
Approximating and Testing k-Histogram Distributions in Sub-linear

Time

Piotr Indyk∗ Reut Levi† Ronitt Rubinfeld‡

July 31, 2014

Abstract

A discrete distribution p, over [n], is a k-histogram if its probability distribution function can
be represented as a piece-wise constant function with k pieces. Such a function is represented
by a list of k intervals and k corresponding values. We consider the following problem: given a
collection of samples from a distribution p, find a k-histogram that (approximately) minimizes
the `2 distance to the distribution p. We give time and sample efficient algorithms for this
problem.

We further provide algorithms that distinguish distributions that have the property of being
a k-histogram from distributions that are ε-far from any k-histogram in the `1 distance and the
`2 distance respectively.

1 Introduction

The ubiquity of massive data sets is a phenomenon that began over a decade ago, and is becoming
more and more pervasive. As a result, there has been recently a significant interests in constructing
succinct representations of the data. Ideally, such representations should take little space and
computation time to operate on, while (approximately) preserving the desired properties of the
data.

One of the most natural and useful succinct representations of the data are histograms. For a
data set D whose elements come from the universe [n], a k-histogram H is a piecewise constant
function defined over [n] consisting of k pieces. Note that a k-histogram can be described using
O(k) numbers. A “good” k-histogram is such that (a) the value H(i) is a “good” approximation of
the total number of times an element i occurs in the data set (denoted by P (i)) and (b) the value
of k is small. Histograms are a popular and flexible way to approximate the distribution of data
attributes (e.g., employees age or salary) in databases. They can be used for data visualization,
analysis and approximate query answering. As a result, computing and maintaining histograms of
the data has attracted a substantial amount of interests in databases and beyond, see e.g., [GMP97,
JPK+98, GKS06, CMN98, TGIK02, GGI+02], or the survey [Ioa03].

∗This material is based upon work supported by David and Lucille Packard Fellowship, MADALGO (Center for
Massive Data Algorithmics, funded by the Danish National Research Association) and NSF grant CCF-0728645
†Research supported by the Israel Science Foundation grant nos. 1147/09 and 246/08
‡Research supported by NSF grants 0732334 and 0728645, Marie Curie Reintegration grant PIRG03-GA-2008-

231077 and the Israel Science Foundation grant nos. 1147/09 and 1675/09.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 171 (2011)

A popular criterion for fitting a histogram to a distribution P is the “least-squares” criterion.
Specifically, the goal is to find H that minimizes the `2 norm ‖P − H‖22. Such histograms are
often called v-optimal histograms, with “v” standing for “variance”. There has been a substantial
amount of work on algorithms, approximate or exact, that compute the optimal k-histogram H
given P and k by taking the dynamic programming approach [JPK+98, GKS06]. However, since
these algorithms need to read the whole input to compute H, their running times are at least linear
in n.

A more efficient way to construct data histograms is to use random samples from data set D.
There have been some results on this front as well [CMN98, GMP97]. However, they have been
restricted to so-called equi-depth histograms (which are essentially approximate quantiles of the data
distribution) or compressed histograms. Although the name by which they are referred to sounds
similar, both of these representations are quite different from the representations considered in this
paper. We are not aware of any work on constructing v-optimal histograms from random samples
with provable guarantees.

The problem of constructing an approximate histogram from random samples can be formulated
in the framework of distribution property testing and estimation (see surveys [Rub06, Ron08]).
In this framework, an algorithm is given access to i.i.d. samples from an unknown probability
distribution p , and its goal is to to characterize or estimate various properties of p. In our case we
define p = P/‖p‖1. Then choosing a random element from the data set D corresponds to choosing
i ∈ [n] according the distribution p.

In this paper we propose several algorithms for constructing and testing for the existence of
good histograms approximating a given distribution p.

1.1 Histogram taxonomy

Formally a histogram is a function H : [n]→ [0, 1] that is defined by a sequence of intervals I1, . . . , Ik
and a corresponding sequence of values v1, . . . , vk. For t ∈ [n], H(t) represents an estimate to p(t).
We consider the following classes of histograms (see [TGIK02] for a full list of classes):

1. Tiling histograms: the intervals form a tiling of [n] (i.e., they are disjoint and cover the whole
domain). For any t we have H(t) = vi, where t ∈ Ii. In practice we represent a tiling
k-histogram as a sequence {(I1, v1) . . . (Ik, vk)}.

2. Priority histograms: the intervals can overlap. For any t we have H(t) = vi, where i is the
largest index such that t ∈ Ii; if none exists H(t) = 0. In practice we represent a priority
k-histogram as {(I1, v1, r1) . . . (Ik, vk, rk)} where r1, . . . , rk correspond to the priority of the
intervals.

Note that if a function has a tiling k-histogram representation then it has a priority k-histogram
representation. Conversely if it has a priority k-histogram representation then it has a tiling 2k-
histogram representation.

1.2 Results

The following algorithms receive as input a distribution over [n], p, an accuracy parameter ε and
an integer k.

