes RM (D).

Now we prove part 1. We do this by explicitly examining the value of bidder i whose true type
is ~vi for reporting any other ~wi when the rest of the bids are fixed. Let ~v denote the profile of
bids when everything besides bidder i is fixed and he reports ~vi, and let ~w denote the profile of
bids when everything besides bidder i is the same as ~v, but bidder i reports ~wi instead. By the
definition of σ(M) we have the following equation. (Recall that U(~vi,Mi(~w)) denotes the utility
of a bidder with type ~vi for the expected outcome Mi(~w). We also slightly abuse notation with σ;
when we write σ(i) we mean the restriction of the permutation σ to [m], etc.)

U(~vi, [σ(M)]i(~x)) = U(σ−1(~vi),Mσ−1(i)(σ
−1(~x))).

This holds because σ(M) on input ~x offers bidder i the permuted by σ lottery offered to bidder
σ−1(i) by M on bid vector σ−1(~x) and charges him the price charged to bidder σ−1(i) by M on
input σ−1(~x).
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Now, because M is an IC mechanism, we know that:

U(σ−1(~vi),Mσ−1(i)(σ
−1(~v))) ≥ U(σ−1(~vi),Mσ−1(i)(σ

−1(~w))).

And combining this inequality with the above equality, we get exactly that:

U(~vi, [σ(M)]i(~v)) ≥ U(~vi, [σ(M)]i(~w)).

Since the above was shown for all i and for all ~v = (~vi ; ~v−i) and ~w = (~wi ; ~v−i), we get
that σ(M) is an IC mechanism. If instead of being IC M were BIC, ε-IC, or ε-BIC, the incentive
guarantee we have for M still falls exactly through for σ(M). 2

Corollary 2. Let G denote any distribution over elements of Sm×Sn. For an IC (BIC,ε-IC,ε-BIC)
mechanism M , let G(M) denote the mechanism that samples an element σ from G, and then uses
the mechanism σ(M). Then for all G:

1. G(M) is an IC (BIC,ε-IC,ε-BIC) mechanism; and

2. RG(M)(D) =
∑

σ R
σ(M)(D)Pr[σ ← G].

Furthermore, if G samples only σ such that D has symmetry σ, then RM (D) = RG(M)(D).

Proof of Corollary 2: It is clear that, because each σ(M) is an IC mechanism, randomly sampling
an IC mechanism will result into an IC mechanism. The second claim is also clear by linearity of
expectation. The final claim is clear because Rσ(M)(D) = RM (D), if D has symmetry σ, so taking
a weighted average of them will still yield RM (D). We can replace IC by BIC, ε-IC, or ε-BIC in
our argument. 2

Lemma 5. Let G sample a permutation uniformly at random from a subgroup S of Sm×Sn. Then
G(M) respects every permutation in S.

Proof of Lemma 5: For any ~v, the outcome G(M)(~v) is:

G(M)(~v) =
∑
σ∈S

σ(M(σ−1(~v)))

|S| .

Because S is a subgroup, for any τ ∈ S, we can write:

G(M)(τ(~v)) =
∑
σ∈S

τσ(M((τσ)−1(τ(~v))))

|S| =
∑
σ∈S

τσ(M(σ−1(~v)))

|S| = τ(G(M)(~v)).

This is exactly the statement that G(M) respects symmetry τ . So all τ ∈ S are respected by G(M).
2

The final step in the proof of Theorem 2 is just observing that if S denotes the set of symmetries
of D, then S is in fact a subgroup because the definition of symmetry immediately yields that if D
has symmetries σ and τ , it also has symmetries σ−1 and στ .

F Proofs Omitted from Section 5

Proof of Lemma 1: Suppose that S contains all bidder permutations and that every marginal of D
has size at most c. We claim that the set of representative value vectors has size |E| ≤ (m+ 1)c

n
.

Indeed, each equivalence class is uniquely determined by the number of bidders of each type. There
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are cn types of bidders, and 0 up to at most m bidders per type, so (m + 1)c
n

equivalence classes
of value vectors in total. Hence, the LP of Figure 3 has O(n(m + 1)c

n
) variables and constraints.

If both c and n are constants, the size of the LP is polynomial. 2

Proof of Theorem 3: Assume for a contradiction that M is item-symmetric and BIC but not
strongly monotone. Let then ~v∗i be a bidder profile that breaks strong-monotonicity, i.e. πij(~v

∗
i ) >

πij′(~v
∗
i ) and v∗ij < v∗ij′ for a pair of items j, j′. We show that bidder i of type ~v∗i can strictly

increase her expected utility by swapping her values for items j and j′. Indeed, because D is item-
symmetric, we know that the distribution of complete bidder profiles satisfies the following for any
item permutation σ:

Pr[~w|~wi = ~v∗i ] = Pr[σ(~w)|~wi = σ(~v∗i )].

Now because M is item-symmetric, we also know that M(σ(~w)) = σ(M(~w)), for all ~w. Putting
these together, we see that we must have πij(~v

∗
i ) = πiσ(j)(σ(~v∗i )), for all item permutations σ.

Letting σ be the permutation that swaps items j and j′ shows that when bidder i of type ~v∗i swaps
her values for j and j′, she simply switches πij(~v

∗
i ) and πij′(~v

∗
i ), strictly increasing her utility.

