
Short Proofs for the Determinant Identities

Pavel Hrubeš∗ Iddo Tzameret†

December 30, 2011

Abstract

We study arithmetic proof systems Pc(F) and Pf (F) operating with arithmetic circuits
and arithmetic formulas, respectively, that prove polynomial identities over a field F. We
establish a series of structural theorems about these proof systems, the main one stating
that Pc(F) proofs can be balanced: if a polynomial identity of syntactic degree d and depth
k has a Pc(F) proof of size s, then it also has a Pc(F) proof of size poly(s, d) and depth
O(k + log2 d+ log d · log s). As a corollary, we obtain a quasipolynomial simulation of Pc(F)
by Pf (F), for identities of a polynomial syntactic degree.

Using these results we obtain the following: consider the identities

det(XY) = det(X) · det(Y) and det(Z) = z11 · · · znn,

where X,Y and Z are n×n square matrices and Z is a triangular matrix with z11, . . . , znn on
the diagonal (and det is the determinant polynomial). Then we can construct a polynomial-
size arithmetic circuit det such that the above identities have Pc(F) proofs of polynomial-size
and O(log2 n) depth. Moreover, there exists an arithmetic formula det of size nO(logn) such
that the above identities have Pf (F) proofs of size nO(logn).

This yields a solution to a long-standing open problem in propositional proof complexity,
namely, whether there are polynomial-size NC2-Frege proofs for the determinant identities
and the hard matrix identities, as considered, e.g. in Soltys and Cook [SC04] (cf., Beame and
Pitassi [BP98]). We show that matrix identities like AB = I → BA = I (for matrices over
the two element field) as well as basic properties of the determinant have polynomial-size
NC2-Frege proofs, and quasipolynomial-size Frege proofs.

1 Introduction

The field of proof complexity is dominated by the question of how hard is it to prove propositional
tautologies. For weak proof systems, such as resolution, many hardness results are known (cf.,
[Seg07] for a recent technical survey), but for strong propositional proof systems like Frege or
extended Frege the question remains completely open. In this paper we continue to investigate
a different but related problem: how hard is it to prove polynomial identities? For this purpose,
various systems for proving polynomial identities were introduced in [HT09]. The main feature
of these systems is that they manipulate arithmetic equations of the form F = G, where F,G

∗Department of Computer Science, University of Calgary, Alberta, Canada. Email: pahrubes@gmail.com
†Institute for Theoretical Computer Science, IIIS, Tsinghua University, Beijing, 100084, China. Email:

tzameret@tsinghua.edu.cn. Supported in part by the National Basic Research Program of China Grant
2011CBA00300, 2011CBA00301, the National Natural Science Foundation of China Grant 61033001, 61061130540,
61073174.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 174 (2011)

are arithmetic formulas over a given field. Such equations are manipulated by means of simple
syntactic rules, in such a way that F = G has a proof if and only if F and G compute the same
polynomial. The central question in this framework is the following:

What is the length of such proofs, namely, does every true polynomial equation have
a short proof, or are there hard equations that require extremely long proofs?

In this paper, we focus on two arithmetic equational proof systems (arithmetic proofs systems, for
short) for proving polynomial identities: Pf and Pc. The former system was introduced in [HT09]
and the latter is an extension of it. The difference between the two systems is that Pf operates
with arithmetic formulas, whereas Pc operates with arithmetic circuits—this is analogous to the
distinction between Frege and extended Frege proof systems (Frege and extended Frege proofs
are propositional proof systems establishing propositional tautologies, essentially operating with
boolean formulas and circuits, respectively).

The study of proofs of polynomial identities is motivated by at least two reasons. First, as
a study of the Polynomial Identity Testing (PIT) problem. As a decision problem, polynomial
identity testing can be solved by an efficient randomized algorithm [Sch80, Zip79], but no efficient
deterministic algorithm is known. In fact, it is not even known whether there is a polynomial
time non-deterministic algorithm or, equivalently, whether PIT is inNP. A proof system such as
Pc can be interpreted as a specific non-deterministic algorithm for PIT: in order to verify that an
arithmetic formula F computes the zero polynomial, it is sufficient to guess a proof of F = 0 in
Pc. Hence, if every true equality has a polynomial-size proof then PIT is in NP. Conversely, Pf

and Pc systems capture the common syntactic procedures used to establish equality of algebraic
expressions. Thus, showing the existence of identities that require superpolynomial arithmetic
proofs would imply that those syntactic procedures are not enough to solve PIT efficiently.

The second motivation comes from propositional proof complexity. The systems Pf and Pc

are in fact restricted versions of their propositional counterparts, Frege and extended Frege,
respectively (when operating over GF (2)). One may hope that the study of the former would
help to understand the latter. Arithmetic proof systems have the advantage that they work with
arithmetic circuits. The structure of arithmetic circuits is perhaps better understood than the
structure of their Boolean counterparts, or at least is different, allowing one to employ different
techniques and possibly fresh perspectives.

In order to understand the strength of the systems Pf and Pc, as well as their relative strength,
we investigate quite a specific question, namely, how hard is it to prove basic properties of the
determinant? In other words, we investigate lengths of proofs of identities such as det(AB) =
det(A) ·det(B), or the cofactor expansion of the determinant. We show that such identities have
polynomial-size Pc proofs of depth O(log2 n) and quasipolynomial size Pf proofs (both results
hold over any field).1

The determinant polynomial has a central role in both linear algebra and arithmetic cir-
cuit complexity. Therefore, an immediate motivation for our inquiry is to understand whether
arithmetic proof systems are strong enough to reason efficiently about the determinant. More
importantly, we take the determinant question as a pretext to present several structural prop-
erties of Pc and Pf . A large part of this work is not concerned with the determinant at all,
but is rather a series of general theorems showing how classical results in arithmetic circuit
complexity can be translated to the setting of arithmetic proofs. We thus show how to capture
efficiently in our proof systems the following results: (i) homogenization of arithmetic circuits

1The parameter n is the dimension of the matrices A,B, and quasipolynomial size means size nO(logn).

2

(implicit in [Str73]); (ii) Strassen’s technique for eliminating division gates over large enough
fields (also in [Str73]); (iii) eliminating division gates over small fields—this is done by simulat-
ing large fields in small ones; and (iv) balancing arithmetic circuits (Valiant et al. [VSBR83];
see also [Hya79]). Most notably, the latter result gives a collapse of polynomial-size Pc proofs
to polynomial-size O(log2 n)-depth Pc proofs (for proving identities of polynomial syntactic de-
grees) and a quasipolynomial simulation of Pc by Pf . This is one important point where the
arithmetic systems differ from Frege and extended Frege, for which no non-trivial simulation is
known.

Furthermore, the proof complexity of linear algebra attracted a lot of attention in the
past. This was motivated, in part, by the goal of separating the propositional proof sys-
tems Frege and extended Frege. A classical example, originally proposed by Cook and Rack-
off (cf., [BP98, SC04, SU04, Sol01, Sol05]), is the so called inversion principle asserting that
AB = I → BA = I. When A,B are n × n matrices over GF (2), the inversion principle is a
collection of propositional tautologies. Soltys and Cook [SC04, Sol01] showed that the principle
has polynomial size extended Frege proofs. On the other hand, no feasible Frege proof is known,
and hence the inversion principle is a candidate for separating the two proof systems. Other
candidates, including several based on linear algebra, were presented by Buss et al. [BBP95].
The inversion principle is one of the “hard matrix identities” explored in [SC04]. Inside Frege,
the hard matrix identities have feasible proofs from one another, and they have short proofs
from the aforementioned determinant identities. This connection between the hard matrix iden-
tities and the determinant identities serves as an evidence for the conjecture that hard matrix
identities require superpolynomial Frege proofs: it seems that every Frege proof must construct
in some sense the determinant, which is believed to require a superpolynomial-size formula.

A related question is whether the hard matrix identities and the determinant identities have
polynomial-size NC2-Frege proofs2. This was conjectured in, e.g., [BBP95], based on the intu-
ition that the determinant is NC2 computable, and so by the analogy between circuit classes and
proofs, it is natural to assume that the determinant properties are efficiently provable in NC2-
Frege. Again, a polynomial-size extended Frege proofs of the determinant identities have been
constructed in [SC04]. Whether these identities have polynomial-size NC2-Frege proofs (and
hence, quasipolynomial-size Frege proofs) remained open. In this paper, we positively answer
this question: we show that over GF (2), the hard hard matrix identities and the determinant
identities have polynomial-size NC2-Frege proofs. This is a simple corollary of the results on
arithmetic proof systems. Over the two element field, an O(log2 n)-depth Pc proof is formally
also NC2-Frege proof3. Thus, if determinant identities like det(AB) = det(A) · det(B) have
polynomial-size Pc(GF (2)) proofs with depth O(log2 n), then the corresponding propositional
tautologies have polynomial-size NC2-Frege proofs.

Let us remark that one can also consider propositional translations of the determinant iden-
tities (and the hard matrix identities) over different finite fields or even the rationals. We do
not explicitly study these translations, but there is no apparent obstacle to extending the result
to these cases.

To understand our construction of short arithmetic proofs for the determinant identities,
let us consider the following example. In [Ber84], Berkowitz constructed a quasipolynomial
size arithmetic formula for the determinant. He used a clever combinatorial argument designed
specifically for the determinant function. However, one can build such a formula in a completely

2That is, polynomial size proofs using circuits of O(log2 n) depth
3When + and · modulo 2 are interpreted as Boolean connectives and = is interpreted as logical equivalence.

3

oblivious way: first compute the determinant by, say, Gaussian elimination algorithm. This
gives an arithmetic circuit with division gates. Second, show that any circuit with division gates
computing a polynomial can be efficiently simulated by a division-free circuit [Str73], and finally,
show that any arithmetic circuit of a polynomial degree can be transformed to an O(log2 n)-
depth circuit computing the same polynomial, with only a polynomial increase in size [VSBR83]
(or to a formula with at most a quasipolynomial increase in size [Hya79]). This paper follows a
similar strategy, but in the proof-theoretic framework.

It should be stressed that in full generality, the structural theorems about Pc and Pf cannot
be reproduced for propositional Frege and extended Frege systems. As already mentioned, no
non-trivial simulation between Frege and extended Frege is known, and the other theorems are
difficult to even formulate in the Boolean context. This also illustrates one final point: in order
to construct a Frege proof of a tautology T , it may be useful to interpret T as a polynomial
identity and prove it in some of the—weaker but better structured—arithmetic proof systems.

1.1 Arithmetic proofs with circuits and formulas

Before presenting and explaining the main results of this paper (in Section 2), we need to
introduce our basic arithmetic proof systems.

Arithmetic circuits and formulas. Let F be a field. An arithmetic circuit F is a finite
directed acyclic graph as follows. Nodes (or gates) of in-degree zero are labeled by either a
variable or a field element in F. All the other nodes have in-degree two and they are labeled by
either + or ×. Unless stated otherwise, we assume that F has exactly one node of out-degree
zero, called the output node, and that moreover the two edges going into a gate v labeled by × or
+ are labeled by left and right. This is to determine the order of addition and multiplication4.
An arithmetic circuit is called a formula, if the out-degree of each node in it is one (and so the
underlying graph is a directed tree). The size of a circuit is the number of nodes in it, and
the depth of a circuit is the length of the longest directed path in it. Arithmetic circuits and
formulas will be referred to simply as circuits and formulas.

For a circuit F and a node u in F , Fu denotes the subcircuit of F with output node u. If
F,G are circuits then

F⊕G and F⊗G

abbreviate any circuit H whose output node is u+ v and u · v, respectively, where Hu = F and
Hv = G. Further, F +G and F ·G abbreviate the unique circuit of the form F⊕G and F⊗G,
respectively, such that there is no edge going from a node in F to a node in G or vice versa.

A circuit F computes a polynomial F̂ with coefficients from F in the obvious manner. That
is, if F consists of a single node labeled with z, a variable or an element of F, we have F̂ := z.
Otherwise, F is either of the form G⊕H or G⊗H, and we let F̂ := Ĝ + Ĥ or F̂ = Ĝ · Ĥ,
respectively.

The system Pf (F)

We now define two proof systems for deriving polynomial identities. The systems manipulate
arithmetic equations, that is, expressions of the form F = G. In the case of Pf (F), F,G are
formulas, and in the case of Pc(F), F,G are circuits (see [HT09] for similar proof systems).

4Although ultimately, addition and multiplication are commutative.

4

Let F be a field. The system Pf (F) proves equations of the form F = G, where F,G are
formulas over F. The inference rules are:

R1
F = G

G = F
R2

F = G G = H

F = H

R3
F1 = G1 F2 = G2

F1 + F2 = G1 +G2
R4

F1 = G1 F2 = G2

F1 · F2 = G1 ·G2
.

The axioms are equations of the following form, with F,G,H formulas:
A1 F = F
A2 F +G = G+ F A3 F + (G+H) = (F +G) +H
A4 F ·G = G · F , A5 F · (G ·H) = (F ·G) ·H
A6 F · (G+H) = F ·G+ F ·H
A7 F + 0 = F A8 F · 0 = 0
A9 a = b+ c , a′ = b′ · c′ , if a, b, c, a′, b′, c′ ∈ F, are such that

the equations hold in F.

The rules and axioms can be divided into two groups. The rules R1-R4 and axiom A1
determine the logical properties of equality “=”, and axioms A2-A9 assert that polynomials
form a commutative ring over F.

A proof S in Pf (F) is a sequence of equations F1 = G1, F2 = G2, . . . , Fk = Gk, with Fi, Gi

formulas, such that every equation is either an axiom A1-A9, or was obtained from previous
equations by one of the rules R1-R4. An equation Fi = Gi appearing in a proof is also called a
proof line. We consider two measures of complexity for S: the size of S is the sum of the sizes
of Fi and Gi, i ∈ [k], and the number of proof lines in S is k. (Throughout the paper, [k]
stands for {1, . . . , k}.)