In Section 3, we describe an algorithm which outputs a priority k ln(1/ε)-histogram that is clos-
est to p in the `2 distance up to ε-additive error. The algorithm is a greedy algorithm, at each step

2

it enumerates over all possible intervals and adds the interval which minimizes the approximated
`2 distance. The sample complexity of the algorithm is Õ((k/ε)2 · lnn) and the running time is
Õ((k/ε)2n2). We then improve the running time substantially to poly(k, 1/ε) · lnn by enumerating
on a partial set of intervals.

In Section 4, we provide a testing algorithm for the property of being a tiling k-histogram with
respect to the `1 norm. The sample complexity of the algorithm is Õ(ε−5

√
kn). We provide a

similar test for the `2 norm that has sample complexity of O(ε−4 ln2 n). We prove that testing if a
distribution is a tiling k-histogram in the `1-norm requires Ω(

√
kn) samples for every k ≤ 1/ε.

1.3 Related Work

Our formulation of the problem falls within the framework of property testing [RS96, GGR98,
BFR+00]. Properties of single and pairs of distributions has been studied quite extensively in
the past (see [BFR+10, BFF+01, AAK+07, BDKR05, GMP97, BKR04, RRSS09, Val08, VV11]).
One question that has received much attention in property testing is to determine whether or
not two distributions are similar. A problem referred to as Identity testing assumes that the
algorithm is given access to samples of distribution p and an explicit description of distribution
q. The goal is to distinguish a pair of distributions that are identical from a pair of distributions
that are far from each other. A special case of Identity testing is Uniformity Testing, where
the fixed distribution, q, is the uniform distribution. A uniform distribution can be represented
by a tiling 1-histogram and therefore the study of uniformity testing is closely related to our
study. Goldreich and Ron [GR00] study Uniformity Testing in the context of approximating graph
expansion. They show that counting pairwise collisions in a sample can be used to approximate
the `2-norm of the probability distribution from which the sample was drawn from. Several more
recent works, including this one, make use of this technical tool. Batu et al. [BFR+10] note that
running the [GR00] algorithm with Õ(

√
n) samples yields an algorithms for uniformity testing in

the `1-norm. Paninski [Pan08] gives an optimal algorithm in this setting that takes a sample of size
O(
√
n) and proves a matching lower bound of Ω(

√
n). Valiant [Val08] shows that a tolerant tester

for uniformity (for constant precision) would require n1−o(1) samples. Several works in property
testing of distributions approximate the distribution by a small histogram distribution and use this
representation as an essential way in their algorithm [BKR04], [BFF+01].

Histograms were subject of extensive research in data stream literature, see [TGIK02, GGI+02]
and the references therein. Our algorithm in Section 3 is inspired by streaming algorithm
in [TGIK02].

2 Preliminaries

Denote by Dn the set of all discrete distributions over [n]. A property of a discrete distributions is
a subset P ⊆ Dn. We say that a distribution p ∈ Dn is ε-far from p′ ∈ Dn in the `1 distance (`2
distance) if ‖p− p′‖1 > ε (‖p− p′‖2 > ε).

We say that an algorithm, A, is a testing algorithm for the property P if given an accuracy
parameter ε and a distribution p:

1. if p ∈ P, A accepts p with probability at least 2/3

2. if p is ε-far (according to any specified distance measure) from every distribution in P, A
rejects p with probability at least 2/3.

3

Let p ∈ Dn, then for every ` ∈ [n], denote by p` the probability of the `-th element. For every
I ⊆ [n], let p(I) denote the weight of I, i.e.

∑
`∈I p`. For every I ⊆ [n] such that p(I) 6= 0, let pI

denote the distribution of p restricted to I i.e. pI(`) = p`
p(I) . Call an interval I flat if pI is uniform

or p(I) = 0.
Given a set of m samples from p, S, denote by SI the samples that fall in the interval I.

For interval I such that |SI | > 0, define the observed collision probability of I as coll(SI)

(|SI |2)
where

coll(SI)
def
=
∑
i∈I
(occ(i,SI)

2

)
and occ(i, SI) is the number of occurrences of i in SI . In [GR00], in the

proof of Lemma 1, it was shown that E

[
coll(SI)

(|SI |2)

]
= ‖pI‖22 and that

Pr

[∣∣∣∣∣coll(SI)(|SI |
2

) − ‖pI‖22
∣∣∣∣∣ > δ ‖pI‖22

]
<

2

δ2 ·
((|SI |

2

)
· ‖pI‖22

)1/2

≤ 4

δ2|SI | ‖pI‖2
. (1)

In particular, since ‖pI‖2 ≤ 1, we also have that for every |SI | ≥ 2

Pr

[∣∣∣∣∣coll(SI)(|SI |
2

) − ‖pI‖22
∣∣∣∣∣ > ε

]
<

(
1

ε

)2

· 4

|SI |
. (2)

In a similar fashion we prove the following lemma.