For the second part of the theorem, suppose that M is any item-symmetric ε-BIC mechanism
that is not strongly monotone. Again let ~v∗i be a bidder profile that breaks strong-monotonicity
with πij(~v

∗
i ) > πij′(~v

∗
i ) and v∗ij < v∗ij′ for a pair of items j and j′. Let then M ′ be the mechanism

that does the following. If bidder i reports ~wi = τ(~v∗i ), for some τ ∈ Sn, then pick a random
such τ , swap the bidder’s values for items τ(j) and τ(j′), and run M . Otherwise just run M .
It is clear that, M ′ has the exact same expected revenue as M , when played truthfully, because
D is item-symmetric. Observe also that we have added no new alternatives for dishonest bidders
to consider reporting, maintained the item symmetry of the mechanism, and made some bidders
strictly happier for the outcomes that the mechanism gives them. Therefore, M ′ is still item-
symmetric and ε-BIC and makes the same revenue as M , when played truthfully. Additionally we
have corrected one violation of strong-monotonicity. Iterating this process for a finite number of
steps will yield an ε-BIC item-symmetric strongly monotone mechanism with the same expected
revenue as M . 2

Proof of Lemma 2: Recall the definition of the set E of representative bidder profiles from Sec-
tion 5.1/Appendix G. In addition to this set we define, for each bidder i, a set of representative
types, Ei, for this bidder. Ei contains only value vectors ~vi satisfying vi1 ≥ vi2 ≥ . . . ≥ vin. By
Observation 1, if a mechanism is item-symmetric and no type in Ei wishes to misreport another
type in Ei, for all i, then the mechanism is BIC. Our resulting LP is shown in Figure 4. In total, we
have O(n|E|∑i |Ei|) variables and O(n|E|∑i |Ei|2) constraints. Given that the value distribution
is symmetric under every item permutation, we have that |E| ≤ (n + 1)c

m
. Indeed, there are cm

possible ways the m bidders like an item, and the question is how many items are liked in each of
the possible ways. We also know that |Ei| ≤ (n+ 1)c, again because choosing the number of items
valued by a bidder at each of the c possible values uniquely determines an element of Ei. It follows
that when c and m are constants the size of the LP is polynomial. 2

G Succinct LP Formulations

Figures 3 and 4 show the succinct LPs that can be used to compute the optimal mechanisms for
the BIC k-items and the BIC k-bidders problems respectively. Details for satisfying the supply
and demand constraints with probability 1, and ex-post IR modifications are exactly the same as
in Appendices C and D. In both figures, E denotes a set of representatives under the equivalence
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relation defined by bidder or item symmetries. In Figure 4, Ei denotes the set of types for bidder
i such that vi1 ≥ . . . ≥ vin.

Variables:

• φij(~v), for all bidders i, items j, and bidder profiles ~v ∈ E (mn|E|).
• πij(~vi), for all bidders i, items j, and possible types for bidder i, ~vi (mncn).

• pi(~v), for all bidders i, and bidder profiles ~v ∈ E (m|E|).
• qi(~vi), for all bidders i, possible types for bidder i, ~vi (mcn).

Constraints:

• (Precomputed Weights): aux(i′, j′, i, j, ~w,~vi) =
∑

σ∈S:σ(~w)i=~vi∧σ−1(i,j)=(i′,j′) Pr[σ(~w) | σ(~w)i =

~vi], for all bidders i, i′, items j, j′, bidder profiles ~w ∈ E, and types ~vi.
a

• πij(~vi) =
∑

~w∈E
∑

i′,j′ φi′,j′(~w)aux(i′, j′, i, j, ~w,~vi),
b, for all i, j, ~vi (mncn).

• qi(~vi) =
∑

~w∈E
∑

i′,j′ pi′(~w)aux(i′, j′, i, 1, ~w,~vi), for all i, ~vi ∈ Ei (mcn).

• 0 ≤ φij(~v) ≤ 1, for all i, j, ~v ∈ E (mn|E|).
• ∑i φij(~v) ≤ 1, for all j, ~v ∈ E (n|E|).
• ∑j φij(~v) ≤ Ci, for all i, ~v ∈ E (m|E|).
• pi(~v) ≤ Bi for all i, ~v ∈ E (m|E|).
• ∑j vijπij(~vi)− qi(~vi) ≥ 0, for all i, ~vi (mcn).

• ∑j vijπij(~vi)− qi(~vi) ≥
∑

j vijπij(~v
′
i)− qi(~v′i), for all i, ~vi, ~v

′
i (mc2n).

Maximizing:∑
i,~v∈E pi(~v)Pr[∪σ∈Sσ(~v))].

aFor the BIC k-items problem, these weights can be computed efficiently. If j 6= j′, then aux(i′, j′, i, j, ~w,~vi) = 0,
as there is no σ ∈ S such that σ−1(j) 6= j. If ~wi′ 6= ~vi, then aux(i′, j′, i, j, ~w,~vi) = 0. Otherwise, aux(i′, j′, i, j, ~w,~vi) =

(m−1)!·Pr[~w]
Pr[~xi′←Di′ ,~xi′=~vi]

.
bJustification:

πij(~vi) =
∑
~w∈E

∑
σ∈S:σ(~w)i=~vi

Pr[σ(~w) | σ(~w)i = ~vi]φσ−1(i,j)(~w)

=
∑
~w∈E

∑
i′,j′

φi′,j′(~w)
∑

σ∈S:σ(~w)i=~vi ∧ σ−1(i,j)=(i′,j′)

Pr[σ(~w) | σ(~w)i = ~vi]

=
∑
~w∈E

∑
i′,j′

φi′,j′(~w) · aux(i′, j′, i, j, ~w,~vi).

