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Abstract

We obtain a characterization of feasible, Bayesian, multi-item multi-bidder mechanisms with
independent, additive bidders as distributions over hierarchical mechanisms. Combined with
cyclic-monotonicity our results provide a complete characterization of feasible, Bayesian Incen-
tive Compatible mechanisms for this setting.

Our characterization is enabled by a novel, constructive proof of Border’s theorem [5], and a
new generalization of this theorem to independent (but not necessarily identically distributed)
bidders, improving upon the results of [6, 12]. For a single item and independent (but not
necessarily identically distributed) bidders, we show that any feasible reduced form auction can
be implemented as a distribution over hierarchical mechanisms. We also give a polynomial-time
algorithm for determining feasibility of a reduced form auction, or providing a separation hyper-
plane from the set of feasible reduced forms. To complete the picture, we provide polynomial-
time algorithms to find and exactly sample from a distribution over hierarchical mechanisms
consistent with a given feasible reduced form. All these results generalize to multi-item reduced
form auctions for independent, additive bidders. Finally, for multiple items, additive bidders
with hard demand constraints, and arbitrary value correlation across items or bidders, we give
a proper generalization of Border’s Theorem, and characterize feasible reduced form auctions
as multi-commodity flows in related multi-commodity flow instances. We also show that our
generalization holds for a broader class of feasibility constraints, including the intersection of
any two matroids.

As a corollary of our results we obtain revenue-optimal, Bayesian Incentive Compatible
(BIC) mechanisms in multi-item multi-bidder settings, when each bidder has arbitrarily corre-
lated values over the items and additive valuations over bundles of items, and the bidders are
independent. Our mechanisms run in time polynomial in the total number of bidder types (and
not type profiles). This running time is polynomial in the number of bidders, but potentially
exponential in the number of items. We improve the running time to polynomial in both the
number of items and the number of bidders by using recent structural results on optimal BIC
auctions in item-symmetric settings [14].
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1 Introduction

In its most general form mechanism design is the task of selecting outcomes and charging prices
in a way that maximizes some objective such as revenue or social-welfare. Accordingly, to specify
a mechanism one needs to provide two, possibly randomized, functions: one that maps bids to
outcomes, and another mapping bids to prices charged to the bidders. Consider, e.g., a setting
where n items are (simultaneously) auctioned to m bidders. For every possible collection of bids
the mechanism needs to specify (a) a possibly randomized allocation of items to bidders; and (b) a
possibly randomized collection of prices charged to them. The latter can be typically summarized
by its expectation, which is just a vector of real numbers, recording the price charged to each
bidder. But the former is a distribution over allocations and, in principle, would require (m +
1)n probabilities to be specified, making such explicit specification completely impractical. It
turns out that this calculation is too pessimistic, and the Birkhoff-von Neumann decomposition
theorem allows one to summarize a randomized allocation by just providing its marginal allocation
probabilities φ = {φij}ij , where φij is the probability that item j is given to bidder i [15]. All
that these probabilities need to satisfy to be consistent with a joint allocation distribution is that
no item is given out more than once in expectation, and no bidder gets more items than she wants
(if she has any demand constraints).

Yet, the above description is still too demanding as, even when every bidder can place c possible
bids to specify her preferences over the items, there are cm possible bid vectors, and the mechanism
needs to specify what to do for each. To decrease the specification complexity to linear in the
number of bidders one can use the reduced form of the mechanism, which specifies a pair of possibly
randomized allocation and price functions per bidder. In particular, if Ti denotes the possible bids
that bidder i can submit, 1 the reduced form of the mechanism provides a collection R := {(πi :
Ti → [0, 1]n, pi : Ti → R)}i of functions such that, for all ti ∈ Ti and all j, πij(ti) is the marginal
probability (over the randomness in the mechanism and the uncertainty about the bids submitted
by the other bidders) that item j is allocated to bidder i when she reports ti, and pi(ti) is the
expected price she pays. Indeed, the functions πi and pi provide sufficient information for the
bidder to decide what bid in Ti optimizes her utility in expectation. The trouble is that, unless the
uncertainty over the other bids can be modeled probabilistically, the notion of a marginal allocation
probability πij is ill-defined.

Indeed, Economists go around this obstacle by making average-case assumptions about the
preferences of bidders [22]. In particular, it is assumed that every bidder has a type ti ∈ Ti (forgive
the temporary overload of notation), and that the joint type profile of the bidders is sampled from
some known, joint distribution D over ×iTi. Now, the Revelation Principle implies that every
auction is strategically equivalent to one where bidders submit not generic bids, but truthfully
report their exact type. Hence w.l.o.g. we can restrict our attention to mechanisms where the bid
space of bidder i is just Ti (EndOf overload of notation), and where the distribution of bids
that bidders submit is exactly D. For such auctions, the reduced form is perfectly well-defined.
But a challenge remains: What conditions are necessary and sufficient for a reduced form {πi}i
to be feasible, i.e. correspond to a feasible auction (that never over-allocates items)? Can these
conditions be verified efficiently? And, given a feasible reduced form can we efficiently compute an
auction implementing it?

Before studying these questions, why do we even care? Even without answers, mechanism design
has made great progress in designing auctions, which optimize various objectives in a wide-range

1We won’t make any assumptions about Ti, except that it is measurable. In particular, it won’t necessarily be a
subset of R, unless otherwise specified.
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of settings. When the objective is social-welfare, there is an optimal auction with a very clean
allocation rule, namely the VCG auction [25, 13, 16]. The auction always chooses the welfare-
maximizing allocation, and just charges prices to ensure incentive compatibility. When the objective
is revenue, things get more murky. Still, when we are auctioning a single item to bidders whose
values are independently sampled from known distributions, we can employ Myerson’s celebrated,
revenue-optimal auction [22]. Its allocation rule is still rather clean: it always chooses the allocation
that maximizes virtual surplus, and just charges prices to ensure incentive compatibility.

While in the above cases we have clean allocation rules, these results remain quite exceptional.
In particular, there is no known simple characterization of the set of all feasible single-item mecha-
nisms, and (prior to this work) it is unclear if there is one. Additionally, it seems unlikely that there
is a clean allocation rule implementing the revenue-optimal multi-item mechanism. Understanding
the set of feasible multi-item mechanisms is therefore a crucial step along the path to understanding
revenue-optimal mechanisms in this setting. Indeed, in the past decades a large body of research in
Economics has been devoted to finding revenue-optimal mechanisms (extending Myeson’s result)
to multi-item settings, but progress has been sporadic (see survey [19] and its references). More
recently the problem has entered theory of computation, and there has been a number of papers
obtaining constant factor approximations [1, 4, 10]. Our slow progress on this front is intimately
related to the lack of a characterization result of feasible mechanisms. Loosely speaking, all known
algorithms optimize using relaxed feasibility constraints for the reduced form of the mechanism,
such as “every item can be awarded at most once in expectation” [1, 4] or “the expected number
of items awarded from every subset must not exceed its rank” [10]. Using such relaxed feasibility
constraints, the optimal (possibly infeasible) reduced form is found. To turn this into a feasible
reduced form, some “rounding procedure” is applied; this procedure may be just scaling the alloca-
tion probabilities down by a constant so that no item is over-allocated [1, 4], or may invoke prophet
inequalities [1, 10]. However, rounding comes with a loss in revenue. In view of this computational
experience with the problem, it is crucial to try to characterize the feasible reduced forms exactly
in a way that makes optimization efficient.

In this paper we carry out this program. We obtain strong characterization results for the set
of all feasible single-item mechanisms (for independent bidders), as well as the set of all feasible
multiple-item mechanisms when the bidders have arbitrarily correlated additive valuations over
bundles of items (but there is no correlation across bidders). Our characterization result (explained
in Section 3.2) is based on obtaining novel, constructive proofs of Border’s theorem [5] and recent
extensions of this theorem [6, 12], which are overviewed in Section 3.1. Using these constructive
proofs and our characterization result, we obtain revenue-optimal, Bayesian Incentive Compatible
(BIC) mechanisms in multi-item multi-bidder settings, when each bidder has arbitrarily correlated
values over the items and additive valuations over bundles of items, and the bidders are independent.
Our mechanisms run in time polynomial in the total number of bidder types,

∑
i |Ti|. This running

time is polynomial in the number of bidders, but potentially exponential in the number of items.
We improve the running time to polynomial in both the number of items and the number of
bidders, by using recent structural results on optimal BIC auctions in symmetric settings [14].
These results are overviewed in Section 3.3. In Section 3.4 we present a generalization of Border’s
theorem to the multi-item setting where values are arbitrarily correlated across items or bidders,
and bidders have additive valuations with hard demand constraints, and provide a multi-commodity
flow interpretation of this problem. In addition, we show that our generalization holds for a much
broader class of feasibility constraints. Simply put, our generalization holds in all instances where
the feasibility constraints can be written as a system of inequalities that are linear in allocation
marginals (φij ’s). This includes feasibility constraints that are the intersection of any two matroids,
as well as many other set systems [24].
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After a brief enumeration of our theorems and a couple of figures summarizing our results, we
fix our notation and proceed to the technical sections. We show the following theorems (and several
auxiliary ones along the way): (a) Theorems 2 and 6 state our algorithmic results: If a reduced
form auction for independent bidders and a single item is given to us as input, we can efficiently
determine if the auction is feasible or not. If it is feasible, we efficiently compute an efficient process
that implements it. If it is infeasible, we efficiently provide a hyperplane separating it from the
set of feasible mechanisms. These results extend to multi-item settings with additive, independent
bidders and arbitrary correlation in the values of each bidder for the items. (b) Theorems 3 and
7 are the core of our characterization result: Every feasible reduced form auction for a single item
and independent bidders can be implemented as a distribution over hierarchical mechanisms. Using
these theorems we obtain a clean, characterization of the allocation rule of all multidimensional
mechanisms for multi-item settings with independent, additive bidders and arbitrary correlation
in the values of each bidder for the items. Our characterization result is provided in Section 3.2.
(c) Theorem 4 provides our analog of Myerson’s virtual values. It states that we can transform
the marginal probabilities πs of a reduced form into virtual πs such that the total ordering of the
types (across different bidders) induced by the virtual πs allows us to, in linear time, verify the
feasibility of a reduced form auction or output a hyperplane separating it from the set of feasible
reduced forms. (d) Theorem 12 proves a generalization of Border’s Theorem to a broad class
of feasibility constraints that includes the case of many items, many additive bidders with hard
demand constraints, and arbitrary value correlation across items or bidders.

Figures 1 and 2 summarize the current state of affairs on the two fronts studied in this paper.
The first is on efficiently implementing as well as characterizing the allocation rule of feasible reduced
forms, while the second is on efficiently solving the optimal multi-dimensional mechanism design
problem. The second only records mechanisms that achieve optimal or near-optimal revenue, i.e.
come ε-close to optimal revenue for arbitrary accuracy ε. In particular, we do not quote constant
factor approximations [1, 4, 10], which are not the focus of this work. The “Item-Symmetric”
column of the second figure refers to settings that are symmetric with respect to the items (see
Section 3.3 for a formal definition of such settings and [14] for a discussion), while the “Bidder-
Symmetric” column to settings that are symmetric with respect to the bidders (see Section 3.3
and [14] for a formal definition/discussion). Moreover, the “Many items, Few bidders” row refers
to settings where the number of bidders is an absolute constant but the number of items, n, is
allowed to scale, and the “Few items, Many bidders” row refers to settings where the number of
items is held constant but the number of bidders, m, is allowed to scale. Finally, in the cells of the
same table we stress components of the running time/the setting that are the best we could hope
for, and do not stress components that could be improved, leaving these improvements to future
work.

Parallel Work: We have been informed that, independently from us, [2] also obtained polynomial-
time algorithms for checking the feasibility of a given single-item reduced form auction, when the
bidders are independent, as well algorithms for efficiently implementing the reduced form, if it
is feasible. (See Figure 1 for where their results fit with respect to our results). [2] apply their
algorithms to “service constrained” multi-dimensional mechanism design environments, which are
orthogonal to the mechanism design settings considered here.

2 Preliminaries and notation

Throughout the paper, we denote the number of bidders by m and the number of items by n.
We also use Ti to denote the types of bidder i. We make no assumptions about Ti except that
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Necessary&Sufficient Efficient Characterization of
Feasibility Conditions Implementation Feasible Mechanisms

Independent Bidders, [5, 6, 12] [this work] [this work]
No Demand Constraints (& independently [2],

for single-item auctions)

Correlated Bidders, [this work] Open Question Open Question
Demand Constraints,
and Broader Settings†

†: See Section 3.4.

Figure 1: Feasibility, Efficient Implementation and Characterization of Reduced Form Multi-Item
Auctions. The bidders are additive up to (if stated) some hard demand constraint. Both lines allow
correlation of values across different items, but the first row assumes that bidders have independent
valuations while the second also allows correlation across bidders.

Item-Symmetric Bidder-Symmetric No Symmetries

Many items, poly(n)†, poly(n)§,
Few bidders demand constraints, Same as −→ no demand constraints,

item correlation [14] MHR independent items [8]

Few items, Same as below poly(m)†, Same as below
Many bidders [this work] demand constraints, [this work]

item correlation [14]

Many items poly(n,m)†, poly(
∑

i |Ti|)‡,
Many bidders no demand constraints, Same as −→ no demand constraints,

item correlation [this work] item correlation
[this work] [this work]

§: For all ε > 0, a (1− ε)-fraction of the optimal revenue is achieved in the quoted running time. 1/ε appears in
the exponent of the running time.

†: Exactly optimal revenue is achieved in the quoted running time, when every marginal of the bidders’ value
distributions has constant size support. The size of the support appears in the exponent of the running time.
When the size of the support is non-constant/infinite/unbounded, two types of PTAS’s are obtained:

• When every marginal is MHR, a (1−ε)-fraction of the optimal revenue is achieved in the quoted running
time, for all ε > 0.

• When the value distributions are bounded and normalized to [0, 1]n, an additive approximation to the
optimal revenue is achieved in the quoted running time, for all ε > 0. The approximation error is
ε ·min{n,

∑
i Ci}, where Ci is the demand constraint of bidder i (if any).

‡: Exactly optimal revenue is achieved in the quoted running time, where recall that Ti is the support of the value
distribution of bidder i. When the supports are infinite/unbounded we can alternatively obtain two types of
approximation schemes:

• When every marginal of the bidders’ value distributions is MHR, a (1−ε)-fraction of the optimal revenue
is achieved in time polynomial in m and (1/ε)n, for all ε > 0.

• When the value distributions are bounded and normalized to [0, 1]n, an additive approximation to the
optimal revenue is achieved in time polynomial in m and (1/ε)n, for all ε > 0. The approximation error
is ε · n.

Figure 2: Efficient Solution to the Optimal Multi-Dimensional Mechanism Design Problem with
Independent Bidders. The bidders are additive up to (if stated) some hard demand constraint.

it is measurable. In particular, it is not assumed that Ti is a subset of R, and it could well be
multidimensional; e.g., when a bidder has additive valuations, the type of the bidder could be just
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a vector specifying how much she values each of the items. To obtain computationally meaningful
results, we assume in Sections 3.1, 3.2 and 3.4 that the type sets {Ti}i are finite (as opposed to
continuous/infinite, but not of constant size), and in this case use c as a shorthand for maxi |Ti|.
However, our results in Section 3.3 apply also to continuous type spaces, since when the type
distributions are bounded or when they are unbounded but satisfy the Monotone Hazard Rate
tail condition, 2 we can truncate and discretize the support of the distribution and still get nearly
optimal ε-BIC mechanisms (Definition 1) using the techniques of [7] or [14]. We can then employ
the ε-BIC to BIC reduction of [14] to get nearly optimal BIC mechanisms. See Section 3.3 for
details.

To ease notation, we just use A (B, C, etc.) to denote the type of a bidder, without emphasizing
whether it is a vector or a scalar. The elements of ×iTi are called type profiles, and specify a type
for every bidder. We assume type profiles are sampled from a distribution D over ×iTi. We denote
by Di the marginal of this distribution on bidder i’s type, and use D−i to denote the marginal of
D over the types of all bidders, except bidder i. We use ti for the random variable representing the
type of bidder i. So when we write Pr[ti = A], we mean the probability that bidder i’s type is A.
In the i.i.d. case, because Pr[ti = A] is the same for all i, we will just write Pr[A].