The system Pc(F)

The system Pc(F) differs from Pf (F) in that it manipulates equations with circuits. Pc(F) has
the same rules R1-R4 and axioms A1-A9 as Pf (F), but with F,G,H, F1, F2, G1, G2 ranging over
circuits, augmented with the following two axioms:

C1 F1⊕F2 = F1 + F2 C2 F1⊗F2 = F1 · F2.

A proof in Pc(F) is a sequence of equations F1 = G1, . . . , Fk = Gk, where Fi, Gi are circuits,
and every equation is either an axiom or was derived by one of the rules. Similar to Pf (F), the
size of a proof is the sum of the sizes of all the circuits Fi and Gi, i ∈ [k], and the number of
proof lines of the proof is k. The depth of a Pc(F) proof is the maximal depth of a circuit
appearing in the proof.

The first thing to note about the two proof systems Pc(F) and Pf (F) is that they are sound
and complete with respect to polynomial identities: the systems prove an equation F = G if
and only if F,G compute the same polynomial (cf., [HT09]):

Proposition 1. Let F be a field.

(i) For any pair F,G of arithmetic circuits, Pf (F) proves F = G iff F̂ = Ĝ.

(ii) For any pair F,G of arithmetic circuits, Pc(F) proves F = G iff F̂ = Ĝ.

For simplicity, we sometimes suppress the explicit dependence on the field F in Pc and Pf ,
if the relevant statement holds over any field.

5

Comments on the proof systems. The system Pc is an algebraic analogue of the propo-
sitional proof system circuit Frege (CF). Circuit Frege is polynomially equivalent to the more
well-known extended Frege system (EF) (see [Kra95, Jeř04]). Following this analogy, one can
define an extended Pf proof system, EPf , as follows: an EPf proof is a Pf proof in which through-
out the proof we are allowed to introduce new “extension” variables z1, z2, . . . via the axiom
zi = F , for any formula F , such that: (i) the variable zi appears in neither F nor in previous
proof-lines; and (ii) the last equation in the proof contains no z1, z2, . . . extension variables.

The following is completely analogous to the propositional case (see [Kra95, Jeř04]; compare
with Lemma 30):

Proposition 2.

(i) The systems Pc and EPf polynomially simulate each other. More exactly, there is a poly-
nomial p such that for every pair of formulas F,G, if F = G has a Pc proof of size s then
it has an EPf proof of size p(s), and if F = G has an EPf proof of size s then it has a Pc

proof of size p(s).

(ii) If F and G are circuits of size s and F = G has a Pc proof with k proof lines then F = G
has a Pc proof of size poly(s, k).

The second part of this statement is especially useful, because it is often easier to estimate
the number of lines in a proof rather than its size.

An alternative, polynomially equivalent, definition for Pc can be given as follows:

Definition 1. For a circuit F , define F • as the unfolding of F into a formula. That is, F • := F ,
if F is a leaf, and (G⊕H)• := G• +H•, (G⊗H)• := G• ·H•. We say that F and G are similar
circuits, if F • is the same formula as G•. Then the alternative proof system is defined so that
A1, C1, C2 are replaced by the following single axiom:

A1’ F = G, whenever F and G are similar.

The axiom A1’ can be proved from A1, C1, C2 by a polynomial-size proof, and vice versa.

Notation for matrices inside proofs. Before presenting our results, we need to set how
matrices are represented inside proofs. In this paper, matrices are understood as matrices whose
entries are circuits and operations on matrices are operations on circuits. Let F = {Fij}i,j∈[n]
be an n × n matrix whose entries are circuits Fij ; and similarly G = {Gij}i,j∈[n]. Addition
and multiplication of matrices are defined in the obvious way, as follows. Let (F +G)ij denote
Fij + Gij , then F + G is the matrix {(F + G)ij}i,j∈[n]. For multiplication, let (F · G)ij denote∑n

p=1 Fip · Gpj , then F · G is the matrix {(F · G)ij}i,j∈[n], and aF is the matrix {a · Fij}i,j∈[n],
where a is a circuit with a single node.

An equation F = G between two n×n matrices denotes the set of equations Fij = Gij , i, j ∈
[n].

2 Overview of results and techniques

2.1 Main theorem

It is well known that the determinant can be uniquely characterized as the function that satisfies
the following two identities for any pair of n×nmatricesX,Y and any (upper or lower) triangular

6

matrix Z with z11, . . . , znn on the diagonal:

det(X · Y) = det(X) · det(Y), (1)

det(Z) = z11 · · · znn. (2)

Moreover, other properties of the determinant, such as the cofactor expansion, easily follow from
(1) and (2).

The main goal of this paper is to prove the following theorem:

Theorem 3 (Main theorem). For any field F:

(i) There exists a circuit det such that (1) and (2) have polynomial-size Pc(F) proofs. More-
over, every5 circuit in the proof has depth at most O(log2(n)).

(ii) There exists a formula det such that (1) and (2) have Pf (F) proofs of size nO(logn).

As mentioned before, a large part of the construction is not related directly to the de-
terminant. It is rather a series of structural theorems about the systems Pf and Pc. These
are obtained by reproducing classical results in arithmetic circuit complexity in the setting of
arithmetic proofs (for a recent survey on arithmetic circuit complexity see [SY10]). The most
important of those results is showing that Pc proofs can be balanced, in the sense that Pc proofs
of size s (of polynomially bounded syntactic degree equations) can be polynomially simulated
by Pc proofs in which each circuit has depth O(log2 s).

2.2 Balancing Pc proofs and simulating Pc by Pf

In the seminal paper [VSBR83], Valiant et al. showed that if a polynomial f of degree d can
be computed by an arithmetic circuit of size s, then f can be computed by a circuit of size
poly(s, d) and depth O(log s log d+ log2 d). This is a strengthening of an earlier result by Hyafil
[Hya79], showing that f can be computed by a formula of size (s(d + 1))O(log d). We will show
that those results can be efficiently simulated within the framework of arithmetic proofs.

Instead of the degree of a polynomial, we focus on the syntactic degree of a circuit. Let F
be an arithmetic circuit. The syntactic degree of F , degF , is defined as follows:

(i) If F is a field element or a variable, then degF = 0 and degF = 1, respectively;

(ii) deg(F⊕G) = max(degF, degG), and deg(F⊗G) = degF + degG.

The syntactic degree of an equation F = G is max(degF, degG), and the syntactic degree of a
proof S is the maximum of the syntactic degrees of equations in S. If F is a circuit and u is a
node in F we also write deg(v) to denote degFv.

In accordance with [VSBR83], we will construct a map [·] that maps any given circuit F of
size s and syntactic degree d to a circuit [F] computing the same polynomial, such that [F] has
size poly(s, d) and depth O(log s log d+ log2 d). We will show the following:

Theorem 4. Let F,G be circuits of syntactic degree at most d such that F = G has a Pc proof
of size s. Then:

(i) The equation [F] = [G] has a Pc proof of size poly(s, d) and depth O(log s · log d+ log2 d).

5We assume that the product z11 · · · znn in (2) is written as a formula of depth O(log n).

7

(ii) If F,G have depth at most k then F = G has a Pc proof of size poly(s, d) and depth
O(k + log s · log d+ log2 d).

We also obtain the following simulation of Pc by Pf :

Theorem 5. Assume that F,G are formulas of syntactic degree ≤ d such that F = G has a Pc

proof of size s. Then F = G has a Pf proof of size (s(d+ 1))O(log d) ≤ sO(log s).

This simulation is polynomial if F and G have a constant syntactic degree. Let us emphasize
that the syntactic degree of a formula of size s is at most s, and hence the simulation is at most
quasipolynomial.

Homogenization and degree bound in arithmetic proofs. One ingredient of Theorems
4 and 5 is to show that using circuits of high syntactic degree cannot significantly shorten Pc

proofs. That is, if we want to prove an equation of syntactic degree d, we can without loss of
generality use only circuits of syntactic degree at most d. This result is the proof-theoretic analog
of a result by Strassen, who showed how to separate arithmetic circuits into their homogeneous
parts (implicit in [Str73]).

We say that a circuit F is syntactically homogeneous, if for every sum-gate u1 + u2 in F we
have deg(u1) = deg(u2). For a circuit F and a number k, we introduce a circuit F (k) which
computes the syntactically k-homogeneous part of F (see Section 3 for the definition). The
syntactic degree of a Pc proof is the maximal syntactic degree of a circuit appearing in it. We
show the following:

Proposition 6. Let F,G be a pair of circuits with syntactic degree at most d. Assume that
F = G has a Pc proof of size s. Then

(i) F (k) = G(k) has a Pc proof of size s · poly(k) and syntactic degree at most k, for any
k = 0, . . . , d.

(ii) The identity F = G has a Pc proof of syntactic degree at most d and size s · poly(d).

2.3 Circuits and proofs with division

We denote by F(X) the field of formal rational functions in the variables X over the field F. It
is convenient to extend the notion of a circuit so that it computes rational functions in F(X).
This is done in the following way: a circuit with division F is a circuit that may contain an
additional type of gate with fan-in 1, called an inverse or a division gate, denoted (·)−1. If a node
v computes the rational function f , then v−1 computes the rational function 1/f . Moreover, we
require that for every division node v−1 in F , v does not compute the zero rational function. If
no division gate computes the zero rational function we say that F is defined, and otherwise, we
say that F is undefined. One should note, for instance, that the circuit with division (x2 + x)−1

over GF (2) is defined, since x2 + x is not the zero rational function (although it vanishes as a
function over GF (2)).

We define the system P−1
c (F), operating with equations F = G for F and G circuits with

division computing rational functions in F(X). First, we extend the axioms of Pc(F) to apply
to circuits with division, by adding the following axiom, denoted D:

D F · F−1 = 1 ,

provided that F−1 is defined.

8

Remark 7. The system P−1
c (F) polynomially simulates the rule

F = G

F−1 = G−1
.

Moreover, the identities (F−1)−1 = F and (F · G)−1 = G−1 · F−1 have linear size proofs in
P−1
c (F).

As before, we sometimes suppress the explicit dependence on the field in P−1
c (F) if the

relevant statement is field independent.

Strassen [Str73] showed that division gates can be eliminated from arithmetic circuits com-
puting polynomials over large enough fields, with only a polynomial increase in size. We will
show the proof-theoretic analog of Strassen’s result over arbitrary fields, namely that Pc(F)
polynomially simulates P−1

c (F) for any field F:

Theorem 8. Let F be any field and assume that F and G are circuits without division gates
such that degF, degG ≤ d. Suppose that F = G has a P−1

c (F) proof of size s. Then F = G has
a Pc(F) proof of size s · poly(d).

A corollary of Theorem 8 is that Pc(F) polynomially simulates the rule

F ·G = 0

F = 0
if Ĝ 6= 0

(where the syntactic degree of G is polynomially bounded).
To prove Theorem 8 we first assume that the underlying field F has an exponential size.

Under this assumption, we cannot eliminate division gates in GF (2) which is, from the Boolean
proof complexity viewpoint, the most interesting field. To deal with small fields and specifically
GF (2) we have to show how to simulate large fields in small ones, as we explain in what follows.

Simulating large fields in small fields. The idea behind simulating large fields in small
ones is to treat the elements of GF (2k) as k × k matrices over GF (2). This enables one to
simulate computations and proofs over GF (2k) by those over GF (2). We prove the following:

Theorem 9. Let p be a prime power and n a natural number and let F,G be circuits over
GF (p). Assume that F = G has a Pc(GF (pn)) proof of size s. Then F = G has a Pc(GF (p))
proof of size s · poly(n).

2.4 The determinant as a rational function and as a polynomial

To prove the main theorem (Theorem 3) one needs to construct a circuit (and a formula)
for the determinant polynomial that can be used efficiently inside arithmetic proofs. We first
show how to compute the determinant as a rational function, using a circuit with division,
denoted DET(X). It is possible to construct DET(X) in a way that P−1

c admits short proofs
for the properties of DET(X). However, we cannot yet conclude Theorem 3 which speaks about
(division-free) Pc proofs (it is also worth mentioning that, at this stage of the argument, we are
still unable to conclude the short NC2-Frege proofs for the determinant identities, because P−1

c

proofs do not correspond directly to propositional Frege proofs). To be able to consider Pc proofs
we first need to eliminate division gates from our P−1

c proofs; but Theorem 8 enables one to
eliminate division gates in P−1

c proofs only if the equations proved are themselves division-free.

9

To solve the problem above we construct a division-free circuit det(X), computing the de-
terminant as a polynomial. Assuming we can prove efficiently in P−1

c that det(X) = DET(X),
we are done, since now we can eliminate division gates from P−1

c proofs of division-free equa-
tions, using Theorem 8. To this end, we define the det(X) polynomial as the nth term of the
Taylor expansion of DET(I + zX) at z = 0. This enables us to demonstrate short proofs of
det(X) = DET(X), which concludes the argument.

2.5 Applications

In [Val79], Valiant showed that every formula of size s can be written as a projection of a
determinant of a matrix of a linear dimension. We can conclude that this holds feasibly already
in Pc:

Proposition 10. Let F be a formula of size s. Then there exists a matrix M of dimension
2s× 2s whose entries are variables or elements of F such that the identity

F = det(M)

has a polynomial-size O(log2 s)-depth Pc(F) proof (and hence also a quasipolynomial-size Pf (F)
proof where det is the formula from Theorem 3).

In this paper we are mainly interested in proofs with no assumptions other than the axioms
A1-A9. Nevertheless, we can introduce the notion of a proof from assumptions as follows: let S
be a set of equations. Then a Pc proof from the assumptions S is a proof that can use equations in
S as additional axioms (and similarly for Pf proofs from assumptions). Proofs from assumptions
are far less well-behaved than proofs without assumptions. For instance, neither Theorem 5 nor
Theorem 8 hold for proofs from a general nonempty set S of assumptions. We now give an
important example of a proof from assumptions.

Given a pair of n × n matrices X,Y , recall that the expressions XY = I and Y X = I, are
abbreviations for the list of n2 equalities between the appropriate entries.