Figure 3: Succinct BIC k-items LP. In parentheses at the end of each type of variable/constraint
is an upper bound on the number of such variables/constraints.

H Omitted Proofs from Section 6.1

In this section we relate the optimal revenue achievable under “similar” value distributions, and
provide the proof of Lemma 3. Throughout the section, we let T denote the maximum number
of items that can be awarded by a feasible mechanism. For k-items this is k, for k-bidders this is
min{n,∑iCi}.
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Variables:

• φij(~v), for all bidders i, items j, and bidder profiles ~v ∈ E (mn|E|).
• πij(~vi), for all bidders i, items j, and ~vi ∈ Ei (n

∑
i |Ei|).

• pi(~v), for all bidders i, and bidder profiles ~v ∈ E (m|E|).
• qi(~vi), for all bidders i, ~vi ∈ Ei (

∑
i |Ei|).

Constraints:

• (Precomputed Weights): aux(i′, j′, i, j, ~w,~vi) =
∑

σ∈S:σ(~w)i=~vi∧σ(i,j)−1=(i′,j′) Pr[σ(~w) | σ(~w)i =

~vi], for all bidders i, i′, items j, j′, bidder profiles ~w ∈ E, and types ~vi.
a

• πij(~vi) =
∑

~w∈E
∑

i′,j′ φi′,j′(~w) · aux(i′, j′, i, j, ~w,~vi), for all i, j, ~vi (mncn)

• qi(~vi) =
∑

~w∈E
∑

i′,j′ pi′(~w) · aux(i′, j′, i, 1, ~w,~vi), for all i, ~vi ∈ Ei (
∑

i |Ei|).
• 0 ≤ φij(~v) ≤ 1, for all i, j, ~v ∈ E (mn|E|).
• ∑i φij(~v) ≤ 1, for all j, ~v ∈ E (n|E|).
• ∑j φij(~v) ≤ Ci, for all i, ~v ∈ E (m|E|).
• pi(~v) ≤ Bi, for all i, ~v ∈ E (m|E|).
• ∑j vijπij(~vi)− qi(~vi) ≥ 0, for all i, ~vi ∈ Ei (

∑
i |Ei|).

• ∑j vijπij(~vi)− qi(~vi) ≥
∑

j vijπij(~v
′
i)− qi(~v′i), for all i, ~vi ∈ Ei, ~v′i ∈ Ei (

∑
i |Ei|2).

• πij(~vi) ≥ πi(j+1)(~vi), for all i, j, ~vi ∈ Ei (n
∑

i |Ei|).
Maximizing:∑

i,~v∈E pi(~v)Pr[∪σ∈Sσ(~v))].

aFor the BIC k-bidders problem, these weights can be computed efficiently. If i 6= i′, then aux(i′, j′, i, j, ~w,~vi) = 0.
If ~wi 6∼S ~vi, then aux(i′, j′, i, j, ~w,~vi) = 0. If ~wij′ 6= ~vij , then aux(i′, j′, i, j, ~w,~vi) = 0. Otherwise, let the c possible
values for the items be u1, . . . , uc. Let nk denote the number of items j with ~vij = uk. Then there are

∏
k nk!

different permutations σ such that σ(~w)i = ~vi. If vij = ua, then the number of permutations such that σ(~w)i = ~vi

and σ(i, j′) = (i, j) is (
∏
k nk!)/na. Then aux(i′, j′, i, j, ~w,~vi) =

∏
k nk!Pr[~w]

naPr[~xi←Di,~xi=~vi]
.

Figure 4: Succinct BIC k-bidders LP. In parentheses at the end of each type of variable/constraint
is an upper bound on the number of such variables/constraints.

Lemma 6. Suppose that D and D′ can be coupled so that, with probability 1, whenever ~v ← D and
~v′ ← D′ are jointly sampled under the coupling, it holds that v′ij = vij + δ, for all i, j. Then for all

ε, ROPTε (D) ≥ ROPTε (D′)− δT .

Proof of Lemma 6: Throughout this proof, 1 represents the all-ones vector. Let M ′ be any ε-
BIC mechanism for D′. We define a new mechanism M for D such that M(~v) = M ′(~v + δ · 1),
except that we lower the price paid by bidder i by δ ·∑j φ

′
ij(~v + δ · 1), i.e. δ times the expected

number of items given to bidder i by M ′(~v + δ · 1)). Then, for all i, ~vi, ~wi, ~v−i and corresponding
~v′i := ~vi + δ · 1, ~w′i := ~wi + δ · 1, ~v′−i := ~v−i + δ · 1, we have:

U(~vi,Mi(~wi ; ~v−i)) = U(~vi
′,M ′i(~w

′
i ; ~v′−i)).

