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Abstract

We study arithmetic proof systems Pc(F) and Pf (F) operating with arithmetic circuits

and arithmetic formulas, respectively, that prove polynomial identities over a field F. We

establish a series of structural theorems about these proof systems, the main one stating

that Pc(F) proofs can be balanced: if a polynomial identity of syntactic degree d and

depth k has a Pc(F) proof of size s, then it also has a Pc(F) proof of size poly(s, d) and

depth O(k+ log2 d+ log d · log s). As a corollary, we obtain a quasipolynomial simulation

of Pc(F) by Pf (F), for identities of a polynomial syntactic degree.

Using these results we obtain the following: consider the identities

det(XY ) = det(X) · det(Y ) and det(Z) = z11 · · · znn,

where X,Y and Z are n×n square matrices and Z is a triangular matrix with z11, . . . , znn
on the diagonal (and det is the determinant polynomial). Then we can construct a

polynomial-size arithmetic circuit det such that the above identities have Pc(F) proofs of

polynomial-size and O(log2 n) depth. Moreover, there exists an arithmetic formula det

of size nO(logn) such that the above identities have Pf (F) proofs of size nO(logn).

This yields a solution to a basic open problem in propositional proof complexity,

namely, whether there are polynomial-size NC2-Frege proofs for the determinant iden-

tities and the hard matrix identities, as considered, e.g. in Soltys and Cook [SC04] (cf.,

Beame and Pitassi [BP98]). We show that matrix identities like AB = I → BA = I (for

matrices over the two element field) as well as basic properties of the determinant have

polynomial-size NC2-Frege proofs, and quasipolynomial-size Frege proofs.

1 Introduction

The field of proof complexity is dominated by the question of how hard is it to prove propo-
sitional tautologies. For weak proof systems, such as resolution, many hardness results are
known (cf., [Seg07] for a recent technical survey), but for strong propositional proof systems
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like Frege or extended Frege the question remains completely open. In this paper we continue
to investigate a different but related problem: how hard is it to prove polynomial identities?
For this purpose, various systems for proving polynomial identities were introduced in [HT09].
The main feature of these systems is that they manipulate arithmetic equations of the form
F = G, where F,G are arithmetic formulas over a given field. Such equations are manipu-
lated by means of simple syntactic rules, in such a way that F = G has a proof if and only
if F and G compute the same polynomial. The central question in this framework is the
following:

What is the length of such proofs, namely, does every true polynomial equation
have a short proof, or are there hard equations that require extremely long proofs?

In this paper, we focus on two arithmetic equational proof systems (arithmetic proofs systems,
for short) for proving polynomial identities: Pf and Pc. The former system was introduced
in [HT09] and the latter is an extension of it. The difference between the two systems is that
Pf operates with arithmetic formulas, whereas Pc operates with arithmetic circuits—this is
analogous to the distinction between Frege and extended Frege proof systems (Frege and
extended Frege proofs are propositional proof systems establishing propositional tautologies,
essentially operating with boolean formulas and circuits, respectively).

The study of proofs of polynomial identities is motivated by at least two reasons. First, as
a study of the Polynomial Identity Testing (PIT) problem. As a decision problem, polynomial
identity testing can be solved by an efficient randomized algorithm [Sch80, Zip79], but no
efficient deterministic algorithm is known. In fact, it is not even known whether there is
a polynomial time non-deterministic algorithm or, equivalently, whether PIT is in NP. A
proof system such as Pc can be interpreted as a specific non-deterministic algorithm for PIT:
in order to verify that an arithmetic formula F computes the zero polynomial, it is sufficient
to guess a proof of F = 0 in Pc. Hence, if every true equality has a polynomial-size proof
then PIT is in NP. Conversely, Pf and Pc systems capture the common syntactic procedures
used to establish equality of algebraic expressions. Thus, showing the existence of identities
that require superpolynomial arithmetic proofs would imply that those syntactic procedures
are not enough to solve PIT efficiently.

The second motivation comes from propositional proof complexity. The systems Pf and Pc

are in fact restricted versions of their propositional counterparts, Frege and extended Frege,
respectively (when operating over GF (2)). One may hope that the study of the former would
help to understand the latter. Arithmetic proof systems have the advantage that they work
with arithmetic circuits. The structure of arithmetic circuits is perhaps better understood
than the structure of their Boolean counterparts, or is at least different, suggesting different
techniques and fresh perspectives.

In order to understand the strength of the systems Pf and Pc, as well as their relative
strength, we investigate quite a specific question, namely, how hard is it to prove basic
properties of the determinant? In other words, we investigate lengths of proofs of identities
such as det(AB) = det(A) · det(B), or the cofactor expansion of the determinant. We show
that such identities have polynomial-size Pc proofs of depth O(log2 n) and quasipolynomial
size Pf proofs (both results hold over any field).1

1The parameter n is the dimension of the matrices A,B, and quasipolynomial size means size nO(logn).
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The determinant polynomial has a central role in both linear algebra and arithmetic circuit
complexity. Therefore, an immediate motivation for our inquiry is to understand whether
arithmetic proof systems are strong enough to reason efficiently about the determinant. More
importantly, we take the determinant question as a pretext to present several structural
properties of Pc and Pf . A large part of this work is not concerned with the determinant
at all, but is rather a series of general theorems showing how classical results in arithmetic
circuit complexity can be translated to the setting of arithmetic proofs. We thus show how
to capture efficiently the following results: (i) homogenization of arithmetic circuits (implicit
in [Str73]); (ii) Strassen’s technique for eliminating division gates over large enough fields
(also in [Str73]); (iii) eliminating division gates over small fields—this is done by simulating
large fields in small ones; and (iv) balancing arithmetic circuits (Valiant et al. [VSBR83]; see
also [Hya79]). Most notably, the latter result gives a collapse of polynomial-size Pc proofs
to polynomial-size O(log2 n)-depth Pc proofs (for proving identities of polynomial syntactic
degrees) and a quasipolynomial simulation of Pc by Pf . This is one important point where the
arithmetic systems differ from Frege and extended Frege, for which no non-trivial simulation
is known.

Furthermore, the proof complexity of linear algebra attracted a lot of attention in the
past. This was motivated, in part, by the goal of separating the propositional proof systems
Frege and extended Frege. A classical example, originally proposed by Cook and Rackoff
(cf., [BP98, SC04, SU04, Sol01, Sol05]), is the so called inversion principle asserting that
AB = I → BA = I. When A,B are n × n matrices over GF (2), the inversion principle
is a collection of propositional tautologies. Soltys and Cook [SC04, Sol01] showed that the
principle has polynomial size extended Frege proofs. On the other hand, no feasible Frege
proof is known, and hence the inversion principle is a candidate for separating the two proof
systems. Other candidates, including several based on linear algebra, were presented by
Buss et al. [BBP95]. The inversion principle is one of the “hard matrix identities” explored
in [SC04]. Inside Frege, the hard matrix identities have feasible proofs from one another,
and they have short proofs from the aforementioned determinant identities. This connection
between the hard matrix identities and the determinant identities serves as an evidence for
the conjecture that hard matrix identities require superpolynomial Frege proofs: it seems
that every Frege proof must in some sense construct the determinant, which is believed to
require a superpolynomial-size formula.

A related question is whether the hard matrix identities and the determinant identities
have polynomial-sizeNC2-Frege proofs2. This was conjectured in, e.g., [BBP95], based on the
intuition that the determinant is NC2 computable, and so by the analogy between circuit
classes and proofs, it is natural to assume that the determinant properties are efficiently
provable in NC2-Frege. Again, a polynomial-size extended Frege proofs of the determinant
identities have been constructed in [SC04]. Whether these identities have polynomial-size
NC2-Frege proofs (and hence, quasipolynomial-size Frege proofs) remained open. In this
paper, we positively answer this question: we show that over GF (2), the hard hard matrix
identities and the determinant identities have polynomial-size NC2-Frege proofs. This is a
simple corollary of the results on arithmetic proof systems. Over the two element field, an
O(log2 n)-depth Pc proof is formally also NC2-Frege proof3. Thus, if determinant identities

2That is, polynomial size proofs using circuits of O(log2 n)-depth
3When + and · modulo 2 are interpreted as Boolean connectives and = is interpreted as logical equivalence.
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like det(AB) = det(A) ·det(B) have polynomial-size Pc(GF (2)) proofs with depth O(log2 n),
then the corresponding propositional tautologies have polynomial-size NC2-Frege proofs.

Let us remark that one can also consider propositional translations of the determinant
identities (and the hard matrix identities) over different finite fields or even the rationals. We
do not explicitly study these translations, but there is no apparent obstacle to extending the
result to these cases.

To understand our construction of short arithmetic proofs for the determinant identities,
let us consider the following example. In [Ber84], Berkowitz constructed a quasipolynomial
size arithmetic formula for the determinant. He used a clever combinatorial argument de-
signed specifically for the determinant function. However, one can build such a formula in
a completely oblivious way: first compute the determinant by, say, Gaussian elimination al-
gorithm. This gives an arithmetic circuit with division gates. Second, show that any circuit
with division gates computing a polynomial can be efficiently simulated by a division-free
circuit [Str73], and finally, show that any arithmetic circuit of a polynomial degree can be
transformed to an O(log2 n)-depth circuit computing the same polynomial, with only a poly-
nomial increase in size [VSBR83] (or to a formula with at most a quasipolynomial increase
in size [Hya79]). This paper follows a similar strategy, but in the proof-theoretic framework.

It should be stressed that in full generality, the structural theorems about Pc and Pf cannot
be reproduced for propositional Frege and extended Frege systems. As already mentioned, no
non-trivial simulation between Frege and extended Frege is known, and the other theorems
are difficult to even formulate in the Boolean context. This also illustrates one final point:
in order to construct a Frege proof of a tautology T , it may be useful to interpret T as a
polynomial identity and prove it in some of the—weaker but better structured—arithmetic
proof systems.

1.1 Arithmetic proofs with circuits and formulas

Before presenting and explaining the main results of this paper (in Section 2), we need to
introduce our basic arithmetic proof systems.

Arithmetic circuits and formulas. Let F be a field. An arithmetic circuit F is a finite
directed acyclic graph as follows. Nodes (or gates) of in-degree zero are labeled by either a
variable or a field element in F. All the other nodes have in-degree two and they are labeled
by either + or ×. Unless stated otherwise, we assume that F has exactly one node of out-
degree zero, called the output node, and that moreover the two edges going into a gate v
labeled by × or + are labeled by left and right. This is to determine the order of addition
and multiplication4. An arithmetic circuit is called a formula, if the out-degree of each node
in it is one (and so the underlying graph is a directed tree). The size of a circuit is the
number of nodes in it, and the depth of a circuit is the length of the longest directed path in
it. Arithmetic circuits and formulas will be referred to simply as circuits and formulas.

For a circuit F and a node u in F , Fu denotes the subcircuit of F with output node u. If
F,G are circuits then

F⊕G and F⊗G

4Although ultimately, addition and multiplication are commutative.
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abbreviate any circuit H whose output node is u + v and u · v, respectively, where Hu = F
and Hv = G. Furthermore,

F +G and F ·G

denote the unique circuit of the form F ′⊕G′ and F ′⊗G′, respectively, where F ′, G′ are disjoint
copies of F and G. In particular, if F and G are formulas then so are F +G and F ·G.

A circuit F computes a polynomial F̂ with coefficients from F in the obvious manner.
That is, if F consists of a single node labeled with z, a variable or an element of F, we have
F̂ := z. Otherwise, F is either of the form G⊕H or G⊗H, and we let F̂ := Ĝ + Ĥ or
F̂ := Ĝ · Ĥ, respectively.

Substitution is understood in the following sense. Let F = F (z) be a circuit and z a
variable. For a circuit G, the circuit F (G) is defined as follows: let z1, . . . , zk be the nodes
in F labeled by z. Introduce k disjoint copies G1, . . . , Gk of G, and let F (G) be the union of
F,G1, . . . , Gk where we replace the node zi by the output node of Gi. Specifically, if F and
G are formulas then so is F (G). The circuit F (G) will also be written as F (z/G).

The system Pf (F)

We now define two proof systems for deriving polynomial identities. The systems manipulate
arithmetic equations, that is, expressions of the form F = G. In the case of Pf (F), F,G are
formulas, and in the case of Pc(F), F,G are circuits (see [HT09] for similar proof systems).

Let F be a field. The system Pf (F) proves equations of the form F = G, where F,G are
formulas over F. The inference rules are:

R1
F = G

G = F
R2

F = G G = H

F = H

R3
F1 = G1 F2 = G2

F1 + F2 = G1 +G2
R4

F1 = G1 F2 = G2

F1 · F2 = G1 ·G2
.