The reduced form of a mechanism is a vector function π(·), specifying values πij(A), for all
items j, bidders i and types A ∈ Ti. πij(A) is the probability that bidder i receives item j when
reporting type A, where the probability is over the randomness of all other bidders’ types and the
internal randomness of the mechanism, assuming that the other bidders report their true types to
the mechanism. When we only consider a single item (case n = 1), we drop the item subscript
from the πij ’s, writing πi(A) for the probability that the item is allocated to bidder i. In this case
we may think of π(·) as a vector in [0, 1]

∑
i |Ti|. To emphasize the vector-view of the reduced form

we may write ~π for the reduced form.
Sometimes we will be considering settings where the bidders are i.i.d., i.e. Ti = Ti′ = T , for all i

and i′, and D is a product distribution over ×iTi with the same marginal on every bidder. In such
settings, we may be looking at bidder-symmetric reduced forms, satisfying πij(A) = πi′j(A), for all
j, i, i′, A ∈ T . In such cases, we will drop the bidder subscript from the πij ’s, writing πj(A), for
the probability that a bidder of type A ∈ T receives item j, over the randomness of the mechanism
and the types of the other bidders, assuming that the other bidders report their true types to the
mechanism. If there is a single item and the reduced form is bidder-symmetric, we will drop both
subscripts writing π(A) for the same probability. In this case, we may think of the reduced form
as a vector ~π in [0, 1]|T |.

Given a reduced form π of a mechanism we will be interested in whether the form can be
“implemented”. By this we mean designing a feasible mechanism M (i.e. one that never over-
allocates items) such that the probability Mij(A) that bidder i receives item j when she reports
type A to the mechanism is exactly πij(A), where the probability is computed with respect to the
randomness in the mechanism and the randomness in the types of the other bidders, assuming that
the other bidders report their true types to the mechanism. In fact, we will relax this requirement
and say that a mechanism M implements the reduced form π if Mij(A) ≥ πij(A), for all i, j, A.
This is because we can trivially modify such a mechanism so that all constraints are tight. Indeed,
if Mij(A) = x · πij(A) for some i, j, A, x > 1, we can rectify the mechanism as follows: whenever
M wants to allocate item j to bidder i when he has reported type A, we instead throw the item
away with probability x−1

x . It’s easy to see that this results in Mij(A) = πij(A). When Mij(A) =
πij(A) for all i, j, A, we will say that M exactly implements π. Finally, if a reduced form can be

2We say that a one-dimensional differentiable distribution F satisfies Monotone Hazard Rate, or succinctly MHR,
if f(x)

1−F (x)
is monotonically non-decreasing in its domain, where f = F ′ is the probability density function.
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implemented by a mechanism, we say that the reduced form is feasible.
When a bidder is additive, we may write ~vi to denote her type, with the convention that

vij represents her value for item j and that her value for a bundle of items is just the sum of
her values for the items in the bundle. Then, to fully specify a (direct-revelation) multi-item
mechanism for additive bidders, we need to describe, potentially succinctly, for all type profiles
~v ∈ ×iTi, and for every bidder i, the outcome Mi(~v) = (~φi(~v), pi(~v)) given by M to bidder i,
when the reported bidder types are ~v, where φij(~v) is the probability that item j is given to
bidder i and pi(~v) is the price that i pays. The value of bidder i for outcome Mi(~w) is just her
expected value ~vi · ~φi(~w) for the bundle allocated to her, while the utility of bidder i for the same
outcome is U(~vi,Mi(~w)) := ~vi · ~φi(~w)− pi(~w). Such bidders subtracting price from expected value
are called quasi-linear. The relation between φ’s and π’s is just the following: for all i, ~vi ∈ Ti:
πij(~vi) = E~v−i∼D−i [φij(~vi ; ~v−i)], where the expectation is computed with respect to the values ~v−i
of all bidders except i as these are drawn from D−i. We conclude by formally defining Bayesian
Incentive Compatibility:

Definition 1 ([14]). (BIC/ε-BIC Mechanism) A mechanism M is called ε-BIC iff the following
inequality holds for all i, ~vi, ~wi:

E~v−i∼D−i [U(~vi,Mi(~v))] ≥ E~v−i∼D−i [U(~vi,Mi(~wi ; ~v−i))]− εvmax ·
∑
j

πij(~wi),

where vmax is the maximum possible value of any bidder for any item in the support of the value
distribution. In other words, M is ε-BIC iff when a bidder lies by reporting ~wi instead of ~vi, they
do not expect to gain more than εvmax times the expected number of items that ~wi receives. A
mechanism is called BIC iff it is 0-BIC. 3

We conclude our preliminaries section noting that the running times of the algorithms obtained
in Sections 3.1.1 and 3.1.2 are quoted without accounting for the number of bits needed to represent
a coordinate of ~π. If ` bits are needed to describe a probability in ~π, then it suffices to multiply all
quoted running times by a poly(`) factor.

3 Overview of Results and Techniques

3.1 Feasible Reduced Forms

3.1.1 Single-item, Bidder-Symmetric Reduced Forms, i.i.d. Bidders

In the case of a single item and i.i.d. bidders, Border provided a necessary and sufficient condition
for a bidder-symmetric reduced form to be feasible, generalizing prior partial results of Maskin-
Riley [20] and Matthews [21]. Let us review Border’s theorem.

Theorem 1 ([5]). Suppose that the bidder’s types are i.i.d. distributed according to some measure
µ over T . Then a bidder-symmetric reduced form π is feasible if an only if

∀S ⊆ T : m ·
∫
S
π(t)dµ(t) ≤ 1− (1− µ(S))m. (1)

3This definition differs slightly from the more common definition of [3, 17, 18]. We use the definition of [14] to be
correct in applying their results.
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Simply put, a reduced form is feasible if and only if the probability that the item is awarded to
a type in some set S (as computed by the reduced form) is at most the probability that someone
with type from S shows up to the auction (as computed by the type distribution), for all subsets of
types S ⊆ T . We call a set that violates this condition a constricting set. Clearly, the existence of a
constricting set bears witness that the reduced form is infeasible, as the auctioneer cannot possibly
award the item to someone in S if no one in S shows up. Border’s theorem states that this is in
fact a sufficient condition.

Border’s original paper considered continuous type spaces (hence the integral in (1)), and the
proof was based on measure theory. The following extension of the theorem was also shown:
If there exists a constricting set S, then there is also a constricting set of the form Sx, where
Sx = {A|π(A) > x}, for some x. In the case of finite type spaces, we can determine the feasibility
of a reduced form auction in time O(c log c+ c ·m), where c = |T |, as after sorting the type space
in decreasing π’s there are only c different subsets of the form Sx, and a dynamic program can
find us if any of them violates (1) in time O(c ·m). In other words, determining the feasibility of
a bidder-symmetric reduced form, for a single item, and many i.i.d. bidders is easy. However, the
following important question was left unanswered: Given a feasible reduced form, can we efficiently
obtain a mechanism implementing the reduced form? Notice that answering this question in the
affirmative is absolutely necessary to be able to run the auction specified by the reduced form. Our
first contribution is solving this problem.

Theorem 2. Under the same assumptions as Theorem 1, given a bidder-symmetric reduced form
we can determine if it is feasible, or find a hyperplane separating it from the set of feasible bidder-
symmetric reduced forms, in time O(c·(log c+m)), where c = |T |. If the reduced form is feasible, we
provide a succinct description of a mechanism implementing the reduced form, in time polynomial
in c · m. The description of the mechanism is just (at most) c + 1 probabilities and an equal
number of orderings of T . 4 The mechanism itself runs as follows: given the reported type profile,
the mechanism samples a random subset of bidders in time poly(m, c), and the item is allocated
uniformly at random to some bidder in that subset, or the item is thrown away.

We prove Theorem 2 in Appendix B, as a corollary of Proposition 1 and Theorem 13 of Appen-
dices B and A respectively. In proving our result, we consider the following type of mechanisms:

Definition 2. A hierarchical mechanism consists of a function H : T → [c] ∪ {LOSE}; one
should interpret LOSE as a value larger than c. On bid vector (A1, . . . , Am), the mechanism has the
following behavior: If H(Ai) = LOSE for all i, the mechanism throws the item away. Otherwise,
the item is awarded uniformly at random to a bidder in argminiH(Ai).

In other words, a hierarchical mechanism breaks down the type space into a hierarchy. When
the bidders arrive and submit their types, the mechanism finds the highest-priority level of the
hierarchy that is populated by the submitted types, and gives the item uniformly at random to a
bidder whose type falls in that level of the hierarchy (unless every bidder is a loser, in which case
the mechanism throws the item away). We say that a hierarchical mechanism H is well-ordered
w.r.t. π if: π(A) ≥ π(A′)⇒ H(A) ≤ H(A′). We prove the following characterization result about
feasible bidder-symmetric reduced forms:

Theorem 3. When bidders are i.i.d., every feasible bidder-symmetric reduced form π can be ex-
actly implemented as a distribution over at most c + 1 well-ordered with respect to π hierarchical
mechanisms.

4An ordering may have equalities, but must be total (compare every pair of elements in T ).
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Theorem 3 alone is not enough to allow us to implement a given bidder-symmetric reduced form.
Indeed, if π(·) takes θ (can be as large as c) distinct values, there are 2θ different well-ordered w.r.t.
π hierarchical mechanisms. From here, we switch to our vector-view of reduced forms (as vectors ~π
in [0, 1]|T |) and study the geometry of the space of feasible mechanisms respecting the order on the
type-space induced by a given reduced form ~π, which we will call P . We show that, in fact, P is a
θ-dimensional polytope whose corners are exactly the 2θ different well-ordered w.r.t. ~π hierarchical
mechanisms. We provide a geometric algorithm in Appendix A that in polynomial time outputs a
representation of ~π as a convex combination of at most c+1 corners of P . This convex combination
is exactly a distribution over well-ordered w.r.t. ~π hierarchical mechanisms that implements ~π.
Our geometric algorithm runs in time poly(m, c), and sampling from the distribution output by
our algorithm also takes time poly(m, c). We provide the details of our approach and proofs of the
relevant claims in Appendices B and A.

3.1.2 Single-item, General Reduced Forms, Non-i.i.d. Bidders

Recently, an alternative proof of Border’s theorem for distributions with finite support was dis-
covered in [6] and again in [12], the latter using a clean network-flow interpretation. These proofs
extend Theorem 1 to independent, but not necessarily identical, bidders and non-symmetric reduced
forms. In this case, (1) is replaced by the following necessary and sufficient condition:

∀S1 ⊆ T1, . . . , Sm ⊆ Tm :
∑
i

∑
A∈Si

πi(A) Pr[ti = A] ≤ 1−
∏
i

(1− Pr[ti ∈ Si]). (2)

The interpretation of the LHS and RHS of the above inequality is the same as the one given above
for (1) except generalized to the non-iid non-symmetric setting. In addition to the above condition,
[12] proves a generalization of Border’s extended result: If there is a constricting S = (S1, . . . , Sm),

then there is also a constricting set of the form S′ = (S
(1)
x1 , . . . , S

(m)
xm ), where S

(i)
xi = {A ∈ Ti|πi(A) >

xi}. In other words, each bidder has a different threshold xi, and S
(i)
xi contains all types of bidder

i with πi above xi. Unfortunately, despite this simplification, there are still
∏
i(|Ti| + 1) possible

constricting sets, and testing each of them would take time exponential in the number of bidders.
One might hope to obtain a stronger theorem that would only require testing a number of sets

polynomial in c and m. We prove such a theorem by introducing a notion of a virtual π, defined
next. We name it such not because the equation involves hazard rates or looks anything like that for
virtual valuations [22], but because the spirit of the transformation is the same. Myerson observed
that he could make the most revenue not from the bidder with the highest valuation, but from the
bidder with the highest virtual valuation. Likewise, in our setting, the most difficult types to satisfy
are not the types with the highest π, but the types with the highest virtual π. The definition of
virtual π, which we denote π̂, is actually quite simple.

Definition 3. If π is a reduced form, we define its corresponding virtual reduced form π̂ as follows:
for all i and type A ∈ Ti, π̂i(A) := Pr[πi(ti) ≤ πi(A)]πi(A).

It turns out that this definition exactly captures which types of different bidders are harder to
satisfy. In the bidder-symmetric case of Section 3.1.1, we were able to compare a pair of types A
and B submitted by bidders i 6= k based only on their corresponding πi(A) and πk(B). This is
no longer the case in the non-iid case, resulting in the more complicated constricting sets defined
above. Nevertheless, we show that A and B can be compared at face value of π̂i(A) and π̂k(B):
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Theorem 4. Suppose that the bidders are independent and there is a single item for sale. A reduced

form π is feasible if and only if: for all x, the sets S
(i)
x = {A ∈ Ti|π̂i(A) > x} satisfy:∑

i

∑
A∈S(i)

x

πi(A) Pr[ti = A] ≤ 1−
∏
i

(1− Pr[ti ∈ S(i)
x ]). (3)

In particular, we can test the feasibility of a reduced form, or obtain a hyperplane separating the
reduced form from the set of feasible reduced forms, in time linear in

∑
i |Ti| · (log (

∑
i |Ti|) +m).

Details of the proof can be found in Appendix C. We also prove there two analogues of Theorem 3
in this setting: Theorem 5, which is used for our algorithmic results, and Theorem 7, which provides
a much stronger characterization. The analog of Definition 2 is the following:

Definition 4. A hierarchical mechanism consists of a function H :
⋃
i(Ti × {i})→ [

∑
i |Ti|] ∪

{LOSE}; one should interpret LOSE as a value larger than
∑

i |Ti|. On bid vector (A1, . . . , Am), if
H(Ai, i) = LOSE for all i, the mechanism throws the item away. Otherwise, the item is awarded
uniformly at random to a bidder in argminiH(Ai, i).

We say that a hierarchical mechanism H for non-identical bidders is partially-ordered w.r.t. π if
for all i and A,A′ ∈ Ti, πi(A) ≥ πi(A′)⇒ H(A, i) ≤ H(A′, i). We say that a hierarchical mechanism
is strict if for all bidders i, j and types A ∈ Ti, B ∈ Tj : i 6= j ⇒ (H(A, i) 6= H(B, j) ∨H(A, i) =
H(B, j) = LOSE) (i.e. there is always a unique winner in argminiH(Ai, i) if one exists, because
each level (except possibly for LOSE) contains types from only a single bidder). Our algorithmic
extension of Theorem 3 is the following:

Theorem 5. When bidders are independent, but not necessarily identically distributed, every fea-
sible reduced form π can be exactly implemented as a distribution over at most

∑
i |Ti| + 1 strict,

partially-ordered w.r.t. π hierarchical mechanisms.

From here, we take the same geometric approach as in Section 3.1.1 and study the geometry
of the set of feasible reduced forms that respect the partial-ordering of types induced by a given
reduced-form π. Again we show that this is a (

∑
i di)-dimensional polytope, P , where di (could be as

large as |Ti|) is the number of distinct values that πi(·) takes on input from Ti, and that the corners
of P are exactly the strict, partially-ordered w.r.t. π hierarchical mechanisms. Writing a point in P
as a convex combination of

∑
i |Ti|+1 corners is no longer an easy procedure. Not only does P have

an exponential number of corners, but there are also exponentially many hyperplanes defining the
boundary of P (where there were only 2 · c such hyperplanes in the i.i.d. case). Luckily, Theorem
4 provides an efficient separation oracle for membership in P . By making use of this separation
oracle instead of checking the exponentially-many boundary equations one by one, the geometric
algorithm of Appendix A outputs a representation of a given π as a convex combination of at most∑

i |Ti| + 1 corners of P , which is exactly a distribution over the corresponding
∑

i |Ti| + 1 strict,
partially-ordered w.r.t. π hierarchical mechanisms. Putting this approach together with Theorems
4 and 5, we obtain in Appendix C the algorithmic result of this section:

Theorem 6. When bidders are independent, given a reduced form we can determine if it is feasible,
or find a hyperplane separating it from the set of feasible reduced forms, in time linear in

∑
i |Ti| ·

(log (
∑

i |Ti|) +m). If the reduced form is feasible, we can compute a succinct description of a
mechanism implementing the reduced form, in time polynomial in

∑
i |Ti|. The description of the

mechanism is just (at most)
∑

i |Ti| + 1 probabilities and the same number of total orderings of⋃
i(Ti × {i}). The mechanism itself runs as follows: given the reported type profile, the mechanism

samples a random total ordering of all bidders’ types in time polynomial in
∑

i |Ti|, and allocates
the item to the bidder whose reported type is highest in that ordering, or throws the item away.
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While Theorem 5 does provide some structure to the otherwise unknown set of feasible mech-
anisms for independent bidders, the result is not as compelling as that of Theorem 3. One might
have hoped that every feasible reduced form can be implemented as a distribution over virtually-
ordered hierarchical mechanisms (that is, hierarchical mechanisms such that π̂i(A) ≥ π̂j(B) ⇒
H(A, i) ≤ H(B, j)). Unfortunately, this is not true, as is shown in Appendix C. Despite this, we
show that a strong generalization of Theorem 3 holds in this setting. Let σ be a total ordering on
the elements of

⋃
i(Ti × {i}) (i.e. a mapping σ :

⋃
i(Ti × {i})→ [

∑
i |Ti|]). We say that σ respects

π if πi(A) > πi(B)⇒ σ(A, i) < σ(B, i). We also say that a hierachical mechanism H is σ-ordered
if σ(A, i) < σ(B, j)⇒ H(A, i) ≤ H(B, j). We prove the following theorem:

Theorem 7. If a reduced form π is feasible, there exists a total ordering σ on the elements of
⋃
i(Ti×

{i}) that respects π such that π can be implemented as a distribution over σ-ordered hierarchical
mechanisms.