Hence because M ′ is ε-BIC under D′, M is ε-BIC under D. It is also clear that the difference in
expected revenue of the two mechanisms under the two distributions is exactly δ times the expected
number of items given out by M ′, which is at most T . 2

Lemma 7. Suppose that D = ×iDi and D′ = ×iD′i are product distributions over bidders and
suppose that, for all i, there is a coupling of Di and D′i so that, with probability 1, if ~vi ← Di and
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~v′i ← D′i are jointly sampled under this coupling, it holds that vij ≤ v′ij ≤ vij + δ, for all j. Then

ROPTδ+ε (D′) ≥ ROPTε (D), for all ε.

Proof of Lemma 7: For all i, the coupling whose existence is certified in the statement of the
lemma, implies the existence of a (possibly randomized) mapping fRi such that the distribution
that samples ~v′i from D′i and outputs the pair (~vi, ~v

′
i), where ~vi is a random vector sampled from

fRi (~v′i), is a valid coupling of Di and D′i satisfying vij ≤ v′ij ≤ vij + δ, for all j, with probability 1.

Let then fR be the random mapping which on input ~v′ samples, for all i, a random ~vi from fRi (~v′i)
and outputs (~v1, . . . , ~vm).

Now consider any ε-BIC mechanism M for D, and define the mechanism M ′ for D′, which on
input ~v′ samples a random ~v from fR(~v′) and outputs M(~v). It is obvious that RM

′
(D′) = RM (D).

To conclude the proof of the lemma it suffices to show that M ′ is (ε+ δ)-BIC for bidders sampled
from D′. Indeed, we have from the fact that M is ε-BIC that for all i, ~vi and ~wi:

E~v−i∼D−i [U(~vi,Mi(~v))] ≥ E~v−i∼D−i [U(~vi,Mi(~wi ; ~v−i))]− ε·
∑
j

πij(~wi).

Now fix i, ~v′i and ~w′i. We have:

E~v′−i∼D′−i [U(~vi
′,M ′i(~w

′
i ; ~v′−i))] = E~v′−i∼D′−i [U(~vi

′,E~wi∼fRi (~w′i),~v−i∼fR−i(~v′−i)
Mi(~wi ; ~v−i))]

= E~v′−i∼D′−i, ~wi∼fRi (~w′i),~v−i∼fR−i(~v′−i)
[U(~vi

′,Mi(~wi ; ~v−i))]

= E~v−i∼D−i, ~wi∼fRi (~w′i)
[U(~vi

′,Mi(~wi ; ~v−i))] (5)

Using Eq. (5) we have:

E~v′−i∼D′−i [U(~vi
′,M ′i(~v

′
i ; ~v′−i))] = E~v−i∼D−i,~vi∼fRi (~v′i)

[U(~vi
′,Mi(~vi ; ~v−i))]

≥ E~v−i∼D−i,~vi∼fRi (~v′i)
[U(~vi,Mi(~vi ; ~v−i))]

= E~vi∼fRi (~v′i)
E~v−i∼D−i [U(~vi,Mi(~vi ; ~v−i))]

≥ E~wi∼fRi (~w′i),~vi∼fRi (~v′i)
E~v−i∼D−i [U(~vi,Mi(~wi ; ~v−i))− ε·

∑
j

πij(~wi)]

= E~wi∼fRi (~w′i),~vi∼fRi (~v′i)
E~v−i∼D−i [U(~vi,Mi(~wi ; ~v−i))]− ε ·

∑
j

π′ij(~w
′
i),

where for the last inequality we used that M is ε-BIC. Similarly,

E~v′−i∼D′−i [U(~vi
′,M ′i(~w

′
i ; ~v′−i))] = E~v−i∼D−i, ~wi∼fRi (~w′i)

[U(~vi
′,Mi(~wi ; ~v−i))]

≤ E~v−i∼D−i, ~wi∼fRi (~w′i),~vi∼fRi (~v′i)
[U(~vi + δ1,Mi(~wi ; ~v−i))]

= E~v−i∼D−i, ~wi∼fRi (~w′i),~vi∼fRi (~v′i)
[U(~vi,Mi(~wi ; ~v−i))+δ ·

∑
j

πij(~wi)]

= E~wi∼fRi (~w′i),~vi∼fRi (~v′i)
E~v−i∼D−i [U(~vi,Mi(~wi ; ~v−i))] + δ ·

∑
j

π′ij(~w
′
i).

Combining the above it follows that M ′ is (ε+ δ)-BIC. 2

Proof of Lemma 3: Let D denote the original distribution. Let D′′ denote the distribution that
first samples from D, then rounds every value up to the nearest multiple of δ (if the sampled value
from D is exactly at an integer multiple of δ it is rounded up to the next integer multiple of δ). Let
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D′ denote the distribution that first samples from D, then rounds every value down to the nearest
multiple of δ (same definition as in the statement of Lemma 3). Then it is clear that D′ and D′′
satisfy the hypotheses of Lemma 6, so we have:

ROPTδ (D′) ≥ ROPTδ (D′′)−δT .
It is also clear that D and D′′ satisfy the hypotheses of Lemma 7, so we have:

ROPTδ (D′′) ≥ ROPT (D).