The axioms are equations of the following form, with F,G,H formulas:
A1 F = F
A2 F +G = G+ F A3 F + (G+H) = (F +G) +H
A4 F ·G = G · F , A5 F · (G ·H) = (F ·G) ·H
A6 F · (G+H) = F ·G+ F ·H
A7 F + 0 = F A8 F · 0 = 0
A9 F · 1 = F
A10 a = b+ c , a′ = b′ · c′ , if a, b, c, a′, b′, c′ ∈ F, are such that

the equations hold in F.

The rules and axioms can be divided into two groups. The rules R1-R4 and axiom A1
determine the logical properties of equality “=”, and axioms A2-A10 assert that polynomials
form a commutative ring over F.

A proof S in Pf (F) is a sequence of equations F1 = G1, F2 = G2, . . . , Fk = Gk, with
Fi, Gi formulas, such that every equation is either an axiom A1-A10, or was obtained from
previous equations by one of the rules R1-R4. An equation Fi = Gi appearing in a proof is
also called a proof line. We consider two measures of complexity for S: the size of S is the
sum of the sizes of Fi and Gi, i ∈ [k], and the number of proof lines in S is k. (Throughout
the paper, [k] stands for {1, . . . , k}.)
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The system Pc(F)

The system Pc(F) differs from Pf (F) in that it manipulates equations with circuits. Pc(F) has
the same rules R1-R4 and axioms A1-A10 as Pf (F), but with F,G,H, F1, F2, G1, G2 ranging
over circuits, augmented with the following two axioms:

C1 F1⊕F2 = F1 + F2 C2 F1⊗F2 = F1 · F2.

A proof in Pc(F) is a sequence of equations F1 = G1, . . . , Fk = Gk, where Fi, Gi are
circuits, and every equation is either an axiom or was derived by one of the rules. As for
Pf (F), the size of a proof is the sum of the sizes of all the circuits Fi and Gi, i ∈ [k], and the
number of proof lines of the proof is k. The depth of a Pc(F) proof is the maximal depth of
a circuit appearing in the proof.

The main property of the two proof systems Pc(F) and Pf (F) is that they are sound and
complete with respect to polynomial identities. The systems prove an equation F = G if and
only if F,G compute the same polynomial:

Proposition 1. Let F be a field.

(i) For any pair F,G of arithmetic formulas, Pf (F) proves F = G iff F̂ = Ĝ.

(ii) For any pair F,G of arithmetic circuits, Pc(F) proves F = G iff F̂ = Ĝ.

Part i was shown in [HT09], part ii is almost identical. Soundness can be easily proved
by induction on the number of lines and completeness by rewriting F and G as a sum of
monomials.

It should be noted that Pf and Pc proofs are closed under substitution. If F1 =
G1, . . . , Fk = Gk is a Pc proof, z a variable and H a circuit then F1(z/H) =
G1(z/H), . . . , Fk(z/H) = Gk(z/H) is also a Pc proof (similarly for Pf and a formula H).
This means that from a general proof, one can obtain the proof of its instance.

For simplicity, we often suppress the explicit dependence on the field F in Pc and Pf , if
the relevant statement holds over any field.

Comments on the proof systems. The system Pc is an algebraic analogue of the propo-
sitional proof system circuit Frege (CF). Circuit Frege is polynomially equivalent to the more
well-known extended Frege system (EF) (see [Kra95, Jeř04]). Following this analogy, one can
define an extended Pf proof system, EPf , as follows: an EPf proof is a Pf proof in which we
are allowed to introduce new “extension” variables z1, z2, . . . via the axiom zi = Fi, where
we require that (i) the variable zi appears in neither Fi nor in any previous proof-line; and
(ii) the last equation in the proof contains none of the extension variables z1, z2, . . . .

The following is completely analogous to the propositional case (see [Kra95, Jeř04]):

Proposition 2.

(i) The systems Pc and EPf polynomially simulate each other. More exactly, there is a
polynomial p such that for every pair of formulas F,G, if F = G has a Pc proof of size
s then it has an EPf proof of size p(s), and if F = G has an EPf proof of size s then
it has a Pc proof of size p(s).
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(ii) If F and G are circuits of size s and F = G has a Pc proof with k proof lines then
F = G has a Pc proof of size poly(s, k).

The second part of this statement is especially useful, because it is often easier to estimate
the number of lines in a proof rather than its size.

Remark 3. An alternative, polynomially equivalent, definition for Pc can be given as follows.
For a circuit F , define F • as the unfolding of F into a formula. That is, F • := F , if F is
a leaf, and (G⊕H)• := G• + H•, (G⊗H)• := G• · H•. We say that F and G are similar
circuits, if F • is the same formula as G•. Then A1, C1, C2 could be replaced by the following
single axiom:

A1’ F = G, whenever F and G are similar.

The axiom A1’ can be proved from A1, C1, C2 by a polynomial-size proof, and vice versa.

Notation for matrices inside proofs. In this paper, matrices are understood as matrices
whose entries are circuits and operations on matrices are operations on circuits. We illustrate
this for square matrices. Let F = {Fij}i,j∈[n] be an n × n matrix whose entries are circuits
Fij ; and similarly G = {Gij}i,j∈[n]. Addition and multiplication is defined in the obvious
way, namely

F +G = {Fij +Gij}i,j∈[n] , F ·G =
{∑n

p=1
Fip ·Gpj

}
i,j∈[n]

,

where + and · on the right-hand side is addition and multiplication on circuits. If a is a single
circuit, a · F is the matrix {a · Fij}i,j∈[n]. An equation F = G denotes the set of equations
Fij = Gij , i, j ∈ [n].

2 Overview of results and techniques

2.1 Main theorem

It is well known that the determinant can be uniquely characterized as the function that
satisfies the following two identities for any pair of n × n matrices X,Y and any (upper or
lower) triangular matrix Z with z11, . . . , znn on the diagonal:

det(X · Y ) = det(X) · det(Y ), (1)

det(Z) = z11 · · · znn. (2)

Moreover, other properties of the determinant, such as the cofactor expansion, easily follow
from (1) and (2).

The main goal of this paper is to prove the following theorem:

Theorem 4 (Main theorem). For any field F:

(i) There exists a circuit det such that (1) and (2) have polynomial-size Pc(F) proofs.
Moreover, every5 circuit in the proof has depth at most O(log2(n)).

5We assume that the product z11 · · · znn in (2) is written as a formula of depth O(log n).
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(ii) There exists a formula det such that (1) and (2) have Pf (F) proofs of size nO(logn).

As mentioned before, a large part of the construction is not related directly to the de-
terminant. It is rather a series of structural theorems about the systems Pf and Pc. These
are obtained by reproducing classical results in arithmetic circuit complexity in the setting
of arithmetic proofs (for a recent survey on arithmetic circuit complexity see [SY10]). The
most important of those results is showing that Pc proofs can be balanced, in the sense that
Pc proofs of size s (of polynomially bounded syntactic degree equations) can be polynomially
simulated by Pc proofs in which each circuit has depth O(log2 s).

We do not know whether it is possible to prove Theorem 4 directly, perhaps by formal-
izing the elegant algorithm of Berkowitz [Ber84]. One advantage of the algorithm is that,
being division-free, it would dispense of Theorem 9 and allow to generalize Theorem 4 to
an arbitrary commutative ring (as opposed to a field). We also admit that working with
circuits and proofs with divisions turned out to be quite tedious. However, our construction
is intended to emphasize general properties of arithmetic proof systems, and the structural
theorems are in fact our main contribution.

2.2 Balancing Pc proofs and simulating Pc by Pf

In the seminal paper [VSBR83], Valiant et al. showed that if a polynomial f of degree d can
be computed by an arithmetic circuit of size s, then f can be computed by a circuit of size
poly(s, d) and depth O(log s log d + log2 d). This is a strengthening of an earlier result by
Hyafil [Hya79], showing that f can be computed by a formula of size (s(d + 1))O(log d). We
will show that those results can be efficiently simulated within the framework of arithmetic
proofs.

Instead of the degree of a polynomial, we focus on the syntactic degree of a circuit. Let
F be an arithmetic circuit. The syntactic degree of F , degF , is defined as follows:

(i) If F is a field element or a variable, then degF = 0 and degF = 1, respectively;

(ii) deg(F⊕G) = max(degF, degG), and deg(F⊗G) = degF + degG.

The syntactic degree of an equation F = G is max(degF, degG), and the syntactic degree of
a proof S is the maximum of the syntactic degrees of equations in S. If F is a circuit and u
is a node in F we also write deg(v) to denote degFv.

In accordance with [VSBR83], we will construct a map [·] that maps any given circuit F
of size s and syntactic degree d to a circuit [F ] computing the same polynomial, such that
[F ] has size poly(s, d) and depth O(log s log d+ log2 d). We will show the following:

Theorem 5. Let F,G be circuits of syntactic degree at most d such that F = G has a Pc

proof of size s. Then:

(i) The equation [F ] = [G] has a Pc proof of size poly(s, d) and depth O(log s·log d+log2 d).

(ii) If F,G have depth at most k then F = G has a Pc proof of size poly(s, d) and depth
O(k + log s · log d+ log2 d).

We also obtain the following simulation of Pc by Pf :
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Theorem 6. Assume that F,G are formulas of syntactic degree ≤ d such that F = G has a
Pc proof of size s. Then F = G has a Pf proof of size (s(d+ 1))O(log d) ≤ sO(log s).

This simulation is polynomial if F and G have a constant syntactic degree. Let us
emphasize that the syntactic degree of a formula of size s is at most s, and hence the simulation
is at most quasipolynomial.

Homogenization and degree bound in arithmetic proofs. One ingredient of The-
orems 5 and 6 is to show that using circuits of high syntactic degree cannot significantly
shorten Pc proofs. That is, if we want to prove an equation of syntactic degree d, we can
without loss of generality use only circuits of syntactic degree at most d. This result is the
proof-theoretic analog of a result by Strassen, who showed how to separate arithmetic circuits
into their homogeneous parts (implicit in [Str73]).

We say that a circuit F is syntactically homogeneous, if for every sum-gate u1 + u2 in F
we have deg(u1) = deg(u2). For a circuit F and a number k, we introduce a circuit F (k)

which computes the syntactically k-homogeneous part of F (see Section 3 for the definition).
The syntactic degree of a Pc proof is the maximal syntactic degree of a circuit appearing in
it. We show the following:

Proposition 7. Assume that F = G has a Pc proof of size s. Then

(i) F (k) = G(k) has a Pc proof of size s · poly(k) and a syntactic degree at most k, for any
k.

(ii) If deg(F ), deg(G) ≤ d then F = G has a Pc proof of syntactic degree at most d and size
s · poly(d).

2.3 Circuits and proofs with division

We denote by F(X) the field of formal rational functions in the variables X over the field
F. It is convenient to extend the notion of a circuit so that it computes rational functions
in F(X). This is done in the following way: a circuit with division F is a circuit which may
contain an additional type of gate with fan-in 1, called an inverse or a division gate, denoted
(·)−1. If a node v computes the rational function f , then v−1 computes the rational function
1/f . Moreover, we require that for every division node v−1 in F , v does not compute the
zero rational function. If no division gate computes the zero rational function we say that
F is defined, and otherwise, we say that F is undefined. One should note, for instance, that
the circuit (x2 + x)−1 over GF (2) is defined, since x2 + x is not the zero rational function
(although it vanishes as a function over GF (2)).

We define the system P−1
c (F), operating with equations F = G for F and G circuits with

division computing rational functions in F(X). First, we extend the axioms of Pc(F) to apply
to circuits with division. Second, we add the following new axiom to the axioms of Pc(F):

D F · F−1 = 1 , provided that F−1 is defined.

Remark 8. The system P−1
c (F) polynomially simulates the rule

F = G

F−1 = G−1
.
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Moreover, the identities (F−1)−1 = F and (F · G)−1 = G−1 · F−1 have linear size proofs in
P−1
c (F).

As before, we sometimes suppress the explicit dependence on the field in P−1
c (F) whenever

the relevant statement is field independent.

Strassen [Str73] showed that division gates can be eliminated from arithmetic circuits
computing polynomials over large enough fields, with only a polynomial increase in size. We
will show the proof-theoretic analog of Strassen’s result over arbitrary fields, namely that
Pc(F) polynomially simulates P−1

c (F) for any field F, in the following sense:

Theorem 9. Let F be any field and assume that F and G are circuits without division gates
such that degF, degG ≤ d. Suppose that F = G has a P−1

c (F) proof of size s. Then F = G
has a Pc(F) proof of size s · poly(d).

A corollary of Theorem 9 is that Pc(F) polynomially simulates the rule

F ·G = 0

F = 0
, if Ĝ 6= 0

provided the syntactic degree of G is polynomially bounded.
To prove Theorem 9, we first assume that the underlying field F has an exponential

size. Under this assumption, we cannot eliminate division gates in GF (2) which is, from the
Boolean proof complexity viewpoint, the most interesting field. To deal with small fields and
specifically GF (2) we have to show how to simulate large fields in small ones, as we explain
in what follows.