We provide the proof of Theorem 7 in Appendix D.

3.2 A Simple Characterization of Feasible Multi-dimensional Mechanisms

The appeal of Myerson’s single-item auction is not only its optimality, but its clean allocation rule.
Let us revisit it. In a single-item setting the type-space of each bidder is a subset Ti ⊂ R, as a
bidder’s type is how much she values the item. In brush strokes Myerson’s allocation rule is as
follows:

• The i.i.d. case: Suppose that the bidders’ values are independently and identically distributed
in T . Myerson’s auction in this setting maintains a ranking H : T → [|T |] ∪ {LOSE} (take
LOSE := |T |+ 1) satisfying: A ≥ A′ =⇒ H(A) ≤ H(A′); i.e. the ranking respects the order on T
(as a subset of R). If |H−1(k)| > 1 for some k, we can think of the types in H−1(k) as having been
ironed over by H. In fact, let us refer to H as an ironing of T . Given the ironing, the allocation
rule is simple: on bid vector (A1, . . . , Am), the item is allocated uniformly at random to a bidder
in argmini{H(Ai)} (other tie-breaking rules are fine too), or thrown away if H(Ai) = LOSE for all
i.

• The non-i.i.d. case: Suppose that the bidders’ values are independent but not necessarily identi-
cally distributed. In this case, the allocation rule of Myerson’s auction is a bit more complicated.
The auction maintains an ironing H : ∪i(Ti×{i})→ [

∑
i |Ti|]∪{LOSE} (take LOSE :=

∑
i |Ti|+1)

satisfying: for all bidders i, Ai ≥ A′i =⇒ H(Ai, i) ≤ H(A′i, i); i.e. the ironing now only respects
the order between types belonging to the same bidder. Given the ironing, the allocation rule is
simple: on bid vector (A1, . . . , Am), the item is allocated uniformly at random to a bidder in
argmini{H(Ai, i)}, or thrown away if H(Ai, i) = LOSE for all i.

In multi-item auctions, the type spaces of the bidders are subsets Ti ⊂ Rn, i.e. are multidi-
mensional, and it is a priori not clear whether feasible mechanisms/optimal mechanisms in these
settings always have clean allocation rules. Indeed, it is not even clear that all feasible single-item
auctions have a clean allocation rule, such as Myerson’s allocation rule in terms of ironings de-
scribed above. We show a surprising characterization result of feasible multi-item auctions when
the bidders are independent, each bidder’s type is sampled from an arbitrary distribution over her
type space (i.e. we do not assume that the bidder’s values for the items are necessarily indepen-
dent), and the bidders have additive valuations over bundles of items. In particular, our results
also characterize the set of all feasible single-item mechanisms.

As our characterization aims to characterize a broader set of mechanisms, the allocation rules
it contains are necessarily more involved, albeit slightly. All we do is introduce randomization
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over ironings. But what are we ironing exactly? We are still ironing the bidders’ type spaces.
But instead of having a single ironed surface, we maintain, for each item, a distribution over ironed
surfaces. Then the allocation rule of the mechanism is rather simple: on a type profile (A1, . . . , Am)
we allocate each item independently from the other items, by just sampling an ironed surface for
this item, looking at the highest-priority plateau in this surface that is populated by at least one
reported type, and giving the item to a random bidder whose reported type falls in this plateau.

We proceed to explain how the per-item ironed surfaces look. Given that bidder types are
multi-dimensional, ironed surfaces are hard to envision. Interestingly, for each bidder i and item j,
the picture is simplified dramatically when we apply πij(·) to embed the type space Ti of bidder i
into R.

Characterization of Multi-Bidder Multi-Item Auctions for Additive Bidders

The allocation rule used by any multi-bidder multi-item auction for additive bidders to allocate item
j, for all j, may w.l.o.g. take the following form (the reader should draw immediate connections to
Myerson’s allocation rule described above):

• i.i.d. bidders and bidder-symmetric reduced forms: Suppose that the bidders are i.i.d. and the
reduced form πj on item j is bidder-symmetric. In this case, the auction maintains a distribution
Hj over rankings Hj : T → [|T |]∪{LOSE} (take LOSE := |T |+ 1) satisfying: πj(A) ≥ πj(A

′) =⇒
Hj(A) ≤ Hj(A

′), for all A,A′ ∈ T ; i.e. each ranking in the support of Hj respects the order
induced on T by its embedding into R by πj(·). If |H−1j (k)| > 1 for some k and some ranking Hj

in the support of Hj we think of the types in H−1j (k) as having been ironed over by Hj . Given Hj ,
the allocation of item j is simple: on bid vector (A1, . . . , Am), a ranking Hj is sampled from Hj ,
and the item is allocated uniformly at random to a bidder in argmini{Hj(Ai)}, or thrown away if
Hj(Ai) = LOSE for all i.

• Non-i.i.d. bidders or different reduced forms: When the bidders are independent but non-i.i.d.
or the reduced form on item j is not bidder-symmetric, the auction maintains a distribution Hj
over rankings Hj : ∪i(Ti × {i})→ [

∑
i |Ti|]∪{LOSE} (take LOSE :=

∑
i |Ti|+ 1) satisfying: for all

bidders i, πij(A) ≥ πij(A
′) =⇒ Hj(A, i) ≤ Hj(A

′, i); i.e. each ranking in the support respects
the order between types belonging to the same bidder, for whatever order is induced on Ti by its
embedding into R by πij(·). Additionally, if Hj and H ′j are two rankings in the support of Hj then,
for all i, i′, Ai ∈ Ti, Ai′ ∈ Ti′ : Hj(Ai, i) < Hj(Ai′ , i

′) =⇒ H ′j(Ai, i) ≤ H ′j(Ai′ , i
′), i.e. all rankings

in the support of Hj are consistent with a unique total ordering of ∪i(Ti × {i}). Given Hj , the
allocation of item j is simple: on bid vector (A1, . . . , Am), a ranking Hj is sampled from Hj , and
the item is allocated uniformly at random to a bidder in argmini{Hj(Ai, i)}, or thrown away if
Hj(Ai, i) = LOSE for all i.

Our characterization result for single-item settings is an immediate corollary of Theorems 3 (for
the i.i.d. case) and 7 (for the independent case). That the above characterization holds for multi-
item settings and additive bidders follows by noting that, given the lack of demand constraints, we
can allocate items sequentially and the resulting allocation will be feasible as long as the supply
constraints on the items are met, i.e. every item is allocated exactly once.

3.3 Optimal Multi-Dimensional Mechanism Design

The additivity of the bidders notwithstanding, we know that optimal mechanisms in multi-item
settings may be quite involved. For example, in [11] it is shown that even when there are two
items, and a single additive bidder whose values over the items are i.i.d. regular, a mechanism that
sells lotteries over the items makes strictly more revenue than a mechanism that sells each item
separately. This result implies that: we should not auction every item separately; and we should
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use the values of bidders on item j to decide how to allocate item j′. So if bidder i reports higher
value on item j′ than bidder i′, we should not necessarily expect item j′ to go to bidder i more
often than bidder i′, even if the bidders are i.i.d.. To rephrase, for allocating item j′, we cannot
just rank the bidders according to their bids on that particular item. We need to instead take into
account their bids on all the other items.

Despite such complications, it is possible to use Theorems 2 and 6 to solve the following problem:

The BIC many-many problem. Given as input m arbitrarily correlated distributions
F1, . . . ,Fm over valuation vectors for n items, output a BIC mechanism M whose expected revenue
is optimal relative to any other, possibly randomized, BIC mechanism, when played by m additive
bidders whose valuation vectors are sampled independently from F1, . . . ,Fm.

Our approach to solving this problem is to use the separation oracle of Theorems 2 and 6 inside
the LPs of [14]. Doing so we obtain the following:

Theorem 8. There is a solution to the BIC many-many problem with runtime polynomial in n,
m, and maxi∈[m] |supp(Fi)|.

Theorem 9. If, for all i, Fi is item-symmetric (i.e. invariant under permutations of the item
names), there exists a solution to the BIC many-many problem with runtime polynomial in m and
nc, where c = maxi,j |supp(Fij)|, where Fij is the marginal of Fi on item j.

Theorem 10. If, for all i, Fi is item-symmetric and supported on [0, 1]n there is an additive PTAS
for the BIC many-many problem whose running time is polynomial in m and n (and doesn’t depend
on the size of the support of F1, . . . ,Fm). For all ε > 0, the PTAS computes a BIC mechanism
whose revenue is within an additive ε · n of the optimal revenue achieved by any BIC mechanism.

Theorem 11. If, for all i, Fi is item-symmetric and its n marginals satisfy the MHR condition,
there is a multiplicative PTAS for the BIC many-many problem whose running time is polynomial
in m and n (and doesn’t depend on the size of the support of F1, . . . ,Fm). For all ε > 0, the PTAS
computes a BIC mechanism whose revenue is at least a (1 − ε)-fraction of the optimal revenue
achieved by any BIC mechanism.

Further details are provided in Appendix E.

3.4 Non-negative Linear Feasibility Constraints

Aside from the independent results of [2], it is unknown whether Border’s theorem applies to other
settings, or what the proper statement of Border’s Theorem might even be as we depart from the
single-item setting. On this front, we prove a generalization of Border’s Theorem to settings with
Non-negative Linear Feasibility Constraints. Throughout this section, P denotes a type profile, and
~φ(P ) denotes an allocation in terms of the marginal probability of giving bidder i item j, φij(P ),
when the reported type profile is P . We are interested in the form of the region F where φ(P ) needs
to lie for there to exist a distribution over feasible allocations of items to bidders consistent with
the marginal allocation probabilities specified by φ(P ). In the following definition, we represent
an inequality h as a vector of coefficients ~c(h), and a right-hand bound d(h). We say that h is
non-negative if every coefficient cij(h) and d(h) are non-negative.

Definition 5. A set of feasible allocations F ⊆ [0, 1]m×n has Non-negative Linear Feasibility
Constraints if there exists a set H of non-negative inequalities such that ~φ(P ) ∈ F ⇔ ~c(h)·~φ(P ) ≤
d(h), for all h ∈ H, and ~φ(P ) ≥ ~0). 5

5Here, we talk about feasible allocations, not feasible mechanisms (or allocation rules). A feasible mechanism for

F maps every profile P to a feasible allocation ~φ(P ) ∈ F .
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In a setting where no bidder i should be given more than Ci items and no item j should be
given out more than once, an application of the Birkhoff-Von Neumann Theorem implies that F
has non-negative linear feasibility constraints [15, 14]. 6 In fact, it is shown in [24] that a much
broader range of settings have non-negative linear feasibility constraints, including settings where
the constraint on the feasible allocations of items to bidders S ⊆ [m]× [n] can be specified as the
intersection of two arbitrary matroids. 7

Below is our generalization of Border’s Theorem to this setting, whose proof can be found in
Appendix F. In the statement of the theorem, i ranges over all bidders, j ranges over all items,
and P ranges over all possible type-profiles, with Pr[P ] denoting the probability that profile P is
sampled from D and Pi denoting the type of bidder i in P .

Theorem 12. Let F be any set of allocations with non-negative linear feasibility constraints, and
D be any (possibly correlated) distribution over types. Then a reduced form ~π is feasible if and only
if for all weights {Wij(A)}i,j,A ∈ [0, 1]n×

∑
i |Ti|:

∑
i

∑
j

∑
A∈Ti

Wij(A) · πij(A) · Pr[ti = A] ≤
∑
P

Pr[P ] max
~φ(P )∈F

∑
i

∑
j

Wij(Pi) · φij(P )

 .

In other words, for fixed weights
−→
W = {Wij(A)}i,j,A, consider the allocation rule M(

−→
W ) that on

profile P picks the max-weight allocation (where the weight of giving item j to bidder i is Wij(Pi)).

Then a reduced form ~π is feasible if and only if for all weights
−→
W , the LHS is at most the expected

weight of items awarded by M(
−→
W ).

Like in the single-item setting, it is clear that this is a necessary condition. The expected weight
of items awarded by any mechanism that implements ~π is exactly the LHS, and this value clearly

must be less than the expected weight of items awarded by M(
−→
W ), as M maximizes this value over

all feasible mechanisms. The content of the theorem is that these conditions are indeed sufficient.
In addition to a proof of Theorem 12, we provide in Appendix F two false generalizations of

Border’s Theorem that fail even for unit-demand i.i.d. bidders in order to motivate the statement
of Theorem 12.

3.4.1 Correlated Bidders, Demand Constraints

As mentioned previously, without demand constraints and without correlation among bidders’
valuations, the multi-item allocation problem is no more difficult than the single-item allocation
problem, as each item can just be allocated separately and independently from the other items.
However, either demand constraints or correlation among bidders negates all known results (includ-
ing those of Section 3.1) about feasible allocations. On this front, we give a multi-commodity flow
interpretation of the problem for arbitrarily correlated bidders with demand constraints, which is
similar to the network flow interpretation of [12]. Simply put, the commodities/goods in our multi-
commodity flow problem are denoted Gij(A), for all items j, bidders i, and types A ∈ Ti. We have
a source node for every item, an intermediate node for every possible profile, and a sink node for
every type. We put edges from every item node to every intermediate node and every intermediate
node to every sink node. The capacities on the source-intermediate edges are chosen to ensure

6In particular, the constraints are: a) ∀ i,
∑
j φij(P ) ≤ Ci, b) ∀ j,

∑
i φij(P ) ≤ 1, and c) ∀ i, j, φij(P ) ≥ 0.

7In this case, let rki(S) denote the rank of set S in matroid i = 1, 2. Then the constraints are: a) ∀S ⊆ [m]× [n],∑
(i,j)∈S φij(P ) ≤ rk1(S), b) ∀S ⊆ [m]× [n],

∑
(i,j)∈S φij(P ) ≤ rk2(S), and c) ∀ i, j, φij(P ) ≥ 0.
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that each item is only given out once. The capacities on the intermediate-sink edges are chosen to
ensure that no bidder violates his demand constraint. We then demand that a πij(A)·Pr[ti = A]
amount of commodity Gij(A) is sent from source node j to sink node (i, A). We give the details
of our flow network and the values of the capacities on its edges in Appendix F, and also explain
how to view any solution to the multi-commodity flow problem as a mechanism that implements
the reduced form and vice versa.
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A A Geometric Algorithm

Carathéodory’s theorem states that every point ~x inside an n-dimensional polytope P can be
written as a convex combination of at most n + 1 corners of P . In this section, we provide an
efficient algorithm for coming up with such a combination. We will consider polytopes that are
described as an intersection of half-spaces. Each half-space is defined by a hyperplane h together
with a choice of a side. We use B(P ) to denote the set of half-spaces, but overload notation using
B(P ) to also denote the set of boundary hyperplanes of the polytope P . We reserve the symbol
h to denote hyperplanes. In addition, we consider cases where |B(P )| may be exponentially large,
and we only have an implicit description of B(P ). That is, we have access to a boundary oracle BO
that outputs yes on input h if h ∈ B(P ), and no otherwise. We also have access to a separation
oracle, SO, that outputs yes on input ~x if ~x ∈ P , and outputs some h ∈ B(P ) if ~x is on the wrong
side of h (and therefore not in P ). We will talk about one more algorithm related to P :

Definition 6. CO is a corner oracle for P if it has the following behavior. Given as input a
set of hyperplanes B, CO outputs no if B 6⊆ B(P ), or

(⋂
h∈B h

)⋂
P = ∅ (i.e. the hyperplanes are

not boundary hyperplanes of P , or they are boundary hyperplanes, but do not intersect inside P ).
Otherwise, CO outputs a corner of P inside

⋂
h∈B h.