Putting both together, we get that:

ROPTδ (D′) ≥ ROPT (D)− δT .
It follows immediately from the fact that M ′ is δ-BIC for consumers in D′ that M is 2δ-BIC

for consumers in D (via the argument given in the proof of Lemma 7) and it is obvious that
RM

′
(D′) = RM (D). This completes the proof of the lemma. 2

I Proof of Theorem 4

Here we prove Theorem 4. We start with a proof outline, and justify each step separately. Un-
less otherwise stated, every claim applies to both reductions (for the k-bidders and the k-items
problems). Before starting, we observe that the assumption that D′ is discrete is a simplifying
assumption and not a necessary assumption. In our proof of Theorem 4 below, we point out the
key modification that makes it work for continuous D′ at an additional loss of O( δηT ) in revenue.

Throughout the proofs, we will use Ti to denote the maximum number of items that are possibly
awarded to bidder i by a feasible mechanism, and T to denote the maximum number of items that
are possibly awarded by a feasible mechanism. For k-bidders, Ti = Ci, T = min{n,∑iCi}. For
k-items, Ti = min{k,C}, T = k. Here is a brief outline of our proof. Let M2 denote the mechanism
output by our reduction; that the output of the reduction is a valid mechanism will be justified in
what follows.

1. If bidder i plays M2 truthfully, then the distribution of surrogates matched to bidder i is D′i.
2. For k-bidders, because M , D and D′ are item-symmetric, no bidder gains by lying about her

ordering.

3. Because each bidder is participating in a VCG auction, and the value of each edge is calculated
exactly given that all other bidders tell the truth, M2 is BIC.

4. The revenue we make from bidder i is at least the price paid by their surrogate if bidder i is
matched in VCG, and 0 otherwise.

5. There exists a high cardinality matching with positive edge weights. If VCG used this match-
ing, we would make almost as much revenue as M . We show that because of the rebates
(Phase One, Step 2), the VCG matching makes almost as much revenue as this matching.

6. Therefore, we make a good approximation to RM (D′), which is in turn a good approximation
to RM1(D′).

Lemma 8 ([16]). If all bidders play M2 truthfully, then the distribution of the surrogate chosen for
bidder i is exactly D′i.
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Proof. Imagine changing the order of sampling in the experiment. First, sample the r surrogates
i.i.d. from D′i, and r replicas i.i.d. from Di. For the k-bidders algorithm only, pick a random
ordering σ and permute each surrogate and replica to respect that ordering. Finally, pick a replica
uniformly at random among the sampled ones and decide that this was in fact bidder i. The
distribution of surrogates, replicas, and bidder i is exactly the same as that of the algorithm
assuming bidder i truthfully reports his type. In addition, we can compute the VCG matching
once all the replicas and surrogates have been sampled before deciding which replica is bidder i.
Because we choose a random replica to be bidder i, the surrogate chosen to represent her will also
be chosen uniformly at random, regardless of the surrogates’ types. So we can see that the process
of choosing a surrogate is just sampling r times from D′i independently, permuting each sample to
respect a random ordering (in the k-bidders problem only), and outputting a random surrogate
among the sampled (and possibly permuted) ones. In the k-items reduction, the output surrogate
is clearly distributed according to D′i. In the k-bidders reduction, because D′i is item-symmetric
and we used a random permutation to permute all sampled surrogates, we still output a surrogate
distributed according to D′i.

Lemma 9. In M2 resulting from the k-bidders reduction, no bidder i has an incentive to report
any ~wi such that there is some j and j′ for which wij > wij′ when the true type ~vi of the bidder
satisfies vij < vij′.

Proof. Let σ( ~wi) be such that σ( ~wi)j≥σ( ~wi)j′ if and only if vij≥vij′ . We show that bidder i would
be better off reporting σ( ~wi) than ~wi. Indeed, we can couple the outcomes of M2 on ~wi and σ( ~wi)
in the following way. Whenever a replica is sampled for i to play against, sample the same replica
for both experiments. Whenever a surrogate is sampled to represent her, sample the same for both
experiments. This set of replicas and surrogates will get permuted to match the ordering of ~wi and
σ( ~wi) respectively, so the VCG matching chosen will be exactly the same. So if we let ~si denote the
surrogate chosen when the bid was ~wi, then σ(~si) is the surrogate chosen on bid σ( ~wi). Because σ
was chosen so that σ(~si) is ordered the same as ~vi and M is strongly monotone, bidder i prefers to
be represented by σ( ~wi) than by ~wi when her type is ~vi. So bidder i has no incentive to lie about
the relative ordering of ~vi.

Corollary 3. M2 is BIC.

Proof. Fix some bidder i and suppose all other bidders report truthfully. By Lemma 8 the surrogates
chosen for them are distributed according to D′−i. Hence, when we design the VCG auction for
bidder i, we correctly compute the expected outcome that will be awarded to each surrogate if that
surrogate is chosen for bidder i. So in the k-items reduction, bidder i faces a VCG mechanism
that correctly computes edge-weights; hence the bidder will play the VCG mechanism truthfully.
In the k-bidders reduction, by Lemma 9 bidder i won’t misreport her ordering, but could possibly
lie about her values (respecting her ordering). Nevertheless, no matter what (ordering respecting)
values she reports, she won’t affect the distribution of the values of the replicas and surrogates
she will compete against in VCG, except for the fact that these are going to be conditioned to
respect her ordering. Still, because the edge-weights in the VCG auction are computed correctly,
the bidder will report her type truthfully.