Simulating large fields in small fields. The idea behind simulating large fields in small
ones is to treat the elements of GF (pn) as n × n matrices over GF (p). This enables one to
simulate computations and proofs over GF (pn) by those over GF (p). We prove the following:

Theorem 10. Let p be a prime power and n a natural number and let F,G be circuits over
GF (p). Assume that F = G has a Pc(GF (pn)) proof of size s. Then F = G has a Pc(GF (p))
proof of size s · poly(n).

2.4 The determinant as a rational function and as a polynomial

To prove the main theorem (Theorem 4) one needs to construct a circuit (and a formula)
computing the determinant polynomial which can be used efficiently inside arithmetic proofs.
We first compute the determinant as a rational function, using a circuit with divisions denoted
DET(X), and show that P−1

c admits short proofs of the properties of DET(X). This is
achieved by defining DET(X) in terms of the matrix inverse X−1 and inferring properties of
DET from the identities X ·X−1 = X−1X = I, which are shown to have polynomial-size P−1

c

proofs. The argument is basically a Gaussian elimination.
However, we cannot yet conclude Theorem 4 which speaks about (division-free) Pc proofs

(it is worth mentioning that we also cannot yet conclude the short NC2-Frege proofs for the
determinant identities, because P−1

c proofs do not immediately correspond to propositional
Frege proofs). Theorem 9 cannot be directly applied because it allows to eliminate division
gates in P−1

c proofs only if the equations proved are themselves division-free. We therefore
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proceed to construct a division-free circuit det(X), computing the determinant as a polyno-
mial. Assuming we can prove efficiently in P−1

c that det(X) = DET(X), we are done, since we
can now eliminate division gates from P−1

c proofs of division-free equations, using Theorem
9. To this end, we define the det(X) polynomial as the nth term of the Taylor expansion of
DET(I + zX) at z = 0. This enables us to demonstrate short proofs of det(X) = DET(X)
and conclude the argument.

2.5 Applications

Equipped with feasible proofs of the determinant identities, short proofs of several related
identities follow. Cofactor expansion of the determinant and a version of Cayley-Hamilton
theorem will be given in Section 9. Another example is the formula completeness of the
determinant. In [Val79], Valiant showed that every formula of size s can be written as a
projection of a determinant of a matrix of a linear dimension. We can conclude that this
holds feasibly already in Pc:

Proposition 11. Let F be a formula of size s. Then there exists a matrix M of dimension
2s× 2s whose entries are variables or elements of F such that the identity

F = det(M)

has a polynomial-size O(log2 s)-depth Pc(F) proof (and hence also a quasipolynomial-size
Pf (F) proof), where det is the circuit (resp. the formula) from Theorem 4.

In this paper we are mainly interested in proofs with no assumptions other than the
axioms A1-A10. Nevertheless, we can introduce the notion of a proof from assumptions as
follows: let S be a set of equations. Then a Pc proof from the assumptions S is a proof that
can use equations in S as additional axioms (and similarly for Pf proofs from assumptions).
Proofs from assumptions are far less well-behaved than standard arithmetic proofs. For
instance, neither Theorem 6 nor Theorem 9 hold for proofs from a general nonempty set S
of assumptions. We now give an important example of a proof from assumptions.

Given a pair of n × n matrices X,Y , recall that the expressions XY = I and Y X = I,
are abbreviations for the list of n2 equalities between the appropriate entries. (We write In
to denote the n× n identity matrix.)

Proposition 12. Let F be any field. The equations Y X = In have polynomial-size and
O(log2 n)-depth Pc(F) proofs from the equations XY = In. In the case of Pf (F), the proof
has a quasipolynomial-size.

Determinant identities in NC2-Frege and Frege systems. When considering the
field F to be GF (2), there is a close connection between our proof systems and the standard
propositional proof systems. Consider the propositional proof systems Frege (F ), extended
Frege (EF ) and circuit Frege (CF ). For the definitions of Frege and extended Frege see
[Kra95] and for the definition of circuit Frege see [Jeř04], where it is also shown that CF and
EF are polynomially equivalent.

11



For simplicity, we shall assume that F , EF and CF are all in the Boolean basis +, ·, 0, 1
(addition and multiplication modulo 2, logical equivalence, and the two Boolean constants)6.
Then every arithmetic circuit is automatically also a Boolean circuit, and an equality like
G = H can be interpreted as the logical equivalence G ≡ H, written as (G + H) + 1.
Hence Pf (GF (2)) and Pc(GF (2)) can be considered as fragments of F and CF , respectively:
the finite set of (schematic) axioms and rules of Pf (GF (2)) now serve as Frege axioms and
rules, and similarly for Pc(GF (2)). Note that x2 = x is a propositional tautology but not a
polynomial identity, and hence F and CF are (expressively) stronger than their arithmetic
counterparts. In fact, one can polynomially simulate the full F or CF systems by adding the
following new axiom

G2 = G

to Pf (GF (2)) or Pc(GF (2)), where G is any formula or a circuit, respectively. To see this, it
is sufficient to show that the augmented systems are complete with respect to propositional
tautologies: they prove F = 1 whenever F evaluates to 1 on every 0, 1-input.

This means that upper bounds in Pf (GF (2)) and Pc(GF (2)) are in fact upper bounds in
F and CF (and hence also in EF ), respectively.

In what follows XY = In, and similarly Y X = In, denote the conjunction of n2 formulas
of the form (xi,1 · y1,j + · · · + xi,n · yn,j) ≡ δij , where +, · are addition and multiplication
modulo 2, respectively, ≡ is the logical equivalence, and δij ∈ {0, 1} is given by δij = 1 iff
i = j. We have the following:

Theorem 13.

(i). The properties of the determinant as in Theorem 4 (interpreted as Boolean tautologies
over GF (2)) have polynomial-size circuit Frege proofs, with every circuit of depth at
most O(log2 n). In the case of Frege, the proofs have quasipolynomial-size.

(ii). The implication (XY = In) → (Y X = In) has a polynomial-size circuit Frege proof,
with every circuit of depth at most O(log2 n), and a quasipolynomial-size Frege proof.

Proof. Part (i) is a direct consequence of Theorem 4 and (ii) of Proposition 12, both using
the fact that proofs in Pc(GF (2)) and Pf (GF (2)) can be interpreted as proofs in circuit Frege
and Frege, respectively. QED

A family of polynomial-size CF proofs in which every proof-line G is of depth O(log2 |G|),
is also called anNC2-Frege proof. Hence, Theorem 13 states thatNC2-Frege has polynomial-
size proofs of the propositional tautologies (XY = I) → (Y X = I).

Theorem 13 thus settles an important open problem in proof complexity and feasible
mathematics, namely, whether basic properties of the determinant like det(A) · det(B) =
det(AB) and the cofactor expansion (see Proposition 40), as well as the hard matrix identities,
have polynomial-size proofs in a proof system which corresponds to the circuit class NC2.

Remark 14. We believe that Theorem 13 can be extended to any finite field or the field of
rationals (after encoding field elements as Boolean strings). For finite fields, this is rather
straightforward. In the rational case, one would have to show that the Pc(Q) proofs constructed
in Theorem 4 involve only constants whose Boolean representation is polynomial.

6Note that by Reckhow’s result, as stated in [Kra95], the particular choice of basis is immaterial. We could
also have ≡ as a primitive.
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3 Homogenization and bounding the degree in Pc(F) proofs

In this section we wish to construct the circuits F (k) computing the k-homogeneous part of F
and prove Proposition 7. First, let us say that a circuit F is non-redundant, if either F is the
constant 0, or F does not contain the constant 0 at all. Any circuit F can be transformed to
a non-redundant circuit F ♯ as follows: successively replace all nodes of the form u+ 0, 0 + u
by u and u · 0, 0 · u by 0, until no such replacement is possible.

Let k be a natural number. We define F (k) as follows. For every node u in F , introduce
k + 1 new nodes u(0), . . . , u(k).

(i). Assume u is a leaf. Then, u(0) := u, in case u is a field element, and u(1) := u in case
u is a variable, and u(i) := 0 otherwise.

(ii). If u = u1 + u2, let u
(i) := u

(i)
1 + u

(i)
2 , for every i = 0, . . . , k.

(iii). If u = u1 · u2, let u
(i) :=

∑i
j=0 u

(j)
1 · u

(i−j)
2 .

Finally, we define F (k) as the circuit G♯, where G is the circuit with the output node w(k)

and w is the output node of F .
Note the following:

(1) F (k) has size O(s(k + 1)2)), where s is the size of F .

(2) F (k) is a syntactically homogeneous non-redundant circuit. Its syntactic degree is either
k, or F is the constant 0.

Notation: We allow circuits and formulas to use only sum gates with fan-in two. An
expression

∑k
i=1 xi is an abbreviation for a formula of size O(k) and depth O(log k) with

binary sum gates. For example, define
∑k

i=1 xi :=
∑⌊k/2⌋

i=1 xi +
∑k

i=⌈k/2⌉ xi . One can see that
basic identities such as

k∑

i=1

xi =

m∑

i=1

xi +

k∑

i=m+1

xi , or y ·

k∑

i=1

xi =

k∑

i=1

yxi

have Pf proofs of size O(k2) and depth O(log k).

Lemma 15. Let F1, F2 be circuits of size ≤ s and k a natural number. The following have
proofs of size s · poly(k) and syntactic degree ≤ k.

(i). (F1⊕F2)
(k) = F

(k)
1 + F

(k)
2 ,

(ii). (F1⊗F2)
(k) =

∑k
i=0 F

(i)
1 · F

(k−i)
2 .

Proof. It is easy to see that for any circuit H of size s, H = H♯ has a proof of size O(s). This,

and the definition of F (k), gives (F1⊕F2)
(k) = F

(k)
1 ⊕F

(k)
2 . Hence (F1⊕F2)

(k) = F
(k)
1 + F

(k)
2

by axiom C1. Since F
(k)
1 , F

(k)
2 , (F1⊕F2)

(k) all have circuit size O(s(k + 1))2, we obtain (i).
Part (ii) is similar. QED
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Lemma 16. If F is a circuit with syntactic degree ≤ d and size s then

F =
d∑

k=0

F (k)

has a Pc(F) proof of syntactic degree ≤ d and size s · poly(d).

Proof. For every node u in F , construct a proof of Fu =
∑deg(u)

k=0 F
(k)
u . This is done by

induction on depth of u. If u is a leaf, this stems from the definition of F
(k)
u , and if u = u1+u2

or u = u1 · u2, it is an application of the previous lemma. QED

Proof of Proposition 7. Part (ii) follows from (i) by Lemma 16, hence it is sufficient to prove
part (i). Let us first show that if F = G is an axiom of Pc(F) of size s then F (k) = G(k)

has a proof of size s · poly(k) and syntactic degree ≤ k. This is an application of Lemma
15. Let c be the constant such that equations (i) and (ii) in Lemma 15 have proofs of size
O(s · (k + 1)c).

The lemma gives a proof (F1⊕F2)
(k) = (F1 + F2)

(k) and (F1⊗F2)
(k) = (F1 · F2)

(k), as
required for the axioms C1 and C2.

Axioms A1 and A10 are immediate. For the other axioms, consider for example the axiom
F1 · (F2 ·F3) = (F1 ·F2) ·F3, where the circuits have size ≤ s. We have to construct a proof of

(F1 · (F2 · F3))
(k) = ((F1 · F2) · F3)

(k) . (3)

By part (ii) of Lemma 15 the equations

(F1 · (F2 · F3))
(k) =

k∑

i=0

F
(i)
1




k−i∑

j=0

F j
2F

k−i−j
3


 (4)

((F1 · F2) · F3)
(k) =

k∑

i=0




i∑

j=0

F j
1F

i−j
2


 · F

(k−i)
3 , (5)

can be proved by proofs with size roughly s · (k+1)c · (k+1). In Pc(F), the right hand sides of

both (4) and (5) can be written as
∑

i+j+l=k F
(i)
1 F

(j)
2 F

(l)
3 , by a proof of size roughly s(k+1)4

. This gives the proof of (3) of size s · poly(k).
Next, assume that F = G is derived from the equations F1 = G1, F2 = G2 by means of

the rules R1-R4, and we need to construct the proof of F (k) = G(k) from the set of equations

F
(i)
1 = G

(i)
1 , F

(i)
2 = G

(i)
2 , i = 0, . . . k. The hardest case is the rule

F1 = G1 F2 = G2

F1 · F2 = G1 ·G2
.