Proposition 11. Let F be any field. The equations Y X = I have polynomial-size and
O(log2 n)-depth Pc(F) proofs from the equations XY = I. In the case of Pf (F), the proof
has a quasipolynomial-size.

Determinant identities in NC2-Frege and Frege systems. When considering the field F

to be GF (2), there is a close connection between our proof systems and the standard proposi-
tional proof systems. Consider the propositional proof systems Frege (F), extended Frege (EF)
and circuit Frege (CF). For the definitions of Frege and extended Frege see [Kra95] and for the
definition of circuit Frege see [Jeř04], where it is also shown that CF and EF are polynomially
equivalent.

For simplicity, we shall assume that F, EF and CF are all in a Boolean basis that contains
+, · (addition and multiplication modulo 2, respectively), and the logical equivalence ≡. Then
every arithmetic circuit is automatically also a Boolean circuit, and an equality like G = H
can be considered as the logical equivalence G ≡ H. Therefore, Pf (GF (2)) and Pc(GF (2)) can
be considered as fragments of F and CF , respectively: the finite set of axioms and rules of
Pf (GF (2)) now serve as the finite set of (schematic) Frege axioms and rules, and similarly for

10

Pc(GF (2)). In fact, one can polynomially simulate the full F and CF systems by adding the
following new axiom

G2 = G

to Pf (GF (2)) and Pc(GF (2)), respectively, where G is any formula, respectively, a circuit.
This means that upper bounds in Pf (GF (2)) and Pc(GF (2)) are in fact upper bounds in F

and CF (and hence also in EF), respectively.
In what follows XY = I denotes the conjunction of n2 formulas of the form (xi,1 ·y1,j + · · ·+

xi,n · yn,j) ≡ δij , with δi,j = 1 if i = j and 0 otherwise, where + and · modulo 2 are interpreted
as Boolean connectives (and similarly for Y X = I). We have the following:

Theorem 12.

(i). The properties of the determinant (over GF (2)) as in Theorem 3 (interpreted as Boolean
tautologies) have polynomial-size circuit Frege proofs, with every circuit of depth at most
O(log2 n). In the case of Frege, the proofs have quasipolynomial-size.

(ii). The implication (XY = I) → (Y X = I) has polynomial-size circuit Frege proofs, with
every circuit of depth at most O(log2 n), and quasipolynomial-size Frege proofs.

Proof. Item (i) is a direct consequence of Theorem 3 and Item (ii) is a direct consequence of
Proposition 11, both using the fact that proofs in Pc(GF (2)) and Pf (GF (2)) can be interpreted
as proofs in circuit Frege and Frege, respectively. QED

A family of polynomial-size CF proofs in which every proof-line G is of depth O(log2 |G|), is
also called an NC2-Frege proof. Hence, Theorem 12 states that NC2-Frege has polynomial-size
proofs of the propositional tautologies (XY = I) → (Y X = I).

Theorem 12 thus settles an important open problem in proof complexity and feasible math-
ematics, namely, whether basic properties of the determinant like det(A) · det(B) = det(AB)
and the cofactor expansion (see Proposition 37), as well as the hard matrix identities, have
polynomial-size proofs in a proof system which corresponds to the circuit class NC2.

Remark 13. We believe that Theorem 12 can be extended to any finite field or the field of
rationals (after encoding field elements as Boolean strings). For finite fields, this is rather
straightforward. In the rational case, one would have to show that the Pc(Q) proofs constructed
in Theorem 3 involve only constants whose Boolean representation is polynomial.

3 Homogenization and bounding the degree in Pc(F) proofs

In this section we wish to construct the circuits F (k) computing the k-homogeneous part of F
and prove Proposition 6. First, let us say that a circuit F is non-redundant, if either F is the
constant 0, or F does not contain the constant 0 at all. Any circuit F can be transformed to a
non-redundant circuit F ♯ as follows: successively replace all nodes of the form u+0, 0+ u by u
and u · 0, 0 · u by 0, until no such replacement is possible.

Let k be a natural number. We define F (k) as follows. For every node u in F , introduce
k + 1 new nodes u(0), . . . , u(k).

(i). Assume u is a leaf. Then, u(0) := u, in case u is a field element, and u(1) := u in case u is
a variable, and u(i) := 0 otherwise.

11

(ii). If u = u1 + u2, let u
(i) := u

(i)
1 + u

(i)
2 , for every i = 0, . . . , k.

(iii). If u = u1 · u2, let u
(i) :=

∑i
j=0 u

(j)
1 · u

(i−j)
2 .

Finally, we define F (k) as the circuit G♯, where G is the circuit with the output node w(k) and
w is the output node of F .

Note the following:

(1) F (k) has size O(s(k + 1)2)), where s is the size of F .

(2) F (k) is a syntactically homogeneous non-redundant circuit. Its syntactic degree is either k
or it is the constant 0.

Notation: We allow circuits and formulas to use only sum gates with fan-in two. An expression∑k
i=1 xi is an abbreviation for a formula of size O(k) and depth O(log k) with binary sum gates.

For example, define
∑k

i=1 xi :=
∑⌊k/2⌋

i=1 xi +
∑k

i=⌈k/2⌉ xi . One can see that basic identities such
as

k∑

i=1

xi =
m∑

i=1

xi +
k∑

i=m+1

xi , or y ·
k∑

i=1

xi =
k∑

i=1

yxi

have Pf proofs of size O(k2) and depth O(log k).

Lemma 14. Let F1, F2 be circuits of size ≤ s and k a natural number. The following have
proofs of size s · poly(k) and syntactic degree ≤ k.

(i). (F1⊕F2)
(k) = F

(k)
1 + F

(k)
2 ,

(ii). (F1⊗F2)
(k) =

∑k
i=0 F

(i)
1 · F

(k−i)
2 .

Proof. It is easy to see that for any circuit H of size s, H = H♯ has a proof of size O(s). This,

and the definition of F (k), gives (F1⊕F2)
(k) = F

(k)
1 ⊕F

(k)
2 . Hence (F1⊕F2)

(k) = F
(k)
1 + F

(k)
2

by axiom C1. Since F
(k)
1 , F

(k)
2 , (F1⊕F2)

(k) have size O(s(k + 1))2, we obtain (i). Part (ii) is
similar. QED

Lemma 15. If F is a circuit with syntactic degree ≤ d and size s then

F =

d∑

k=0

F (k)

has a Pc(F) proof of degree d and size s · poly(d).

Proof. For every node u in F , construct a proof of Fu =
∑deg(u)

k=0 F
(k)
u . This is done by induction

on depth of u. If u is a leaf, this stems from the definition of F
(k)
u , and if u = u1 + u2 or

u = u1 · u2, by an application of the previous lemma. QED

Proof of Proposition 6. Part (ii) follows from (i) by Lemma 15, hence it is sufficient to prove
part (i). Let us first show that if F = G is an axiom of Pc(F) of size s then F (k) = G(k) has a

12

proof of size s · poly(k) and syntactic degree ≤ k. This is an application of Lemma 14. Let c be
the constant such that equations (i) and (ii) in Lemma 14 have proofs of size O(s · (k + 1)c).

The lemma gives a proof (F1⊕F2)
(k) = (F1+F2)

(k) and (F1⊗F2)
(k) = (F1 ·F2)

(k), as required
for the axioms C1 and C2.

A1 and A9 are immediate. For the other axioms, consider for example the axiom F1 · (F2 ·
F3) = (F1 · F2) · F3, where the circuits have size ≤ s. We have to construct a proof of

(F1 · (F2 · F3))
(k) = ((F1 · F2) · F3)

(k) . (3)

By part (ii) of Lemma 14 the equations

(F1 · (F2 · F3))
(k) =

k∑

i=0

F
(i)
1




k−i∑

j=0

F j
2F

k−i−j
3


 (4)

((F1 · F2) · F3)
(k) =

k∑

i=0




i∑

j=0

F j
1F

i−j
2


 · F

(k−i)
3 , (5)

can be proved by proofs with size roughly s · (k + 1)c · (k + 1). In Pc(F), the right hand sides of

both (4) and (5) can be written as
∑

i+j+l=k F
(i)
1 F

(j)
2 F

(l)
3 , by a proof of size roughly s(k + 1)4 .

This gives the proof of (3) of size s · poly(k).
Next, assume that F = G is derived from the equations F1 = G1, F2 = G2 by means of

the rules R1-R4, and we need to construct the proof of F (k) = G(k) from the set of equations

F
(i)
1 = G

(i)
1 , F

(i)
2 = G

(i)
2 , i = 0, . . . k. The hardest case is the rule

F1 = G1 F2 = G2

F1 · F2 = G1 ·G2
.

We have to prove (F1 · F2)
(k) = (G1 · G2)

(k). By Lemma 14, we have proofs of (F1 · F2)
(k) =∑

i=0,...k F
(i)
1 F

(k−i)
2 and (G1 ·G2)

(k) =
∑

i=0,...k G
(i)
1 G

(k−i)
2 . Hence (F1 · F2)

(k) = (G1 ·G2)
(k) can

be proved from the assumptions F
(i)
1 = G

(i)
1 , F

(i)
2 = G

(i)
2 , i = 0, . . . k. The proof has size roughly

s · (k + 1)c(k + 1). QED

4 Balancing Pc proofs

In this section we prove Theorem 4 which is a proof-theoretic analog of the following result:

Theorem 16 (Valiant et al. [VSBR83]). Let F be an arithmetic circuit of size s computing a
polynomial f of degree d. Then there exists an arithmetic circuit [F] computing f with depth
O(log2 d+ log s · log d) and size poly(d, s).

We first give an outline of the construction of [F], which closely follows that in [VSBR83]
(we also refer the reader to [RY08] for an especially clear exposition). We emphasize that in our
case, the relevant parameter is the syntactic degree of F : [F] will have size poly(s, d) and depth
O(log2 d+ log s · log d), where d is the syntactic degree of F .

We write u ∈ F to mean that u is a node in the circuit F . The following definition is
important for the construction of balanced circuits: let w, v be two nodes in F . We define the

13

polynomial ∂wFv as follows:

∂wFv :=





0, if w 6∈ Fv,
1, if w = v , and otherwise:
∂wFv1 + ∂wFv2 , v = v1 + v2;
(∂wFv1) · Fv2 , if either v = v1 · v2 and deg(v1) ≥ deg(v2),

or v = v2 · v1 and deg(v1) > deg(v2).

The idea behind this definition is the following: let w, v be two nodes in F such that 2 deg(w) >
deg(v). Then for any product node v1 · v2 ∈ Fv, w can be a node in at most one of Fv1 , Fv2 ,
namely the one of a higher syntactic degree. If we replace the node w in Fv by a new variable
z, Fv then computes a polynomial g(z, x1, . . . , xn) which is linear in z, and ∂wFv is the usual
partial derivative ∂zg.

It is not hard to show the following:

Claim 17. Let w, v be two nodes in a circuit F . Then the polynomial ∂wFv has degree at most
deg(v)− deg(w).

In order to construct [F], we can assume without loss of generality that F itself is a syntactic
homogenous circuit of size s′ = O(d2 · s). This is because a circuit of size s and syntactic degree
d can be written as a sum of d + 1 syntactically homogeneous circuits of size at most s′ and
syntactic degree at most d. Now the construction proceeds by induction on i = 0, . . . , ⌈log d⌉.
In each step i = 0, . . . , ⌈log d⌉ we construct:

(i). Circuits computing F̂v, for all nodes v in F with 2i−1 < deg(v) ≤ 2i;

(ii). Circuits computing ∂wFv, for all nodes w, v in F with 2i−1 < deg(v) − deg(w) ≤ 2i and
deg(v) < 2 deg(w).

Each step adds depth O(log s′), which at the end amounts to a depth O(log2 d + log d · log s)
circuit. Furthermore, each node v in F adds O(s′) nodes in the new circuit and each pair of
nodes v, w in F adds also O(s′) nodes in the new circuit. This finally amounts to a circuit of
size O(s′3) = O(d6 · s3).

Let us now give the formal definition of [F]. First, for a circuit G and a natural number m,
let

Bm(G) := {t ∈ G : t = t1 · t2 and deg(t) > m and deg(t1), deg(t2) ≤ m} .

Definition of [F]. Let F be an arithmetic circuit of syntactic degree d.
If F is not syntactic homogenous, let

[F] := [F (0)] + . . .+ [F (d)] .

Otherwise, assume that F is a syntactically homogenous circuit of degree d. For any node
v ∈ F we introduce the corresponding node [Fv] in [F] (intended to compute the polynomial
F̂v); and for any pair of nodes v, w ∈ F such that 2 deg(w) > deg(v), we introduce the node
[∂wFv] in [F] (intended to compute the polynomial ∂wFv).

The construction is defined by induction on i = 0, . . . , ⌈log d⌉, as follows:

14

Part (I): Let v ∈ F :

Case 1: Assume that deg(v) = 1, then Fv computes a linear polynomial a1x1 + . . .+ anxn + b
(where, by homogeneity of F , b 6= 0 iff all ai’s equal 0). Define

[Fv] := a1x1 + . . .+ anxn + b.

Case 2: Assume that for some 0 ≤ i ≤ ⌈log(d)⌉:

2i < deg(v) ≤ 2i+1.

Put m = 2i, and define

[Fv] :=
∑

t∈Bm(Fv)

[∂tFv] · [Ft1] · [Ft2],

where we write t = t1 · t2, for any t ∈ Bm(Fv). (Note that here [∂wFv], [Ft1] and [Ft2] are nodes.)

Part (II): Let w, v be a pair of nodes in F with 2 deg(w) > deg(v):

Case 1: Assume w is not a node in Fv. Define

[∂wFv] := 0.

Case 2: Assume that w is in Fv and 0 ≤ deg(v) − deg(w) ≤ 1. Thus, by Claim 17, the
polynomial ∂wfv is a linear polynomial a1x1 + . . .+ anxn + b. Define

[∂wFv] := a1x1 + . . .+ anxn + b.