Lemma 1 (Based on [GR00]) If we take m ≥ 24
ε2

samples, S, then, for every interval I,

Pr

∣∣∣∣∣∣coll(SI)(|S|
2

) −
∑
`∈I

p2
`

∣∣∣∣∣∣ ≤ εp(I)

 > 3

4
(3)

Proof: For every i < j define an indicator variable Ci,j so that Ci,j = 1 if the ith sample is

equal to the jth sample and is in the interval I. For every i < j, µ
def
= E[Ci,j] =

∑
`∈I p

2
` . Let

P
def
= {(i, j) : 1 ≤ i < j ≤ m}. By Chebyshev’s inequality:

Pr

∣∣∣∣∣∣
∑

(i,j)∈P Ci,j

|P |
−
∑
`∈I

p2
`

∣∣∣∣∣∣ > εp(I)

 ≤ Var[
∑

(i,j)∈P Ci,j]

(ε · p(I) · |P |)2

From [GR00] we know that

Var

 ∑
(i,j)∈P

Ci,j

 ≤ |P | · µ+ |P |3/2 · µ3/2 (4)

and since µ ≤ p(I)2 we have Var
[∑

(i,j)∈P Ci,j
]
≤ p(I)2 · (|P |+ |P |3/2 · µ1/2), thus

Pr

∣∣∣∣∣∣
∑

(i,j)∈P Ci,j

|P |
−
∑
`∈I

p2
`

∣∣∣∣∣∣ > εp(I)

 ≤ |P |+ |P |3/2 · µ1/2

ε2|P |2
≤ 2

ε2|P |1/2
≤ 6

ε2m
≤ 1

4
. (5)

4

3 Near-optimal Priority k-histogram

In this section we give an algorithm that given p ∈ Dn, outputs a priority k ln(1/ε)-histogram which
is close in the `2 distance to an optimal tiling k-histogram that describes p. The algorithm, based
on a sketching algorithm in [TGIK02], takes a greedy strategy. Initially the algorithm starts with
an empty priority histogram. It then proceed by doing k ln(1/ε) iterations, where in each iteration
it goes over all

(n
2

)
possible intervals and adds the best one, i.e the interval I ⊆ [n] which minimizes

the distance between p and H when added to the currently constructed priority histogram H. The
algorithm has an efficient sample complexity of only logarithmic dependence on n but the running
time has polynomial dependence on n. This polynomial dependency is due to the exhaustive search
for the interval which minimizes the distance between p and H. We note that it is not clear that a
logarithmic dependence, or any dependence at all, on the domain size, n, is needed. Furthermore,
we suspect that a linear dependence on k, and not quadratic, is sufficient.

Theorem 1 Let p ∈ Dn be the distribution and let H∗ be the tiling k-histogram which minimizes
‖p−H∗‖22. The priority histogram H reported by Algorithm 1 satisfies ‖p−H‖22 ≤ ‖p−H∗‖

2
2+11ε.

The sample complexity of Algorithm 1 is Õ((k/ε)2 lnn). The running time complexity of Algorithm 1
is Õ((k/ε)2n2).

Proof: By Chernoff’s bound and union bound over the intervals in [n], with high constant prob-
ability, for every I,

|yI − p(I)| ≤ ξ . (6)

By Lemma 1 and Chernoff’s bound, with high constant probability, for every I,

|zI −
∑
i∈I

p2
i | ≤ ξp(I) . (7)

Henceforth, we assume that the estimations obtained by the algorithm are good, namely, Equa-
tions (6) and (7) hold for every interval. It is clear that any function f that has a representation
as a tiling k-histogram, H∗, has a representation as a priority histogram H. Moreover, we can
transform H to represent f in k steps, simply by adding the k intervals of H∗, (I1, v1), . . . , (Ik, vk),
to H, as (I1, v1, r), . . . , (Ik, vk, r), where r = rmax + 1 and rmax is the maximal priority over all
intervals in H. Therefore, by an averaging argument, there exists (L, v) ∈ {(Ii, vi)}ki=1 such that
adding the interval (L, v, r) to H decreases the error in the following way∥∥∥p−H ′L,v∥∥∥2

2
− ‖p−H∗‖22 ≤

(
1− 1

k

)
·
(
‖p−H‖22 − ‖p−H

∗‖22
)
, (8)

where H ′L,v is the histogram resulting from adding the interval (L, v, r) to H. For every interval
J ⊆ [n], define H ′′J as follows. H ′′J has the same partition into intervals as H after adding the interval

J with priority rmax + 1. The value assigned to every I ∈ H ′′J is p(I)
|I| . We note that the value of x

that minimizes the sum
∑
i∈I (pi − x)2 is x = p(I)

|I| . Therefore it holds that ‖p−H ′′J‖
2
2 ≤ ‖p−H

′
J‖

2
2,

which implies that

∥∥p−H ′′L∥∥2
2 − ‖p−H

∗‖22 ≤
∥∥∥p−H ′L,v∥∥∥2

2
− ‖p−H∗‖22 . (9)

5

Algorithm 1: Greedy algorithm for priority k-histogram

1 Obtain ` = ln(12n2)
2ξ2

samples, S, from p, where ξ = ε/(k ln(1/ε));

2 For each interval I ⊆ [n] set yI := |SI |
` ;

3 Obtain r = ln(6n2) sets of samples, S1, . . . , Sr, each of size m = 24
ξ2

from p;