It is clear that CO has well-defined behavior on all inputs. If B contains only boundary
hyperplanes of P , and the intersection of these hyperplanes with P is non-empty, this region must
contain a corner of P . Now we describe our algorithmic problem in terms of these algorithms:

Question 1. Given as input a boundary oracle, BO, separation oracle SO, and corner oracle
CO for some n-dimensional polytope P , and a point ~x, output no if ~x /∈ P . Otherwise, output
c1, . . . , cn+1, ~a1, . . . ,~an+1 such that ~ai is a corner of P for all i,

∑
i ci = 1, and

∑
i ci~ai = ~x.
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It follows from Carathéodory’s theoremthat such ci,~ai exist whenever ~x ∈ P . We provide an
algorithm to find such a solution whenever it exists. At a high level, we begin with the input ~x
and maintain at all times two points ~y ∈ P , ~z ∈ P , such that ~x = c~y + (1− c)~z, for some c ∈ [0, 1].
After step t of the algorithm is completed, ~y is the convex combination of at most t corners of P ,
and ~z lies in the (n − t)-dimensional intersection of t hyperplanes of B(P ). Hence, after at most
n steps, ~z will lie in a 0-dimensional space, and therefore must be a corner, so the algorithm will
terminate after at most n+ 1 steps.

To go from step t to step t + 1, we pick an arbitrary corner, ~at, that lies in the intersection
of the t hyperplanes where ~z lies. Then, we let ct be as large as possible without pushing the

point
(1−

∑
j<t cj)~z−ct·~at

1−ct−
∑
j<t cj

outside of P . We update ~z to ~znew =
(1−

∑
j<t cj)~zold−ct·~at

1−ct−
∑
j<t cj

and update ~y

appropriately to include ~at in its convex combination of corners. The new ~z must lie at the
intersection of the original t hyperplanes where the old ~z lied, as well as a new h ∈ B(P ) that
stopped us from further increasing ct. Below is a formal description of the algorithm. In the
description, E denotes the set of hyperplanes whose intersection contains ~z (the empty intersection
is the entire space).

Algorithm 1 Algorithm for writing ~x as a convex combination of at most n+ 1 corners

1: Initialize: i := 1, ~y := ~0, ~z := ~x, E := ∅, ci := 0,~ai := ~0 ∀i ∈ [n+ 1].
2: Invariants: c :=

∑
i ci, ~y := 1

c

∑
i ci~ai, or ~0 if c = 0, c~y + (1− c)~z = ~x.

3: if SO(~x) 6= yes then
4: Output no.
5: end if
6: while c < 1 do
7: Set ~ai := CO(E).
8: if ~ai = ~z then
9: Set ci := 1− c.

10: Output c1, . . . , cn+1, ~a1, . . . ,~an+1.
11: else
12: Set D := max{d (1 + d)~z − d~ai ∈ P}.
13: Set Ei = SO((1 + D + ε)~z − (D + ε)~ai) for sufficiently small ε > 0. /* the appropriate

choice of ε is explained in the proof of Theorem 13*/
14: Update: ci := (1 − 1

1+D )(1 − c), ~z := 1−c
1−c−ci~z −

ci
1−c−ci~ai, ~y := c

c+ci
~y + ci

c+ci
~ai, c := c + ci,

E := E ∪ Ei, i := i+ 1.
15: end if
16: end while

Theorem 13. Algorithm 1 correctly answers Question 1. Furthermore, if b is the maximum number
of bits used in the description of any coefficient of any hyperplane h ∈ B(P ) and any coordinate of
~x, then the runtime of Algorithm 1 is polynomial in n, b and the runtimes of SO and CO.

Proof. First, we describe how to execute Steps 12 and 13 of the algorithm, as it is clear how to
execute every other step. Step 12 can be done by solving a linear program using SO. Explicitly,
maximize d subject to (1 + d)~z − d~ai ∈ P . For Step 13, we will explain later in the proof how to
choose an ε small enough so that the following property is satisfied:

(P): for all h ∈ B(P ) and for whateverD is computed in Step 12 of the algorithm, if (1+D)~z−D~ai
is not contained in h, then (1 +D+ ε)~z − (D+ ε)~ai is on the same side of h as (1 +D)~z −D~ai.
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We will explain later why (P) suffices for the correctness of the algorithm, how to choose an ε so
that (P) holds, and why its description complexity is polynomial in n and b.

We start with justifying the algorithm’s correctness, assuming that ε is chosen so that (P) holds.
We observe first that

∑
i ci ≤ 1 always. If the algorithm ever increases c, it is because ~z 6= ~ai. If this

is the case, then D from Step 12 will have some finite positive value. So (1− 1
1+D )(1− c) < 1− c,

and adding ci to c will not increase c past 1. We also observe that all the invariants declared in
Step 2 hold throughout the course of the algorithm. This can be verified by simply checking each
update rule in Step 14. Finally, we argue that every time the algorithm updates E, the dimension
of
⋂
h∈E h decreases by 1, and (

⋂
h∈E h)

⋂
P 6= ∅ is maintained. Because ~ai and ~z both lie in

⋂
h∈E

when Step 13 is executed, none of the hyperplanes in this intersection can possibly be violated
at (1 + D + ε)~z − (D + ε)~ai. Therefore, the hyperplane output by SO((1 + D + ε)~z − (D + ε)~ai)
must reduce the dimension of

⋂
h∈E h by 1 when added to E at Step 14. Furthermore, because

Ei is violated at (1 + D + ε)~z − (D + ε)~ai, but not at (1 + D)~z − D~ai, it must be the case that
(1 +D)~z−D~ai lies in the hyperplane Ei. (This holds because we will guarantee that our ε satisfies
Property (P), described above.) Because this point is clearly in P , in the hyperplane Ei, and in
all of the hyperplanes in E, it bears witness that we maintain (

⋂
h∈E h)

⋂
P 6= ∅ always. Hence

after at most n iterations of the while loop, the dimension of the remaining space is 0, and we must
enter the case where ~ai = ~z. The algorithm then exits outputting a convex combination of corners
equaling ~x.

It remains to argue that a choice of ε satisfying Property (P) is possible. Assuming the correct-
ness of our algorithm, we show first that all the coefficients ci computed by the algorithm have low
bit complexity. Indeed, let ~bi = (~ai, 1) for all i. Once we know the algorithm is correct, the ci’s
satisfy ∑

i

ci~bi = (~x, 1),

where ci and ~ai are outputs of our algorithm. We will argue that, for these ~ais, the above system of
linear equations has a unique solution. If not, let ~c and ~c ′ be two different solutions, and di = ci−c′i.
We will show by induction on i that di = 0 for all i. In the base case, consider the hyperplane in E1.
We can write a corresponding (n+ 1) dimensional vector ~t1, such that for all ~x′ ∈ P , (~x′, 1) ·~t1 ≤ 0,
and for all i > 1, ~bi ·~t1 = 0. But ~b1 ·~t1 6= 0, otherwise, for any D, (1 +D)~z −D~a1 does not violate
the constraint in E1. On the other hand,

∑
i di
~bi · ~t1 = 0, therefore d1 = 0. Now assume when

i < k, di = 0, we will argue that dk = 0. Let ~tk be the corresponding vector for the hyperplane in
Ek. For any j > k, ~bk · ~tk = 0, and by the Inductive Hypothesis, for any i < k, di = 0, therefore
dk~bk · ~tk = 0. But we know ~bk · ~tk 6= 0, otherwise, for any D, (1 +D)~z −D~ak does not violate the
constraint in Ek. So dk = 0. Thus, di = 0 for all i.

So we have argued that the cis are in fact the unique solution to the above linear system. We
also know that the corners ~ai (in fact all corners of the polytope) have poly(n, b) bit complexity.
Applying the theory of Gaussian elimination, we deduce that each ci can be described using no
more than poly(n, b) bits, so the coefficients output by our algorithm have low bit complexity.
Hence the ~z maintained by the algorithm has poly(n, b) bit complexity. So the intersections dh of
the ray R(d) = {(1 + d)~z − d~ai} with the hyperplanes h ∈ B(P ) that do not contain both ~z and ~ai
(and hence the whole ray) also have poly(n, b) bit complexity. This guarantees that we can chose
ε to be 2−poly(n,b) to satisfy Property (P).

The above reasoning justifies the correctness of the algorithm. It is also now clear that every
step runs in time polynomial in b, n, the runtime of SO and the runtime of CO, and each step is
executed at most n+ 1 times. So the entire algorithm runs in polynomial time.
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B Single Item, I.I.D. Bidders, Bidder-Symmetric Reduced Forms

We provide the details and proofs of the techniques discussed in Section 3.1.1, beginning with some
technical lemmas.

Lemma 1. Every feasible bidder-symmetric reduced form auction π for i.i.d. bidders and a single
item can be implemented (not necessarily exactly implemented) as a distribution over well-ordered
w.r.t. π hierarchical mechanisms.

Proof. Our proof is by induction on the number of distinct non-zero values in {π(A)}A∈T .
Base Case: There is a single non-zero value in this set, equal to some x ≤ 1. The mechanism

that gives the item uniformly at random to a bidder whose reported type A satisfies π(A) = x (if
such bidder shows up) implements this reduced form as long as it is feasible.

Inductive Hypothesis: For all 0 < k < θ, every feasible reduced form with k distinct non-zero
values in {π(A)}A∈T can be implemented as a distribution over well-ordered w.r.t. π hierarchical
mechanisms.

Inductive Step: We show that the inductive hypothesis extends to the case where there are
exactly θ distinct non-zero values in {π(A)}A∈T . Let X denote the set of all distributions over
well-ordered w.r.t. π hierarchical mechanisms. Then X can be interpreted as a closed, bounded
subset of R2θ , where each coordinate denotes the probability of using one of the 2θ well-ordered
w.r.t. π hierarchical mechanisms. Therefore, X is compact. For a distribution over hierarchical
mechanisms M ∈ X, denote by M(A) the probability that a bidder reporting type A receives the
item under M . Define the function F : X → R as:

F (M) = max
A
{π(A)−M(A)}.

Let us use the Euclidean distance in X as a subset of R2θ . As X is a compact space, and F is
a continuous function, F attains its minimum in X. Let M denote one such minimizer of F . Then
if F (M) ≤ 0, M implements the reduced form. If F (M) > 0, we will show a contradiction. Let
S denote the subset of types argmaxA{π(A) −M(A)}, i.e. the subset of types who are the most
unsatisfied by M .

We show first that, if S contains every non-zero type, then the reduced form is infeasible. We
may, w.l.o.g., assume that M always awards the item to a non-zero type if one shows up, as this
will not decrease M(A) for any non-zero A. Therefore, we know that∑

A:π(A) 6=0

Pr[A]M(A) = Pr[see a non-zero type].

However, if π(A) −M(A) > 0 for all non-zero types, then we must have
∑

A:π(A) 6=0 Pr[A]π(A) >
Pr[see a non-zero type] and the reduced form is infeasible. So if the reduced form is feasible, S
must be missing at least one non-zero type.

Now let s = |{π(A)}A∈S | be the number of distinct non-zero values assigned by π to types in
S. We argue that s < θ. To see this, it suffices to observe the following: for all types B and
B′, π(B) = π(B′) implies that M(B) = M(B′) (this is because, by definition, all hierarchical
mechanisms H in the support of M satisfy H(B) = H(B′)). So in particular either B,B′ ∈ S or
B,B′ /∈ S, but it cannot be that one of B,B′ is in S and the other is not. And because S is missing
at least one non-zero type, s < θ.

To show a contradiction to F (M) > 0, let us define a new reduced form π′ as follows. For all
A ∈ S, set π′(A) = π(A). For all A /∈ S, set π′(A) = maxB∈S|π(B)<π(A){π(B)}, unless {B | B ∈
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S ∧ π(B) < π(A)} is empty in which case we set π′(A) = 0. Observe that the number of distinct
non-zero values in {π′(A)}A∈T is exactly s < θ. So it follows by our inductive hypothesis that π′ can
be implemented by a distribution over well-ordered (with respect to π′) hierarchical mechanisms.
In fact, as π(A) ≥ π(A′)⇒ π′(A) ≥ π′(A′), every hierarchical mechanism that is well-ordered with
respect to π′ is also well-ordered with respect to π. Call M ′ the distribution over well-ordered
hierarchical mechanisms implementing π′. Now, set ε = (F (M) − argmaxA/∈S{π(A) −M(A)})/2,
and consider the distribution M ′′ = (1− ε)M + εM ′ (with probability (1− ε) sample from M , with
probability ε sample from M ′).

What is M ′′(A)? If A ∈ S, then M ′(A) = π(A), so M ′′(A) = (1− ε)M(A) + επ(A). So for all
A ∈ S, M ′′(A) > M(A), hence π(A)−M ′′(A) < F (M).

If A /∈ S, then M ′(A) ≥ 0, so M ′′(A) ≥ (1− ε)M(A) ≥ M(A)− ε, so we get π(A)−M ′′(A) ≤
π(A) −M(A) + ε < F (M). Putting both observations together, we see that F (M ′′) < F (M), a
contradiction.

So we must have F (M) ≤ 0, meaning M implements the reduced form, completing the inductive
step and the proof of the lemma.

Corollary 1. Every feasible bidder-symmetric reduced form π can be exactly implemented as a
distribution over well-ordered w.r.t. π hierarchical mechanisms.

Proof. It follows from Lemma 1 that π can be implemented as a distribution over well-ordered
w.r.t. π hierarchical mechanisms. Let then X denote the set of distributions over well-ordered
w.r.t. π hierarchical mechanisms that implement π. As in Lemma 1 the set X, viewed as a subset
of R2θ , where θ is the number of distinct non-zero values in π, is compact. We can also define the
function G : X → R as:

G(M) = max
A
{M(A)− π(A)}.

Equipping X with the Euclidean distance of R2θ , G is a continuous function on X. As X is compact
and G continuous, G attains its minimum in X.

We show that the minimum of G is exactly 0 (i.e. that a minimizer of G exactly implements π),
following an induction similar to the one used in Lemma 1 in terms of the number of distinct non-
zero values in {π(A)}A∈T . We sketch the steps involved for the inductive step. Take any minimizer
M of G. If G(M) ≤ 0, then because M has to implement π, M must exactly implement π. If
G(M) > 0, then let S = T − argmaxA{M(A) − π(A)}. Then, for all A ∈ S, define π′(A) = π(A).
For all A /∈ S, define π′(A) = maxB∈S|π(B)≤π(A){π(B)}, unless {B : B ∈ S ∧ π(B) ≤ π(A)}
is empty, in which case set π′(A) = 0. As argmax{M(A) − π(A)} can’t possibly be empty the
number of distinct non-zero values in {π′(A)}A∈T is smaller than that in {π(A)}A∈T . (We still use
the observation that, for all types B and B′, π(B) = π(B′) implies that M(B) = M(B′)). The
rest of the inductive step proceeds identically with that in the proof of Lemma 1, resulting in a
contradiction. Hence, it can’t be that the minimizer of G satisfies G(M) > 0.

To proceed we need a definition. Let >:= A1 > A2 > . . . > Ak be a total ordering of a set
Tk := {A1, . . . , Ak} of k types, and consider a setting where we have m bidders whose types are
distributed i.i.d. over Tk. We say that a bidder-symmetric reduced form π : Tk → [0, 1] respects
> iff π(A1) ≥ π(A2) ≥ . . . ≥ π(Ak). We also say that an hierarchical mechanism H on Tk is well-
ordered with respect to > iff H(A1) ≤ H(A2) ≤ . . . ≤ H(Ak).

8 With respect to these definitions
we show the following proposition.

8Notice that this definition of well-ordered hierarchical mechanism (with respect to >) is very similar to its
counterpart in the main body (with respect to π), but different. Being well-ordered with respect to π certainly
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Proposition 1. Consider m bidders whose types are distributed i.i.d. over Tk := {A1, . . . , Ak} and
a total ordering >:= A1 > A2 > . . . > Ak of Tk. The set of feasible bidder-symmetric reduced forms
that respect > is a k-dimensional polytope whose corners are exactly the 2k hierarchical mechanisms
that are well-ordered with respect to >.