Case 3: Assume that w is in Fv and that for some 0 ≤ i ≤ ⌈log(d)⌉:

2i < deg(v)− deg(w) ≤ 2i+1.

Put m = 2i + deg(w). Define:

[∂wFv] :=
∑

t∈Bm(Fv)

[∂tFv] · [∂wFt1] · [Ft2].

Finally, define [F] as the circuit with the output node [Fu], where u is the output node of F .

One should make sure that the definition of [F] is well defined, and that it has the correct
depth and size:

Lemma 18. Let F be a circuit of size s and syntactic degree d. Then [F] is a circuit computing
F̂ , [F] is of size poly(s, d) and depth O(log2 d+ log s log d). Moreover, every node [∂wFv] in [F]
computes the polynomial ∂wFv.

15

Proof. The proof is as in [VSBR83] (see also [RY08]). We shall give a partial sketch of the proof
here, for the benefit of the reader.

First, assume that F is syntactic homogeneous of degree d. We need to verify that [F] is
well-defined. That is, at stage i = 0, . . . , ⌈log d⌉, we compute all [Fv] and [∂wFu] for all nodes
v, u, w ∈ F such that 2i < deg(v) ≤ 2i+1 and 2i < deg(v)− deg(u) ≤ 2i+1, and we want to show
that the computation uses only nodes computed in previous stages.

Take, for example, Case 2 in Part (I). For any t ∈ Bm(Fv), m < deg(t) ≤ deg(v) ≤ 2m. This
implies that deg(v)− deg(t) ≤ m = 2i and deg(t) < 2 deg(v). Hence, we have already computed
[∂tFv]. We have also already constructed [Ft1], [Ft2], since deg(t1), deg(t2) < m = 2i.

Inspecting the construction, [F] has size poly(s) and depth O(log s · log d), given that F is
syntactically homogeneous of size s and degree d. If F is not syntactically homogeneous, the
definition [F] =

[
F (0)

]
+ . . .

[
F (d)

]
gives a circuit of size poly(s, d) and depth O(log2 d + log s ·

log d), since every F (k) has size O(s · k2). QED

We need to show that properties of [F] can be proved inside the system Pc. The key ingredient
is given by the following Lemma.

Lemma 19 (Main simulation lemma). Let F1, F2 be circuits of syntactic degree at most d and
size at most s. Then there exist Pc proofs of:

[F1 ⊕ F2] = [F1] + [F2] , (6)

[F1 ⊗ F2] = [F1] · [F2] , (7)

such that the proofs have size poly(s, d) and depth O(log2 d+ log d · log s).

The proof of Lemma 19 is deferred to the end of this section. We now use Lemma 19 to
prove Theorems 4 and 5.

Theorem 20 (Theorem 4 restated). Let F,G be circuits of syntactic degrees at most d such
that F = G has a Pc proof of size s. Then

(i). [F] = [G] has a Pc proof of size poly(s, d) and depth O(log s · log d+ log2 d).

(ii). If F,G have depth at most t then F = G has a Pc proof of size poly(s, d) and depth at
most O(t+ log s · log d+ log2 d).

Proof. Part (i). Assume that F = G has syntactic degree d and a Pc proof of size s. By
Proposition 6, F = G has a Pc proof of syntactic degree d and size s′ = s · poly(d). So let
us consider such a proof S. By induction on the number of lines in S, construct a Pc proof of
[F1] = [F2], where F1 = F2 is a line in S.

Let m0 and k0 be such that (6) and (7) have Pc proofs of size at most m0 and depth k0,
whenever F1⊕F2, respectively, F1⊗F2 have size at most s′ and syntactic degree at most d. By
Lemma 19, we can choose m0 = poly(s′, d) and k0 = O(log s′ · log d+ log2 d).

First, show that if a line F = H in S is a Pc axiom then [F] = [H] has a Pc proof of size
c1m0 and depth c2k0, where c1, c2 are some constants independent of s′, d. The axiom A1 is
immediate and the axiom A9 follows from the fact that [F] = F̂ , if deg(F) = 0. The rest of the
axiom are an application of Lemma 19, as follows. Axioms C1 and C2 are already the statement
of Lemma 19. For the other axioms, take, for example,

F1 · (G1 +G2) = F ·G1 + F ·G2 .

16

We are supposed to give a proof of

[F1 · (G1 +G2)] = [F1 ·G1 + F ·G2] ,

with a small size and depth. By Lemma 19 we have a Pc proof

[F1 · (G1 +G2)] = [F1] · [G1 +G2] = [F1] · [G1] + [F1] · [G2] = [F1] · ([G1] + [G2]) .

Lemma 19 gives again

[F1] · ([G1] + [G2]) = [F1] · [G1 +G2] = [F1 · (G1 +G2)] .

Here we applied Lemma 19 to circuits of size at most s′, and the proof of [F1 · (G1 +G2)] =
[F1 ·G1 + F ·G2] has size at most, say, 100m0 and is and depth at most 10k0.

An application of rules R1, R2 translates to an application of R1, R2. For the rules R3 and
R4, it is sufficient to show the following: if S uses the rule

F1 = F2 G1 = G2

F1 ◦G1 = F2 ◦G2
, ◦ ∈ {·,+},

then there is a proof of [F1 ◦G1 = F2 ◦G2], of size c1m0 and depth c2k0, from the equations
[F1] = [G1] and [F2] = [G2]. Similarly, this is an application of Lemma 19.

Altogether, we obtain a proof of [F] = [G] of size at most c1s
′m0 and depth c2k0.

Part (ii). Using (i), it is sufficient to prove the following:

Claim. If F is a circuit with depth t, syntactic degree d and size s, then F = [F] has a Pc proof
of size poly(s, d) and depth at most O(t+ log s · log d+ log2 d).

Using Lemma 19, this claim can be easily proved by induction on s. QED

Theorem 21 (Theorem 5 restated). Assume that F,G are formulas of syntactic degree at most
d such that F = G has a Pc proof of size s. Then F = G has a Pf proof of size (s(d+1))O(log d).

Proof. Recall the definition of the formula F • from Definition 1. It is not hard to show the
following:

Claim 1. If H1 = H2 has a Pc proof with p proof lines and depth k, then H•
1 = H•

2 has a Pf

proof of size O(p2k).

Let F and G be as in the assumption. The previous theorem and Claim 1 give a Pf proof of

[F]• = [G]•

of size s · 2O(log s·log d+log2 d) = (s(d+ 1))O(log d).
To complete the proof, it is sufficient to show that:

Claim 2. If H is a formula of size s and syntactic degree d, then [H]• = H has a Pf proof of
size (s(d+ 1))O(log d).

This is proved by induction on s using Lemma 19. QED

17

Proof of Lemma 19

It is sufficient to prove the statement under the assumption that F1⊕F2 and F1⊗F2 are syn-
tactically homogeneous. This is because of the following: assume that the lemma holds for
syntactically homogeneous circuits. First, note that for any circuit of syntactic degree d,

[F] =
[
F (0)

]
+
[
F (1)

]
+ · · ·+

[
F (d)

]

has a proof of size poly(s, d) and depth O(log d · log s+ log2 d): if F is not syntactically homo-
geneous, then this stems from the definition of [F]; otherwise, F is syntactically homogeneous,
and so [F (k)] is the circuit 0 whenever k < d and it is sufficient to construct the proof of
[F] = [F (d)], which can be done by induction on the size of F . Second, if for example F1⊕F2 is
not syntactically homogenous, then by definition of [·], we have

[F1⊕F2] =
d∑

k=0

[
(F1⊕F2)

(k)
]
,

where d = deg(F1⊕F2). By the definition of F (k), (F1⊕F2)
(k) is a syntactically homogeneous

circuit which is either of the form F
(k)
1 ⊕F

(k)
2 , or it is of the form F

(k)
e , if F

(k)
e′ = 0, {e, e′} = {1, 2}.

In both cases we obtain a proof of [(F1 + F2)
(k)] = [F

(k)
1] + [F

(k)
2], of small size and depth. This

gives a Pc proof of

d∑

k=0

[
(F1⊕F2)

(k)
]
=

d∑

k=0

[
(F1)

(k)
]
+
[
(F2)

(k)
]
=

d∑

k=0

[
(F1)

(k)
]
+

d∑

k=0

[
(F2)

(k)
]
.

We thus consider the syntactically homogeneous case. Let m(s, d) and r(s, d) be functions
such that for any circuit F of syntactic degree d and size s, [F] has depth at most r(s, d) and
size at most m(s, d). By Lemma 18, we can choose

m(s, d) = poly(s, d) and r(s, d) = O(log2 d+ log d · log s).

Notation: In the following, [Fv] and [∂wFv] will denote circuits: [Fv] and [∂wFv] are the
subcircuits of [F] with output nodes [Fv] and [∂wFv], respectively; the defining relations between
the nodes of [F] (see the definition of [F] above) translate to equalities between the corresponding
circuits. For example, if v and m are as in Case 2, part (I) of the definition of [F], then, using
just the axioms C1 and C2, we can prove

[Fv] =
∑

t∈Bm(Fv)

[∂tFv] · [Ft1] · [Ft2] (8)

(where the left hand side is defined to be the circuit [Fv] in which [∂tFv] , [Ft1] , [Ft2] are nodes,
and so the corresponding circuits whose roots are [∂tFv] , [Ft1] , [Ft2] can have common nodes,
while in the right hand side these circuits have disjoint nodes). Such proof of (8) is of linear size
in the size of [Fv]. We shall use these kind of identities in the current proof.

Also, note that if F has size s and degree d, the proof of (8) has size O(s2m(s, d)) and has
depth O(r(s, d)).

The following statement suffices to conclude the lemma. The recurrence (9) implies λ(s, d) =
poly(s, d) and it is enough to take F in the statement as either F1 ⊕F2 or F1 ⊗F2, and v as the
root of F .

18

Statement: Let F be a syntactically homogenous circuit of syntactic degree d and size s, and
let i = 0, . . . , ⌈log d⌉. There exists a function λ(s, i) not depending on F with

λ(s, 0) = O(s4) and λ(s, i) ≤ O(s4 ·m(s, d)) + λ(s, i− 1), (9)

and a Pc proof-sequence Ψi of size at most λ(s, i) and depth at most O(r(s, d)), such that the
following hold:

Part (I): For every node v ∈ F with

deg(v) ≤ 2i, (10)

Ψi contains the following equations:

[Fv] = [Fv1] + [Fv2] , in case v = v1 + v2, and (11)

[Fv] = [Fv1] · [Fv2] , in case v = v1 · v2. (12)

Part (II): For every pair of nodes w 6= v ∈ F , where w ∈ Fv, and with

deg(v)− deg(w) ≤ 2i and (13)

2 deg(w) > deg(v), (14)

Ψi contains the following equations:

[∂wFv] = [∂wFv1] + [∂wFv2], in case v = v1 + v2; (15)

[∂wFv] = [∂wFv1] · [Fv2], in case v = v1 · v2 and deg(v1) ≥ deg(v2)

or v = v2 · v1 and deg(v1) > deg(v2). (16)

We proceed to construct the sequence Ψi by induction on i.

Base case: i = 0. We need to devise the proof sequence Ψ0.

Part (I). Let deg(v) ≤ 20. By definition, [Fv] =
∑n

i=1 aixi + b, where ai’s and b are field

elements. If v = v1+v2, we have also [Fve] =
∑n

i=1 a
(e)
i xi+ b(e), for e = 1, 2. Hence the equation

[Fv] = [Fv1] + [Fv2] is the (true) identity:

n∑

i=1

aixi + b =
n∑

i=1

a
(1)
i xi + b(1) +

n∑

i=1

a
(2)
i xi + b(2) ,

which has a proof of size O(s2) and depth O(log s) (we assume without loss of generality that
n ≤ s).

In case v = v1 · v2, either deg(v1) = 0 or deg(v2) = 0 and the proof of [Fv] = [Fv1] · [Fv2] is
similar.

19

Part (II). Since deg(v)−deg(w) ≤ 1, we have [∂wFv] =
∑n

i=1 aixi+b, for some field elements
ai’s and b.

In case v = v1+v2, we have deg(ve)−deg(w) ≤ 1 and so [∂wFve] =
∑n

i=1 a
(e)
i xi+ b(e), where

e = 1, 2. The assumption w 6= v and Lemma 18, guarantee that [∂wFv] = [∂wFv1] + [∂wFv2] is
a correct identity, and we can thus proceed as the base case of Part (I) above.

In case v = v1 · v2, assume without loss of generality that deg(v1) ≥ deg(v2). Again, we

have [∂wFv1] =
∑n

i=1 a
(1)
i xi + b(1). From the assumptions, we have that w ∈ Fv1 , which implies

deg(v1) ≥ deg(w) and so deg(v2) ≤ 1. Hence [Fv2] =
∑n

i=1 a
(2)
i xi + b(2). (One can note that

at least one of [∂wFv1] or [Fv2] is constant). Thus we can prove the (correct, by virtue of the
assumption w 6= v) identity [∂wFv] = [∂wFv1] · [Fv2] with a Pc(F) proof of size O(s2) and depth
O(log s).

Overall, Ψ0 will be the union of all the above proofs, so that Ψ0 contains all equations (11),
(12) (for all nodes v satisfying (10)), and all equations (15) and (16) (for all nodes v, w satisfying
(13) and (14)). The proof sequence Ψ0 has size λ(s, 0) = O(s4) and is and depth O(log s).

Induction step: We wish to construct the proof-sequence Ψi+1.

Part (I). Let v be any node in F such that

2i < deg(v) ≤ 2i+1.