4 For each interval I ⊆ [n] let zI be the median of
coll(S1

I)

(|S
1|
2)

, . . . ,
coll(SrI)

(|S
r |
2)

;

5 Initialize the priority histogram H to empty;
6 for i := 1 to k ln(1/ε) do
7 foreach interval J ⊆ [n] do
8 Create HJ,yJ obtained by:

• Adding (J, yJ|J | , r) to H, where
r = rmax + 1 and rmax is
the maximal priority in H;

• Recomputing the interval to
the left (resp. right) of J , IL (resp. IR)
so it would not intersect with J ;

• Adding (IL,
yIL
|IL| , r) and (IR,

yIR
|IR| , r) to H;

cJ :=
∑
I∈HJ,yJ

(
zI −

y2I
|I|

)
;

9 Let Jmin be the interval with the smallest value of cJ ;
10 Update H to be HJmin,yJmin

;

11 return H

For every interval J ⊆ [n],

∥∥p−H ′′J∥∥2
2 =

∑
I∈H′′J

∑
i∈I

(
pi −

p(I)

|I|

)2

=
∑
I∈H′′J

∑
i∈I

(
p2
i − 2pi

p(I)

|I|
+

(
p(I)

|I|

)2
)

=
∑
I∈H′′J

((∑
i∈I

p2
i

)
− p(I)2

|I|

)
. (10)

Recall that cJ =
∑
I∈HJ,yJ

(
zI −

y2I
|I|

)
where HJ,yJ is defined in Algorithm 1. For every I ∈ HJ,yJ ,

let aI = yI − p(I) and bI = zI −
∑
i∈I p

2
i . Therefore

cJ =
∑

I∈HJ,yJ

((∑
i∈I

p2
i

)
− p(I)2

|I|

)
+

∑
I∈HJ,yJ

(
bI +

2p(I)aI
|I|

+
a2
I

|I|

)
. (11)

6

Thus, from Equations (6), (7), (10) and (11) we obtain that∣∣∣cJ − ∥∥p−H ′′J∥∥2
2

∣∣∣ ≤ 3ξ + |{I ∈ HJ,yJ}|ξ
2 . (12)

Since the algorithm calculates cJ for every interval J , we derive from Equations (8), (9) and (12)
that ∥∥∥p−H ′′Jmin

∥∥∥2

2
− ‖p−H∗‖22 ≤

(
1− 1

k

)
·
(
‖p−H‖22 − ‖p−H

∗‖22
)

+ 6ξ + 2qξ2 . (13)

So at the q-th step we have∥∥∥p−H ′′Jmin

∥∥∥2

2
− ‖p−H∗‖22 ≤

(
1− 1

k

)q
+ q(6ξ + 2qξ2) . (14)

Setting q = k ln(1/ε) we obtain that∥∥∥p−H ′′Jmin

∥∥∥2

2
≤ ‖p−H∗‖22 + 9ε . (15)

By the triangle inequality it holds that for every J ⊆ [n]∣∣∥∥p−H ′′J∥∥2 − ‖p−HJ,yJ‖2
∣∣ ≤ ∥∥H ′′J −HJ,yJ

∥∥
2 . (16)

Thus, ∣∣∣∥∥p−H ′′J∥∥2
2 − ‖p−HJ,yJ‖

2
2

∣∣∣ ≤ 2
∥∥H ′′J −HJ,yJ

∥∥
2 . (17)

Since

∥∥HJ,yJ −H
′′
J

∥∥
2 =

 ∑
I∈HJ,yJ

(yI − p(I))2

|I|

1/2

≤ (|{I ∈ HJ,yJ}|ξ
2)1/2 , (18)

overall we obtain that at the q-th step
∥∥∥p−HJmin,yJmin

∥∥∥2

2
≤ ‖p−H∗‖22 + 11ε, as desired.

3.1 Improving the Running Time

We now turn to improving the running time complexity to match the sample complexity. Instead
of going over all possible intervals in [n] in search for an interval I ⊆ [n] to add to the constructed
priority histogram H. We search for I over a much smaller subset of intervals, in particular, only
those intervals whose endpoints are samples or neighbors of samples. In Lemma 2 we prove that
if we decrease the value a histogram H assigns to an interval I, then the square of the distance
between H and p in the `2-norm can grow by at most 2p(I). The lemma implies that we can treat
light weight intervals as atomic components in our search because they do not affect the distance
between H and p by much. While the running time is reduced significantly, we prove that the
histogram this algorithm outputs is still close to being optimal.

Lemma 2 Let p ∈ Dn and let I be an interval in [n]. For 0 ≤ β1 < β2 ≤ 1,∑
i∈I

(pi − β1)2 −
∑
i∈I

(pi − β2)2 ≤ 2p(I) (19)

7

Theorem 2 Let p and H∗ be as in Theorem 1. There is an algorithm that outputs a priority
histogram H that satisfies ‖p−H‖22 ≤ ‖p−H∗‖

2
2 + 15ε. The sample complexity of the algorithm is

Õ((k/ε)2 lnn) and the running time complexity of the algorithm is Õ((k5/ε4) ln2 n).