Proof. As a corollary of Theorem 1, a reduced form respects > and is feasible if and only if

π(Ai) ≥ π(Ai+1) ∀i ∈ [k]; (4)∑
j≤i

m · Pr[Aj ]π(Aj) ≤ 1−

1−
∑
j≤i

Pr[Aj ]

m

∀i ∈ [k]; (5)

where for notational convenience we denote π(Ak+1) = 0. We have hence shown that the set of
feasible bidder-symmetric reduced forms that respect > is a k-dimensional polytope.

We proceed to show that each well-ordered w.r.t. > hierarchical mechanism is a corner. Let H
be such a mechanism and π be the reduced form that it induces. Then, for all i (including i = k,
denoting H(Ak+1) = LOSE) we either have H(Ai) = H(Ai+1), in which case π(Ai) = π(Ai+1), or
H(Ai) < H(Ai+1), in which case

∑
j≤im ·Pr[Aj ]π(Aj) = 1− (1−

∑
j≤i Pr[Aj ])

m, because the item
is always awarded to one of the top i types whenever one is present. Therefore, at least k of the
inequalities defining the polytope are tight. And it is easy to see that there is a unique reduced
form making these inequalities tight. It is also clear that every well-ordered w.r.t. > hierarchical
mechanism is inside the polytope. So every well-ordered w.r.t. > hierarchical mechanism is a corner
of the polytope.

Finally, we show that there are no other corners. Assume for contradiction that there was a
corner π of the polytope that is not a well-ordered w.r.t. > hierarchical mechanism. Then by
Corollary 1, we know that π can be written as a convex combination of well-ordered w.r.t. π
hierarchical mechanisms, and hence as a convex combination of well-ordered w.r.t. > hierarchical
mechanisms. (As π respects > a hierarchical mechanism that is well-ordered w.r.t. π will also be
well-ordered w.r.t. >). As every well-ordered w.r.t. > hierarchical mechanism is a corner of the
polytope, and π is not one of them, this means that π can be written as a convex combination of
other corners of the polytope, which contradicts that π is itself a corner.

Therefore we have shown that every feasible bidder-symmetric reduced form respecting > lies
inside the afore-described polytope, every well-ordered w.r.t. > hierarchical mechanism is a corner
of this polytope, and there are no other corners. This establishes the proposition.

Now we can put everything together to prove Theorems 3 and 2.
Proof of Theorem 3: Suppose that the bidders’ types are sampled i.i.d. from T according to D1, and
let π be a feasible bidder-symmetric reduced form. We do the following preprocessing operation on
the set of types T :

TypeMerge: Find a maximal set of types A1, . . . , A` ∈ T such that π(A1) = . . . = π(A`).
Then remove types A1, . . . , A` from T and add super-type 〈A1, . . . , A`〉 into T ; change D1

to never sample any of A1, . . . , A` and sample the super-type 〈A1, . . . , A`〉 with probability∑
i Pr[Ai]; and set π(〈A1, . . . , A`〉) = π(A1). Repeat this procedure until every type in T

has different π value, i.e. until the set {π(A)}A∈T has cardinality |T |.

Let T ′, π′, D′1 be the type-set, reduced-form, type-distribution resulting from the TypeMerge
operation on input π. We claim that:

imposes the same constraints as being well ordered with respect to any > that π respects. The difference is that
being well-ordered with respect to π may also impose some equality constraints, if π(A) = π(B) for types A 6= B.
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1. π′ is a feasible bidder-symmetric reduced form for bidders sampled i.i.d. from D′1. This follows
immediately from the feasibility of π. Indeed it follows from Theorem 1 and our discussion in
Section 3.1.1 that a sufficient condition for the feasibility of π′ is for it to satisfy Eq. (1) for
all subsets of types of the form {A | A ∈ T ′∧π′(A) ≥ x}. On the other hand the feasibility of
π implies that π satisfies Eq. (1) for all subsets of types of the form {A | A ∈ T ∧ π(A) ≥ x}.
This together with the nature of our TypeMerge operation implies that π′ satisfies the
afore-mentioned sufficient conditions for feasibility.

2. A mechanism that exactly implements π′ immediately gives a mechanism exactly implement-
ing π. Indeed, to implement π we just run the mechanism implementing π′ after replacing
in the reported type vector every type A that was removed from T by TypeMerge by its
corresponding super-type.

3. A hierarchical mechanism H ′ that is well-ordered w.r.t. π′ can be expanded into a hierarchical
mechanism H that is well-ordered w.r.t. π. Indeed, if super-type 〈A1, . . . , A`〉 replaced
types A1, . . . , A` during the TypeMerge operation we set H(Ai) := H ′(〈A1, . . . , A`〉), for
all i = 1, . . . , `. On the other hand, if a type A belongs in both T and T ′, we set H(A) :=
H ′(A). Moreover, if πH′ , πH are respectively the reduced forms induced by H ′ and H, the
following property is satisfied. If super-type 〈A1, . . . , A`〉 replaced types A1, . . . , A` during
the TypeMerge operation, then πH(Ai) := πH′(〈A1, . . . , A`〉), for all i = 1, . . . , `. On the
other hand, if a type A belongs in both T and T ′, then πH(A) := πH′(A).

Now, suppose that the cardinality of T ′ is k. Given that π′ assigns a distinct probability to
every type in T ′, it induces a total ordering on T ′. In particular, suppose that T ′ := {A1, . . . , Ak},
where π′(A1) > π′(A2) > . . . > π′(Ak). By Proposition 1, π′ lies inside a k-dimensional polytope
whose corners are exactly the 2k hierarchical mechanisms that are well-ordered with respect to the
order >:= A1 > . . . > Ak. By Carathéodory’s Theorem, every point in the polytope can be written
as a convex combination of at most k+ 1 corners. As a convex combination of corners is exactly a
distribution over well-ordered hierarchical mechanisms w.r.t. >, we get that π′ can be written as
a distribution over hierarchical mechanisms that are well-ordered w.r.t. >, and hence also w.r.t.
π′. Now we can expand all hierarchical mechanisms in the support of the distribution, according
to the procedure described in Step 3 above, to obtain that π can be written as a distribution over
hierarchical mechanisms that are well-ordered w.r.t. π. 2

Proof of Theorem 2: It follows from our discussion in Section 3.1.1 that a bidder-symmetric reduced
form π̃ is infeasible if and only if it violates Eq. (1) for a subset of types of the form {A | A ∈
T ∧ π̃(A) ≥ x}. Since there are at most c ≡ |T | such sets we can efficiently determine feasibility
of a given reduced from π̃ or provide a hyperplane separating it from the set of feasible reduced
forms.

We now need to describe how to efficiently find a mechanism implementing a reduced form
π̃ that is feasible. In view of the TypeMerge operation defined in the proof of Theorem 3,
we can w.l.o.g. assume that π̃ assigns a distinct probability to every type in T . (Otherwise we
can always run TypeMerge to merge types sharing the same π̃-probability to super-types and
apply the procedure outlined below to the output of the TypeMerge operation, and then go
back to the original π̃). Under the assumption that π̃ assigns distinct probabilities to all types
in T , Proposition 1 implies that π̃ lies inside a c-dimensional polytope, P , whose corners are the
well-ordered w.r.t. π̃ hierarchical mechanisms. Therefore we can directly apply Theorem 13 of
Appendix A to write π̃ as a convex combination of such hierarchical mechanisms, as long as we can
describe the boundary oracle BO, corner oracle CO and separation oracle SO that are needed for
Theorem 13. BO is trivial to implement, as we just have to include in the set of halfspaces defining
the boundary of P those inequalities described in the proof of Proposition 1. For CO, on input B,
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we first check that every hyperplane h ∈ B satisfies BO(h) = yes. If not, output no. Otherwise
we need to check if

⋂
h∈B h contains a corner of P . We know that the corners of P are exactly the

well-ordered w.r.t. π̃ hierarchical mechanisms. So none of the corners lies in the intersection of the
hyperplanes π(Ai) = π(Ai+1) and

∑
j≤im·Pr[Aj ]π(Aj) = 1−(1−

∑
j≤i Pr[Aj ])

m, for any i. (Indeed,
for a hierarchical mechanism H and its induced reduced form π, π(Ai) = π(Ai+1) implies that
H(Ai) = H(Ai+1), yet

∑
j≤im ·Pr[Aj ]π(Aj) = 1− (1−

∑
j≤i Pr[Aj ])

m implies H(Ai) > H(Ai+1)).
So, if B contains any pair of hyperplanes of this form, output no. Otherwise, for all i such that
π(Ai) = π(Ai+1) ∈ B, set H(Ai) = H(Ai+1), otherwise set H(Ai) = H(Ai+1) − 1. This defines
a well-ordered w.r.t. π̃ hierarchical mechanism that is in

⋂
h∈B h, so have CO output H. Finally,

SO is easy to implement as we can just check each of the 2 · c inequalities written in the proof of
Proposition 1 one by one.

So because we can implement BO,CO, SO in polynomial time, we can apply Theorem 13 to
write π̃ as a convex combination of at most c + 1 corners, which is exactly a distribution over at
most c+ 1 well-ordered w.r.t. π̃ hierarchical mechanisms in polynomial time. 2

C Single Item, Independent Bidders

Here we provide the details of Section 3.1.2, and the proofs of Theorems 4, 5 and 6, postponing
the proof of Theorem 7 to Appendix D. Before proving our theorems, we show that the concept of
virtual πs is necessary. As in, Theorem 4 would be false if we tried to replace π̂ with π.

Proposition 2. There exist reduced forms that are infeasible, yet for all Six of the form Six =
{A | πi(A) > x, ∀i}:

∑
i

∑
A∈Six

πi(A) Pr[ti = A] ≤ 1−
m∏
i=1

(1−
∑
A∈Six

Pr[ti = A]).

Proof. Consider the case with two bidders. Bidder 1 has two types, with Pr[t1 = A] = 1/8,
Pr[t1 = B] = 7/8, π1(A) = 5/8, π1(B) = 0. Bidder 2 has two types, with Pr[t2 = C] = 1/2,
Pr[t2 = D] = 1/2, π2(C) = 1, π2(D) = 3/4.

Then this reduced form is infeasible. Indeed, observe that C must always receive the item
whenever t2 = C, which happens with probability 1/2. So if se have π2(C) = 1, we cannot also
have π1(A) > 1/2. So the set {A,C} forms a constricting set. However, the sets of the form Six are
{C}, {C,D}, {C,D,A}, {C,D,A,B}, and they all satisfy the above inequality.

Proposition 2 shows us that ordering the types of all bidders by decreasing π doesn’t allow us
to correctly determine the feasibility of a reduced form. Similarly, a partial ordering of the types
that only orders a single bidder’s types by decreasing π doesn’t give enough structure to efficiently
determine the feasibility of the reduced form. What we need is a correct total ordering of the types
of all bidders, and we can obtain it using virtual πs. Here is a quick observation about the virtual
πs, followed by a proof of Theorem 4.

Observation 1. For two types A,B ∈ Ti, π̂i(A) ≥ π̂i(B)⇔ πi(A) ≥ πi(B).

Proof. If πi(A) ≥ πi(B), then Pr[πi(ti) ≤ πi(A)] ≥ Pr[πi(ti) ≤ πi(B)]. Therefore, π̂i(A) ≥ π̂i(B).
The other direction is identical.

Proof of Theorem 4: We know from [6, 12], that if a reduced form mechanism is infeasible, then
there is some constricting set of the form S =

⋃m
i=1 Sxi , where Sxi = {A | πi(A) ≥ xi, A ∈ Ti}.

22



(Forgive the abuse of notation here. Formally, S is a collection of m sets of types, one for each
bidder. To avoid cumbersome notation and take union casually in this proof, let us assume that a
type A ∈ Ti carries the name of bidder i, for all i.) Now consider any minimal constricting set of
this form, i.e. a choice of x1, . . . , xm such that replacing Sxi with Sxi − {A} (A ∈ Sxi) results in S
no longer being a constricting set. 9 Now let (i, A) ∈ argmini, A∈Sxi

π̂i(A). Then by Observation 1

and by our choice of S, S − {A} is not a constricting set. Therefore, adding A to S − {A} must
increase the left-hand bound by more than it increases the right-hand bound:

Pr[ti = A]πi(A) > Pr[ti = A]
∏
j 6=i

Pr[πj(tj) < xj ]

=⇒ πi(A)∏
j 6=i Pr[πj(tj) < xj ]

> 1.

Now consider any other A′ ∈ Tk, A′ /∈ S and π̂k(A
′) ≥ π̂i(A). Observe first that we must have

A′ from some bidder k 6= i, as every A′′ ∈ Ti with π̂i(A
′′) ≥ π̂i(A) has πi(A

′′) ≥ πi(A) ≥ xi, so we
would have A′′ ∈ S. So for this A′, we have:

πk(A
′) Pr[πk(tk) ≤ πk(A′)] ≥ πi(A) Pr[πi(ti) ≤ πi(A)]

=⇒πk(A′) Pr[πk(tk) < xk] ≥ πi(A) Pr[πi(ti) < πi(A)]

=⇒πk(A′) Pr[πk(tk) < xk] ≥ πi(A) Pr[πi(ti) < xi]

=⇒πk(A′)
∏
j 6=i

Pr[πj(tj) < xj ] ≥ πi(A)
∏
j 6=k

Pr[πj(tj) < xj ]

=⇒ πk(A
′)∏

j 6=k Pr[πj(tj) < xj ]
≥ πi(A)∏

j 6=i Pr[πj(tj) < xj ]
.

And by our choice of A and the work above, we obtain:

πk(A
′)∏

j 6=k Pr[πj(tj) < xj ]
> 1

=⇒ Pr[tk = A′]πk(A
′) > Pr[tk = A′]

∏
j 6=k

Pr[πj(tj) < xj ].

This equation tells us directly that we could add A′ to S and still get a constricting set. In
fact, it tells us something stronger. If S′ =

⋃
j S
′
j , where S′j ⊆ Tj , is any constricting set containing

S, then we could add A′ to S′ and still have a constricting set. This is because the change to
the left-hand side of the inequality is the same, no matter what set we are adding A′ to. It is
always Pr[tk = A′]πk(A

′). And the change to the right-hand side is exactly Pr[tk = A′] times the
probability that none of the types in ∪j 6=kS′j show up. As we add more types to S, the probability
that none of the types in ∪j 6=kS′j show up will never increase. So for any constricting set S′

containing S, we can add A′ to S′k and still get a constricting set.
So starting from a constricting set S and a type A ∈ Ti as above we can add every B ∈ Tj with

π̂j(B) ≥ π̂i(A) to S in order to obtain a constricting set of the form Sx = {B|B ∈ Tj ∧ π̂j(B) ≥ x},
where x = π̂i(A). So every infeasible reduced form has a constricting set of this form. Taking the
contrapositive proves the theorem. 2

We say that a hierarchical mechanism H is virtually-ordered if π̂i(A) ≥ π̂j(A
′) ⇒ H(A, i) ≤

H(A′, j). While the virtual πs give us a nice structural theorem about feasible reduced forms and a

9For a minimal set S, there could be many possible choices of x1, . . . , xm. We simply use any of them.
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linear time separation oracle for determining feasibility (see proof of Theorem 6), the following ob-
servation shows that distributions over virtually-ordered hierarchical mechanisms are not sufficient
to implement every feasible reduced form when the bidders are non-i.i.d.

Observation 2. There exist feasible reduced forms that are not implementable as distributions over
virtually-ordered hierarchical mechanisms.

Proof. Consider the following example with two bidders. Bidder one has a single type, A. Bidder
two has two types, B and C and is each with probability 1/2. Then π1(A) = 1/3, π2(B) = 2/3 + ε,
π2(C) = 2/3 − ε is a feasible reduced form. However, π̂1(A) > π̂2(C), so no distribution over
virtually-ordered hierarchical mechanisms can possibly have π2(C) > 1/2.

Now that we have motivated Theorems 5 and 6, we proceed to prove them, after providing the
key steps as technical lemmas.

Lemma 2. Every feasible reduced form π for independent bidders and a single item can be imple-
mented (not necessarily exactly implemented) as a distribution over strict, partially-ordered w.r.t.
π hierarchical mechanisms.