Now that we know M2 is BIC, we want to compare RM2(D) to RM (D′). We observe first that
if we are lucky and the VCG matching for every bidder is always perfect, then in fact RM2(D) ≥
RM (D′). When bidders are matched in VCG to a surrogate, they pay exactly what their surrogate
paid, plus a little extra due to the VCG prices. However, because some edge weights are negative,
the VCG matching may not be perfect. So how do we analyze expected revenue in this case?
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We look at the expected revenue contributed from a single bidder i. Consider again changing
the order of sampling in the experiment to sample each replica and surrogate first before deciding
which replica is bidder i. Then if surrogate ~si is matched in VCG, there is a 1/r chance that its
matched replica will be bidder i and we make expected revenue equal to what ~si pays in M . If ~si is
unmatched in VCG, then even if its matched replica is bidder i, we make no revenue. This ignores
the extra possible revenue from the VCG prices, which we will continue to ignore from now on. So
let p(~si) denote the expected price that a surrogate with type ~si pays in M (over the randomness
of the other surrogates), and let V denote the set of surrogates that are matched in VCG. Then
the expected revenue of M2 from bidder i is exactly:∑

~si∈V
p(~si)/r.

Recall that the expected revenue of M from bidder i is exactly
∑
∀~si p(~si)/r. So our goal

is to bound the difference between these two sums. But of course, there is also randomness in
which surrogates are sampled and what the VCG matching is, so we want to bound the difference
in expectation of these two sums. We do this in two steps. First, we show that there exists a
matching that is very close to perfect in expectation and only uses positive edges. In fact, it is so
close to perfect that even if we assume that the unmatched surrogates had the highest possible price
we barely lose any revenue in expectation. Unfortunately, this is not necessarily the matching that
VCG uses. However, because VCG maximizes social welfare, and we give surrogates a free rebate
of ηpi(~si), VCG cannot unmatch too many surrogates that pay a high price. We now quantify these
statements and prove them.

Define an equivalence relation on bidders and surrogates where ~vi ∼ ~wi if when we round both
vectors down to the nearest multiple of δ we get the same vector. Observe that a replica ~vi and
surrogate ~si are equivalent only if vij ≥ sij for all j. Therefore, replica ~vi has positive valuation for
the outcome of surrogate ~si.

8 So a matching that matches replicas only to equivalent surrogates
uses only positive edges. If we let β be the number of equivalence classes, then β ≤ (1δ + 1)k

(for k-items) and β ≤ (n + 1)1/δ+1 (for k-bidders taking into account that we are only looking at
permuted replicas/surrogoates in our transformation). We can use a lemma from [16] directly:

Lemma 10 ([16]). The expected cardinality of a maximal matching that only matches equivalent
replicas and surrogates is at least r −√βr.

So if we denote by X the set of surrogates in some maximal matching using only equivalent
replicas, then because each p(~si) is at most Ti we get:

E

∑
~si∈X

p(~si)/r

 ≥ E

∑
∀~si

p(~si)/r

− Ti√β/r
Now we want to bound the expected difference between the expected revenue from the matching

X and the VCG matching V . We can get from X to V through a disjoint collection of augmenting
paths and cycles. We want to show that there cannot be many augmenting paths that unmatch a
surrogate with a high p(~si).

8This is the step where it is helpful to assume that D′ is discrete. If D′ were not discrete, we would not necessarily
have vij ≥ sij . However, after giving an additional rebate of δ for every item received, the conclusion that ~vi has
positive valuation for the surrogate ~si holds, which is what matters. The extra rebates result in an extra loss of
O( δ

η
T ) of revenue. This loss in revenue comes from: a) actually giving the rebates, which costs at most δT in revenue

and b) possibly reducing the truthfulness of M1 from ε-BIC to at worst (ε+ δ)-BIC, which costs an additional δ
η
T in

revenue (replacing ε by ε+ δ in Lemma 11, Corollary 4, and the discussion following Lemma 12).
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Lemma 11. Let P be any augmenting path from X to V that unmatches surrogate ~si
′. Let also S

denote the set of surrogates in P . Finally, let ~si
′′ be the surrogate closest to the end of P opposite

to ~si
′. If ~si

′′ is matched in both X and V , then:

δ + ε

η

∑
~si∈S,j

πij(~si) ≥ p(~si′);

otherwise
δ + ε

η

∑
~si∈S,j

πij(~si) ≥ p(~si′)− p(~si′′).

Proof. Consider the “weight” of this path, computed by adding the weights of the new edges and
subtracting the weights of the deleted edges. Because VCG maximizes social welfare, this weight
must be positive. Decompose the gain/loss in social welfare in two components: that coming
from rebates and that coming without accounting for rebates, i.e. were we running mechanism
M1 instead of M . As far as the first component goes, the contribution to the welfare via rebates
from a surrogate that is matched in both X and V does not change in the two matchings. Instead
there is a loss of ηp(~si

′) of rebates-welfare because ~si
′ becomes unmatched and a gain of ηp(~si

′′) of
rebates-welfare, if ~si

′′ was not matched in X and became matched in V .
Now let us upper-bound the gain in social welfare contributed by the M1 component of the edge-

weights. Because M1 is ε-BIC for D′, a replica gains at most (δ + ε)
∑

j πij(~si) by being matched to
~si instead of her equivalent surrogate. So the M1-welfare goes up by at most (δ + ε)

∑
~si∈S,j πij(~si)

from the augmentation.
Given that the augmentaion must increase social welfare, we obtain the lemma.