We have to prove (F1 · F2)
(k) = (G1 ·G2)

(k). By Lemma 15, we have proofs of (F1 · F2)
(k) =∑

i=0,...k F
(i)
1 F

(k−i)
2 and (G1 · G2)

(k) =
∑

i=0,...k G
(i)
1 G

(k−i)
2 . Hence (F1 · F2)

(k) = (G1 · G2)
(k)

can be proved from the assumptions F
(i)
1 = G

(i)
1 , F

(i)
2 = G

(i)
2 , i = 0, . . . k. The proof has size

roughly s · (k + 1)c(k + 1). QED
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4 Balancing Pc proofs

In this section we prove Theorem 5 which is a proof-theoretic analog of the following result:

Theorem 17 (Valiant et al. [VSBR83]). Let F be an arithmetic circuit of size s computing a
polynomial f of degree d. Then there exists an arithmetic circuit [F ] computing f with depth
O(log2 d+ log s · log d) and size poly(d, s).

We first give an outline of the construction of [F ], which closely follows that in [VSBR83]
(we also refer the reader to [RY08] for an especially clear exposition). We emphasize that
in our case, the relevant parameter is the syntactic degree of F : [F ] will have size poly(s, d)
and depth O(log2 d+ log s · log d), where d is the syntactic degree of F .

We write u ∈ F to mean that u is a node in the circuit F . The following definition is
important for the construction of balanced circuits: let w, v be two nodes in F . We define
the polynomial ∂wFv as follows:

∂wFv :=





0, if w 6∈ Fv,
1, if w = v , and otherwise:
∂wFv1 + ∂wFv2 , v = v1 + v2;
(∂wFv1) · Fv2 , if either v = v1 · v2 and deg(v1) ≥ deg(v2),

or v = v2 · v1 and deg(v1) > deg(v2).

The idea behind this definition is the following: let w, v be two nodes in F such that
2 deg(w) > deg(v). Then for any product node v1 · v2 ∈ Fv, w can be a node in at most one
of Fv1 , Fv2 , namely the one of a higher syntactic degree. If we replace the node w in Fv by
a new variable z, Fv then computes a polynomial g(z, x1, . . . , xn) which is linear in z, and
∂wFv is the usual partial derivative ∂zg.

It is not hard to show the following:

Claim 18. Let w, v be two nodes in a circuit F . Then the polynomial ∂wFv has degree at
most deg(v)− deg(w).

In order to construct [F ], we can assume without loss of generality that F itself is a
syntactic homogenous circuit of size s′ = O(d2 · s). This is because a circuit of size s and
syntactic degree d can be written as a sum of d+1 syntactically homogeneous circuits of size
at most s′ and syntactic degree at most d. Now the construction proceeds by induction on
i = 0, . . . , ⌈log d⌉. In each step i = 0, . . . , ⌈log d⌉ we construct:

(i). Circuits computing F̂v, for all nodes v in F with 2i−1 < deg(v) ≤ 2i;

(ii). Circuits computing ∂wFv, for all nodes w, v in F with 2i−1 < deg(v)−deg(w) ≤ 2i and
deg(v) < 2 deg(w).

Each step adds depth O(log s′), which at the end amounts to a depth O(log2 d+ log d · log s)
circuit. Furthermore, each node v in F adds O(s′) nodes in the new circuit and each pair of
nodes v, w in F adds also O(s′) nodes in the new circuit. This finally amounts to a circuit of
size O(s′3) = O(d6 · s3).

Let us now give the formal definition of [F ]. First, for a circuit G and a natural number
m, let

Bm(G) := {t ∈ G : t = t1 · t2, deg(t) > m and deg(t1), deg(t2) ≤ m} .
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Definition of [F ]. Let F be an arithmetic circuit of syntactic degree d.
If F is not syntactic homogenous, let

[F ] := [F (0)] + . . .+ [F (d)] .

Otherwise, assume that F is a syntactically homogenous circuit of degree d. For any node
v ∈ F we introduce the corresponding node [Fv] in [F ] (intended to compute the polynomial
F̂v); and for any pair of nodes v, w ∈ F such that 2 deg(w) > deg(v), we introduce the node
[∂wFv] in [F ] (intended to compute the polynomial ∂wFv).

The construction is defined by induction on i = 0, . . . , ⌈log d⌉, as follows:

Part (I): Let v ∈ F :

Case 1: Assume that deg(v) ≤ 1, then Fv computes a linear polynomial a1x1+ . . .+anxn+b
(where, by homogeneity of F , b 6= 0 implies that all ai’s equal 0). Define

[Fv] := a1x1 + . . .+ anxn + b.

Case 2: Assume that for some 0 ≤ i ≤ ⌈log(d)⌉:

2i < deg(v) ≤ 2i+1.

Put m = 2i, and define

[Fv] :=
∑

t∈Bm(Fv)

[∂tFv] · [Ft1 ] · [Ft2 ],

where t1, t2 are nodes such that t = t1 · t2. (Note that here [∂wFv], [Ft1 ] and [Ft2 ] are nodes.)

Part (II): Let w, v be a pair of nodes in F with 2 deg(w) > deg(v):

Case 1: Assume w is not a node in Fv. Define

[∂wFv] := 0.

Case 2: Assume that w is in Fv and 0 ≤ deg(v) − deg(w) ≤ 1. Thus, by Claim 18, the
polynomial ∂wfv is a linear polynomial a1x1 + . . .+ anxn + b. Define

[∂wFv] := a1x1 + . . .+ anxn + b.

Case 3: Assume that w is in Fv and that for some 0 ≤ i ≤ ⌈log(d)⌉:

2i < deg(v)− deg(w) ≤ 2i+1.

Put m = 2i + deg(w). Define:

[∂wFv] :=
∑

t∈Bm(Fv)

[∂tFv] · [∂wFt1 ] · [Ft2 ] ,
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where t1, t2 are nodes such that t = t1 · t2 and deg(t1) ≥ deg(t2), or t = t2 · t1 and deg(t2) >
deg(t1). Finally, define [F ] as the circuit with the output node [Fu], where u is the output
node of F .

One should make sure that the definition of [F ] is well defined, and that it has the correct
depth and size:

Lemma 19. Let F be a circuit of size s and syntactic degree d. Then [F ] is a circuit
computing F̂ , [F ] is of size poly(s, d) and depth O(log2 d+ log s log d). Moreover, every node
[∂wFv] in [F ] computes the polynomial ∂wFv.

Proof. The proof is as in [VSBR83] (see also [RY08]). We shall give a partial sketch of the
proof here, for the benefit of the reader.

First, assume that F is syntactic homogeneous of degree d. We need to verify that [F ] is
well-defined. That is, at stage i = 0, . . . , ⌈log d⌉, we compute all [Fv] and [∂wFu] for all nodes
v, u, w ∈ F such that 2i < deg(v) ≤ 2i+1 and 2i < deg(v) − deg(u) ≤ 2i+1, and we want to
show that the computation uses only nodes computed in previous stages.

Take, for example, Case 2 in Part (I). For any t ∈ Bm(Fv), m < deg(t) ≤ deg(v) ≤ 2m.
This implies that deg(v) − deg(t) ≤ m = 2i and deg(t) < 2 deg(v). Hence, we have already
computed [∂tFv]. We have also already constructed [Ft1 ], [Ft2 ], since deg(t1), deg(t2) < m =
2i.

Inspecting the construction, [F ] has size poly(s) and depth O(log s · log d), given that F
is syntactically homogeneous of size s and degree d. If F is not syntactically homogeneous,
the definition [F ] =

[
F (0)

]
+ . . .

[
F (d)

]
gives a circuit of size poly(s, d) and depth O(log2 d+

log s · log d), since every F (k) has size O(s · k2). QED

We need to show that properties of [F ] can be proved inside the system Pc. The key
ingredient is given by the following lemma.

Lemma 20 (Main simulation lemma). Let F1, F2 be circuits of syntactic degree at most d
and size at most s. Then there exist Pc proofs of:

[F1 ⊕ F2] = [F1] + [F2] , (6)

[F1 ⊗ F2] = [F1] · [F2] , (7)

such that the proofs have size poly(s, d) and depth O(log2 d+ log d · log s).

The proof of Lemma 20 is deferred to the end of this section. We now use Lemma 20 to
prove Theorems 5 and 6.

Theorem 21 (Theorem 5 restated). Let F,G be circuits of syntactic degrees at most d such
that F = G has a Pc proof of size s. Then

(i). [F ] = [G] has a Pc proof of size poly(s, d) and depth O(log s · log d+ log2 d).

(ii). If F,G have depth at most t then F = G has a Pc proof of size poly(s, d) and depth at
most O(t+ log s · log d+ log2 d).
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Proof. Part (i). Assume that F = G has syntactic degree d and a Pc proof of size s. By
Proposition 7, F = G has a Pc proof of syntactic degree d and size s′ = s · poly(d). So let us
consider such a proof S. By induction on the number of lines in S, construct a Pc proof of
[F1] = [F2], where F1 = F2 is a line in S.

Let m0 and k0 be such that (6) and (7) have Pc proofs of size at most m0 and depth k0,
whenever F1⊕F2, respectively, F1⊗F2 have size at most s′ and syntactic degree at most d.
By Lemma 20, we can choose m0 = poly(s′, d) and k0 = O(log s′ · log d+ log2 d).

First, show that if a line F = H in S is a Pc axiom then [F ] = [H] has a Pc proof of size
c1m0 and depth c2k0, where c1, c2 are some constants independent of s′, d. The axiom A1 is
immediate and the axiom A10 follows from the fact that [F ] = F̂ , if deg(F ) = 0. The rest
of the axiom are an application of Lemma 20, as follows. Axioms C1 and C2 are already the
statement of Lemma 20. For the other axioms, take, for example,

F1 · (G1 +G2) = F1 ·G1 + F1 ·G2 .

We are supposed to give a proof of

[F1 · (G1 +G2)] = [F1 ·G1 + F ·G2] ,

with a small size and depth. By Lemma 20 we have a Pc proof

[F1 · (G1 +G2)] = [F1] · [G1 +G2] = [F1] · [G1] + [F1] · [G2] = [F1] · ([G1] + [G2]) .

Lemma 20 gives again

[F1] · ([G1] + [G2]) = [F1] · [G1 +G2] = [F1 · (G1 +G2)] .

Here we applied Lemma 20 to circuits of size at most s′, and the proof of [F1 · (G1 +G2)] =
[F1 ·G1 + F ·G2] has size at most, say, 100m0 and depth at most 10k0.

An application of rules R1, R2 translates to an application of R1, R2. For the rules R3
and R4, it is sufficient to show the following: if S uses the rule

F1 = F2 G1 = G2

F1 ◦G1 = F2 ◦G2
, ◦ ∈ {·,+},

then there is a proof of [F1 ◦G1 = F2 ◦G2], of size c1m0 and depth c2k0, from the equations
[F1] = [G1] and [F2] = [G2]. This is again an application of Lemma 20.

Altogether, we obtain a proof of [F ] = [G] of size at most c1s
′m0 and depth c2k0.

Part (ii). Using (i), it is sufficient to prove the following:

Claim. If F is a circuit with depth t, syntactic degree d and size s, then F = [F ] has a Pc

proof of size poly(s, d) and depth at most O(t+ log s · log d+ log2 d).

Using Lemma 20, this claim can be easily proved by induction on s. QED

Theorem 22 (Theorem 6 restated). Assume that F,G are formulas of syntactic degree at
most d such that F = G has a Pc proof of size s. Then F = G has a Pf proof of size
(s(d+ 1))O(log d).
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Proof. Recall the definition of the formula F • from Remark 3. It is not hard to show the
following:

Claim 1. If H1 = H2 has a Pc proof with p proof lines and depth k, then H•
1 = H•

2 has a Pf

proof of size O(p2k).

Let F and G be as in the assumption. The previous theorem and Claim 1 give a Pf proof
of

[F ]• = [G]•

of size s · 2O(log s·log d+log2 d) = (s(d+ 1))O(log d).
To complete the proof, it is sufficient to show that:

Claim 2. If H is a formula of size s and syntactic degree d, then [H]• = H has a Pf proof
of size (s(d+ 1))O(log d).