Proof. The proof is almost identical to that of Lemma 1. Here are the main differences: We
do induction on

∑
i di, where di is the number of distinct non-zero values in {πi(A)}A∈Ti . For

the inductive step, X is now taken to be the set of distributions over strict, partially-ordered
hierarchical mechanisms, and it is still compact, viewed as a subset of the Euclidean space. The
function F : X → R is now defined as

F (M) = max
i,A∈Ti

{πi(A)−Mi(A)}.

Again, if we use the Euclidean distance on X, as a subset of the Euclidean space, F is continuous.
Since F is continuous and X is compact, F achieves its minimum inside X. Let M be a minimizer.
For all i, we define Si = {A ∈ Ti|πi(A)−Mi(A) = F (M)}. In terms of the sets {Si}i we can define
an alternative reduced form π′ as follows. For all i, A ∈ Ti: if A ∈ Si, then set π′i(A) = πi(A);
otherwise, set π′i(A) = maxB∈Si|πi(A)≥πi(B){π(B)}, unless {B ∈ Si|πi(A) ≥ πi(B)} is empty in
which case set π′i(A) equal to 0. With these changes, the proof is truly identical to that of Lemma
1, and we avoid repeating the steps for brevity.

Corollary 2. Every feasible reduced form π for independent bidders and a single item can be exactly
implemented as a distribution over strict, partially-ordered w.r.t. π hierarchical mechanisms.

Proof. The proof is identical to that of Corollary 1 after making the same modifications going from
Lemma 1 to Lemma 2.

We proceed to prove an analog of Proposition 1 in this setting. We need a definition. For
all i, let >i:= Ai,1 >

i Ai,2 >
i . . . >i Ai,ki be a total ordering of the set Ti := {Ai,1, . . . , Ai,ki}

of bidder i’s types. We say that a reduced form π respects >i iff πi(Ai,1) ≥ πi(Ai,2) ≥ . . . ≥
πi(Ai,ki). We also say that an hierarchical mechanism H is partially-ordered with respect to >i

iff H(Ai,1, i) ≤ H(Ai,2, i) ≤ . . . ≤ H(Ai,ki , i).
10 With respect to these definitions we show the

following proposition.

10Notice that this definition of partially-ordered hierarchical mechanism (with respect to {>i}i) is similar to its
counterpart in the main body (with respect to π), but different. Being partially-ordered with respect to π certainly
imposes the same constraints as being partially-ordered with respect to any {>i}i that π respects. The difference is
that being partially-ordered with respect to π may also impose some equality constraints, if πi(A) = πi(B) for types
A 6= B.
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Proposition 3. For all i, let >i:= Ai,1 >i Ai,2 >i . . . >i Ai,ki be a total ordering of the set
Ti := {Ai,1, . . . , Ai,ki} of bidder i’s types. The set of feasible reduced forms that respect >1, . . . , >m

is a (
∑

i ki)-dimensional polytope whose corners are exactly the strict, partially-ordered w.r.t. >1

, . . . , >m hierarchical mechanisms.

Proof. We know from [6, 12] that a reduced form π respects >1, . . . , >m and is feasible iff

πi(Ai,j) ≥ πi(Ai,j+1) ∀i ∈ [m], j ∈ [ki] (6)∑
i

∑
j≤xi

Pr[ti = Ai,j ]πi(Ai,j) ≤ 1−
∏
i

1−
∑
j≤xi

Pr[ti = Ai,j ]

 ∀x1 ∈ [k1], . . . , xm ∈ [km] (7)

where for notational convenience we denote πi(Ai,ki+1) = 0. In fact, to make our lives easier in a
later proof, we will actually replace (7) with:

∑
i

∑
j≤xi

Pr[ti = Ai,j ]πi(Ai,j) ≤ 1−
∏
i

1−
∑
j≤xi

Pr[ti = Ai,j ]

 ∀x1 ∈ [k1 − 1], . . . , xm ∈ [km − 1]

(8)∑
i

∑
j≤ki

Pr[ti = Ai,j ]πi(Ai,j) ≤ 1 (9)

In the above above replacement, we are basically observing that if (9) holds, then so does (7) for any
case where at least one i has xi = ki. In addition, (8) covers all other cases. We have hence shown
that the set of feasible reduced forms that respect >1, . . . , >m is a

∑
i ki-dimensional polytope.

We proceed to show that any strict, partially-ordered w.r.t. >1, . . . , >m hierarchical mechanism
H whose reduced-form is π is a corner. For convenience in the proof assume that Ti ∩ Tk = ∅, for
all i 6= k. This is easy to achieve by having every type of bidder i carry the name of bidder i,
for all i. Let now y = minx Pr[∃i,H(ti, i) ≤ x] = 1, i.e. the minimum y so that with probability
1 some bidder i will report a type Ai,j such that H(Ai,j , i) ≤ y. In terms of this y we define y∗

as follows: y∗ := y, if y 6= LOSE (case 1), and y∗ := y − 1, if y = LOSE (case 2). We observe
then that a type Ai,j ∈ Ti with H(Ai,j , i) > y∗ cannot possibly win the item, as we are either
guaranteed to see some bidder whose type lies on a higher level of the hierarchy (case 1) or the
type is mapped to LOSE and is hence given no item (case 2). For all such i, Ai,j ∈ Ti, we therefore
have πi(Ai,j) = πi(Ai,j+1) = · · · = πi(Ai,ki+1) = 0.

We say that a set of types S = ∪i{Ai,1, . . . , Ai,xi} for some x1, . . . , xm is near-constricting, if the
corresponding Inequality (7) is tight for x1, . . . , xm. Then, for any i, Ai,j ∈ Ti with H(Ai,j , i) ≤ y∗,
we know that H−1([H(Ai,j , i)]) is a near-constricting set, because the item is always awarded to
a type in H−1([H(Ai,j , i)]) whenever at least one type from this set is reported. Moreover, if
H(Ai,j1 , i) = . . . = H(Ai,j` , i), for some types Ai,j1 , . . . , Ai,j` ∈ Ti, then πi(Ai,j1) = . . . = πi(Ai,j`).
Finally, because H is strict, if some i, Ai,j ∈ Ti satisfy H(Ai,j , i) ≤ y∗, then H−1(H(Ai,j , i))∩Tk = ∅,
for all k 6= i.

Let us now define the following mapping from types to tight inequalities:

• If a type Ai,j ∈ Ti satisfies H(Ai,j , i) > y∗, then we map Ai,j to the constraint πi(Ai,j) =
πi(Ai,j+1), i.e. the tightness of inequality πi(Ai,j) ≥ πi(Ai,j+1).

• If a type Ai,j ∈ Ti satisfies H(Ai,j , i) ≤ y∗, then:

– if H(Ai,j , i) = H(Ai,j+1, i), we map Ai,j to the constraint πi(Ai,j) = πi(Ai,j+1), i.e. the
tightness of inequality πi(Ai,j) ≥ πi(Ai,j+1);
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– otherwise, we mapAi,j to the tightness of Inequality (7) for the set of typesH−1([H(Ai,j , i)]).

The above discussion ensures that our mapping is injective. Hence π makes at least
∑

i ki of the
inequalities defining our polytope tight. And it is not hard to see that there is a unique feasible
reduced form making these inequalities tight. So π is a corner of the polytope. Thus, every strict,
partially-ordered w.r.t. >1, . . . , >m hierarchical mechanism is a corner of the polytope.

We now make the same observation as in Proposition 1 to argue that there are no other corners.
Corollary 2 implies that every point in the polytope can be written as a convex combination of
strict, partially-ordered w.r.t. >1, . . . , >m hierarchical mechanisms, all of which are corners of the
polytope. As no corner of the polytope can be written as a convex combination of other corners of
the polytope, there must not be any other corners.

And now we are ready to prove Theorems 5 and 6.
Proof of Theorem 5: Using a similar argument as in the proof of Theorem 3 we can assume without
loss of generality that, for all i, π assigns a distinct probability to every type in Ti. (Otherwise we
can define a similar TypeMerge operation, like the one defined in the proof of Theorem 3, whereby
types in Ti that receive the same π value are merged into super-types.) Under this assumption,
Proposition 3 implies that π lies inside a (

∑
i |Ti|)-dimensional polytope, P , whose corners are

the strict, partially-ordered w.r.t. π hierarchical mechanisms. By Carathéodory’s Theorem, every
point in the polytope can be written as a convex combination of at most (

∑
i |Ti|) + 1 corners.

As a convex combination of corners is exactly a distribution over strict, partially-ordered w.r.t. π
hierarchical mechanisms, this proves the theorem. 2

Proof of Theorem 6: The first part of the theorem follows immediately as a corollary of Theorem 4.
We now need to describe how to efficiently find a mechanism implementing a reduced form π̃

that is feasible. Using a similar argument as in the proof of Theorem 2 we can assume without loss
of generality that, for all i, π̃ assigns a distinct probability to every type in Ti. (Otherwise we can
merge types in Ti that receive the same π̃ value into super-types, like we did in the proof of Theo-
rem 2, then run the procedure outlined below, and finally un-merge types.) Under this assumption,
Proposition 3 implies that π̃ lies inside a (

∑
i |Ti|)-dimensional polytope, P , whose corners are the

strict, partially-ordered w.r.t. π̃ hierarchical mechanisms. Therefore we can directly apply The-
orem 13 of Appendix A to write π̃ as a convex combination of such hierarchical mechanisms, as
long as we can describe the boundary oracle BO, corner oracle CO and separation oracle SO that
are needed for Theorem 13. BO is trivial to implement, as we just have to include in the set of
halfspaces defining the boundary of P those inequalities described in the proof of Proposition 3. In
particular, for convenience in the remaining of the proof, we include the inequalities of the form (6),
(8) and (9). For CO, on input B, we first check that every hyperplane h ∈ B satisfies BO(h) = yes.
If not, output no. Otherwise, we need to check if

⋂
h∈B h contains a corner of P . We know that the

corners of P are exactly the strict, partially-ordered w.r.t. π̃ hierarchical mechanisms. To check if
there is such a corner in

⋂
h∈B h we need to do some work.

First, let us use the same notation as in Proposition 3, denoting Ti = {Ai,1, . . . , Ai,ki}, where
ki = |Ti| and π̃i(Ai,1) > . . . > π̃i(Ai,ki). Also, let us call a set of types S near-constricting if
either S = ∪i{Ai,1, . . . , Ai,xi} for some x1 ≤ k1 − 1, . . . , xm ≤ km − 1 and Inequality (8) is tight for
x1, . . . , xm, or if S = ∪iTi and Inequality (9) is tight.

Now given a set B of hyperplanes, if B contains a near-constricting set hyperplane for the
sets of types S1, . . . , Sk, we check first whether these sets satisfy S1 ⊂ S2 . . . ⊂ Sk (possibly after
renaming). If not, then there are some two near-constricting sets Si, Sj with A ∈ Si−Sj , B ∈ Sj−Si
for some types A 6= B. Because Si and Sj are different than ∪iTi and they are near-constricting
they must be of the form making Inequality (8) tight. Hence, both Si and Sj miss at least one
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type of every bidder, so that the right-hand side of the inequality for Si must be < 1 and similarly
the right-hand side of the inequality for Sj must be < 1. In addition, we cannot have A and B be
types of the same bidder, as we only consider near-constricting sets that respect the partial ordering
within every bidder’s type-set. Therefore, A and B belong to different bidders, and because the
probability of seeing a type in Si is < 1 (and the same holds for Sj), there is a non-zero probability
that A and B are both present, but no other type of Si or Sj is present. Then the near-constricting
set equation for set Si requires that we must give the item to A, 11 and the near-constricting set
equation for Sj requires that we must give the item to B, which is impossible. So if we do not
have S1 ⊂ S2 . . . ⊂ Sk, the hyperplanes do not intersect in a feasible mechanism, and therefore CO
should output no.

Otherwise, CO looks at the other hyperplanes (of the form πi(Ai,j) = πi(Ai,j+1)) that belong to
B, and chooses an arbitrary strict, partially-ordered w.r.t. π̃ hierarchical mechanism that satisfies
the following constraints:

1. H(A, i) < H(A′, i′) for all (A, i) ∈ Sj , (A′, i′) ∈ Sj+1 − Sj , for all j.

2. H(A, i) < H(A′, i′) for all (A, i) ∈ Sk, (A′, i′) /∈ Sk.
3. For all i, Ai,j ∈ Ti:

(a) if the hyperplanes πi(Ai,j) = πi(Ai,j+1), πi(Ai,j+1) = πi(Ai,j+2), . . ., πi(Ai,ki) = 0(=
πi(Ai,ki+1)) are all in B, then H(Ai,j , i) = LOSE;

(b) otherwise, if πi(Ai,j) = πi(Ai,j+1) is in B, then either H(Ai,j) = H(Ai,j+1) = LOSE or
H(Ai,j) ≥ H(Ai,j+1)− 1.

We claim that an H satisfying the above constraints exists if and only if
⋂
h∈B h ∩ P 6= ∅. By

Proposition 3, we know that if there is a corner π in
⋂
h∈B h∩P , there is a strict, partially-ordered

w.r.t. π̃ hierarchical mechanism H that implements it. Without loss of generality we can make
two simplifying assumptions about H: (i) For all t 6= LOSE, |H−1(t)| ≤ 1. Indeed, suppose that
|H−1(t)| > 1 for some t 6= LOSE. Then because H is strict, location t of the hierarchy defined
by H only contains types belonging to the same bidder i. And because H is partially ordered
w.r.t. π̃ these types are consecutive in Ti. So we can change H to “expand” cell t of the hierarchy
into consecutive cells containing a single type each in the right order. This has no effect in the
mechanism defined by H. (ii) If H awards the item to bidder i of type Ai,j with probability
0, we can assume that H(Ai,j , i) = LOSE. Now given (i) and the nature of S1, . . . , Sk,

12 for
H to have the sets S1, . . . , Sk near-constricting it must satisfy the first two constraints above.
Indeed for these constraints not to be satisfied there must exist `, i, Ai,j , i

′, Ai′,j′ , i 6= i′ such
that H(Ai,j , i) < H(Ai′,j′ , i

′) and Ai,j /∈ S` while Ai′,j′ ∈ S`. But then it must be π(Ai,j) > 0
(because of assumption (ii)), so there is a positive probability that bidder i of type Ai,j is the
highest in the hierarchy when every bidder except for i′ has declared a type. Still, given that
H(Ai,j , i) < H(Ai′,j′ , i

′), even if i′ declares Ai′,j′ , i will get the item, contradicting that S` is
near-constricting. We argue next that H also needs to satisfy the third constraint above. That
constraint 3(a) is satisfied follows immediately from assumption (ii). We argue next that 3(b)
needs to be satisfied. Indeed, suppose there exist Ai,j , Ai,j+1 ∈ Ti and Ai′,j′ ∈ Ti′ such that
πi(Ai,j) = πi(Ai,j+1) > 0 and H(Ai,j , i) < H(Ai′,j′ , i

′) < H(Ai,j+1, i). As πi(Ai,j+1) > 0, it follows
that H(Ai,j+1, i) < LOSE, so H(Ai′,j′ , i

′) < LOSE, which implies that πi′(Ai′,j′) > 0 (otherwise it
would be that H(Ai′,j′ , i

′) = LOSE given (ii)). Now, because bidder i′ wins the item with non-zero

11Recall that a way to interpret a near-constricting set equation for set S is the following: whenever at least one
bidder reports a type in S to the mechanism, the mechanism gives the item to a bidder who reported a type in S,
with probability 1.

12in particular, the fact that the sets S1, . . . , Sk respect the ordering of the type sets as follows: For all `, Ai,j ∈ S`
implies Ai,j′ ∈ S`, for all j′ ≤ j.
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probability as type Ai′,j′ , there is a non-zero probability that Ai′,j′ is on the highest level of the
hierarchy after sampling from all bidders except for i. In this case, i will win the item by reporting
Ai,j , and lose by reporting Ai,j+1. In all other cases, i is at least as likely to win the item by
reporting Ai,j as Ai,j+1, and therefore we see that bidder i gets the item strictly more often when
reporting Ai,j than Ai,j+1, violating the constraint πi(Ai,j) = πi(Ai,j+1). So if there is a corner π
in
⋂
h∈B h∩P it can be implemented by a strict, partially-ordered w.r.t. π̃ hierarchical mechanism

H satisfying the above constraints. The other direction of our claim is even simpler. If a strict,
partially-ordered w.r.t. π̃ hierarchical mechanism H satisfies all constraints above, then its induced
reduced-form π will immediately satisfy all equalities in B.