Case 1: Assume that v = v1 + v2. We show how to construct the proof of [Fv] = [Fv1] + [Fv2].
Let m = 2i. From the definition of [·] we have:

[Fv] = [Fv1+v2] =
∑

t∈Bm(Fv)

[Ft1] · [Ft2] · [∂t(Fv1+v2)] . (17)

Since deg(v1) = deg(v2) = deg(v), we also have

[Fve] =
∑

t∈Bm(Fve)

[Ft1] · [Ft2] · [∂t(Fve)], for e ∈ {0, 1} . (18)

If t ∈ Bm(Fv) then deg(t) > m = 2i. Therefore, for any t ∈ Bm(Fv), since deg(v) ≤ 2i+1, we
have deg(v)− deg(t) < 2i and 2 deg(t) > deg(v) and t 6= v (since t is a product gate). Thus, by
induction hypothesis, the proof-sequence Ψi contains, for any t ∈ Bm(Fv), the equations

[∂t(Fv1+v2)] = [∂tFv1] + [∂tFv2].

Therefore, having Ψi as a premise, we can prove that (17) equals:
∑

t∈Bm(Fv)

[Ft1] · [Ft2] · ([∂tFv1] + [∂tFv2])

=
∑

t∈Bm(Fv)

[Ft1] · [Ft2] · [∂tFv1] +
∑

t∈Bm(Fv)

[Ft1] · [Ft2] · [∂tFv2].
(19)

If t ∈ Bm(Fv) and t 6∈ Fv1 then [∂tFv1] = 0. Similarly, if t ∈ Bm(Fv) and t 6∈ Fv2 then [∂tFv2] = 0.
Hence we can prove

∑

t∈Bm(Fv)

[∂tFve] =
∑

t∈Bm(Fve)

[∂tFve], for e = 1, 2. (20)

20

Thus, using (18) we have that (19) equals:

∑

t∈Bm(Fv1)

[Ft1] · [Ft2] · [∂tFv1] +
∑

t∈Bm(Fv2)

[Ft1] · [Ft2] · [∂tFv2]

= [Fv1] + [Fv2].

(21)

The above proof of (21) from Ψi has size O(s2 ·m(s, d)) and depth O(r(s, d)).

Case 2: Assume that v = v1 · v2. We wish to prove [Fv] = [Fv1] · [Fv2]. Let m = 2i. We assume
without loss of generality that deg(v1) ≥ deg(v2). By the definition of [·], we have:

[Fv] = [Fv1·v2] =
∑

t∈Bm(Fv)

[Ft1] · [Ft2] · [∂tFv].

If v ∈ Bm(Fv), then Bm = {v} and we have [Fv] = [Fv1] · [Fv2] · [∂vFv]. Since [∂vFv] = 1, this
gives [Fv] = [Fv1] · [Fv2], and we are done.

Otherwise, assume v 6∈ Bm(Fv). Then m = 2i < deg(v1) (since, if deg(v1) ≤ m, then also
deg(v2) ≤ m and so by definition v ∈ Bm(Fv)). Because, moreover, deg(v1) ≤ 2i+1, we have

[Fv1] =
∑

t∈Bm(Fv1)

[Ft1] · [Ft2] · [∂tFv1] . (22)

Since deg(v) ≤ 2i+1 and deg(t) > m = 2i, for any t ∈ Bm(Fv), we have

deg(v)− deg(t) ≤ 2i and 2 deg(t) > deg(v).

Since v 6= t, by induction hypothesis, Ψi contains, for any t ∈ Bm(Fv), the equation:

[∂t(Fv1·v2)] = [∂tFv1] · [Fv2]. (23)

Using (23) for all t ∈ Bm(Fv), we can prove the following with a Pc(F) proof of size O(s2 ·m(s, d))
and depth O(r(s, d)):

∑

t∈Bm(Fv)

[Ft1] · [Ft2] · [∂tFv] =
∑

t∈Bm(Fv)

[Ft1] · [Ft2] · [∂t(Fv1·v2)]

=
∑

t∈Bm(Fv)

[Ft1] · [Ft2] · ([∂tFv1] · [Fv2])

= [Fv2] ·
∑

t∈Bm(Fv)

[Ft1] · [Ft2] · [∂tFv1]. (24)

Since Bm(Fv1) ⊆ Bm(Fv), we can conclude as in (20) that

∑

t∈Bm(Fv)

[Ft1] · [Ft2] · [∂tFv1] =
∑

t∈Bm(Fv1)

[Ft1] · [Ft2] · [∂tFv1] .

Using (22), (24) equals [Fv2] · [Fv1]. The above proof-sequence (using Ψi as a premise) has size
O(s2 ·m(s, d)) and depth O(r(s, d)).

21

We now append Ψi with all proof-sequences of [Fv] = [Fv1] + [Fv2] for every v from Case 1,
and all proof-sequences of [Fv] = [Fv1] · [Fv2] for every v from Case 2. We obtain a proof-sequence
Ψ′

i+1 of size
λ(s, i+ 1) ≤ O(s3 ·m(s, d)) + λ(s, i),

and depth O(r(s, d)).
In Part (II), we extend Ψ′

i+1 with more proof-sequences to obtain the final Ψi+1.

Part (II). Let v 6= w be a pair of nodes in F such that w ∈ Fv and assume that

2i < deg(v)− deg(w) ≤ 2i+1 and 2 deg(w) > deg(v).

Let
m = 2i + deg(w).

Case 1: Suppose that v = v1 + v2. We need to prove

[∂wFv] = [∂wFv1] + [∂wFv2] (25)

based on Ψi as a premise. By construction of [∂wFv],

[∂wFv] =
∑

t∈Bm(Fv)

[∂tFv] · [∂wFt1] · [Ft2]

=
∑

t∈Bm(Fv)

[∂t(Fv1+v2)] · [∂wFt1] · [Ft2]. (26)

Since deg(v1) = deg(v2) = deg(v), we also have

[∂wFve] =
∑

t∈Bm(Fve)

[∂tFve] · [∂wFt1] · [Ft2], for e = 1, 2 . (27)

Since m = 2i + deg(w), we have deg(t) > 2i + deg(w), for any t ∈ Bm(Fv). Thus, by deg(v) −
deg(w) ≤ 2i+1, we get that for any t ∈ Bm(Fv):

deg(v)− deg(t) ≤ 2i and 2 deg(t) > deg(v), and

t 6= v (since t is a product gate).

Therefore, by induction hypothesis, for any t ∈ Bm(Fv), Ψi contains the equation

[∂t(Fv1+v2)] = [∂tFv1] + [∂tFv2].

Thus, based on Ψi, we can prove that (26) equals:

∑

t∈Bm(Fv)

([∂tFv1] + [∂tFv2]) · [∂wFt1] · [Ft2]

=
∑

t∈Bm(Fv)

[∂tFv1] · [∂wFt1] · [Ft2] +
∑

t∈Bm(Fv)

[∂tFv2] · [∂wFt1] · [Ft2]. (28)

22

As in (20), using (27) we can derive the following from (28):

∑

t∈Bm(Fv1)

[∂tFv1] · [∂wFt1] · [Ft2] +
∑

t∈Bm(Fv2)

[∂tFv2] · [∂wFt1] · [Ft2]

= [∂wFv1] + [∂wFv2].

The proof of (25) from Ψi shown above has size O(s2 ·m(s, d)) and depth O(r(s, d)).

Case 2: Suppose that v = v1 · v2. We assume without loss of generality that deg(v1) ≥ deg(v2)
and show how to prove

[∂wFv] = [∂wFv1] · [Fv2]. (29)

By construction of [∂wFv]:

[∂wFv] =
∑

t∈Bm(Fv)

[∂tFv] · [∂wFt1] · [Ft2]

=
∑

t∈Bm(Fv)

[∂t(Fv1·v2)] · [∂wFt1] · [Ft2]. (30)

Similar to the previous case, for any t ∈ Bm(Fv) we have

deg(v)− deg(t) < 2i and 2 deg(t) > deg(v).

If v ∈ Bm(Fv) then Bm(Fv) = {v} and so (30) is simply ∂vFv · [∂wFv1] · [Fv2] = [∂wFv1] · [Fv2]
as required. Otherwise, assume that v 6∈ Bm(Fv). By induction hypothesis, Ψi contains the
following equation, for any t ∈ Bm(Fv):

[∂t(Fv1·v2)] = [∂tFv1] · [Fv2].

Using Ψi as a premise, we can then prove that (30) equals:

∑

t∈Bm(Fv)

([∂tFv1] · [Fv2]) · [∂wFt1] · [Ft2] =


 ∑

t∈Bm(Fv)

[∂tFv1] · [∂wFt1] · [Ft2]


 · [Fv2]. (31)

As in (20), we have
∑

t∈Bm(Fv)
[∂tFv1] · [∂wFt1] · [Ft2] =

∑
t∈Bm(Fv1)

[∂tFv1] · [∂wFt1] · [Ft2]. Also,

since v1 · v2 = v 6∈ Bm(Fv), we have deg(v1) > m = 2i + deg(w), and so

[∂wFv1] =
∑

t∈Bm(Fv1)

[∂tFv1] · [∂wFt1] · [Ft2] . (32)

Hence by (32), (31) equals [∂wFv1] · [Fv2].
The above proof of (29) from Ψi has size O(s2 ·m(s, d)) and depth O(r(s, d)).

We now append Ψ′
i from Part (I) (which also contains Ψi) with all proof-sequences of

[∂wFv] = [∂wFv1] + [∂wFv2] in Case 1 and all proof sequences [∂wFv] = [∂wFv1] · [Fv2] in
Case 2, above. We obtain the proof-sequence Ψi+1 of size

λ(s, i+ 1) ≤ O(s4 ·m(s, d)) + λ(s, i),

and depth O(r(s, d)), as required.

23

5 Proofs with division

In this section, we investigate proofs with divisions (as defined in Section 2.3), and prove Theorem
8.

Let us first turn the reader’s attention to some peculiarities of the system P−1
c :

• We must be careful not to divide by zero in P−1
c . Hence P−1

c proofs are not closed under
substitution. It may happen that F (z) = G(z) has a P−1

c proof S, F (0) = G(0) is defined,
but substituting z by 0 throughout S is not a correct proof.

• Whereas P−1
c is sound with respect to polynomial identities, it behaves erratically if one

considers proofs from assumptions. For example, P−1
c augmented with the axiom x2−x = 0

proves that 1 = 0.

• Prima facie, it is not clear whether a P−1
c proof of equation F = G can be transformed to

a proof of F = G which contains only the variables contained in F and G. See Remark
25.

In the sequel, we will consider substitution instances of equations we prove in P−1
c . For

instance, we will need to substitute 0 for some variables in the matrix X, when proving equations
involving the circuit DET(X), and we have to guarantee that our proofs remain correct after
such a substitution.

There are two general ways how to securely handle substitutions in P−1
c proofs. The first

one is to substitute only algebraically independent elements: replacing variables z1, . . . , zk with
circuits H1, . . . , Hk can never produce an undefined proof, if the circuits compute algebraically
independent rational functions. The second way is offered in Corollary 29. This corollary allows
one to construct a new proof of F (0) = G(0) from the proof of F (z) = G(z). Note, however,
that in Corollary 29 the new proof will be polynomial only if the syntactic degree of F and G is
polynomial.

Since the determinant circuit DET has an exponential syntactic degree (see Section 7), the
second approach to substitution is not suitable for the DET identities. The first approach, which
substitutes algebraically independent elements, often cannot cannot be used either, because we
need to substitute variables by field elements. Therefore we must sometimes simply make sure
that the specific substitutions used do not make the proofs undefined. To this end, we use the
following terminology: let x = (x1, . . . , xk) be a list of variables and U = (U1, . . . , Uk) a list of
circuits with divisions. We say that a circuit F (x) with divisions is defined for x = U , if no
divisions by zero occur in F (U); likewise, we say that a P−1

c proof S is defined for x = U (or
simply defined, if the context is clear), if every circuit in S is defined for x = U .

5.1 Eliminating division over large enough fields

We first prove Theorem 8 under the assumption that the underlying field F is large. To eliminate
division gates from proofs, we follow the construction of Strassen [Str73], in which an inverse
gate is replaced by a truncated power series. In order to eliminate division gates over small
fields, additional work will be needed (see Section 6).

Let F be a circuit with divisions. We say that F is a circuit with simple divisions, if for
every inverse gate v−1 in F the circuit Fv does not contain inverse gates. A size s circuit with
division F can be converted to a size O(s) circuit of the form F1 · F

−1
2 , where F1, F2 do not

contain inverse gates, as follows.

24

For every node v introduce two nodes Den(v) and Num(v) which will compute the numerator
and denominator of the rational function computed by v, respectively, as follows:

(i) If v is an input node of F , let Num(v) := v and Den(v) = 1.

(ii) If v = u−1, let Num(v) := Den(u) and Den(v) := Num(u).

(iii) If v = u1 · u2, let Num(v) := Num(v1) ·Num(v2) and Den(v) := Den(v1) ·Den(v2).

(iv) If v = u1 + u2, let Num(v) := Num(u1) · Den(u2) + Num(u2) · Den(u1) and Den(v) :=
Den(u1) ·Den(u2).

Let Num(F) and Den(F) be the circuits with the output node Num(w) and Den(w), re-
spectively, where w is the output node of F . The following lemma will be used in Proposition
24:

Lemma 22. Let F be any field.

(i). If F is a size s circuit with division, then

F = Num(F) ·Den(F)−1

has a P−1
c (F) proof of size O(s). The proof is defined whenever F is defined.

(ii). Let F,G be circuits with division. Assume that F = G has a P−1
c (F) proof of size s. Then

Num(F) ·Den(F)−1 = Num(G) ·Den(G)−1 has a P−1
c (F) proof of size O(s) such that every

circuit in the proof is a circuit with simple divisions.

Proof. Part (i) is proved by straightforward induction on the size of F and part (ii) by induction
on the number of proof lines. We omit the details. QED

Let k be a fixed natural number and define powk(1− z) to be the circuit

powk(1− z) := 1 + z + · · ·+ zk .

In other words, powk(1 − z) is the first k + 1 terms of the power series expansion of 1/(1 − z)
at z = 0.