This lemma, in essence, says that each time a surrogate becomes unmatched from X to V it
“claims” some weight of the πijs. If we let Wi denote

∑
∀~si,j πij(~si), then we get the following

corollary:

Corollary 4. ∑
~si∈V

p(~si)/r ≥
∑
~si∈X

p(~si)/r −
δ + ε

ηr
Wi.

We now proceed to bound
∑

i E[Wi] with an easy lemma.

Lemma 12. ∑
i

E[Wi]/r ≤ T.

Proof. E[Wi]/r is exactly the expected number of items awarded to bidder i by M . As M can only
award T items, we have the desired inequality.

Now we just have to put everything together and chase through some inequalities. From the
work above we get that:

E

∑
~si∈V

p(~si)/r

 ≥ E

∑
∀~si

p(~si)/r

−(Ti√β

r
+
δ + ε

ηr
E[Wi]

)
.

And when we sum this over all bidders we get:
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RM2(D) ≥ RM (D′)−
∑
i

(
Ti

√
β

r
+
δ + ε

ηr
E[Wi]

)

=⇒ RM2(D) ≥ RM (D′)−
(√

β

r

∑
i

Ti +
δ + ε

η
T

)
Recall that M is just M1 with rebates, hence:

RM (D′) = (1− η)RM1(D′).

Putting the above together with our choice of r and observing that Ti ≤ T for all i, we conclude
the proof of Theorem 4.

J Proof of Corollary 1

Recall the definition of a Monotone Hazard Rate distribution.

Definition 7. (Monotone Hazard Rate) A one-dimensional differentiable distribution F satisfies

the Monotone Hazard Rate Condition if f(x)
1−F (x) is monotonically non-decreasing for all x such that

F (x) < 1, where f = F ′ is the probability density function.

To prove Corollary 1 we reduce the MHR case to the [0, 1] case. We do this by finding an appropriate
Ξ such that the probability that any bidder values any item above Ξ is tiny. In fact, so tiny that
even if we assumed the optimal mechanism could somehow extract full value from bidders when
they value an item above Ξ, this would account for a tiny fraction of the total revenue. We
make use of the following two lemmas from Cai and Daskalakis [7]. For a distribution F , let
αp = inf{x|F (x) ≥ 1− 1/p}. Then:

Lemma 13 ([7]). If F is MHR, then kαp ≥ αpk , for all p, k ≥ 1.

Lemma 14 ([7]). If F is MHR and X is a random variable distributed according to F , then
E[X|X ≥ αp] · Pr[X ≥ αp] ∈ O(αp/p).

Set ζ = dlog2 k/εe + 1. For k-bidders, let αi,n denote αn for F = Fi, for all i. Let then
Ξ = maxi{αi,nζ}. Then by Lemma 14, even if we could extract full value from every bidder for

each item they valued above Ξ, we would only make at most O(knΞ/nζ) = O(εΞ) expected revenue.
In addition, there is a trivial mechanism that makes expected revenue Ω(Ξ/ log k/ε). Just price
each item at Ξ′ = maxi{αi,n} and sell them on a first-come first-served basis. By Lemma 13,
we know that αi,n ≥ αi,nζ/ζ, and therefore Ξ′ ≥ Ξ/ζ. In addition, the probability that an item
gets sold is a constant (approximately 1/e), so we make revenue Ω(Ξ′) = Ω(Ξ/ log k/ε). These
two observations together tell us that we can completely ignore the revenue from extreme bidders
without losing too much. So our algorithm for k-bidders on MHR distributions is as follows: For
each Di, create a new distribution D′i that rounds each vij down to the nearest multiple of δΞ if
vij < Ξ, or down to Ξ if vij > Ξ. Find an optimal mechanism M1 for the distribution ×iD′i. Then
sample surrogates from D′i and replicas from Di and go through the same reduction as for [0, 1]
(described in Section 6.2). Because we sample replicas directly from Di, this solution will still be
BIC (see Appendix I). In addition, by the arguments in Appendix I and the observations above, we
get an additive O(εΞ) approximation to the optimal revenue. Because there is a trivial mechanism
making revenue Ω(Ξ/ log k/ε), this is in fact a multiplicative (1−O(ε · log k/ε)) approximation.
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For k-items, let αj,m denote αm when F is the marginal distribution of F for item j. Then
let Ξ = maxj{αj,mζ}. Then by Lemma 14, even if we could extract full value from every bidder

for each item they valued above Ξ, we could only make at most O(kmΞ/mζ) = O(εΞ) expected
revenue. In addition, the first-come first-served mechanism that prices all items at Ξ′ = maxj{αj,m}
makes Ω(Ξ/ log k/ε) revenue for the same reasons that the first-come first-served mechanism in the
previous paragraph made Ω(Ξ/ log k/ε) revenue. Again, these observations tell us that we can
completely ignore the revenue from extreme bidders without losing too much. Our alogrithm for
k-items on MHR distributions is the same as for k-bidders: D′ samples from D then rounds each vij
down to the nearest multiple of δΞ if vij < Ξ, and down to Ξ otherwise. We compute the optimal
mechanism for D′. We then sample surrogates from D′i and replicas from Di and go through the
same reduction as for [0, 1] (described in Section 6.2). Again, because we sample replicas directly
from D, the solution is still BIC, and by the arguments in Appendix I and the observations above,
we get an additive O(εΞ) approximation to the optimal revenue, which is again a multiplicative
(1−O(ε · log k/ε)) approximation.