This is proved by induction on s using Lemma 20. QED

Proof of Lemma 20

It is sufficient to prove the statement, under the assumption that F1⊕F2 and F1⊗F2 are
syntactically homogeneous. This is because of the following: assume that the lemma holds
for syntactically homogeneous circuits. First, note that for any circuit of syntactic degree d,

[F ] =
[
F (0)

]
+
[
F (1)

]
+ · · ·+

[
F (d)

]

has a proof of size poly(s, d) and depth O(log d · log s + log2 d): if F is not syntactically
homogeneous, then this stems from the definition of [F ]; otherwise, F is syntactically homo-
geneous, and so [F (k)] is the circuit 0 whenever k < d and it is sufficient to construct the
proof of [F ] = [F (d)], which can be done by induction on the size of F . Second, if for example
F1⊕F2 is not syntactically homogenous, then by definition of [·], we have

[F1⊕F2] =
d∑

k=0

[
(F1⊕F2)

(k)
]
,

where d = deg(F1⊕F2). By the definition of F (k), (F1⊕F2)
(k) is a syntactically homogeneous

circuit which is either of the form F
(k)
1 ⊕F

(k)
2 , or it is of the form F

(k)
e , if F

(k)
e′ = 0, {e, e′} =

{1, 2}. In both cases we obtain a proof of [(F1 + F2)
(k)] = [F

(k)
1 ] + [F

(k)
2 ], of small size and

depth. This gives a Pc proof of

d∑

k=0

[
(F1⊕F2)

(k)
]
=

d∑

k=0

[
(F1)

(k)
]
+
[
(F2)

(k)
]
=

d∑

k=0

[
(F1)

(k)
]
+

d∑

k=0

[
(F2)

(k)
]
.

We thus consider the syntactically homogeneous case. Let m(s, d) and r(s, d) be functions
such that for any circuit F of syntactic degree d and size s, [F ] has depth at most r(s, d) and
size at most m(s, d). By Lemma 19, we can choose

m(s, d) = poly(s, d) and r(s, d) = O(log2 d+ log d · log s).
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Notation: In the following, [Fv] and [∂wFv] will denote circuits: [Fv] and [∂wFv] are the
subcircuits of [F ] with output nodes [Fv] and [∂wFv], respectively; the defining relations
between the nodes of [F ] (see the definition of [F ] above) translate to equalities between the
corresponding circuits. For example, if v and m are as in Case 2, part (I) of the definition of
[F ], then, using just the axioms C1 and C2, we can prove

[Fv] =
∑

t∈Bm(Fv)

[∂tFv] · [Ft1 ] · [Ft2 ] . (8)

Here, the left hand side is understood as the circuit [Fv] in which [∂tFv] , [Ft1 ] , [Ft2 ] appear
as subcircuits, and so can share common nodes, while on the right hand side the circuits
have disjoint nodes. Also, note that if F has size s and degree d, the proof of (8) has size
O(s2m(s, d)) and has depth O(r(s, d)). We shall use these kind of identities in the current

proof.
The following statement suffices to conclude the lemma. The recurrence (9) below implies

λ(s, d) = poly(s, d) and it is enough to take F in the statement as either F1 ⊕F2 or F1 ⊗F2,
and v as the root of F .

Statement: Let F be a syntactically homogenous circuit of syntactic degree d and size s,
and let i = 0, . . . , ⌈log d⌉. There exists a function λ(s, i) not depending on F with

λ(s, 0) = O(s4) and λ(s, i) ≤ O(s4 ·m(s, d)) + λ(s, i− 1), (9)

and a Pc proof-sequence Ψi of size at most λ(s, i) and depth at most O(r(s, d)), such that
the following hold:

Part (I): For every node v ∈ F with

deg(v) ≤ 2i, (10)

Ψi contains the following equations:

[Fv] = [Fv1 ] + [Fv2 ] , in case v = v1 + v2, and (11)

[Fv] = [Fv1 ] · [Fv2 ] , in case v = v1 · v2. (12)

Part (II): For every pair of nodes w 6= v ∈ F , where w ∈ Fv, and with

deg(v)− deg(w) ≤ 2i and (13)

2 deg(w) > deg(v), (14)

Ψi contains the following equations:

[∂wFv] = [∂wFv1 ] + [∂wFv2 ], in case v = v1 + v2; (15)

[∂wFv] = [∂wFv1 ] · [Fv2 ], in case v = v1 · v2 and deg(v1) ≥ deg(v2)

or v = v2 · v1 and deg(v1) > deg(v2). (16)

We proceed to construct the sequence Ψi by induction on i.

Base case: i = 0. We need to devise the proof sequence Ψ0.
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Part (I). Let deg(v) ≤ 20. By definition, [Fv] =
∑n

i=1 aixi + b, where ai’s and b are field

elements. If v = v1 + v2, we have also [Fve ] =
∑n

i=1 a
(e)
i xi + b(e), for e = 1, 2. Hence the

equation [Fv] = [Fv1 ] + [Fv2 ] is the (true) identity:

n∑

i=1

aixi + b =
n∑

i=1

a
(1)
i xi + b(1) +

n∑

i=1

a
(2)
i xi + b(2) ,

which has a proof of size O(s2) and depth O(log s) (we assume without loss of generality that
n ≤ s).

In case v = v1 · v2, either deg(v1) = 0 or deg(v2) = 0 and the proof of [Fv] = [Fv1 ] · [Fv2 ]
is similar.

Part (II). Since deg(v) − deg(w) ≤ 1, we have [∂wFv] =
∑n

i=1 aixi + b, for some field
elements ai’s and b.

In case v = v1+v2, we have deg(ve)−deg(w) ≤ 1 and so [∂wFve ] =
∑n

i=1 a
(e)
i xi+b(e), where

e = 1, 2. The assumption w 6= v and Lemma 19, guarantee that [∂wFv] = [∂wFv1 ] + [∂wFv2 ]
is a correct identity, and we can thus proceed as the base case of Part (I) above.

In case v = v1 · v2, assume without loss of generality that deg(v1) ≥ deg(v2). Again,

we have [∂wFv1 ] =
∑n

i=1 a
(1)
i xi + b(1). From the assumptions, we have that w ∈ Fv1 , which

implies deg(v1) ≥ deg(w) and so deg(v2) ≤ 1. Hence [Fv2 ] =
∑n

i=1 a
(2)
i xi + b(2). (One can

note that at least one of [∂wFv1 ] or [Fv2 ] is constant). Thus we can prove the (correct, by
virtue of the assumption w 6= v) identity [∂wFv] = [∂wFv1 ] · [Fv2 ] with a Pc(F) proof of size
O(s2) and depth O(log s).

Overall, Ψ0 will be the union of all the above proofs, so that Ψ0 contains all equations
(11), (12) (for all nodes v satisfying (10)), and all equations (15) and (16) (for all nodes v, w
satisfying (13) and (14)). The proof sequence Ψ0 has size λ(s, 0) = O(s4) and is and depth
O(log s).

Induction step: We wish to construct the proof-sequence Ψi+1.

Part (I). Let v be any node in F such that

2i < deg(v) ≤ 2i+1.

Case 1: Assume that v = v1+v2. We show how to construct the proof of [Fv] = [Fv1 ]+[Fv2 ].
Let m = 2i. From the definition of [·] we have:

[Fv] = [Fv1+v2 ] =
∑

t∈Bm(Fv)

[Ft1 ] · [Ft2 ] · [∂t(Fv1+v2)] . (17)

Since deg(v1) = deg(v2) = deg(v), we also have

[Fve ] =
∑

t∈Bm(Fve )

[Ft1 ] · [Ft2 ] · [∂t(Fve)], for e ∈ {0, 1} . (18)
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If t ∈ Bm(Fv) then deg(t) > m = 2i. Therefore, for any t ∈ Bm(Fv), since deg(v) ≤ 2i+1,
we have deg(v)−deg(t) < 2i and 2 deg(t) > deg(v) and t 6= v (since t is a product gate). Thus,
by induction hypothesis, the proof-sequence Ψi contains, for any t ∈ Bm(Fv), the equations

[∂t(Fv1+v2)] = [∂tFv1 ] + [∂tFv2 ].

Therefore, having Ψi as a premise, we can prove that (17) equals:

∑

t∈Bm(Fv)

[Ft1 ] · [Ft2 ] · ([∂tFv1 ] + [∂tFv2 ])

=
∑

t∈Bm(Fv)

[Ft1 ] · [Ft2 ] · [∂tFv1 ] +
∑

t∈Bm(Fv)

[Ft1 ] · [Ft2 ] · [∂tFv2 ].
(19)

If t ∈ Bm(Fv) and t 6∈ Fv1 then [∂tFv1 ] = 0. Similarly, if t ∈ Bm(Fv) and t 6∈ Fv2 then
[∂tFv2 ] = 0. Hence we can prove

∑

t∈Bm(Fv)

[∂tFve ] =
∑

t∈Bm(Fve )

[∂tFve ], for e = 1, 2. (20)

Thus, using (18) we have that (19) equals:

∑

t∈Bm(Fv1 )

[Ft1 ] · [Ft2 ] · [∂tFv1 ] +
∑

t∈Bm(Fv2 )

[Ft1 ] · [Ft2 ] · [∂tFv2 ]

= [Fv1 ] + [Fv2 ].

(21)

The above proof of (21) from Ψi has size O(s2 ·m(s, d)) and depth O(r(s, d)).

Case 2: Assume that v = v1 · v2. We wish to prove [Fv] = [Fv1 ] · [Fv2 ]. Let m = 2i. We
assume without loss of generality that deg(v1) ≥ deg(v2). By the definition of [·], we have:

[Fv] = [Fv1·v2 ] =
∑

t∈Bm(Fv)

[Ft1 ] · [Ft2 ] · [∂tFv].

If v ∈ Bm(Fv), then Bm = {v} and we have [Fv] = [Fv1 ] · [Fv2 ] · [∂vFv]. Since [∂vFv] = 1, this
gives [Fv] = [Fv1 ] · [Fv2 ], and we are done.

Otherwise, assume v 6∈ Bm(Fv). Then m = 2i < deg(v1) (since, if deg(v1) ≤ m, then also
deg(v2) ≤ m and so by definition v ∈ Bm(Fv)). Because, moreover, deg(v1) ≤ 2i+1, we have

[Fv1 ] =
∑

t∈Bm(Fv1 )

[Ft1 ] · [Ft2 ] · [∂tFv1 ] . (22)

Since deg(v) ≤ 2i+1 and deg(t) > m = 2i, for any t ∈ Bm(Fv), we have

deg(v)− deg(t) ≤ 2i and 2 deg(t) > deg(v).

Since v 6= t, by induction hypothesis, Ψi contains, for any t ∈ Bm(Fv), the equation:

[∂t(Fv1·v2)] = [∂tFv1 ] · [Fv2 ]. (23)

22



Using (23) for all t ∈ Bm(Fv), we can prove the following with a Pc(F) proof of size O(s2 ·
m(s, d)) and depth O(r(s, d)):

∑

t∈Bm(Fv)

[Ft1 ] · [Ft2 ] · [∂tFv] =
∑

t∈Bm(Fv)

[Ft1 ] · [Ft2 ] · [∂t(Fv1·v2)]

=
∑

t∈Bm(Fv)

[Ft1 ] · [Ft2 ] · ([∂tFv1 ] · [Fv2 ])

= [Fv2 ] ·
∑

t∈Bm(Fv)

[Ft1 ] · [Ft2 ] · [∂tFv1 ]. (24)

Since Bm(Fv1) ⊆ Bm(Fv), we can conclude as in (20) that

∑

t∈Bm(Fv)

[Ft1 ] · [Ft2 ] · [∂tFv1 ] =
∑

t∈Bm(Fv1 )

[Ft1 ] · [Ft2 ] · [∂tFv1 ] .

Using (22), (24) equals [Fv2 ] · [Fv1 ]. The above proof-sequence (using Ψi as a premise) has
size O(s2 ·m(s, d)) and depth O(r(s, d)).

We now append Ψi with all proof-sequences of [Fv] = [Fv1 ] + [Fv2 ] for every v from
Case 1, and all proof-sequences of [Fv] = [Fv1 ] · [Fv2 ] for every v from Case 2. We obtain a
proof-sequence Ψ′

i+1 of size

λ(s, i+ 1) ≤ O(s3 ·m(s, d)) + λ(s, i),

and depth O(r(s, d)).
In Part (II), we extend Ψ′

i+1 with more proof-sequences to obtain the final Ψi+1.

Part (II). Let v 6= w be a pair of nodes in F such that w ∈ Fv and assume that

2i < deg(v)− deg(w) ≤ 2i+1 and 2 deg(w) > deg(v).

Let
m = 2i + deg(w).

Case 1: Suppose that v = v1 + v2. We need to prove

[∂wFv] = [∂wFv1 ] + [∂wFv2 ] (25)

based on Ψi as a premise. By construction of [∂wFv],

[∂wFv] =
∑

t∈Bm(Fv)

[∂tFv] · [∂wFt1 ] · [Ft2 ]

=
∑

t∈Bm(Fv)

[∂t(Fv1+v2)] · [∂wFt1 ] · [Ft2 ]. (26)

Since deg(v1) = deg(v2) = deg(v), we also have

[∂wFve ] =
∑

t∈Bm(Fve )

[∂tFve ] · [∂wFt1 ] · [Ft2 ], for e = 1, 2 . (27)
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Since m = 2i + deg(w), we have deg(t) > 2i + deg(w), for any t ∈ Bm(Fv). Thus, by
deg(v)− deg(w) ≤ 2i+1, we get that for any t ∈ Bm(Fv):

deg(v)− deg(t) ≤ 2i and 2 deg(t) > deg(v), and

t 6= v (since t is a product gate).