Let F be a division-free circuit and let a := F̂ (0). Assume that a 6= 0, that is, the polynomial
computed by F has a nonzero constant term, and let Invk(F) denote the circuit

Invk(F) := a−1 · powk(a
−1F)

= a−1 ·
(
1 + (1− a−1F) + (1− a−1F)2 + · · ·+ (1− a−1F)k

)
.

Note that a−1 is a field element and hence Invk(F) is a circuit without division. The following
lemma shows that Invk(F) can provably serve as the inverse polynomial of F “up to the k
power”:

Lemma 23. Let F be any field and let F be a size s circuit without division such that F̂ (0) 6= 0.
Then the following have Pc(F) proofs of size s · poly(k):

(F · InvkF)(0) = 1 (33)

(F · InvkF)(i) = 0, for 1 ≤ i ≤ k . (34)

25

Proof. Let z abbreviate the circuit 1 − a−1F . Then F = a(1 − z) and Invk(F) = a−1(1 + z +
z2 + · · ·+ zk). By elementary rearrangement, we can prove

F · Invk(F) = (1− z)(1 + z + z2 + . . . zk) = 1− zk+1 .

By Lemma 14, (F · Invk(F))(0) = 1 − (zk+1)(0) and (F · Invk(F))(i) = (zk+1)(i), for i > 0. It
is therefore sufficient to prove for every i ≤ k, (zk+1)(i) = 0. This follows by induction using
Lemma 14 and the fact that z(0) = 0. QED

The dependency on the field comes from the following fact, which follows from the Schwartz-
Zippel lemma [Sch80, Zip79]:

Fact. Let f1, . . . , fs ∈ F[X] be non-zero polynomials of degree ≤ d, where X = {x1, . . . xn}.
Assume that |F| > sd. Then there exists ā ∈ Fn such that fi(ā) 6= 0 for every i ∈ {1, . . . , s}.

Proposition 24. There exists a polynomial p such that the following holds. Let F,G be circuits
without division of syntactic degree at most d. Assume that F = G has a P−1

c (F) proof with
divisions of size at most s and suppose that |F| > 2Ω(s). Then F = G has a Pc(F) proof of size
s · p(d).

Proof. Let S be a P−1
c (F) proof of F = G of size s. By Lemma 22, we can assume that the proof

contains only simple divisions. Let C be the set of circuits H such that S contains a circuit with
a node u−1 such that u computes H. Then |C| ≤ s and degH ≤ 2Ω(s) for every H ∈ C, since H
has size at most s. By the Fact above, there exists a point b ∈ Fn such that Ĥ(b) 6= 0 for every
H ∈ C, where n is the number of variables in S.

Without loss of generality, we can assume that b = 〈0, . . . , 0〉. Let S′ be the sequence of
equations obtained by replacing every circuit (H)−1 in S by Invk(H). The sequence S′ does
not contain divisions, but is not yet a correct proof, since the translation F · Invk(F) = 1 of
the axiom D is not satisfied. However, we claim that for every equation F1 = F2 in S′ and

every k ≤ d, F
(k)
1 = G

(k)
1 has a Pc proof of size s · p(d) for a suitable polynomial p. The proof

is constructed by induction on the length of S′, as in Proposition 6. The case of the axiom D
follows from Lemma 23 as follows: (F · Invk(F))(0) = 1 = 1(0) and (F · Invk(F))(j) = 0 = 1(j), if
j ∈ 1, . . . , k. Consequently, we obtain proofs of F (k) = G(k), for every k ≤ d. By Lemma 15, we
have Pc(F) proofs of F =

∑
k≤d F

(k), G =
∑

k≤dG
(k). This gives Pc(F) proofs of F = G with

the correct size. QED

Another application of Schwartz-Zippel lemma is the following:

Remark 25. Let F be an arbitrary field and assume that F = G has a P−1
c (F) proof of size

s. Then there exists a P−1
c (F) proof of F = G of size O(s2) which contains only the variables

appearing in F or G.

Proof. Let S be a proof of F = G of size s which contains variables z1, . . . , zm not appearing in
F or G. Assume that F or G actually contain at least one variable x, otherwise the statement
is clear. It is sufficient to find a substitution z1 = H1, . . . , zm = Hm for which the proof S
is defined and H1, . . . , Hm are circuits of size O(s) in the variable x only. We will choose the
substitution from the set M = {x1, x2, x3 . . . , x2

cs

}, where c is a sufficiently large constant. Note
that xp can be computed by a circuit of size log2 p+ 2, and so every circuit in M has size O(s).
That such a substitution exists can be shown as in Proposition 24, when we consider M as a
subset of the field of rational functions. QED

26

5.2 Taylor series

For a later application, we need to introduce the basic notion of a power series. Let F = F (x, z)
be a circuit with division. We will define ∆zk(F) as a circuit in the variables x, computing the
coefficient of zk in F , when F is written as a power series at z = 0. This is done as follows:

Case 1: Assume first that no division gates in F contain the variable z. Then we define ∆zk(F)
by the following rules (the definition is similar to that of F (k) in Section 3, and so we will be
less formal here):

(i) ∆z(z) := 1 and ∆zk(z) := 0, if k > 1.

(ii) If F does not contain z, then ∆z0(F) := F and ∆zk(F) := 0, if k > 0.

(iii) ∆zk(F +G) = ∆zk(F) + ∆zk(G).

(iv) ∆zk(F ·G) =
∑k

i=0∆zi(F) ·∆zk−i(G).

Case 2: Assume now that some division gate in F contains z. We let:

F0 := ((Den(F))(z/0)♯ ,

where, given a circuit G, G♯ is the non-redundant version of G (see definition in Section 3) and
G(z/0) is obtained by substituting in G all occurrences of z by the constant 0.

In case F̂0 6= 0, we define:

∆zk(F) := F−1
0 ·∆zk

(
Num(F) · powk

(
F−1
0 ·Den(F)

))
.

Note that z does not occur in any division gate inside Num(F) · powk

(
F−1
0 ·Den(F)

)
, and so

∆zkF is well-defined.

Proposition 26. Assume that F (x, z) = G(x, z) has a P−1
c proof of size s which is defined for

z = 0. Then
∆zk(F) = ∆zk(G)

has a P−1
c proof of size s · poly(k).

Proof. The proof is almost identical to that of Proposition 24. We omit the details. QED

6 Simulating large fields in small ones

We recall the notation for matrices from the introduction. In this paper, matrices are understood
as matrices whose entries are circuits and operations on matrices are operations on circuits. Let
F = {Fij}i,j∈[n] be an n×n matrix whose entries are circuits Fij ; and similarly G = {Gij}i,j∈[n].
Addition and multiplication of matrices are defined in the obvious manner, as follows. Let
(F +G)ij denote Fij +Gij , then F +G is the matrix {(F +G)ij}i,j∈[n]. For multiplication, let

(F ·G)ij denote
∑n

p=1 F ip ·Gpj , then F ·G is the matrix {(F ·G)ij}i,j∈[n], and aF is the matrix
{a · Fij}i,j∈[n], where a is a circuit with a single node. The equation F = G denotes the set of
equations Fij = Gij , i, j ∈ [n].

Lemma 27. Let X,Y, Z be n × n matrices of distinct variables. Then the following identities
have polynomial-size Pc(F) proofs:

27

X + Y = Y +X X + (Y + Z) = (X + Y) + Z
X · (Y + Z) = X · Y +X · Z (Y + Z) ·X = Y ·X + Z ·X
X · (Y · Z) = (X · Y) · Z.

Proof. Each of the equalities is a set of n2 correct equations with degree ≤ 3 and size O(n).
Every such equation has a Pc-proof of size O(n3). QED

Let F1 = GF (p) and F2 = GF (pn), where p is a prime power. We will show how to simulate
proofs in Pc(F2) by proofs in Pc(F1). Recall that F2 can be represented by n× n matrices with
elements from F1, that is, there is an isomorphism θ between F2 and a subset of GLn(F1). This
allows one to treat a polynomial f over F2 as a matrix of n2 polynomials over F1. Similarly, we
can define translation of circuits: let F be a circuit with coefficients from F2. Let F̄ be an n×n
matrix of circuits {F̄ij , i, j ∈ [n]} with coefficients from F1, defined as follows: for every gate u
in F , introduce n2 gates ū = ūij , and let:

(i). If u ∈ F2 is a constant, let ū := θ(u).

(ii). If u is a variable, let ū := u · In (where In is the n dimensional identity matrix).

(iii). If u = v + w, ū := v̄ + w̄, and if u = v · w, ū := v̄ · w̄

Then F̄ is the matrix computed by w̄ where w is the output of F .
Here, v̄ + w̄, (v̄ · w̄) and u · In are defined as the corresponding matrix operations on circuit

nodes.

Lemma 28. Let F,G be circuits of size ≤ s with coefficients from F2. Then

F⊕G = F +G , F⊗G = F⊗G , (35)

F ·G = G · F (36)

have Pc(F1) proofs of size s · poly(n)

Proof. Identities (35) follow from the definition of F by means of axioms C1, C2.
Identity (36) follows by induction on the circuit sizes of F and G. We first need to construct

the proof of
z1 · z2 = z2 · z1 ,

where each z1, z2 is either a variable or an element of F2. So assume that z1 is a variable. Then
z1 = z1 · I. This gives z1 · z2 = z1 · z2. But z2 is a matrix for which each entry commutes with
z1, which gives a proof of z1 · z2 = z2 · z1 = z2 · z1. The case of z2 being a variable is similar.
If both z1, z2 ∈ F2, we are supposed to prove θ(z1) · θ(z2) = θ(z2) · θ(z1). But this is a set of
n2 true equations of size O(n) that contain only elements of F1, and hence it has a proof of size
O(n3). In the inductive step, use Lemma 27 to construct a proof of (F1 + F2) ·G = G(F1 + F2)
and of (F1 · F2) ·G = G(F1 · F2) from the proofs of F1 ·G = G · F1 and F2 ·G = G · F2. QED

Proof of Theorem 9. Let F,G be circuits with coefficients from F2 such that F = G has a Pc(F2)
proof of size s. We wish to show that F = G have proofs of size s · poly(n) in Pc(F1). This
implies Theorem 9, for if F,G contain only coefficients from F1 then F 11 = F and G11 = G.

The proof is constructed by induction on the number of lines. Axioms C1, C2 follow from
equations (35) in Lemma 28, and A4 from equation (36). A9 is a set of n2 true constant equations.
The rest of the axioms are application of Lemma 27. The rules R1, R2 are immediate, and R3,
R4 are given by Lemma 28. QED

28

Proof of Theorem 8. Theorem 8 follows from Proposition 9 and Proposition 24. QED

For a circuit with division F , define its syntactic degree by

degF := deg(NumF) + deg(DenF).

Corollary 29. Let F be any field and let F , G, H be circuits with divisions. Assume that
deg(F) and deg(G) is at most d and that H has size s1. Suppose that F (z) = G(z) has a P−1

c (F)
proof of size s2 and that F (H), G(H) are defined. Then F (H) = G(H) has a P−1

c (F) proof of
size s1s2 · poly(d).

Proof. We aim to construct a proof of F (z) = G(z) of size s2 · poly(d) such that the proof is
defined for z = H. We can then substitute H for z throughout the proof to obtain a proof of
F (H) = G(H) of the required size. By Lemma 22, we have proofs of

F (z) = Num(F (z)) ·Den(F (z))−1 G(z) = Num(G(z)) ·Den(G(z))−1 . (37)

This and F (z) = G(z) gives a P−1
c (F) proof of

Num(F (z)) ·Den(G(z)) = Num(G(z)) ·Den(F (z)) ,

of size O(s2). The last equation does not contain division gates, and so it has a Pc(F) proof
of size s2 · poly(d) by Theorem 8. This proof is defined for z = H because it does not contain
division gates. By Lemma 22, the proofs of (37) are defined for z = H (because F (H) and G(H)
are defined by assumption). In particular, both Den(F (z)) and Den(G(z)) are nonzero, and we
have a proof of

Num(F (z)) ·Den(F (z))−1 = Num(G(z)) ·Den(G(z))−1

that is defined for z = H. Using (37) we obtain a proof of F = G of size s2 · poly(d) that is
defined for z = H. QED

7 Computing the determinant

We are now done proving the structural properties of Pc and Pf and we proceed to construct
proofs of the properties of the determinant.

7.1 The determinant as a rational function

In order to compute the determinant and prove its properties, we shall first define the inverse
of a matrix. Let X = {xij}i,j∈[n] be a matrix consisting of n2 distinct variables. Recursively, we
define n× n matrix X−1 whose entries are circuits with divisions. Let us first assume that n is
a power of 2. If n = 1, let X−1 := (x−1

11). If n > 1, divide X into square blocks as follows:

X =

(
X1 X2

X3 X4

)
. (38)

We have already constructed the matrix X−1
1 . Let

D(X) := X4 −X3X
−1
1 X2 .

29

Since the entries of D(X) are algebraically independent (because the entries of X4 are alge-
braically independent and the matrix X3X

−1
1 X2 does not contain variables from X4), the com-

putation of D(X)−1 does not use divisions by zero, and we can also construct D(X)−1. Let

X−1 :=

(
X−1

1 (1 +X2D(X)−1X3X
−1
1) −X−1

1 X2D(X)−1

−D(X)−1X3X
−1
1 D(X)−1

)
. (39)

We now argue that (39) defines a polynomial-size circuit. Let λ(n) be the size of the
circuit X−1, for X an n × n matrix. The construction of X−1 involves first computing
X−1

1 , which amounts to λ(n/2) nodes. Having already computed X−1
1 we can compute

D(X) = X4 − X2X
−1
1 X3 with only nc additional gates, for some constant c. Now, having

already computed D(X), computing D(X)−1 can be done with additional λ(n/2) nodes. This
gives us the recurrence λ(n) ≤ 2 · λ(n/2) + nc, which implies that λ(n) = nO(1).

We can now define the determinant as a rational function. If n = 1, let DET(X) := x11.
Otherwise, n > 1 and X is as in (38), let

DET(X) := DET(X1(X4 −X3X
−1
1 X2)) = DET(X1D(X)) .