K Extending Theorem 1 and Corollary 1 to IC Mechanisms

As the modifications to the näıve LP for going from BIC to IC are trivial, we will not restate the
näıve LP for IC here. The symmetry theorem (Theorem 2, Section 4) has already been proven for
IC mechanisms. The first stop along our proof where we have to treat IC and BIC differently is
the monotonicity of item-symmetric mechanisms (for the k-bidders problem).

Definition 8. (Strong-Monotonicity of an IC mechanism) An IC or ε-IC mechanism is said to be
strongly monotone if for all i, j, j′ and ~v such that vkj = vkj′ for all k 6= i, φij(~v) > φij′(~v)⇒ vij ≥
vij′.

Theorem 5. Any item-symmetric IC mechanism is strongly monotone. For all item-symmetric
ε-IC mechanisms M , there exists a mechanism M ′ of equal revenue that is strongly monotone.

Proof. The proof follows the same lines as that of Theorem 3 after making a quick observation. If
vkj = vkj′ for all k 6= i and σ is the permutation that swaps items j and j′, then if bidder i swaps
vij and vij′ , he turns ~v into σ(~v), simply because σ does not affect ~v−i. As any item-symmetric
mechanism M must have M(σ(~v)) = σ(M(~v)), the rest of the proof follows that of Theorem 3 as
bidder i can swap the probability that he receives items j and j′ by swapping his values.

Next, we have to turn Theorem 5 into monotonicity constraints for the LP of the k-bidders
problem. We say that ~v ∼i ~w if there exists a σ such that σ(~v) = σ(~w) and σ(~vk) = ~vk for all k 6= i.
In other words, ~wi is a permutation of ~vi that is the identity on ~v−i. Then let Ei(~v−i) denote the
set of ~w such that (~w−i = ~v−i) and (∀j ∧ j < j′ : wkj = wkj′ ⇒ wij ≥ wij′). I.e. Ei(~v−i) is a set of
representatives under the equivalence relation ∼i for a fixed ~v−i. Strong-monotonicity implies then
the following.

Observation 2. When playing an item-symmetric, strongly monotone IC mechanism, if vkj = vkj′

for all k 6= i, and vij>vij′, then bidder i has no incentive report any ~wi such that wij′ > wij.

Corollary 5. If M is strongly-monotone and item-symmetric and when playing M , for all i and
~v−i, bidder i never has (more than ε) incentive to misreport ~wi ∈ Ei(~v−i) when her true type is
~vi ∈ Ei(~v−i) for any ~wi, ~vi, then M is IC (ε-IC).

Given Corollary 5, we replace in the k-bidders LP the BIC and strong-monotonicity constraints
with the following IC and strong-monotonicity constraints:
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IC, Strong-Monotonicity Constraints:∑
j

vijφij(~v)− pi(~v) ≥
∑
j

vijφij(~w)− pi(~w), for all i, ~v ∈ E, ~w ∈ Ei(~v−i);

φij(~v) ≥ φij′(~v), for all i, j < j′ and ~v ∈ E such that vkj = vkj′ for all k 6= i.

The last step is to show that there are only polynomially many IC constraints. We show this
in the following lemma:

Lemma 15. |Ei(~v−i)| ≤ |E| for all i, ~v−i.

Proof. We prove the lemma by showing that if ~w ∈ Ei(~v−i), and σ(~w) ∈ Ei(~v−i), then σ(~w) = ~w.
Observe first that in order to possibly have σ(~w) ∈ Ei(~v−i), we must have σ(~w−i) = ~v−i = ~w−i.
In other words, if σ(j) = j′, then wkj = wkj′ for all k 6= i. However, in order for ~w ∈ Ei(~v−i), it
must be the case that for all such j, j′, wij > wij′ ⇒ j < j′, which means that there is a unique
ordering of such values in ~wi that will make ~w ∈ Ei(~v−i). Because ~w and σ(~w) must respect the
same ordering, they must be the same vector.

Therefore, because Ei(~v−i) contains at most one representative per equivalence class under ∼,
and E contains exactly one representative per equivalence class, we have that |Ei(~v−i)| ≤ |E|.

Our discretization lemma of Section 6.1, namely Lemma 3, has exactly the same statement,
replacing BIC with IC, and its proof is very similar (just removing expectations over the other
bidders’ types where appropriate). As we do not have an ε-IC to IC reduction, the above changes
are actually the only changes that are needed to adjust Theorem 1 to ε-IC. The proof of Corollary 1
also works for ε-IC, so we have shown how to obtain ε-IC mechanisms for the settings of Theorem 1
and Corollary 1. As discussed in Remark 1, we can accommodate arbitrary budget constraints as
we do not use an analogue of the ε-BIC to BIC reduction, which was the only step in our BIC proof
that could not accommodate budgets.
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