Hence to implement CO one just needs to check if there is a strict, partially-ordered w.r.t. π̃
hierarchical mechanism H satisfying the four constraints above. This task is easy to do efficiently. If
a mechanism is found it satisfies all equalities in B and it is a corner of the polytope by Proposition 3.

SO is also simple to implement. On input ~π, we first check that Inequalities (6) are satisfied
(i.e. that ~π respects the total orderings on the bidders’ type-spaces induced by π̃). Then we use
the separation oracle provided by Theorem 4 to verify that ~π is feasible. As all three oracles
BO,CO, SO run in polynomial time, we can apply Theorem 13 to write π̃ as a convex combination
of at most

∑
i |Ti| + 1 corners, which is exactly a distribution over at most

∑
i |Ti| + 1 strict,

partially-ordered hierarchical mechanisms in polynomial time. 2

D Implementation of General Reduced Forms via Hierarchical
Mechanisms

Here we provide the proof of Theorem 7.
Proof of Theorem 7: Let σ be a total ordering over all possible types, σ : ∪i(Ti × {i})→ [

∑
i |Ti|].

Define the unhappiness Fσ(M) of a distribution over σ-ordered hierarchical mechanisms, M , as
follows:

Fσ(M) = max
i,A∈Ti

(πi(A)−Mi(A)).

As we argued formally in earlier sections Fσ can be viewed as a continuous function over a compact
set. Hence it achieves its minimum inside the set. Let then Mσ ∈ argminM Fσ(M) (where the
minimization is over all distributions over σ-ordered hierarchical mechanisms) and define the set Sσ
to be the set of maximally unhappy types under Mσ; formally, Sσ = argmaxi,A{πi(A)−Mσ

i (A)}.
If for some σ there are several minimizers Mσ, choose one that minimizes |Sσ|. Now, let MO
be the set of the orderings σ that minimize Fσ(Mσ). Further refine MO to only contain σ’s
minimizing |Sσ|. Formally, we first set MO = argminσ{Fσ(Mσ)} and then refine MO as MOnew =
argminσ∈MO{|Sσ|}. We drop the subscript “new” for the rest of the proof.

From now on, we call a type (A, i) happy if Mi(A) ≥ πi(A), otherwise we call (A, i) unhappy.
Intuitively, here is what we have already done: For every ordering σ, we have found a distribution
over σ-ordered hierarchical mechanisms Mσ that minimizes the maximal unhappiness and subject
to this, the number of maximally unhappy types. We then choose from these (σ,Mσ) pairs those
that minimize the maximal unhappiness, and subject to this, the number of maximally unhappy
types. We have made these definitions because we want to eventually show that there is an ordering
σ, such that Fσ(Mσ) ≤ 0, and it is natural to start with the ordering that is “closest” to satisfying
this property. We are one step away from completing the proof. What we will show next is that,
if τ ∈ MO does not make every type happy, then we can find some other ordering τ ′, such that
Fτ ′(M

τ ′) = Fτ (M τ ), |Sτ ′ | = |Sτ |, and Sτ ′ = {τ−1(1), . . . , τ−1(|Sτ ′ |)}. In other words, only the top
|Sτ ′ | types in τ are maximally unhappy. From here, we will show that because τ ′ ∈ MO, that Sτ ′
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is a constricting set and get a contradiction.
First, if the maximally unhappy types in Sτ are not the top |Sτ | ones, let i be the smallest i such

that τ−1(i+ 1) ∈ Sτ but τ−1(i) /∈ Sτ . We proceed to show that by changing either the distribution
M or the ordering τ , we can always move τ−1(i) into Sτ and τ−1(i+ 1) out without changing |Sτ |
or the value Fτ (M). Then by repeating this procedure iteratively, we will get the τ ′ we want.

Before we describe the procedure, we introduce some terminology. We say there is a cut between
τ−1(i) and τ−1(i+ 1) in a fixed τ -ordered hierarchical mechanism H if H(τ−1(i)) < H(τ−1(i+ 1)),
i.e. if τ−1(i) and τ−1(i+ 1) are on different levels of the hierarchy. For the remainder of the proof,
we will let l be the level of τ−1(i) (H(τ−1(i))). When we talk about adding or removing a cut
below i, we mean increasing or decreasing H(τ−1(j)) by 1 for all j > i. We now proceed with a
case analysis, for fixed τ−1(i) /∈ Sτ , τ−1(i+1) ∈ Sτ . We let (A, j) = τ−1(i) and (B, k) = τ−1(i+1).

• Case 1: j = k.

Since τ is a linear extension of the bidder’s own ordering, then πj(A) ≥ πj(B), but we know
that

πj(A)−M τ
j (A) < πj(B)−M τ

j (B),

thus M τ
j (A) > M τ

j (B) ≥ 0. Because A and B are types for the same bidder j, when A and
B are in the same level, they get the item with equal probability. Therefore, there must
exist some H ∈ supp(M τ ) with a cut below A, and in which A gets the item with non-zero
probability. We modify M τ by modifying the mechanisms H in its support as follows.

Let H be a hierarchical mechanism in the support of M τ . If there is no cut below A, we
do nothing. If all of the types on level l and level l + 1 are from bidder j, we remove the
cut below A. This does not affect Hq(C) (the probability that (C, q) gets the item under H)
for any q, C ∈ Tq, because it was impossible for two types in the combined level to show up
together anyway. As we have not changed Hq(C) for any q, C in the mechanisms we have
touched so far, yet none of these mechanisms has a cut between levels l and l+ 1, there must
still be some H ∈ supp(M τ ) with a cut below A and in which A gets the item with non-zero
probability (otherwise it couldn’t be that M τ

j (A) > M τ
j (B) ≥ 0). For such an H, there is at

least one type not from bidder j in level l or l + 1. We distinguish two sub-cases:

– Every bidder has at least one type in level l+ 1 or larger (in other words, every type in
level l+ 1 wins the item with non-zero probability). Consider now moving the cut from
below i to below i− 1. Clearly, A will be less happy if we do this. Every type not from
bidder j in l will be strictly happier, as now they do not have to share the item with A.
Every type not from bidder j in l + 1 will be strictly happier, as they now get to share
the item with A. It is also not hard to see that all types 6= A from bidder j in level l
and l + 1 are not affected by this change, as they never share the item with A in either
case. So in particular B is unaffected. Consider instead moving the cut from below i
to below i + 1. Then B is happier, every type not from bidder j in l + 1 is less happy
than before (as they now don’t get to share with B), every type not from bidder j in l is
also less happy than before (because now they have to share with B), and all types 6= B
from bidder j in level l and l+ 1 are not affected by the change (as they never share the
item with B in either case). To summarize, we have argued that, when we move the cut
to below i+ 1, B becomes strictly happier, and every type that becomes less happy by
this change becomes strictly happier if we move the cut to below i − 1 instead. Also,
B is unaffected by moving the cut to i − 1. So with a tiny probability ε, move the cut
from below i to below i − 1, whenever H is sampled from M τ . This makes all of the
types not from bidder j in level l or l + 1 strictly happier. With a tinier probability δ,
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move the cut from below i to below i + 1, whenever H is sampled from M τ . Choose
ε to be small enough that we don’t make A maximally unhappy, and choose δ to be
small enough so that we don’t make any types besides A less happy than they were in
H. Then we have strictly increased the happiness of B without making A maximally
unhappy, or decreasing the happiness of any other types. Therefore, we have reduced
|Sτ |, a contradiction.

– If there is a bidder j′ whose types are all in levels 1, . . . , l (call such bidders high), then
no type in level l + 1 can possibly win the item. We also know that: every high bidder
has at least one type in level l by our choice of H (otherwise A would get the item with
probability 0); and all high bidders are different than j, since B is in level l+ 1. Now we
can basically use the same argument as above. The only difference is that when we move
the cut to below i−1 or the cut to below i+1, types in level l+1 that are different than
B will remain unaffected (i.e. the affected types different from B are only those in level
l). But since every high bidder has a type in level l, B will be unaffected in the first case
but strictly happier in the second, and it is still the case that every type who is made
unhappier by moving the cut to below i+ 1 is made strictly happier by moving the cut
to below i− 1. So we can carry over the same proof as above, and get a contradiction.

Therefore, it can not be the case that j = k.

• Case 2: j 6= k and there is never a cut below A.

This case is easy. If we switch (A, j) and (B, k) in τ , then the set Sτ is exactly the same, and
the distribution M τ is exactly the same. However, we have now relabeled the types in Sτ so
that τ−1(i) ∈ Sτ and τ−1(i+ 1) /∈ Sτ .

• Case 3: j 6= k and there is sometimes a cut below A.

Pick a mechanism H in the support of M τ that has a cut between A and B and in which
A gets the item with positive probability. (If such a mechanism doesn’t exist we can remove
the cut between i and i+ 1 in all mechanisms in the support without changing the allocation
probabilities and return to Case 2). Let now i∗ = maxi′<i{i′|τ−1(i′) ∈ Sτ}. By our choice of
i (specifically, that it is the smallest i such that τ−1(i+ 1) ∈ Sτ but τ−1(i) /∈ Sτ ), we see that
τ−1(i′) ∈ Sτ for all i′ ≤ i∗, and τ−1(i′) /∈ Sτ for all i∗ < i′ ≤ i. There are again two sub-cases:

– H(τ−1(i∗)) < l. By our choice of i∗, this means that everyone in level l is not maxi-
mally unhappy. By our choice of H, everyone in level l receives the item with non-zero
probability, so there is at least one type from each bidder in level l or larger. If we pick
a tiny ε, and with probability ε remove the cut from below i (whenever H is sampled
from M τ ), then everyone in level l + 1 is happier, everyone in level l is unhappier, and
everyone else is unaffected. In particular, B will be strictly happier with this change, as
he now gets to share with A (and possibly others). If we choose a sufficiently small ε,
no one in level l will be made maximally unhappy, and (B, k) will be removed from Sτ ,
a contradiction.

– H(τ−1(i∗)) = l. In this case, introduce a cut below i∗ with some probability ε whenever
H is sampled from M τ . The only types who may become happier by this change are
those in level l with τ(C, q) ≤ i∗. The only types who may become unhappier by this
change are those in level l with τ(C, q) > i∗. Everyone else is unaffected by this change.
But, if we can make any type happier, then we can choose ε small enough, so that we
remove this type from Sτ (this type must be in Sτ as all types in level l with τ(C, q) ≤ i∗
are) without making any new type maximally unhappy (as all types that can possibly
become unhappier with this change are not in Sτ ). Again, we obtain a contradiction
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because this would decrease |Sτ | without increasing Fτ (M τ ). Thus, this change cannot
make anyone happier, and therefore cannot make anyone unhappier. So we may modify
Mσ by introducing a cut below i∗ with probability 1 whenever M τ samples H, thereby
removing H from the support of M τ (without making anyone happier or unhappier)
and replacing it with H ′ satisfying: H ′(τ−1(i∗)) < H ′(τ−1(i)) < H ′(τ−1(i+ 1)) and H ′

awards the item to τ−1(i) with non-zero probability. After this modification, we may
return to the previous sub-case to obtain a contradiction.

Hence, it can not be the case that j 6= k with sometimes a cut below A.

At the end of all three cases, we see that if we ever have τ−1(i) /∈ Sτ and τ−1(i+ 1) ∈ Sτ , then
these types must belong to different bidders, and no mechanism in the support of M τ ever places
a cut between these types. Hence, we can simply swap these types in τ (as we described in Case
2 above), and we do that repeatedly until we have Sτ = {τ−1(1), . . . , τ−1(|Sτ |)}. Once such a τ
has been found, let k = |Sτ |. Now consider a mechanism in the support of M τ that has no cut
below k, and consider putting a cut there with some tiny probability ε whenever this mechanism is
sampled. The only effect this might have is that when the item went to a type outside Sτ , it now
goes with some probability to a type inside Sτ . Therefore, if anyone gets happier, it is someone in
Sτ . However, if we make anyone in Sτ happier and choose ε small enough so that we don’t make
anyone outside of Sτ maximally unhappy, we decrease |Sτ |, getting a contradiction. Therefore,
putting a cut below k cannot possibly make anyone happier, and therefore cannot make anyone
unhappier. So we may w.l.o.g. assume that there is a cut below k in all mechanisms in the support
of M τ . But now we get that the item always goes to someone in Sτ whenever someone in Sτ shows
up, yet everyone in this set is unhappy. Therefore, Sτ is a constricting set, certifying that the given
π is infeasible.

Putting everything together, we have shown that if there is no σ with Fσ(Mσ) ≤ 0 then the
reduced form is infeasible. So there must be some σ with Fσ(Mσ) ≤ 0, and such an Mσ implements
the reduced form by sampling only σ-ordered hierarchical mechanisms, completing the proof. 2

E Optimal multi-dimensional mechanisms

We sketch how to use our results from the previous sections and recent results of [14] to obtain
the proofs of Theorems 8, 9, 10 and 11. Simply put, [14] provides a LP formulation for the
problem of finding the optimal BIC mechanism for value distributions of finite support. In addition,
[14] exploits any symmetry that may exist in the value distribution to reduce the size of the
resulting LPs. However, without a separation oracle to determine the feasibility of the πs, these LP
formulations will have size exponential in the number of bidders in the settings we consider, even
when the bidders are i.i.d., because the LPs need to maintain variables for the ex-post allocation
rule described by the φ’s (See Section 2). Using the separation oracles of Theorems 2 and 6, we
can eliminate the need for φ’s in these LPs, turning the number of variables to polynomial in the
number of bidders, and solving them in time polynomial in m, n and maxi |supp(Fi)|, thereby
establishing Theorem 8. Theorem 9 follows immediately by combining our separation oracles with
the symmetric LPs of Section 5 of [14]. Theorem 10 follows by discretizing the value distributions,
applying the aforementioned symmetric LPs and the ε-BIC to BIC reduction of Section 6 of [14].
Finally, Theorem 11 is obtained by truncating and discretizing the value distributions, running the
symmetric LP on the resulting distributions, and using the ε-BIC to BIC reduction of Section 6
of [14]. (This procedure is described in detail in Appendix J of [14].)

For completeness, in Figure 3 we describe how to modify the LP of [14] to exploit our separation
oracles. We only describe the LP for the item-symmetric case to illustrate some extra work that
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is needed to handle symmetries. It is clear how to “un-symmetrize” the LP to treat the non-
symmetric problem. The LP shown in Figure 3 is identical to the item-symmetric LP of [14] except
that we have replaced the näıve feasibility constraints for the reduced form used in [14] (these
were explicitly finding consistent ~φ(P )’s for every profile) with a separation oracle SO that takes
as input a reduced form and decides whether it is feasible or not, in which case it also provides
a separation hyperplane from the feasible set. The reader should refer to [14] for the correctness
of the unmodified LP. So we only need to justify here that our separation oracle works properly.
While this is obvious in the non-symmetric case (as it follows directly from Theorem 6), it is slightly
trickier for the symmetric LP of Figure 3, as the LP does not explicitly maintain the whole reduced
form. In particular, for every bidder i, we only maintain the reduced form for all types of bidder i
in the set Ei = {~vi | vi1 ≥ . . . ≥ vin}, and it is assumed that (because of symmetries) the reduced
form of a type ~wi /∈ Ei is just {πij(~wi) = πiσ−1(j)(~vi)}j for whatever ~vi ∈ Ei and σ ∈ S satisfy
σ(~vi) = ~wi, where S is the set of all item permutations. (For why it is OK to assume that such
symmetries are satisfied by the optimal reduced form, the reader is referred to [14].)

We proceed to describe how our separation oracle works in the item-symmetric case. The input
to SO is the succinct description {πij(~vi)}i,j,~vi∈Ei of a reduced form and the value distribution D.
If we define Π := ∪i,j,~vi∈Ei{π̂ij(~vi)}, where the π̂’s are as in Definition 3, it follows from Theorem 4
and the symmetries satisfied by the complete reduced form (which is implied by the succinct one
provided in the input to SO) that, for each item j, we only need to check |Π| constricting sets
for feasibility. (In fact, because the mechanism is item-symmetric, it suffices to only check these
constraints for a single item.) Checking a particular set can be done in time polynomial in |Π|,
i.e. without explicitly listing all types that belong to the set, due to the symmetries. If none of
the sets is found constricting, output “yes.” Otherwise, output the linear constraint violated by
the constricting set. This is a hyperplane certifying that the πij(~vi)’s are infeasible. If SO outputs
“yes,” this means that it is possible to allocate each item individually and satisfy the πij(~vi)s.
Because bidders have no demand constraints, this also means that we can simultaneously satisfy
the πij(~vi)’s of all items by simply allocating each item independently. It is now clear that SO
acts correctly as a separation oracle determining whether or not the πij(~vi)s are feasible. Moreover,
notice that |Ei| = poly(nc), for all i, where c = |supp(Fij)|. Hence, |Π| is polynomial in m and nc.
So our SO runs in time polynomial in m and nc.