Proof: In the improved algorithm, as in Algorithm 1, we take ` = ln(12n2)
2ξ2

samples, T . Instead

of going over all J ⊆ [n] in Step (7) we consider only a small subset of intervals as candidates.
We denote this subset of intervals by T . Let T ′ be the set of all elements in T and those that
are distance one away, i.e. T ′ = {min{i+ 1, n}, i,max{i− 1, 0}|i ∈ T}. Then T is the set of all
intervals between pairs of elements in T ′, i.e. [a, b] ∈ T if and only if a ≤ b and a, b ∈ T ′. Thus, the
size of T is bounded above by

(3`+1
2

)
. Therefore we decrease the number of iterations in Step (7)

from
(n

2

)
to at most

(3`+1
2

)
= Õ((k/ε)4 ln2 n).

It is easy to see that intervals which are not in T have small weight. Formally, let I be an
intervals such that p(I) > ξ. The probability that I has no hits after taking ` samples is at most
(1 − ξ)` < 1/(2n2). Therefore by union bound over all the intervals I ⊆ [n], with high constant
probability, for every interval which has no hits after taking ` samples, the weight of the interval is
at most ξ.

Next we see why in Step (7) we can ignore intervals which have small weight. Consider a single
run of the loop in Step (7) in Algorithm 1. Let H be the histogram constructed by the algorithm
so far and let (L, v) be as described in the proof of Theorem 1. Namely, adding the interval (L, v, r)
to H decreases the error in the following way∥∥∥p−H ′L,v∥∥∥2

2
− ‖p−H∗‖22 ≤

(
1− 1

k

)
·
(
‖p−H‖22 − ‖p−H

∗‖22
)
, (20)

where r = rmax + 1 and H ′L,v is the histogram resulting from adding the interval (L, v, r) to H. We

shall see that there exists an interval J ∈ T such that
∥∥∥p−H ′J,v∥∥∥2

2
−
∥∥∥p−H ′L,v∥∥∥2

2
is small. Denote

the endpoints of L by a and b where a < b. Consider two cases. In the first case SL 6= ∅. Let
I1 = [a1, b1] be the largest interval in T such that I1 ⊆ L and let I2 = [a2, b2] be the smallest
interval in T such that L ⊆ I2. Therefore for every interval J = [x, y] where x ∈ {a1, a2} and
y ∈ {b1, b2} we have that

∑
i∈J∆L pi ≤ 2ξ where J∆L is the symmetric difference of J and L. Let

β1, β2 the value assigned to i ∈ [a2, a1], j ∈ [b1, b2] by H, respectively. Notice that the algorithm
only assigns values to intervals in T , therefore β1 and β2 are well defined. Take J to be as follows.
If β1 > v then take the start-point of J to be a2 otherwise take it to be a1. If β2 > v then take the
end-point of J to be b2 otherwise take it to be b1. In the second case SL = ∅. In this case, if v is
smaller then the value assigned to the elements in L by H, then take J to be the smallest interval
in T such that L ⊆ J . Otherwise, take J to be the empty interval. Since SJ = ∅ it follows that∑
i∈J∆L pi ≤ ξ. Therefore, in both cases, by lemma 2 it follows that∥∥∥p−H ′J,v∥∥∥2

2
−
∥∥∥p−H ′L,v∥∥∥2

2
≤ 2

∑
i∈J∆L

pi ≤ 4ξ . (21)

Thus, by similar calculations as in the proof of theorem 1, we obtain that at the q-th step∥∥∥p−HJmin,yJmin

∥∥∥2

2
≤ ‖p−H∗‖22 + 15ε, as desired.

Proof of Lemma 2:∑
i∈I

(pi − β1)2 −
∑
i∈I

(pi − β2)2 =
∑
i∈I

(p2
i − 2β1pi + β2

1)−
∑
i∈I

(p2
i − 2β2pi + β2

2) (22)

8

≤ 2p(I)(β2 − β1) + |I|(β2
1 − β2

2) (23)

≤ 2p(I) (24)

4 Testing whether a Distribution is a Tiling k-histogram

In this section we provide testing algorithms for the property of being a tiling k-histogram. The
testing algorithms attempt to partition [n] into k intervals which are flat according to p (recall
that an interval is flat if it has uniform conditional distribution or it has no weight). If it fails to
do so then it rejects p. Intervals that are close to being flat can be detected because either they
have light weight, in which case they can be found via sampling, or they are not light weight, in
which case they have small `2-norm. Small `2-norm can in turn be detected via estimations of the
collision probability. Thus an interval that has overall small number of samples or alternatively
small number of pairwise collisions is considered by the algorithm to be a flat interval. The search
of the flat intervals’ boundaries is performed in a similar manner to a search of a value in a binary
search. The efficiency of our testing algorithm is stated in the following theorems:

Theorem 3 Algorithm 2 is a testing algorithm for the property of being a tiling k-histogram for
the `2 distance measure. The sample complexity of the algorithm is O(ε−4 ln2 n). The running time
complexity of the algorithm is O(ε−4k ln3 n).