Therefore, by induction hypothesis, for any t ∈ Bm(Fv), Ψi contains the equation

[∂t(Fv1+v2)] = [∂tFv1 ] + [∂tFv2 ].

Thus, based on Ψi, we can prove that (26) equals:
∑

t∈Bm(Fv)

([∂tFv1 ] + [∂tFv2 ]) · [∂wFt1 ] · [Ft2 ]

=
∑

t∈Bm(Fv)

[∂tFv1 ] · [∂wFt1 ] · [Ft2 ] +
∑

t∈Bm(Fv)

[∂tFv2 ] · [∂wFt1 ] · [Ft2 ]. (28)

As in (20), using (27) we can derive the following from (28):
∑

t∈Bm(Fv1 )

[∂tFv1 ] · [∂wFt1 ] · [Ft2 ] +
∑

t∈Bm(Fv2 )

[∂tFv2 ] · [∂wFt1 ] · [Ft2 ]

= [∂wFv1 ] + [∂wFv2 ].

The proof of (25) from Ψi shown above has size O(s2 ·m(s, d)) and depth O(r(s, d)).

Case 2: Suppose that v = v1·v2. We assume without loss of generality that deg(v1) ≥ deg(v2)
and show how to prove

[∂wFv] = [∂wFv1 ] · [Fv2 ]. (29)

By construction of [∂wFv]:

[∂wFv] =
∑

t∈Bm(Fv)

[∂tFv] · [∂wFt1 ] · [Ft2 ]

=
∑

t∈Bm(Fv)

[∂t(Fv1·v2)] · [∂wFt1 ] · [Ft2 ]. (30)

Similar to the previous case, for any t ∈ Bm(Fv) we have

deg(v)− deg(t) < 2i and 2 deg(t) > deg(v).

If v ∈ Bm(Fv) then Bm(Fv) = {v} and so (30) is simply ∂vFv ·[∂wFv1 ]·[Fv2 ] = [∂wFv1 ]·[Fv2 ]
as required. Otherwise, assume that v 6∈ Bm(Fv). By induction hypothesis, Ψi contains the
following equation, for any t ∈ Bm(Fv):

[∂t(Fv1·v2)] = [∂tFv1 ] · [Fv2 ].

Using Ψi as a premise, we can then prove that (30) equals:

∑

t∈Bm(Fv)

([∂tFv1 ] · [Fv2 ]) · [∂wFt1 ] · [Ft2 ] =


 ∑

t∈Bm(Fv)

[∂tFv1 ] · [∂wFt1 ] · [Ft2 ]


 · [Fv2 ]. (31)
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As in (20), we have
∑

t∈Bm(Fv)
[∂tFv1 ] · [∂wFt1 ] · [Ft2 ] =

∑
t∈Bm(Fv1 )

[∂tFv1 ] · [∂wFt1 ] · [Ft2 ].

Also, since v1 · v2 = v 6∈ Bm(Fv), we have deg(v1) > m = 2i + deg(w), and so

[∂wFv1 ] =
∑

t∈Bm(Fv1 )

[∂tFv1 ] · [∂wFt1 ] · [Ft2 ] . (32)

Hence by (32), (31) equals [∂wFv1 ] · [Fv2 ].
The above proof of (29) from Ψi has size O(s2 ·m(s, d)) and depth O(r(s, d)).

We now append Ψ′
i from Part (I) (which also contains Ψi) with all proof-sequences of

[∂wFv] = [∂wFv1 ] + [∂wFv2 ] in Case 1 and all proof sequences [∂wFv] = [∂wFv1 ] · [Fv2 ] in
Case 2, above. We obtain the proof-sequence Ψi+1 of size

λ(s, i+ 1) ≤ O(s4 ·m(s, d)) + λ(s, i),

and depth O(r(s, d)), as required.

5 Proofs with division

In this section, we investigate proofs with divisions (as defined in Section 2.3), and prove
Theorem 9.

Let us first turn the reader’s attention to some peculiarities of the system P−1
c :

• We must be careful not to divide by zero in P−1
c . Hence P−1

c proofs are not closed
under substitution. It may happen that F (z) = G(z) has a P−1

c proof S, F (0) = G(0) is
defined (according to the definition in Section 2.3), but substituting z by 0 throughout
S is not a correct P−1

c proof (note that a P−1
c proof is defined so that every circuit in

the proof is defined).

• Whereas P−1
c is sound with respect to polynomial identities, it behaves erratically if

one considers proofs from assumptions. For example, P−1
c augmented with the axiom

x2 − x = 0 proves that 1 = 0.

• Prima facie, it is not clear whether a P−1
c proof of the equation F = G can be trans-

formed to a proof of F = G that contains only the variables contained in F and G. See
Remark 26.

In the sequel, we will consider substitution instances of equations we prove in P−1
c . For

instance, we will need to substitute 0 for some variables in the matrix X, when proving
equations involving the circuit DET(X), and we have to guarantee that our proofs remain
correct P−1

c proofs after such a substitution.
There are two general ways how to securely handle substitutions in P−1

c proofs. The first
one is to substitute only algebraically independent elements: replacing variables z1, . . . , zk
with circuits H1, . . . , Hk can never produce an undefined proof, if the circuits compute al-
gebraically independent rational functions. The second way is offered in Corollary 30. This
corollary allows one to construct a new proof of F (0) = G(0) from the proof of F (z) = G(z).
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Note, however, that in Corollary 30 the new proof will be polynomial only if the syntactic
degree of F and G is polynomial.

Since the determinant circuit DET has an exponential syntactic degree (see Section 7),
the second approach to substitution is not suitable for the DET identities. The first approach,
which substitutes algebraically independent elements, often cannot be used either, because
we need to substitute variables by field elements. Therefore, in some cases we must simply
make sure in an ad hoc manner that the specific substitutions used do not make the proofs
undefined. To this end, we use the following terminology: let x = (x1, . . . , xk) be a list of
variables and U = (U1, . . . , Uk) a list of circuits with divisions. We say that a circuit F (x)
with divisions is defined for x = U , if no divisions by zero occur in F (U); likewise, we say
that a P−1

c proof S is defined for x = U (or simply defined, if the context is clear), if every
circuit in S is defined for x = U .

5.1 Eliminating division gates over large enough fields

We first prove Theorem 9 under the assumption that the underlying field F is large. To
eliminate division gates from proofs, we follow the construction of Strassen [Str73], in which
an inverse gate is replaced by a truncated power series. In order to eliminate division gates
over small fields, additional work will be needed (see Section 6).

Let F be a circuit with divisions. We say that F is a circuit with simple divisions, if for
every inverse gate v−1 in F the circuit Fv does not contain inverse gates. A size s circuit
with division F can be converted to a size O(s) circuit of the form F1 ·F

−1
2 , where F1, F2 do

not contain inverse gates, as follows.
For every node v introduce two nodes Den(v) and Num(v) which will compute the nu-

merator and denominator of the rational function computed by v, respectively, as follows:

(i) If v is an input node of F , let Num(v) := v and Den(v) = 1.

(ii) If v = u−1, let Num(v) := Den(u) and Den(v) := Num(u).

(iii) If v = u1 · u2, let Num(v) := Num(v1) ·Num(v2) and Den(v) := Den(v1) ·Den(v2).

(iv) If v = u1 + u2, let Num(v) := Num(u1) · Den(u2) + Num(u2) · Den(u1) and Den(v) :=
Den(u1) ·Den(u2).

Let Num(F ) and Den(F ) be the circuits with the output node Num(w) and Den(w),
respectively, where w is the output node of F . The following lemma will be used in Proposition
25:

Lemma 23. Let F be any field.

(i). If F is a size s circuit with division, then

F = Num(F ) ·Den(F )−1

has a P−1
c (F) proof of size O(s). The proof is defined whenever F is defined.

(ii). Let F,G be circuits with division. Assume that F = G has a P−1
c (F) proof of size s.

Then Num(F ) ·Den(F )−1 = Num(G) ·Den(G)−1 has a P−1
c (F) proof of size O(s) such

that every circuit in the proof is a circuit with simple divisions.
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Proof. Part (i) is proved by straightforward induction on the size of F and part (ii) by
induction on the number of proof lines. We omit the details. QED

Let k be a fixed natural number and define powk(1− z) to be the circuit

powk(1− z) := 1 + z + · · ·+ zk .

In other words, powk(1− z) is the first k+1 terms of the power series expansion of 1/(1− z)
at z = 0.

Let F be a division-free circuit and let a := F̂ (0). Assume that a 6= 0, that is, the
polynomial computed by F has a nonzero constant term, and let Invk(F ) denote the circuit

Invk(F ) := a−1 · powk(a
−1F )

= a−1 ·
(
1 + (1− a−1F ) + (1− a−1F )2 + · · ·+ (1− a−1F )k

)
.

Note that a−1 is a field element and hence Invk(F ) is a circuit without division. The following
lemma shows that Invk(F ) can provably serve as the inverse polynomial of F “up to the k
power”:

Lemma 24. Let F be any field and let F be a size s circuit without division such that F̂ (0) 6= 0.
Then the following have Pc(F) proofs of size s · poly(k):

(F · InvkF )(0) = 1 (33)

(F · InvkF )(i) = 0, for 1 ≤ i ≤ k . (34)

Proof. Let z abbreviate the circuit 1− a−1F . Then we can easily prove F = a(1− z) and by
definition Invk(F ) = a−1(1 + z + z2 + · · ·+ zk). By elementary rearrangement, we can prove

F · Invk(F ) = (1− z)(1 + z + z2 + . . . zk) = 1− zk+1 .

By Lemma 15, (F · Invk(F ))(0) = 1− (zk+1)(0) and (F · Invk(F ))(i) = (zk+1)(i), for i > 0. It
is therefore sufficient to prove for every i ≤ k, (zk+1)(i) = 0. This follows by induction using
Lemma 15 and the fact that z(0) = 0. QED

The dependency on the field comes from the following fact, which follows from the
Schwartz-Zippel lemma [Sch80, Zip79]:

Fact. Let f1, . . . , fs ∈ F[X] be non-zero polynomials of degree ≤ d, where X = {x1, . . . xn}.
Assume that |F| > sd. Then there exists ā ∈ Fn such that fi(ā) 6= 0 for every i ∈ {1, . . . , s}.

Proposition 25. There exists a polynomial p such that the following holds. Let F,G be
circuits without division of syntactic degree at most d. Assume that F = G has a P−1

c (F)
proof with divisions of size at most s and suppose that |F| > 2Ω(s). Then F = G has a Pc(F)
proof of size s · p(d).

Proof. Let S be a P−1
c (F) proof of F = G of size s. By Lemma 23, we can assume that the

proof contains only simple divisions. Consider the set U of all nodes u−1 occurring in some
circuit in S, and let C be the set of all circuits computed by some node u, for u−1 ∈ U . Then
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|C| ≤ s and deg (H) ≤ 2Ω(s) for every H ∈ C, since H has size at most s. By the Fact above,
there exists a point b ∈ Fn such that Ĥ(b) 6= 0 for every H ∈ C, where n is the number of
variables in S.

Without loss of generality, we can assume that b = 〈0, . . . , 0〉 . Let S′ be the sequence of
equations obtained by replacing every circuit (H)−1 in S by Invk(H). The sequence S′ does
not contain divisions, but is not yet a correct proof, since the translation F · Invk(F ) = 1 of
the axiom D is not a legal axiom anymore. However, we claim that for every equation F1 = F2

in S′ and every k ≤ d, F
(k)
1 = G

(k)
1 has a Pc proof of size s · p(d) for a suitable polynomial p.

The proof is constructed by induction on the length of S′, as in Proposition 7. The case of the
axiom D follows from Lemma 24: (F · Invk(F ))(0) = 1 = 1(0) and (F · Invk(F ))(j) = 0 = 1(j),
if j > 0. Consequently, we obtain proofs of F (k) = G(k), for every k ≤ d. By Lemma 16, we
have Pc(F) proofs of F =

∑
k≤d F

(k), G =
∑

k≤dG
(k). This gives Pc(F) proofs of F = G with

the correct size. QED

Another application of Schwartz-Zippel lemma we shall need is the following:

Proposition 26. Let F be an arbitrary field and assume that F = G has a P−1
c (F) proof

of size s. Then there exists a P−1
c (F) proof of F = G of size O(s2) which contains only the

variables appearing in F or G.