Our LP has size polynomial in m, nc and our separation oracle runs in time polynomial in m,
nc. So we can solve the LP to compute the optimal reduced form, {πij(~vi)}i,j,~vi∈Ei . To execute the
mechanism corresponding to the computed reduced form, we use Theorem 6, treating each item
separately and allocating each item independently of the others.

F Generalization of Border’s Theorem: Non-Negative Linear Fea-
sibility Constraints

We provide details from Section 3.4 and prove Theorem 12. Throughout the section, we let P
denote a type-profile, Pr[P ] the probability of seeing profile P , and Pi the type of bidder i in P .

Proof of Theorem 12: It is clear that this is a necessary condition for a reduced form to be feasible.
Indeed, if M implements the reduced form, then we have:

πij(A) Pr[ti = A] ≤Mij(A) Pr[ti = A] ∀ i, j, A ∈ Ti;

32



Variables:

• πij(~vi), for all bidders i, items j, and ~vi ∈ Ei (mn|Ei|), the ex-interim probability that bidder
i gets item j when reporting type ~vi.

• qi(~vi), for all bidders i, ~vi ∈ Ei (m|Ei|), the ex-interim expected price that bidder i pays when
reporting type ~vi.

Constraints:

• 0 ≤ πij(~vi) ≤ 1, for all i, j, ~vi ∈ Ei, guaranteeing that each πij(~vi) is a probability (mn|Ei|).
•
∑

j vijπij(~vi) − qi(~vi) ≥ 0, for all i, ~vi ∈ Ei, guaranteeing that the mechanism is ex-interim
Individually Rational (m|Ei|).
•
∑

j vijπij(~vi)− qi(~vi) ≥
∑

j vijπij(~v
′
i)− qi(~v′i), for all i, ~vi ∈ Ei, ~v′i ∈ Ei, guaranteeing that the

mechanism is BIC (m|Ei|2).
• SO({πij(~vi)}i,j,~vi ,D) = “yes”, guaranteeing that there is a feasible mechanism implementing

the πij(~vi)s.

Maximizing:∑
i,~vi∈Ei qi(~vi)Pr[~wi ← Di, ~wi ∈ ∪σ∈S{σ(~vi)}], the expected revenue.

Figure 3: LP of [14] for the item-symmetric setting, where we use a separation oracle to determine
feasibility of the reduced form. In parentheses at the end of each line is the number of such
variables/constraints .

and therefore for any weights Wij(A):∑
i,j

∑
A∈Ti

Wij(A)πij(A) Pr[ti = A] ≤
∑
i,j

∑
A∈Ti

Wij(A)Mij(A) Pr[ti = A]

≤
∑
P

Pr[P ] · max
~φ(P )∈F

∑
i

∑
j

Wij(Pi) · φij(P )

 ,

where the last inequality comes from observing that M defines a feasible mechanism, and therefore
for every profile provides a valid choice of ~φ(P ) ∈ F for the maximization.

Now, we argue that if the reduced form is infeasible, we can find constricting weights, i.e. weights
making the inequality in the statement of the theorem fail. For any mechanism M , define the value
of M , V (M) as follows:

V (M) =
∑
i

∑
j

∑
A∈Ti

min{Mij(A) Pr[ti = A], πij(A) Pr[ti = A]}.

We can now say that M implements the reduced form if and only if:

V (M) =
∑
i

∑
j

∑
A∈Ti

πij(A) Pr[ti = A].

By our assumption on the feasibility constraints, there exist some set of linear constraints H,
with all cij(h) ≥ 0 and d(h) ≥ 0, for all h ∈ H, such that a mechanism is feasible if and only if its
induced {φ(P )}P satisfies the following for all profiles P :

~φ(P ) · ~c(h) ≤ d(h) ∀h ∈ H ∧ ~φ(P ) ≥ ~0.
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Therefore, the mechanism M maximizing V (M) is a solution to the following LP:
Primal LP 1
Variables:

• φij(P ), for all bidders i, items j and profiles P .

Constraints:

• ~φ(P ) · ~c(h) ≤ d(h) for all P, h ∈ H. Rewritten as:

Pr[P ] · ~φ(P ) · ~c(h) ≤ Pr[P ] · d(h).

• φij(P ) ≥ 0, for all i, j, P .

•
∑

P |Pi=A φij(P ) · Pr[P ] ≤ πij(A) · Pr[ti = A], for all i, j, A ∈ Ti.
Maximizing:

•
∑

i,j,P φij(P ) · Pr[P ].

In other words, for any feasible mechanism M , Primal LP 1 modifies M to sometimes throw
away an item rather than have Mij(A) > πij(A), then counts the expected number of items that
M awards. Primal LP 1 maximizes the expected number of items awarded by a feasible mechanism
subject to these constraints. Consider now the dual to this LP:

Dual LP 1
Variables:

• xh(P ), for all h ∈ H, and profiles P .

• yij(A), for all i, j and A ∈ Ti.
Constraints:

•
∑

h∈H Pr[P ] · cij(h) · xh(P ) + Pr[P ] · yij(Pi) ≥ Pr[P ], for all i, j, P . Rewritten as:∑
h∈H

cij(h) · xh(P ) + yij(Pi) ≥ 1.

• xh(P ) ≥ 0, for all P, h ∈ H.

• yij(A) ≥ 0, for all i, j and A ∈ Ti.
Minimizing:

•
∑

i,j

∑
A∈Ti yij(A)πij(A) Pr[ti = A] +

∑
P Pr[P ] ·

∑
h∈H d(h) · xh(P ).

By setting all φij(P ) to 0, we know Primal LP 1 is feasible. Also, Dual LP 1 is feasible, as we
can set all xh(P ) to 0 and yij(A) to 1. Hence, by strong LP duality, we know the values of the two
LPs are the same, so the value of Dual LP 1 is strictly smaller than

∑
i,j

∑
A∈Ti πij(A) Pr[ti = A]

if and only if the reduced form is infeasible. Now let us consider Dual LP 1 and try to find the
constricting weights.

Observe first, that there is always an optimal solution to Dual LP 1 with yij(A) ≤ 1 for all
i, j, A. This is because each yij(A) has a non-negative coefficient in the objective function, each
cij(h) ≥ 0, and each xh(P ) ≥ 0. So decreasing yij(A) from above 1 to 1 does not violate any
feasibility constraints, or increase the value of the objective function.

Next, we claim that in Dual LP 1 the optimal feasible choice of xh(P ) to minimize the objective
function depends only on the values yij(Pi) and xh′(P ) for other h′ ∈ H, but not on xh′(P

′) for
any other profile P ′. This is easy to see, as there are no inequalities with non-zero coefficients for
both xh(P ) and xh′(P

′) for any inequalities h, h′ and profiles P 6= P ′. Therefore, if we are given a
choice of yij(A) for all i, j, A, we can find the optimal choices of xh(P ) for all h, P independently for
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each profile P (but still considering all h ∈ H at once). In particular, once the yij(A)s are fixed,
the optimal choice of xh(P ) for a fixed profile P is just a solution to the following LP:

Primal LP 2
Variables:

• xh(P ) for all h ∈ H (P is fixed for the purposes of this LP).

Constraints:

•
∑

h∈H cij(h) · xh(P ) ≥ 1− yij(Pi), for all i, j.

• xh(P ) ≥ 0 for all h ∈ H.

Minimizing:

• Pr[P ] ·
∑

h∈H d(h) · xh(P ).

We can now take the dual of Primal LP 2, for a fixed profile P :

Dual LP 2
Variables:

• γij(P ), for all i, j.

• φij(P ), for all i, j. Extra variables satisfying Pr[P ] · φij(P ) = γij(P ), used for convenience.

Constraints:

•
∑

i,j γij(P ) · cij(h) ≤ Pr[P ] · d(h). Replacing γij(P ) with Pr[P ] · φij(P ) yields:

~φ(P ) · ~c(h) ≤ d(h).

• Pr[P ] · φij(P ) = γij(P ) for all i, j.

• φij(P ) ≥ 0 for all i, j.

Maximizing:

•
∑

i,j γij(P ) · (1− yij(Pi)). Replacing γij(P ) with Pr[P ] · φij(P ) yields:

Pr[P ] ·
∑
i,j

φij(P ) · (1− yij(Pi)).

We now make our key observation. For a fixed profile P , and for a fixed choice of yij(A) for all
i, j, A, Dual LP 2 is exactly trying to maximize the weighted sum

∑
i,j(1− yij(Pi)) ·φij(P ), subject

to the same constraints guaranteeing that ~φ(P ) ∈ F . By the strong LP duality (it is again easy to
verify that both Primal LP 2 and Dual LP 2 are feasible), we know that the value of this maximum
weighted feasible allocation is exactly the value attained by the optimal solution to Primal LP 2.
Therefore, we may now claim that, for any choice of yij(A)s in Dual LP 1, the minimum value of
Dual LP 1 subject to this choice is exactly:∑

i,j

∑
A∈Ti

yij(A) · πij(A) · Pr[ti = A] +
∑
P

Pr[P ] · max
~φ(P )∈F

∑
i,j

(1− yij(Pi)) · φij(Pi).

Finally, as the reduced form is infeasible, there is some optimal solution {x∗h(P ), y∗ij(A)} to
Dual LP 1 with all y∗ij(A) ∈ [0, 1] whose value is strictly less than

∑
i,j

∑
A∈Ti πij(A) · Pr[ti = A].

Therefore, if we take this choice of y∗ij(A) and set Wij(A) = 1− y∗ij(A) we obtain:
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∑
i,j

∑
A∈Ti

y∗ij(A) · πij(A) · Pr[ti = A] +
∑
P

Pr[P ] · max
~φ(P )∈F

∑
i,j

(1− y∗ij(Pi)) · φij(Pi)

=
∑
i,j

∑
A∈Ti

y∗ij(A)πij(A) Pr[ti = A] +
∑
P

Pr[P ] ·
∑
h∈H

d(h) · x∗h(P )

<
∑
i,j

∑
A∈Ti

πij(A) · Pr[ti = A].

By subtracting
∑

i,j

∑
A∈Ti y

∗
ij(A) · πij(A) · Pr[ti = A] from both sides, we obtain a proof of the

theorem: ∑
P

Pr[P ] · max
~φ(P )∈F

∑
i,j

Wij(Pi) · φij(Pi) <
∑
i,j

∑
A∈Ti

Wij(A) · πij(A) · Pr[ti = A].

2

F.1 A Special Case: Many Items, Demand Constraints, Correlated Bidders

Recall the definition of our multi-commodity flow instance outlined in Section 3.4.1. Let us make
it more precise:

Nodes:

• S(j), for all items j, these are sources.

• I(P ), for all possible profiles.

• T (i, A) for all i and A ∈ Ti, these are sinks.

Edges:

• From S(j) to I(P ) of capacity Pr[P ], for all items j and profiles P .

• From I(P ) to T (i, Pi) of capacity Ci Pr[P ], where Ci is bidder i’s demand, for all bidders i
and profiles P .

Commodities:

• Gij(A) for all bidders i, items j and all types A ∈ Ti with a demand of Pr[ti = A]πij(A).

We observe that the feasibility of the above multi-commodity flow instance is equivalent to the
feasibility of the reduced form π.

Proposition 4. The above multi-commodity flow problem has a feasible solution satisfying every
demand if and only if the reduced form ~π is feasible.

Proof. Say the reduced form is feasible. Then there exist variables φij(P ) such that:

1.
∑

j φij(P ) ≤ Ci, for all i, P .

2.
∑

i φij(P ) ≤ 1, for all j, P .

3.
∑

P |Pi=A φij(P ) · Pr[P ] = πij(A) · Pr[ti = A], for all i, j, A.

So along the edges from S(j) to I(P ) and I(P ) to T (i, Pi), we will send Pr[P ] ·φij(P ) of commodity
Gij(Pi). It is clear that by the conditions on the φs that all of the edge capacities are respected, and
that the total amount of commodity Gij(A) received by node T (i, A) is exactly πij(A) ·Pr[ti = A],
i.e. matching its demand.

Taking the inverse of this procedure (by interpreting as Pr[P ] ·φij(P ) the amount of commodity
Gij(A) that is sent through the edge (S(j), I(P )) shows how to take any feasible flow satisfying

36



every demand and capacity constraint and turn it into a set of φs that implement the reduced form
(by just reading out the φij(P )’s from the edges of the flow network, using the afore-mentioned
interpretation).

F.2 False Extensions

A short discussion is warranted on why this is the right extension of Border’s Theorem. There are
stronger, more natural extensions that one might hope to be true. For instance, below are two
natural extensions that are not true, even in the special case that the feasibility constraints are
only demand constraints.

1. False Extension 1. If the demand constraints are met for every type in expectation, and it
is feasible to allocate each item individually, then the reduced form is feasible. Formally,∑

j

πij(A) ≤ Ci ∀i, A ∈ Ti∑
i

∑
A∈Si

πij(A) ≤ 1−
∏
i

(1− Pr[ti ∈ Si]) ∀j,∀i, Si ⊆ Ti

2. False Extension 2. Theorem 12 holds when we only consider {Wij(A)} such that Wij(A) =
Wij′(A) for all bidders i, items j, j′, and A ∈ Ti. I.E. the weights for a type of bidder i does
not depend on the item.

Proposition 5. Both False Extensions are indeed false, even when all bidders are i.i.d. and when
the feasibility constraints are just demand constraints.

Proof. First, consider the case with three unit-demand i.i.d. bidders and two items. Every bidder
has two possible types A,B, and Pr[A] = ε, Pr[B] = 1− ε. We use πj(t) to denote the probability
that a bidder with type t receives item j. Let π1(A) = π2(A) = 1/2. π1(B) = π2(B) = 0.
Then clearly the hypotheses of False Extension 1 are met. No type receives more than one item
in expectation, and it is feasible to allocate each item individually. However, as each bidder is
unit-demand, and type A wants exactly one item in expectation, A must always leave with an item
every time they show up to the auction to possibly satisfy the πs. Clearly this is not possible, as it
is possible for all three A’s to show up at once, but there are only two items. So we cannot possibly
give A an item every time they show up. Therefore, False Extension 1 is indeed false.

To get a counterexample to the second false extension, modify the above example by adding a
third item, with π3(A) = π3(B) = 0. Once we have Wi(A) = Wi1(A) = Wi2(A) = Wi3(A) for all i,
the LHS of the constricting-weights inequality in the statement of Theorem 12 becomes:∑

i,j

∑
t∈Ti

Wi(t)πj(t) Pr[ti = t] = ε(W1(A) +W2(A) +W3(A)).

This is because πij(B) = 0 for all i, j, and Pr[ti = A] = ε for all i.
Now consider setting φii(P ) = 1 for all P , and φij(P ) = 0 for all P and i 6= j. For any choice

of weights Wi(A),Wi(B), the RHS of the inequality (the expected weights induced by the φs) will
be:

ε(W1(A) +W2(A) +W3(A)) + (1− ε)(W1(B) +W2(B) +W3(B)).

This is because we always give exactly one item to each bidder. When the type of bidder i is
A, we get weight Wi(A), when it is B we get weight Wi(B). Because ti = A with probability ε, we
get the above calculation.
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Obviously, for any choice of weights, the following holds.

ε(W1(A) +W2(A) +W3(A)) + (1− ε)(W1(B) +W2(B) +W3(B)) ≥ ε(W1(A) +W2(A) +W3(A)).

Then if we choose the φs in a way that it maximizes the expected weights, LHS will still be less
than RHS. This shows that there are no constricting weights satisfying Wij(A) = Wij′(A) for all
i, j, j′. However, we still know that this reduced form is infeasible. The key is that we need to let
Wi3(A) = 0 in order to find constricting weights, without having Wi1 and Wi2 = 0. So we need
different weights for different items.
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