Theorem 4 There exists a testing algorithm for the property of being a tiling k-histogram for the
`1 distance measure. The sample complexity of the algorithm is Õ(ε−5

√
kn). The running time

complexity of the algorithm is Õ(ε−5k
√
kn).

Algorithm 2: Test Tiling k-histogram

1 Obtain r = 16 ln(6n2) sets of samples, S1, . . . , Sr, each of size m = 256 lnn · ε−4 from p;
2 Set previous := 1, low := 1, high := n;
3 for i := 1 to k do
4 while high ≥ low do
5 mid := low + (high - low) /2;
6 if testFlatness-`2 ([previous,mid], S1, . . . , Sr, ε) then
7 low := mid+1;

8 else
9 high := mid−1;

10 previous := low;
11 high := n;
12 If (previous = n) then return accept;

13 return reject

Proof of Theorem 3: Let I be an interval in [n] we first show that

Pr

[∣∣∣zI − ‖pI‖22∣∣∣ ≤ max
i
{ ε2

2p̂i(I)
}
]
> 1− 1

6n2
. (25)

9

Algorithm 3: testFlatness-`2(I, S1, . . . , Sr, ε)

1 For each i ∈ [r] set p̂i(I) :=
2|SiI |
m ;

2 If there exists i ∈ [r] such that
|SiI |
m < ε2

2 then return accept ;

3 Let zI be the median of
coll(S1

I)

(|S
1|
2)

, . . . ,
coll(SrI)

(|S
r |
2)

;

4 If zI ≤ 1
|I| + maxi{ ε2

2p̂i(I)
} then return accept ;

5 return reject;

where zI is the median of
coll(S1

I)

(|S
1
I
|

2
)
, . . . ,

coll(SrI)

(|S
r
I
|

2
)

. Recall that p̂i(I) =
2|SiI |
m , hence, due to the facts

that m ≥ 256
ε4

and m ≥ |SiI | we get that |SiI | ≥ |SiI | · 256
ε4m
· |S

i
I |
m ≥

64p̂i(I)2

ε4
. By Equation (2), for each

i ∈ [r],

Pr

∣∣∣∣∣∣coll(S
i
I)(|SiI |

2

) − ‖pI‖22
∣∣∣∣∣∣ ≤ ε2

2p̂i(I)

 > 3

4
. (26)

Since each estimate
coll(SiI)

(|S
i
I
|

2
)

is close to ‖pI‖22 with high constant probability, we get from Chernoff’s

bound that for r = 16 ln(6n2) the median of r results is close to ‖pI‖22 with very high probability as
stated in Equation (25). By union bound over all the intervals in [n], with high constant probability,
the following holds for everyone of the at most n2 intervals in [n], I,∣∣∣zI − ‖pI‖22∣∣∣ ≤ max

i
{ ε2

2p̂i(I)
} . (27)

So henceforth we assume that this is the case.
Assume the algorithm rejects. When this occurs it implies that there are at least k distinct

intervals such that for each interval the test testFlatness-`2 returned reject. For each of these
intervals I we have p(I) 6= 0 and zI >

1
|I|+maxi{ ε2

2p̂i(I)
}. In this case ‖pI‖22 ≥ 1

|I| , and so I is not flat

and contains at least one bucket boundary. Thus, there are at least k internal bucket boundaries.
Therefore p is not a tiling k-histogram.

Assume the algorithm accepts p. When this occurs there is a partition of [n] to k intervals, I,

such that for each interval I ∈ I, testFlatness-`2 returned accept. Define p′ to be p(I)
|I| on the

intervals obtained by the algorithm. For every I ∈ I, if it is the case that there exists i ∈ [r], such

that
|SiI |
m < ε2

2 , then by fact 1 (below), p(I) < ε2. Therefore, from the fact that
∑
i∈I(pi − x)2 is

minimized by x = p(I)
|I| and the Cauchy-Schwarz inequality we get that

∑
i∈I

(
pi −

p(I)

|I|

)2

≤
∑
i∈I

p2
i ≤ p(I)2 ≤ ε2p(I) . (28)

Otherwise, if
|SiI |
m ≥ ε2

2 for every i ∈ [r] then by the second item in fact 1, p(I) ≥ ε2

4 . By the first

item in fact 1, it follows that p̂i(I) =
2|SiI |
m ≥ p(I) and therefore

zI ≤
1

|I|
+

ε2

2p(I)
. (29)

10

where zI is the median of
coll(S1

I)

(|S
1
I
|

2
)
, . . . ,

coll(SrI)

(|S
r
I
|

2
)

. This implies that ‖pI‖22 ≤
1
|I| + ε2

p(I) . Thus,

‖pI − uI‖22 ≤
ε2

p(I) , where uI is the uniform distribution over |I| elements. Since ‖pI − uI‖22 =∑
i∈I

(
pi
p(I) −

1
|I|

)2
we get that

∑
i∈I

(
pi − p(I)

|I|

)2
≤ ε2p(I). Hence

∑
I∈I

∑
i∈I

(
pi − p(I)

|I|

)2
≤ ε2,

thus, p is ε-close to p′ in the `2-norm.