Proof. Let S be a proof of F = G of size s which contains variables z1, . . . , zm not appearing
in F or G. Assume that F or G actually contain at least one variable x, otherwise the
statement is clear. It is sufficient to find a substitution z1 = H1, . . . , zm = Hm for which the
proof S is defined and H1, . . . , Hm are circuits of size O(s) in the variable x only. We will
choose the substitution from the set M = {x1, x2, x3 . . . , x2

cs
}, where c is a sufficiently large

constant. Note that xp can be computed by a circuit of size log2 p + 2, and so every circuit
in M has size O(s). That such a substitution exists can be shown as in Proposition 25, when
we consider M as a subset of the field of rational functions. QED

5.2 Taylor series

For a later application, we need to introduce the basic notion of a power series. Let F =
F (x, z) be a circuit with division. We will define ∆zk(F ) as a circuit in the variables x,
computing the coefficient of zk in F , when F is written as a power series at z = 0. This is
done as follows:

Case 1: Assume first that no division gates in F contain the variable z. Then we define
∆zk(F ) by the following rules (the definition is similar to that of F (k) in Section 3, and so
we will be less formal here):

(i) ∆z(z) := 1 and ∆zk(z) := 0, if k > 1.

(ii) If F does not contain z, then ∆z0(F ) := F and ∆zk(F ) := 0, for k > 0.

(iii) ∆zk(F +G) = ∆zk(F ) + ∆zk(G).

(iv) ∆zk(F ·G) =
∑k

i=0∆zi(F ) ·∆zk−i(G).
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Case 2: Assume that some division gate in F contains z. We let:

F0 := ((Den(F ))(z/0))♯ ,

where, given a circuit G, G♯ is the non-redundant version of G (see definition in Section 3)
and G(z/0) is obtained by substituting in G all occurrences of z by the constant 0. In case

F̂0 6= 0, we define:

∆zk(F ) := F−1
0 ·∆zk

(
Num(F ) · powk

(
F−1
0 ·Den(F )

))
.

Note that z does not occur in any division gate inside Num(F ) · powk

(
F−1
0 ·Den(F )

)
, and

so ∆zk(F ) is well-defined.
We summarize the main properties of ∆zk as follows:

Proposition 27.

(i). If F is a circuit without division of syntactic degree at most d and size s then F =∑d
i=0∆zi(F ) · zi has a Pc proof of size s · poly(d).

(ii). If F0, . . . , Fk are circuits with divisions not containing the variable z, then

∆zj

(∑k
i=0 Fiz

i
)
= Fj has a polynomial size P−1

c proof, for every j ≤ k.

(iii). Assume that F,G are circuits with divisions such that F = G has a P−1
c proof of size s

that is defined for z = 0. Then

∆zk(F ) = ∆zk(G)

has a P−1
c proof of size s · poly(k).

The proofs are almost identical to those of Proposition 7 and Proposition 25. We omit
the details.

6 Simulating large fields in small ones

Recall the notation on matrices given in Section 1.1. Mainly, matrices are understood as
matrices whose entries are circuits and operations on matrices are operations on circuits.

Lemma 28. Let X,Y, Z be n × n matrices of distinct variables and In the identity matrix.
Then the following identities have polynomial-size Pc(F) proofs:

X + Y = Y +X X + (Y + Z) = (X + Y ) + Z
X · (Y + Z) = X · Y +X · Z (Y + Z) ·X = Y ·X + Z ·X
X · (Y · Z) = (X · Y ) · Z X · In = In ·X = X.

Similarly for non-square matrices of appropriate dimension.

Proof. Each of the equalities is a set of n2 correct equations with degree ≤ 3 and size O(n).
Every such equation has a Pc-proof of size O(n3). QED
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Let F1 = GF (p) and F2 = GF (pn), where p is a prime power. We will show how to
simulate proofs in Pc(F2) by proofs in Pc(F1). Recall that F2 can be represented by n × n
matrices with elements from F1, that is, there is an isomorphism θ between F2 and a subset
of GLn(F1). We can also assume that θ(a) = aIn if a ∈ F1 ⊆ F2. This allows one to treat
a polynomial f over F2 as a matrix of n2 polynomials over F1. Similarly, we can define a
translation of circuits: let F be a circuit with coefficients from F2. Let F be an n×n matrix
of circuits {F ij}, i, j ∈ [n] with coefficients from F1, defined as follows: for every gate u in
F , introduce n2 gates ū = {ūij}i,j∈[n], and let:

(i). If u ∈ F2 is a constant, let ū := θ(u).

(ii). If u is a variable, let ū := u · In.

(iii). If u = v + w, let ū := v̄ + w̄, and if u = v · w, let ū := v̄ · w̄

Then F is the matrix computed by w̄ where w is the output of F .
Here, v̄ + w̄, (v̄ · w̄) and u · In are understood as the corresponding matrix operations on

circuit nodes.

Lemma 29. Let F,G be circuits of size ≤ s with coefficients from F2. Then

F⊕G = F +G , F⊗G = F ·G , (35)

F ·G = G · F (36)

have Pc(F1) proofs of size s · poly(n)

Proof. Identities (35) follow from the definition of F by means of axioms C1, C2.
Identity (36) follows by induction on the circuit sizes of F and G. We first need to

construct the proof of
z1 · z2 = z2 · z1 ,

where each z1, z2 is either a variable or an element of F2. So assume that z1 is a variable.
Then z1 = z1 ·In. This gives z1 ·z2 = z1 ·z2. But z2 is a matrix for which each entry commutes
with z1, which gives a proof of z1 · z2 = z2 · z1 = z2 · z1. The case of z2 being a variable is
similar. If both z1, z2 ∈ F2, we are supposed to prove θ(z1) · θ(z2) = θ(z2) · θ(z1). But this is
a set of n2 true equations of size O(n) which contain only elements of F1, and hence it has
a proof of size O(n3). In the inductive step, use (35) and Lemma 28 to construct proofs of
(F1+F2) ·G = G(F1+F2) and of (F1 ·F2) ·G = G(F1 ·F2) from the proofs of F1 ·G = G ·F1

and F2 ·G = G · F2. QED

We are now ready to prove Theorem 10, restated below for the sake of convenience:

Theorem 10. Let p be a prime power and n a natural number and let F,G be circuits over
GF (p). Assume that F = G has a Pc(GF (pn)) proof of size s. Then F = G has a Pc(GF (p))
proof of size s · poly(n).

Proof of Theorem 10. Let F,G be circuits with coefficients from F2 such that F = G has a
Pc(F2) proof of size s. We wish to show that F = G have proofs of size s · poly(n) in Pc(F1).
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This implies Theorem 10, for if F,G contain only coefficients from F1 then F 11 = F and
G11 = G.

The proof is constructed by induction on the number of lines. Axioms C1, C2 follow from
equations (35) in Lemma 29, and A4 from equation (36). A9 is a set of n2 true constant
equations. The rest of the axioms are application of Lemma 28. The rules R1, R2 are
immediate, and R3, R4 are given by Lemma 29. QED

Now we can also prove Theorem 9:

Theorem 9. Let F be any field and assume that F and G are circuits without division gates
such that degF, degG ≤ d. Suppose that F = G has a P−1

c (F) proof of size s. Then F = G
has a Pc(F) proof of size s · poly(d).

Proof of Theorem 9. Follows from Theorem 10 and Proposition 25. QED

For a circuit with division F , define its syntactic degree by

degF := deg(Num(F )) + deg(Den(F )).

Corollary 30. Let F be any field and let F , G, H be circuits with divisions. Assume that
deg(F ) and deg(G) are at most d and that H has size s1. Suppose that F = G has a P−1

c (F)
proof of size s2 and that F (z/H), G(z/H) are defined. Then F (z/H) = G(z/H) has a P−1

c (F)
proof of size s1s2 · poly(d).

Proof. We aim to construct a proof of F = G of size s2 · poly(d) such that the proof is
defined for z = H. We can then substitute H for z throughout the proof to obtain a proof
of F (z/H) = G(z/H) of the required size. By Lemma 23, we have proofs of

F = Num(F ) ·Den(F )−1 G = Num(G) ·Den(G)−1 . (37)

This and F = G gives a P−1
c (F) proof of

Num(F ) ·Den(G) = Num(G) ·Den(F ) ,

of size O(s2). The last equation does not contain division gates, and so it has a Pc(F) proof
of size s2 · poly(d) by Theorem 9. This proof is defined for z = H because it does not contain
division gates. By Lemma 23, the proofs of (37) are defined for z = H (because F (z/H) and
G(z/H) are defined by assumption). In particular, both Den(F )(z/H) and Den(G)(z/H)
are nonzero, and we have a proof of

Num(F ) ·Den(F )−1 = Num(G) ·Den(G)−1

which is defined for z = H. Using (37) we obtain a proof of F = G of size s2 · poly(d) which
is defined for z = H. QED

7 Computing the determinant

We are now done proving the structural properties of Pc and Pf and we proceed to construct
proofs of the properties of the determinant. We first compute the determinant as a rational
function.
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7.1 The determinant as a rational function

The definition of X−1 and DET(X)

Let X = {xij}i,j∈[n] be a matrix consisting of n2 distinct variables. Recursively, we define an
n× n matrix X−1 whose entries are circuits with divisions.

(i). If n = 1, let X−1 := (x−1
11 ).

(ii). If n > 1, partition X as follows:

X =

(
X1 vt1
v2 xnn

)
, (38)

where X1 = {xij}i,j∈[n−1], v1 = (x1n, . . . , x(n−1)n) and v2 = (xn1, . . . , xn(n−1)). Assum-

ing we have constructed X−1
1 , let

δ(X) := xnn − v2X
−1
1 vt1 . (39)

δ(X) computes a single non-zero rational function and so δ(X)−1 is defined. Finally,
let

X−1 :=

(
X−1

1 (In−1 + δ(X)−1vt1v2X
−1
1 ) −δ(X)−1X−1

1 vt1
−δ(X)−1v2X

−1
1 δ(X)−1

)
. (40)

The circuit DET(X) is defined as follows:

(i). If n = 1, let DET(X) := x11.

(ii). If n > 1, partition X as in (38) and let δ(X) be as in (39). Let

DET(X) := DET(X1) · δ(X) = DET(X1)·(xnn − v2X
−1
1 vt1) .

The definition in (40) should be understood as a circuit with n2 outputs which takes
X−1

1 , v1, v2, xnn as inputs and moreover, such that the inputs from X−1
1 occur exactly once

(so we slightly deviate from earlier notation). Altogether, we obtain polynomial size circuits
forX−1 and DET(X). The fact that DET(X) indeed computes the determinant (as a rational
function) is a consequence of Proposition 35 below, where we show that P−1

c can prove the
two identities which characterize the determinant. That X−1 computes the matrix inverse is
proved in Proposition 31.

It should be emphasized that both X−1 and DET(X) are circuits with division and hence
not always defined when substituting for X. Let A := {aij}i,j∈[n] be an n× n matrix whose
entries are circuits with division. We will say that A is invertible if the circuit A−1 is defined—
that is, when we substitute the entries of A into X−1, the circuit does not use divisions by
zero. Note that A−1 may be undefined even if A has inverse “in the real world”. For example,
if

A =

(
0 1
1 0

)

then both A−1 and DET(A) are undefined, and so A is not invertible in our sense. Moreover,
note that DET(X) has an exponential syntactic degree which, in view of Corollary 30, further
obscures the possibility to apply substitutions in P−1

c proofs.

32



On the other hand, let us state the basic cases when the determinant and matrix inverse
are defined. Setting

A[k] := {aij}i,j∈[k],

we have the following:

(i). If A is invertible (meaning the circuit A−1 is defined) then DET(A) is defined.

(ii). If the entries of A compute algebraically independent rational functions then A is in-
vertible.

(iii). If A is a triangular matrix with a11, . . . , ann on the diagonal such that a−1
11 , . . . , a

−1
nn are

defined then A is invertible.

(iv). The matrix A is invertible if and only if A[1], . . . , A[n− 1] are invertible and δ(A)−1 is
defined.

Properties of matrix inverse

Proposition 31. Let X = {xij}i,j∈[n] be a matrix with n2 distinct variables. Then both

X ·X−1 = In and X−1 ·X = In

have a polynomial-size P−1
c proof. The proof is defined for X = A, whenever A is invertible.

Proof. Let us construct the proofs of X ·X−1 = In and X−1 ·X = In by induction on n. If
n = 1, we have x11 · x

−1
11 = x−1

11 · x11 = 1 which is a P−1
c axiom. Otherwise let n > 1 and

X be as in (38). We want to construct a polynomial size proof of X · X−1 = In from the
assumption X1X

−1
1 = In−1. This implies that X ·X−1 = In has a polynomial size proof.