In a similar manner as above, DET(X) is a polynomial-size circuit with division.
If n is not a power of two, let n0 := 2⌈logn⌉ and let

Y :=

(
In0−n 0
0 X

)
.

By induction, we can show that both Y −1 and DET(Y) are defined, and

Y −1 =

(
In0−n 0
0 Z

)
,

where Z is an n× n matrix. We let DET(X) := DET(Y) and X−1 := Z.

The fact that DET(X) indeed computes the determinant (as a rational function) is a con-
sequence Lemma 33 below, where we show that P−1

c can prove the two identities for DET(X)
that are uniquely satisfied by the determinant polynomial.

Note: At this stage, DET(X) is computed by a circuit with division, and hence it is not defined
on all inputs. Also note that DET(X) has an exponential syntactic degree.

In the following constructions, we will use a general property of the system P−1
c , which is

analogous to the property of Pc mentioned in Proposition 2:

Lemma 30. Assume that F,G are circuits with division of size s and that F = G has a P−1
c

proof with k proof lines. Then F = G has a P−1
c proof of size poly(s, k).

Proof. The proof is almost the same as the proof for extended and circuit Frege (see [Kra95]
and [Jeř04], respectively), so we give only a sketch. Let us have a proof S of F = G with k
lines, where F,G are in variables x̄. Without loss of generality, assume that F and G are circuits
without divisions (otherwise consider the equation Num(F)Den(G) = Den(F)Num(G) and use
Lemma 22; this adds O(s) to the number of lines). Let H be the set of circuits appearing as a

30

subcircuit of some circuit in S. For every H ∈ H, introduce a new variable z(H). Let Z be the
set of these variables and let E be the set of all equations of the form

z(H1⊕H2) = z(H1) + z(H2) ,

z(H1⊗H2) = z(H1) · z(H2) ,

z(u) = u if u ∈ F ∪ x̄ ,

z(H−1) · z(H) = 1 .

We will say that the first three equations define z(H1⊕H2), z(H1⊗H2) and z(u) respectively,
and the last equation defines z(H−1). Note that every z ∈ Z has exactly one defining equation
in E .

By induction on k, one can show that z(F) = z(G) has a Pf proof of size O(k) from the
equations E . Moreover, F = G has a Pc proof T of size O(k + s) from E .

Let Z1 be the set of variables from Z occurring in T and Z0 the set of z ∈ Z1 such that
T does not contain the defining equation of z. Every formula H in T can be interpreted as
a circuit with divisions H⋆ in variables Z0 ∪ x̄: understand the variables Z1 \ Z0 as nodes in
accordance with their defining equations. H⋆ is a correct circuit (i.e., does not use divisions by
zero), provided S was a correct proof to begin with. Moreover, H⋆ has size at most |Z1| times
the size of H. In this manner, one obtains a P−1

c -proof of F = G of size O((s+k)2). (This proof
contains the additional variables Z0. Compare with Remark 25.) QED

Proposition 31. Let X = {xij}i,j∈[n] be a matrix with n2 distinct variables. Then both

X ·X−1 = I and X−1 ·X = I

have a polynomial-size P−1
c proof. The proof is defined for X = U , for any matrix U whose

entries are circuits with division such that U−1 is defined.

Proof. Let us assume that n is a power of two; the general case follows. Let us construct the
proofs of X ·X−1 = I and X−1 ·X = I by induction. If n = 1, we have x · x−1 = x−1 · x = 1.
Otherwise let n > 1 and X be as in (38). For brevity, let A := D(X).

We will construct a proof of X ·X−1 = In (for In the n dimensional identity matrix) from
the assumptions X1 · X−1

1 = In/2 and A · A−1 = In/2. Using some rearrangements, and the
definition of A, we have:

X ·X−1 =

(
X1 X2

X3 X4

)
·

(
X−1

1 (I +X2A
−1X3X

−1
1) −X−1

1 X2A
−1

−A−1X3X
−1
1 A−1

)

=

(
I +X2A

−1X3X
−1
1 −X2A

−1X3X
−1
1 −X2A

−1 +X2A
−1

X3X
−1
1 + (X3X

−1
1 X2 −X4)A

−1X3X
−1
1 (−X3X

−1
1 X2 +X4)A

−1

)

=

(
I 0

X3X
−1
1 −AA−1X3X

−1
1 AA−1

)

=

(
I 0
0 I

)

We now argue that this gives a P−1
c proof with a polynomial number of lines. Let δ(n) denote

the number of lines in the proof of X · X−1 = I, for X an n × n dimensional matrix. In the
proof sequence above we use as premises the proofs of X1 · X

−1
1 = I and A · A−1 = I. The

31

identity X1 ·X
−1
1 = I has a proof with δ(n/2) lines. A · A−1 = I is a substitution instance of

X1 · X
−1
1 = I and hence it also has a proof with δ(n/2) lines (recall that the entries of A are

algebraically independent, and so the proof is defined under this substitution). From Lemma 27,
the above proof sequence has number of lines δ(n) ≤ 2 · δ(n/2) + nc, for some constant c, which
implies that δ(n) is polynomial in n. This in turn gives a polynomial-size proof, by Lemma 30.

Note that it is important that we count the number of proof lines, rather than the size of
the proof. Since the entries of A have a super-constant size, a direct estimate of the proof size
would give only a quasipolynomial size proof.

The proof of X−1 ·X = I is constructed in a similar fashion. Also, if X = U for U a matrix
with entries that are circuits with division, such that U−1 is defined, then a similar proof (by
induction on n) as above holds. And so we obtain a proof of UU−1 = I. QED

Corollary 32. The identity (XY)−1 = Y −1X−1 has a polynomial-size proof in P−1
c .

Lemma 33.

(i). Let U be an (upper or lower) triangular matrix whose entries are circuits with divisions
with u1, . . . un on the diagonal. If u−1

1 , . . . , u−1
n are defined then

DET(U) = u1 · · ·un

has a polynomial-size P−1
c proof.

(ii). Let X and Y be n× n matrices, each consisting of pairwise distinct variables. Then

DET(X · Y) = DET(X) ·DET(Y) (40)

has a polynomial-size P−1
c proof. The proof is defined for X = U, Y = V where U, V are

matrices whose entries are rational functions such that both sides of (40) are defined.

Proof. Part (i) is proved by induction, following the definition of DET. Let us assume that n
is a power of two and U is upper triangular. If n = 1, DET(U) = u1 by definition. If n > 1, let

U =

(
U1 U2

0 U4

)
, where the Ui’s are of dimension n/2 × n/2 and U1, U4 are upper triangular.

The definition of DET gives

DET(U) = DET(U1 ·D(U)) = DET(U1 · (U4 − U2U
−1
1 0))

= DET(U1U4) .

U1U4 is an upper-triangular matrix of dimension n/2×n/2 with u1·un/2+1, u2·un/2+2, . . . , un/2·un
on the diagonal. Thus, by induction hypothesis we get DET(U) = u1 · · ·un.

Part (ii): we will again assume that n is a power of two. We will abbreviate DET(A) as |A|. The
proof of (40) is constructed again by induction. If n = 1, it is immediate. Assume that n > 1.
We shall construct a proof of (40), using a constant number of instances of |AB| = |A| · |B|,
with A,B of dimension n/2×n/2. This implies that (40) has a proof with a polynomial number
of lines, and hence of polynomial-size. Note that part (i) gives |A−1| = |A|−1 (for n/2 × n/2
matrices).

32

Let

X =

(
X1 X2

X3 X4

)
, Y =

(
Y1 Y2
Y3 Y4

)
.

By the definition of DET, |XY | = |(X1Y1 +X2Y3)D(XY)|, and we are supposed to prove

|(X1Y1 +X2Y3)D(XY)| = |X1D(X)| · |Y1D(Y)| .

By induction hypothesis, this is equivalent to |X1Y1+X2Y3|·|D(XY)| = |X1|·|D(X)|·|Y1|·|D(Y)|,
and hence, using the rule F · F−1 = 1 (for any F with F̂ 6= 0), it is also equivalent to:

|X1Y1 +X2Y3| · |X1|
−1 · |Y1|

−1 = |D(X)| · |D(Y)| · |D(XY)|−1 . (41)

From Corollary 32, we have (XY)−1 = Y −1X−1. Using the definition of inverse matrix (39),
and comparing the bottom right block of (XY)−1 and Y −1X−1, we have

D(XY)−1 = D(Y)−1(I + Y3Y
−1
1 X−1

1 X2)D(X)−1 ,

and, taking the determinant of both sides and rearranging, we obtain

|D(X)| · |D(Y)| · |D(XY)|−1 = |I + Y3Y
−1
1 X−1

1 X2| .

Therefore, in order to prove (41), it is sufficient to prove

|I + Y3Y
−1
1 X−1

1 X2| = |X1Y1 +X2Y3| · |X1|
−1 · |Y1|

−1 .

This is done as follows:

|I + Y3Y
−1
1 X−1

1 X2| = |Y3(Y
−1
3 + Y −1

1 X−1X2)|

= |Y3| · |Y
−1
3 + Y −1

1 X−1
1 X2|

= |Y −1
3 + Y −1

1 X−1
1 X2| · |Y3|

= |I + Y −1
1 X−1

1 X2Y3|

= |Y −1
1 X−1

1 (X1Y1 +X2Y3)|

= |Y1|
−1 · |X1|

−1 · |X1Y1 +X2Y3| .

QED

The following lemma shows that elementary Gaussian operations are well-behaved with re-
spect to DET.

Lemma 34. Let X = {xij}i,j∈[n] be an n × n matrix of distinct variables. Then the following
have polynomial-size P−1

c proofs:

(i). DET(X) = −DET(X ′), where X ′ is a matrix obtained from X by interchanging two rows
or columns.

(ii). DET(X ′′) = uDET(X), where X ′′ is obtained by multiplying a row or a column in X by
u, such that u−1 is defined.

(iii). DET(X) = DET(X ′′′), where X ′′′ is obtained by adding a row to a different row in X (and
similarly for columns).

33

(iv). DET

(
X v
0 u

)
= uDET(X) where v is a column vector and u−1 is defined.

(v). DET(X) = (xnn)
−(n−2)DET(Z), where Z = {zij}i,j∈[n−1] is the (n − 1) × (n − 1) matrix

with zij = xijxnn − xnjxin.

Proof. Items (ii) and (iii) follow from Lemma 33 and the fact that X ′′ = AX and X ′′′ = A′X,
where A,A′ are suitable triangular matrices. We cannot infer (i) directly from Lemma 33, since
X ′ = TX implies only that T is a transposition matrix and hence neither upper nor lower
triangular. However, we can write T = A1A2A3, where A1, A2, A3 are upper or lower triangular
and DET(A1)DET(A2)DET(A3) = −1. Since X is a matrix of distinct variables, the following
is defined:

DET(A1A2A3X) = DET(A1)DET(A2A3X) = · · · =

= DET(A1)DET(A2)DET(A3)DET(X) .

For part (iv), construct a lower triangular matrix L and an upper triangular matrix U such
that X = LU has a polynomial size proof. Clearly, L and U have invertible entries on the
diagonal. Note that

(
X v
0 u

)
=

(
I vu−1

0 1

)(
L 0
0 u

)(
U 0
0 1

)
.

The matrices on the right hand side are either lower or upper triangular, and by Lemma 33,
their determinant is 1, uDET(L) and DET(U), respectively. Hence

DET

(
X v
0 u

)
= uDET(L)DET(U) = uDET(LU) = uDET(X) .

Part (v) is obtained from (iv), where one first shows that DET(X) = xn−2
nn DET

(
Z v
0 1

)
,

where v is some vector of rational functions. QED

7.2 The determinant as a polynomial

Note that we cannot yet apply Theorem 8 to obtain Theorem 3, because DET itself contains
division gates. For our purpose it will suffice to compute the determinant by a circuit without
division, denoted det(X), and construct a proof of det(X) = DET(X) in P−1

c . In order to do
that, we will define det(X) as the nth term of the Taylor expansion of DET(I + zX) at z = 0,
as follows: using notation from Section 5.2, let

det(X) := ∆zn (DET(I + zX)) . (42)

Let us note that

(i). det(X) indeed computes the determinant of X,

(ii). det(X) is a circuit without divisions of syntactic degree n.

34

This is because every variable from X in the circuit DET(I + zX) occurs in a product with
z. Hence ∆zn(DET(I + zX)) is the n-th homogeneous part of the determinant of I +X - the
determinant ofX. By the definition of ∆zn , ∆zn(DET(I+zX)) contains exactly one inverse gate,
namely the inverse of Den(DET(I+zX)) at the point z = 0. But a := (Den(DET(I+zX)))(z/0)♯

is a constant circuit computing a non-zero field element, and we can identify a−1 with the field
constant it computes.

Lemma 35. Let X be an n× n matrix of distinct variables. Then, the following hold:

(i). There exist circuits with divisions P0, . . . , Pn−1 not containing the variable z, such that

DET(zI +X) = zn + Pn−1z
n−1 + · · ·+ P0

has a polynomial-size P−1
c (F) proof. Moreover, this proof is defined for z = 0.

(ii). There is a polynomial-size P−1
c proof of

DET(X) = det(X) .

Proof. We first show that (i) implies (ii). By (i) we get a polynomial-size P−1
c proof of the

following substitution instance:

DET(zI +X−1) = zn +Qn−1z
n−1 + · · ·+Q0, (43)

where the Qi’s are circuits with divisions that do not contain the variable z.
By Lemma 33 we have a polynomial-size P−1

c proof of

DET(I + zX) = DET(zI +X−1) ·DET(X),

from equation (43) we get a polynomial-size proof of

DET(I + zX) = znDET(X) + zn−1Q′
n−1 + · · ·+Q′

0,

where Q′
n−1, . . . , Q

′
0 are circuits with division which do not contain z. By (i) and Lemma 33,

the proof is defined when z = 0. By Lemma 26, we have a polynomial-size P−1
c proof of

∆zn(DET(I + zX)) = ∆zn(z
nDET(X) + zn−1Q′

n−1 + · · ·+Q′
0).