Fact 1 If we take m ≥ 48 ln(2n2γ)
ε2

samples, S, then with probability greater than 1− 1
γ :

1. For any I such that p(I) ≥ ε2

4 , p(I)
2 ≤

|SI |
m ≤

3p(I)
2

2. For any I such that |SI |m ≥
ε2

2 , p(I) > ε2

4

3. For any I such that |SI |m < ε2

2 , p(I) < ε2

Proof: Fix I, if p(I) ≥ ε2

4 , by Chernoff’s bound with probability greater than 1− 2e−
mε2

48 ,

p(I)

2
≤ |SI |

m
≤ 3p(I)

2
. (30)

In particular, if p(I) = ε2

4 , then
|SiI |
m ≤ 3ε2

8 , thus if |SI |m ≥ ε2

2 > 3ε2

8 then p(I) > ε2

4 . If |SI |m < ε2

2 then

either p(I) ≤ ε2

4 or p(I) > ε2

4 but then p(I) ≤ 2|SI |
m < ε2. By the union bound, with probability

greater than 1− n2 · 2e−
mε2

48 > 1− 1
γ , the above is true for every I.

Algorithm 4: testFlatness-`1(I, S1, . . . , Sr, ε)

1 If there exists i ∈ [r] such that |SiI | <
163
√
|I|

ε4
then return accept;

2 Let zI be the median of
coll(S1

I)

(|S
1|
2)

, , . . . ,
coll(SrI)

(|S
r |
2)

;

3 If zI ≤ 1
|I|(1 + ε2

4) then return accept ;

4 return reject;

Proof of Theorem 4: Apply Algorithm 2 with the following changes: take each set of samples
Si to be of size m = 213

√
knε−5 and replace testFlatness-`2 with testFlatness-`1 . By Equation (1)

Pr

[∣∣∣∣∣coll(SI)(|SI |
2

) − ‖pI‖22
∣∣∣∣∣ > δ ‖pI‖22

]
<

4

δ2|SI | ‖pI‖2
. (31)

Thus, if SI is such that |SI | ≥
16
√
|I|

δ2
≥ 16

δ2‖pI‖2
, then

Pr

[∣∣∣∣∣coll(SI)(|SI |
2

) − ‖pI‖22
∣∣∣∣∣ > δ ‖pI‖22

]
>

3

4
. (32)

By additive Chernoff’s bound and the union bound over the O(n2) intervals in [n], for r = 16 ln(6n2)

and δ = ε2

16 , with high constant probability for every interval I that passes Step 1 in Algorithm 4 it

11

holds that

∣∣∣∣ coll(SI)

(|SI |2)
− ‖pI‖22

∣∣∣∣ ≤ δ ‖pI‖22. So from this point on we assume that the algorithm obtains

a δ-multiplicative approximation of ‖pI‖22 for every I that passes Step 1.
Assume the algorithm rejects p, then there are at least k distinct intervals such that for each

interval the test testFlatness-`1 returned reject. By our assumption each of these intervals is not
flat and thus contains at least one bucket boundary. Thus, there are at least k internal buckets
boundaries, therefore p is not a tiling k-histogram.

Assume the algorithm accepts p, then there is a partition of [n] to k intervals, I, such that for

each interval I ∈ I, testFlatness-`1 returned accept. Define p′ to be p(I)
|I| on the intervals obtained

by the algorithm. For any interval I for which testFlatness-`1 returned accept and passes Step 1

it holds that ‖pI − uI‖2 <
ε

2
√
|I|

thus
∑
i∈I

∣∣∣pi − p(I)
|I|

∣∣∣ ≤ ε
2p(I). Denote by L the set of intervals

for which testFlatness-`1 returned accept on Step 1. By Chernoff’s bound, for every I ∈ L, with

probability greater than 1 − e−
mε
32k , either p(I) ≤ ε

4k or p(I) ≤ 2·163
√
|I|

mε4
. Hence, with probability

greater than 1− n2 · r · e−
mε
32k > 1− 1

6 , the total weight of the intervals in L is bounded by:

∑
I∈L

max{2 · 163
√
|I|

mε4
,
ε

4k
} ≤ ε

4
+
∑
I∈L

2 · 163
√
|I|

mε4
=
ε

4

(
1 +

∑
I∈L

√
|I|√
kn

)
≤ ε

2
,

where the last inequality follows from the fact that |L| ≤ k which implies that
∑
I∈L

√
|I|/n ≤

√
k.

Therefore, p is ε-close to p′ in the `1-norm.

4.1 Lower Bound

We prove that for every k ≤ 1/ε, the upper bound in Theorem 4 is tight in term of the dependence
in k and n. We note that for k = n, testing tiling k-histogram is trivial, i.e. every distribution is a
tiling n-histogram. Hence, we can not expect to have a lower bound for any k. We also note that
the testing lower bound is also an approximation lower bound.

Theorem 5 Given a distribution D testing if D is a tiling k-histogram in the `1-norm requires
Ω(
√
kn) samples for every k ≤ 1/ε.

Proof: Divide [n] into k intervals of equal size (up to ±1). In the YES instance the total
probability of each interval alternates between 0 and b2/kc and within each interval the elements
have equal probability. The NO instance is defined similarly with one exception, randomly pick
one of the intervals that have total probability b2/kc, I, and within I randomly pick half of the
elements to have probability 0 and the other half of the elements to have twice the probability
of the corresponding elements in the YES instance. In the proof of the lower bound for testing
uniformity it is shown that distinguishing a uniform distribution from a distribution that is uniform
on a random half of the elements (and has 0 weight on the other half) requires Ω(

√
n). Since the

number of elements in I is Θ(n/k), by a similar argument we know that at least Ω(
√
n/k) samples

are required from I in order to distinguish the YES instance from the NO instance. From the fact
that the total probability of I is Θ(1/k) we know that in order to obtain Θ(

√
n/k) hits in I we are

required to take a total number of samples which is of order
√
nk, thus we obtain a lower bound of

Ω(
√
nk).

12

References

[AAK+07] N. Alon, A. Andoni, T. Kaufman, K. Matulef, R. Rubinfeld, and N. Xie. Testing k-
wise and almost k-wise independence. In Proceedings of the Thirty-Ninth Annual ACM
Symposium on the Theory of Computing (STOC), pages 496–505, 2007.

[BDKR05] T. Batu, S. Dasgupta, R. Kumar, and R. Rubinfeld. The complexity of approximating
the entropy. SIAM Journal on Computing, 35(1):132–150, 2005.

[BFF+01] T. Batu, L. Fortnow, E. Fischer, R. Kumar, R. Rubinfeld, and P. White. Testing
random variables for independence and identity. In Proceedings of the Forty-Second
Annual Symposium on Foundations of Computer Science (FOCS), pages 442–451, 2001.

[BFR+00] T. Batu, L. Fortnow, R. Rubinfeld, W.D. Smith, and P. White. Testing that distribu-
tions are close. In Proceedings of the Forty-First Annual Symposium on Foundations
of Computer Science (FOCS), pages 259–269, Los Alamitos, CA, USA, 2000. IEEE
Computer Society.

[BFR+10] T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White. Testing closeness of
discrete distributions. CoRR, abs/1009.5397, 2010. This is a long version of [BFR+00].

[BKR04] T. Batu, R. Kumar, and R. Rubinfeld. Sublinear algorithms for testing monotone and
unimodal distributions. In Proceedings of the Thirty-Sixth Annual ACM Symposium on
the Theory of Computing (STOC), pages 381–390, 2004.

[CMN98] S. Chaudhuri, R. Motwani, and V. Narasayya. Random sampling for histogram con-
struction: how much is enough? SIGMOD, 1998.

[GGI+02] A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, M. Muthukrishnan, and M. Strauss. Fast,
small-space algorithms for approximate histogram maintenance. STOC, 2002.

[GGR98] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning
and approximation. Journal of the ACM, 45(4):653–750, 1998.

[GKS06] S. Guha, N. Koudas, and K. Shim. Approximation and streaming algorithms for his-
togram construction problems. ACM Transactions on Database Systems (TODS), 31(1),
2006.

[GMP97] P.B. Gibbons, Y Matias, and V. Poosala. Fast incremental maintenance of approximate
histograms. VLDB, 1997.

[GR00] O. Goldreich and D. Ron. On testing expansion in bounded-degree graphs. Electronic
Colloqium on Computational Complexity, 7(20), 2000.

[Ioa03] Y. Ioannidis. The history of histograms (abridged). VLDB, 2003.

[JPK+98] H. V. Jagadish, V. Poosala, N. Koudas, K. Sevcik, S. Muthukrishnan, and T. Suel.
Optimal histograms with quality guarantees. VLDB, 1998.

[Pan08] L. Paninski. Testing for uniformity given very sparsely-sampled discrete data. IEEE
Transactions on Information Theory, 54(10):4750–4755, 2008.

13

[Ron08] D. Ron. Property testing: A learning theory perspective. Foundations and Trends in
Machine Learning, 3:307–402, 2008.

[RRSS09] S. Raskhodnikova, D. Ron, A. Shpilka, and A. Smith. Strong lower bonds for approxi-
mating distributions support size and the distinct elements problem. SIAM Journal on
Computing, 39(3):813–842, 2009.

[RS96] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

[Rub06] R. Rubinfeld. Sublinear time algorithms. In Proc. International Congress of Mathe-
maticians, volume 3, pages 1095–1111, 2006.

[TGIK02] Nitin Thaper, Sudipto Guha, Piotr Indyk, and Nick Koudas. Dynamic multidimensional
histograms. In SIGMOD Conference, pages 428–439, 2002.

[Val08] P. Valiant. Testing symmetric properties of distributions. In Proceedings of the Fourtieth
Annual ACM Symposium on the Theory of Computing (STOC), pages 383–392, 2008.

[VV11] G. Valiant and P. Valiant. Estimating the unseen: an n/ log(n)-sample estimator for
entropy and support size, shown optimal via new CLTs. In Proceedings of the Fourty-
Third Annual ACM Symposium on the Theory of Computing, pages 685–694, 2011. See
also ECCC TR10-179 and TR10-180.

14

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