But by the definition of det(X), ∆zn(DET(I + zX)) is det(X) and by the definition of ∆zn ,
∆zn(z

nDET(X) + zn−1Q′
n−1 + · · ·+Q′

0) is DET(X), and we are done.

We now prove part (i). Let F be a circuit in which z does not occur in the scope of any
inverse gate. Then, we define the z-degree of F , denoted degz(F), as the syntactic-degree of F
considered as a circuit computing a univariate polynomial in z (so that all other variables are
treated as constants). By induction, we will construct matrices A1, . . . , An with the following
properties:

1. A1 = X + zIn,

35

2. Every Ak is an (n− k + 1)× (n− k + 1) matrix of the form




zk + γ1 γ2 . . . γn−k+1

p1
...

pn−k

zIn−k +Q


 ,

where all the entries are circuits with division in which z does not occur in the scope of any
division gate, and moreover: degz(γi) < k, for every i ∈ [n − k + 1], and p1, . . . , pn−k, Q do
not contain the variable z.

3. The identity DET(Ak) = DET(Ak+1) has a polynomial-size proof.

4. The entries of Ak are algebraically independent (this is to guarantee that divisions are de-
fined).

Assume that k < n and that we have Ak as in Item 2, and we want to construct Ak+1. Let
us first outline the construction. Displaying only the purported highest powers of z, Ak looks
like: 



zk zk−1 zk−1 · · · zk−1

1 z 1 · · · 1
1 1 z · · · 1
...

...
. . .

...
1 1 1 · · · z




.

Here, zp stands for any circuit of z-degree at most p, and 1 for a circuit not depending on z.
Let C be the matrix obtained by switching the first and last column of Ak. By Lemma 34,

we have a polynomial-size proof of DET(Ak) = −DET(C). The matrix C has the following
form: 



zk−1 zk−1 zk−1 · · · zk

1 z 1 · · · 1
1 1 z · · · 1
...

...
. . .

...
z 1 1 · · · 1




.

We can apply part (v) of Lemma 34, to obtain that DET(C) is equal to the determinant of an
(n− k)× (n− k)-matrix having the following form:




zk+1 zk zk · · · zk

z z 1 · · · 1
z 1 z · · · 1
...

...
. . .

...
z 1 1 · · · z




.

This matrix is of the desired form, except for the occurrences of z in the first column. This can
be fixed by appropriate operations on the columns which eliminate the z’s while adding to zk+1

only terms of z-degree smaller than k + 1.

36

A more careful implementation of the above argument gives a proof of

DET(Ak) = DET




zk+1 + γ′1 γ′2 . . . γ
′
n−k

zq1 + p′1
...

zqn−k+1 + p′n−k−1

zIn−k−1 +Q′


 ,

where the z-degree of γ′1, . . . , γ
′
n−k is at most k − 1, and the p′i’s and qi’s and Q′ do not depend

on z. If we multiply the last matrix by



1 0 · · · 0
−q1
...

−qn−k+1

In−k−1




from the right, we obtain that

DET(Ak) = DET




β′′ γ′1 . . . γ
′
n−k−1

p′′1
...

p′′n−k

zIn−k−1 +Q′


 ,

where the matrix is of the form required in Item 2, and can be taken as the desired Ak+1.
Finally, An is a 1× 1 matrix whose entry is a circuit of the form zn + u, where u is a circuit

with z-degree < n in which z is not in the scope of any division gate. This concludes the lemma.
QED

8 Concluding the main theorem

We can now finally prove Theorem 3 (Main Theorem), which we rephrase as follows:

Proposition 36 (Theorem 3, rephrased). Let X,Y, Z be n× n matrices such that X,Y consist
of different variables and Z is a triangular matrix with z11, . . . , znn on the diagonal. Then there
exist an arithmetic circuit detc and a formula detf such that:

(i). The identity detc(XY) = detc(X) · detc(Y) and detc(Z) = z11 · · · znn have polynomial-size
O(log2 n) depth proofs in Pc.

(ii). The identity detf (XY) = detf (X) · detf (Y) and detf (Z) = z11 · · · znn have Pf proofs of
size nO(logn).

Proof. Let det(X) = ∆znDET(I + zX) be the circuit defined in (42). Lemma 35 part (ii) and
Lemma 33 imply that the equations

det(XY) = det(X) · det(Y) and det(Z) = z11 · · · znn (44)

have polynomial-size P−1
c proofs. By definition, the syntactic degree of det(X) is at most n.

Hence, by Theorem 8 the identities in (44) have polynomial-size Pc proofs. This almost concludes
part (i), except for the bound on the depth. To bound the depth, let

detc(X) := [det(X)],

37

where [F] is the balancing operator as defined in Section 4. Thus, Theorem 4 implies that

[det(XY)] = [det(X) · det(Y)] and [det(Z)] = [z11 · · · znn]

have Pc proofs of polynomial-size and depth O(log2 n). By means of Lemma 19, we have such
proofs also for

[det(X) · det(Y)] = [det(X)] · [det(Y)] = detc(X) · detc(Y) and [det(Z)] = z11 · · · znn.

Hence it is sufficient to construct (polynomial-size and O(log2 n) depth proofs) of

[det(XY)] = detc(XY) and [det(Z)] = detc(Z)

(note that defining detc(X) as [det(X)] does not imply that [det(XY)] = detc(XY)). This
follows from the following more general claim:

Claim. Let F (x1/g1, . . . , xn/gn) be a circuit of size s and syntactic degree d. Then

[F (x1/g1, . . . , xn/gn)] = [F (x1, . . . , xn)] (x1/ [g1] , . . . , xn/ [gn])

has a Pc proof of size poly(n, d) and depth O(log d log s+ log2 d).

Proof. This follows by induction using Lemma 19. We omit the details. QED

To prove part (ii), recall Definition 1 of F •. Let detf (X) := (detc(X))•. Then the statement
follows from part (i) and Claim 1 of the proof of Theorem 21. QED

We should note that in the Pc-proof of the equation det(XY) = det(X) ·det(Y) no divisions
occur and so it is defined for any substitution. In particular,

det(AX) = det(A) · det(X) = a det(X)

has a short Pc proof for any matrix A of field elements whose determinant is a ∈ F. Similarly,
the elementary Gaussian operations stated in Lemma 34 carry over to polynomial-size Pc proofs
of the corresponding properties of det.

9 Applications

In this section, we prove Propositions 10 and 11. First, one should show that the cofactor
expansion of the determinant has short proofs. For an n × n matrix X and i, j ∈ [n], let Xi,j

denote the (n− 1)× (n− 1)-matrix obtained by removing the ith row and jth column from X.
Let Adj(X) be the n × n matrix whose (i, j)-th entry is (−1)i+jdetc(Xj,i) (where detc is the
circuit from Proposition 36).

Proposition 37 (Cofactor expansion). Let X = {xij}i,j∈[n] be an n × n matrix, for variables

xij. Then the following identities have polynomial-size O(log2 n)-depth Pc proofs:

(i) detc(X) =
∑n

j=1(−1)i+jxijdetc(Xi,j), for any i ∈ [n];

(ii) X ·Adj(X) = Adj(X) ·X = detc(X) · I.

38

Proof. Let us sketch the proof of

detc(X) =
n∑

j=1

(−1)1+jx1jdetc(X1,j) .

It is sufficient to construct a polynomial size P−1
c proof, for we can then eliminate the division

gates by means of Theorem 8 and bound the depth of the proof by means of Theorem 4.
For j ∈ {1, . . . , n}, let Xj be the matrix

Xj :=




0 . . . x1j . . . 0
x21 . . . x2j . . . x2n
...

...
xn1 . . . xnj . . . xnn


 .

Using Lemma 34 part (iv) (applied to detc instead of DET), and some rearrangments, we
can conclude that detc(Xj) = (−1)1+jx1jdetc(X1,j). It is therefore sufficient to prove that
detc(X) = detc(X1) + · · ·+ detc(Xn). This follows from the general identity

detc

(
v1 + v2

Z

)
= detc

(
v1
Z

)
+ detc

(
v2
Z

)
,

where Z is the (n − 1) × n matrix with Zij = xij and v1, v2 are row vectors. To give a P−1
c

proof of this identity is a straightforward application of Proposition 36: one may, e.g., convert

the matrix

(
v1 + v2

Z

)
to a suitable lower triangular form. QED

Proposition 38 (Proposition 11 restated). The identities Y X = I have polynomial-size and
O(log2 n)-depth Pc proofs from the equations XY = I. In the case of Pf , the proofs have
quasipolynomial-size.

Proof of Proposition 11. Note that we are dealing with a Pc proof from assumptions, and hence
we are not allowed to use division gates. The proof is constructed as follows. Assume XY = I.
By Proposition 36, this gives detc(X) · detc(Y) = 1. By Proposition 37, we can multiply from
left both sides of XY = I by Adj(X) to obtain detc(X) · Y = Adj(X). Hence,

detc(X) · Y X = Adj(X) ·X = detc(X) · I,

and so
detc(Y) · detc(X) · Y X = detc(Y) · detc(X) · I,

which, using detc(X) · detc(Y) = 1 gives Y X = I. The Pf proof is identical, except that the
steps involving the determinant require a quasipolynomial size. QED

Proof of Proposition 10. The proof proceeds via a simulation of the construction in [Val79] (com-
pare also with the presentation in [HWY10]). The matrix M is constructed inductively with
respect to the size of the formula. It is convenient to maintain the property

Mi,i+1 = 1 and Mi,j = 0, if j > i+ 1 .

39

Let us call matrices of this form nearly triangular. Let M1,M2 be nearly triangular matrices
of dimensions s1 × s1 and s2 × s2, respectively. In order to prove the correctness of the simula-
tion of Valiant’s construction [Val79], it is sufficient to show that the following equations have
polynomial-size Pc proofs:

(i). detc(M) = detc(M1) · detc(M2), where

M =

(
M1 E
0 M2

)
,

and E has 1 in the lower left corner and 0 otherwise.

(ii). detc(M) = detc(M1) + detc(M2), with

M =




1 v 0 0
0 M1 v1 0

M2[1] 0 v2 M2[2
+],


 ,

where v is a row vector with 1 in the leftmost entry and 0 elsewhere, v1 is a column vector
with 1 in the bottom entry and 0 elsewhere, v2 is a column vector with (−1)s2+1 in the
bottom entry and 0 elsewhere, M2[1] is the first column of M2, and M2[2

+] is the matrix
M2 without the first column.

Both parts are an application of Proposition 37.
QED

References

[BBP95] Maria Luisa Bonet, Samuel R. Buss, and Toniann Pitassi. Are there hard examples
for Frege systems? In Feasible mathematics, II (Ithaca, NY, 1992), volume 13 of
Progr. Comput. Sci. Appl. Logic, pages 30–56. Birkhäuser Boston, Boston, MA, 1995.

[Ber84] Stuart J. Berkowitz. On computing the determinant in small parallel time using a
small number of processors. Inf. Process. Lett., 18:147–150, 1984.

[BP98] Paul Beame and Toniann Pitassi. Propositional proof complexity: past, present, and
future. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, (65):66–89, 1998.

[HT09] Pavel Hrubeš and Iddo Tzameret. The proof complexity of polynomial identities. In
Proceedings of the 24th IEEE Conference on Computational Complexity, pages 41–51,
2009.

[HWY10] Pavel Hrubeš, Avi Wigderson, and Amir Yehudayoff. Relationless completeness and
separations. In Proceedings of the 25th IEEE Conference on Computational Com-
plexity, pages 280–290, 2010.

[Hya79] Laurent Hyafil. On the parallel evaluation of multivariate polynomials. SIAM J.
Comput., 8(2):120–123, 1979.

[Jeř04] Emil Jeřábek. Dual weak pigeonhole principle, Boolean complexity, and derandom-
ization. Ann. Pure Appl. Logic, 129(1-3):1–37, 2004.

40

[Kra95] Jan Kraj́ıček. Bounded arithmetic, propositional logic, and complexity theory, vol-
ume 60 of Encyclopedia of Mathematics and its Applications. Cambridge University
Press, Cambridge, 1995.

[RY08] Ran Raz and Amir Yehudayoff. Balancing syntactically multilinear arithmetic cir-
cuits. Computational Complexity, 17:515–535, 2008.

[SC04] Michael Soltys and Stephen Cook. The proof complexity of linear algebra. Ann. Pure
Appl. Logic, 130(1-3):277–323, 2004.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial iden-
tities. Journal of the ACM, 27(4):701–717, 1980.

[Seg07] Nathan Segerlind. The complexity of propositional proofs. Bull. Symbolic Logic,
13(4):417–481, 2007.

[Sol01] Michael Soltys. The complexity of derivations of matrix identities. PhD thesis, Uni-
versity of Toronto, Toronto, Canada, 2001.

[Sol05] Michael Soltys. Feasible proofs of matrix properties with csanky’s algorithm. In 19th
International Workshop on Computer Science Logic, pages 493–508, 2005.

[Str73] Volker Strassen. Vermeidung von divisionen. J. Reine Angew. Math., 264:182–202,
1973. (in German).

[SU04] Michael Soltys and Alasdair Urquhart. Matrix identities and the pigeonhole principle.
Arch. Math. Logic, 43(3):351–357, 2004.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results
and open questions. Foundations and Trends in Theoretical Computer Science, 5(3-
4):207–388, 2010.

[Val79] Leslie G. Valiant. Completeness classes in algebra. In Proceedings of the 11th Annual
ACM Symposium on the Theory of Computing, pages 249–261. ACM, 1979.

[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast parallel
computation of polynomials using few processors. SIAM J. Comput., 12(4):641–644,
1983.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the
International Symposiumon on Symbolic and Algebraic Computation, pages 216–226.
Springer-Verlag, 1979.

41

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