For brevity, let a := δ(X). Using some rearrangements, and the definition of a, we have:

X ·X−1 =

(
X1 vt1
v2 xnn

)
·

(
X−1

1 (In−1 + a−1vt1v2X
−1
1 ) − a−1X−1

1 vt1
−a−1v2X

−1
1 a−1

)

=

(
In−1 + a−1vt1v2X

−1
1 − a−1vt1v2X

−1
1 −a−1vt1 + a−1vt1

v2X
−1
1 + a−1(v2X

−1
1 vt1 − xnn)v2X

−1
1 a−1(−v2X

−1
1 vt1 + xnn)

)

=

(
In−1 0

v2X
−1
1 − a−1av2X

−1
1 a−1a

)

=

(
In−1 0
0 1

)
.

Here we use the fact that basic properties of matrix addition and multiplication have feasible
proofs (see Lemma 28).

The proof ofX−1 ·X = In is constructed in a similar fashion (where we use the assumption
X−1

1 X1 = In−1 instead). Moreover, if A is an n × n matrix such that A−1 is defined, the
proofs of A · A−1 = A−1 · A = In are defined. (This is because they employ only the inverse
gates appearing already in the definition of X−1.) QED

Corollary 32. The identity (XY )−1 = Y −1X−1 has a polynomial-size proof in P−1
c . The

proof is defined for X = A, Y = B whenever A,B and AB are invertible.
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Beware that invertibility of A and B does not guarantee invertibility of AB.

Proof. Let Z := (XY )−1. Then (Z(XY ))Y −1X−1 = Y −1X−1. On the other hand,
(Z(XY ))Y −1X−1 = Z(X(Y Y −1)X−1 = Z and so Z = Y −1X−1. QED

An application of Corollary 32 is the following technical observation. Let X be as in

(38) and similarly Y =

(
Y1 ut1
u2 ynn

)
. Comparing the entries in the bottom right corners of

(XY )−1 and Y −1X−1, we obtain that

δ(Y )δ(X) = δ(XY )(1 + u2Y
−1
1 X−1

1 vt1) , (41)

has a polynomial size P−1
c proof (the proof is defined for X = A and Y = B whenever A, B

and AB are invertible).
It is often easier to argue about triangular matrices. We summarize their useful properties

in what follows:

Proposition 33. (i). Let A,L,U be n × n matrices with L lower triangular and U upper
triangular. If A,L,U are invertible then so are LA and AU .

(ii). Let X be an n × n matrix of distinct variables. Then there exists a lower triangular
matrix L(X) and an upper triangular matrix U(X) such that X = L(X) · U(X) has a
polynomial size P−1

c proof. If A is invertible, then the proof is defined for X = A, and
also L(A), U(A) are invertible.

Proof. Part (i) follows from the fact that (LA)[k] = L[k]A[k] and δ((LA)[k]) = δ(L[k])δ(A[k])
for every k ∈ {1, . . . , n} . And similarly for AU .

In part (ii), the matrices L(X), U(X), as well as the P−1
c proof, are constructed by induc-

tion on n. If n = 1, let L(x11) = x11 and U(x11) = 1. If n > 1, write X as in (38). Assuming
we have X1 = L(X1)U(X1), we have

(
X1 vt1
v2 xnn

)
=

(
L(X1) 0

v2U(X1)
−1 xnn − v2X

−1
1 vt1

)
·

(
U(X1) L(X1)

−1vt1
0 1

)
.

Verifying that the proof is defined for an invertible A, and that L(A), U(A) are invertible, is
straightforward. QED

Properties of DET

We now want to prove Proposition 35 which is a P−1
c analogue of Theorem 4. We first prove

the following lemma:

Lemma 34. Let A be an invertible n × n matrix and let v1, v2 be n × 1 vectors such that
A+ vt1v2 is invertible. Then

DET(A+ vt1v2) = DET(A)(1 + v2A
−1vt1) (42)

has a polynomial size P−1
c proof.
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Proof. The proof is constructed by induction on n. If n = 1, the identity is immediate. If
n > 1, partition A and A+ vt1v2 as in (38), i.e.,

A =

(
A1 wt

1

w2 ann

)
and A+ vt1v2 =

(
A1 + ut1u2 wt

1 + c2u
t
1

w2 + c1u2 ann + c1c2

)
,

where v1 = (u1, c1) and v2 = (u2, c2). We want to construct a polynomial size proof of (42)
from the assumption DET(A1 + ut1u2) = DET(A1)(1+ u2A

−1
1 ut1). This implies that (42) has

a polynomial size proof.
By the definition of DET, we have

DET(A) = DET(A1)δ(A) and DET(A+ vt1v2) = DET(A1 + ut1u2)δ(A+ vt1v2) .

By the assumption, DET(A1 + ut1u2) = DET(A1)(1 + u2A
−1
1 ut1) and so (42) is equivalent to

DET(A1)(1 + u2A
−1
1 ut1)δ(A+ vt1v2) = DET(A1)δ(A)(1 + v2A

−1vt1) .

Hence in order to prove (42), it is sufficient to prove

(1 + u2A
−1
1 ut1)δ(A+ vt1v2) = δ(A)(1 + v2A

−1vt1) . (43)

In order to prove (43), we first prove its special case

(1 + ū2ū
t
1)δ(In + v̄t1v̄2) = (1 + v̄2v̄

t
1) , (44)

where v̄1 = (ū1, c̄1) and v̄2 = (ū2, c̄2) are vectors such that In + v̄t1v̄2 is invertible. Let
α := ū2ū

t
1. By the definition of δ

δ(In + v̄t1v̄2) = 1 + c̄1c̄2 − c̄1c̄2ū2(In−1 + ūt1ū2)
−1ūt1

and it is also easy to derive:

(In−1 + ūt1ū2)
−1 = In−1 − (1 + α)−1ūt1ū2 .

Hence we obtain

(1 + ū2ū
t
1)δ(In + v̄t1v̄2) =(1 + α)(1 + c̄1c̄2 − c̄1c̄2ū2(In−1 − (1 + α)−1ūt1ū2)ū

t
1)

=(1 + α)
(
1 + c̄1c̄2 − c̄1c̄2ū2ū

t
1 − c̄1c̄2(1 + α)−1(ū2ū

t
1)

2
)

=(1 + α)(1 + c̄1c̄2 − c̄1c̄2α− c̄1c2(1 + α)−1α2)

=1 + c̄1c̄2 + α

=1 + v̄2v̄
t
1 ,

which proves (44).
In order to conclude (43), let L := L(A) and U := U(A) be the matrices from Proposition

33. That is, L and U are invertible lower and upper triangular matrices, respectively, so that
A = LU has a polynomial-size proof, and hence also A−1 = U−1L−1 has a polynomial-size
proof by Corollary 32.

Let
v̄t1 := L−1vt1 and v̄2 := v2U

−1 .
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The definition guarantees that

ū2ū
t
1 = u2A

−1
1 ut1 and v̄2v̄

t
1 = v2A

−1vt1 (45)

have polynomial size proofs, where v̄1 = (ū1, c1) and v̄2 = (ū2, c̄2). Moreover, A + vt1v2 =
L(In + v̄t1v̄2)U , which also shows that In + v̄t1v̄2 is invertible . Equation (41) implies that
δ(LB) = δ(L)δ(B) and δ(BU) = δ(B)δ(U) have polynomial-size proof (for any invertible B)
. Hence

δ(A+ vt1v2) = δ(L)δ(U)δ(In + v̄t1v̄2) = δ(A)δ(In + v̄t1v̄2) .

This, together with (45), gives (43) from (44). QED

Proposition 35.

(i). Let U be an (upper or lower) triangular matrix with u1, . . . , un on the diagonal. If
u−1
1 , . . . , u−1

n are defined then the following has a polynomial-size P−1
c proof:

DET(U) = u1 · · ·un .

(ii). Let X and Y be n× n matrices, each consisting of pairwise distinct variables. Then

DET(X · Y ) = DET(X) ·DET(Y ) (46)

has a polynomial-size P−1
c proof. The proof is defined for X = A, Y = B provided

A[k], B[k] and A[k]B[k] are invertible for every k ∈ {1, . . . , n}.

Proof. Part (i) follows from the definition of DET. We omit the details.
Part (ii) is proved by induction on n. If n = 1, it is immediate. Assume that n > 1. Let

X =

(
X1 vt1
v2 xnn

)
, Y =

(
Y1 ut1
u2 ynn

)
.

We want to construct a polynomial size proof of DET(XY ) = DET(X)DET(Y )
from the assumption DET(X1Y1) = DET(X1)DET(Y1). This implies that DET(XY ) =
DET(X)DET(Y ) has a polynomial size proof.

By the definition of DET, we have

DET(X) = DET(X1)δ(X) , DET(Y ) = DET(Y1)δ(Y ) and

DET(XY ) = DET(X1Y1 + vt1u2)δ(XY ) ,

and we are supposed to prove:

DET(X1Y1 + vt1u2)δ(XY ) = DET(X1)δ(X) ·DET(Y1)δ(Y ) . (47)

By the previous lemma, we have DET(X1Y1 + vt1u2) = DET(X1Y1)(1 + u2(X1Y1)
−1vt1). By

the assumption DET(X1Y1) = DET(X1)DET(Y1), this yields

DET(X1Y1 + vt1u2) = DET(X1)DET(Y1)(1 + u2Y
−1
1 X−1

1 vt1) .
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Hence in order to prove (47), it is sufficient to prove

(1 + u2Y
−1
1 X−1

1 vt1)δ(XY ) = δ(X)δ(Y ) .

But this follows from (41).
On the inductive step, we have assumed invertibility of X,Y , XY , X1, Y1 and X1Y1, as

well as invertibility of X1Y1 + vt1u2. The latter follows from the invertibility of XY , because
(X1Y1+vt1u2)

−1 = ((XY )−1)[n−1] is used in the definition of (XY )−1. Since X1 = X[n−1],
Y1 = Y [n−1], the proof altogether assumes invertibility of X[k], Y [k] and X[k]Y [k] for every
k ∈ {1, . . . , n}. QED

Let us explicitly state the important cases when the proof of DET(AB) =
DET(A)DET(B) is defined. This is so, if A and B are invertible and also at least one
of the following conditions hold:

(i). The entries of A,B compute algebraically independent rational functions;

(ii). A is lower triangular or B is upper triangular;

(iii). The entries of A are field elements and the entries of B are algebraically independent,
or vice versa.

The following lemma shows that elementary Gaussian operations are well-behaved with
respect to DET.

Lemma 36. Let X = {xij}i,j∈[n] be an n×n matrix of distinct variables. Then the following
have polynomial-size P−1

c proofs:

(i). DET(X) = −DET(X ′), where X ′ is a matrix obtained from X by interchanging two
rows or columns.

(ii). DET(X ′′) = uDET(X), where X ′′ is obtained by multiplying a row in X by u, such
that u−1 is defined (and similarly for a column).

(iii). DET(X) = DET(X ′′′), where X ′′′ is obtained by adding a row to a different row in X
(and similarly for columns).

(iv). DET(X) = xnnDET(X1 − x−1
nnv

t
1v2), where X1, v1 and v2 are from the decomposition

(38).

Proof. Parts (ii) and (iii) follow from Proposition 35 and the fact that X ′′ = AX and X ′′′ =
A′X, where A,A′ are suitable triangular matrices.

For part (i), we cannot directly infer it from Proposition 35, since X ′ = TX implies
only that T is a transposition matrix and hence not invertible in our sense. However, we
can write T = A1A2, where A1, A2 are invertible with DET(A1)DET(A2) = −1: note that(

0 1
1 0

)
=

(
1 1
1 0

)(
1 0

−1 1

)
. Since X is a matrix of distinct variables, the following

is defined:

DET(A1A2X) = DET(A1)DET(A2X) = DET(A1)DET(A2)DET(X) .

Part (iv) follows from Lemma 34. QED
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7.2 The determinant as a polynomial

Note that we cannot yet apply Theorem 9 to obtain Theorem 4, because DET itself contains
division gates. For our purpose it will suffice to compute the determinant by a circuit without
division, denoted det(X), and construct a proof of det(X) = DET(X) in P−1

c . In order to
do that, we will define det(X) as the nth term of the Taylor expansion of DET(I + zX) at
z = 0, as follows: using notation from Section 5.2, let

det(X) := ∆zn (DET(I + zX)) . (48)

Let us note that

(i) the circuit det(X) indeed computes the determinant of X; and

(ii) the circuit det(X) is a circuit without division, of syntactic degree n.

This is because every variable from X in the circuit DET(I + zX) occurs in a product with
z, and thus ∆zn(DET(I + zX)) is the nth homogeneous part of the determinant of I +X,
which is simply the determinant of X. By the definition of ∆zn , ∆zn(DET(I+zX)) contains
exactly one inverse gate, namely the inverse of Den(DET(I + zX)) at the point z = 0. But
a := (Den(DET(I + zX)))(z/0)♯ is a constant circuit computing a non-zero field element,
and we can identify a−1 with the field constant it computes.

Lemma 37. Let X be an n×n matrix of distinct variables. There exist circuits with divisions
P0, . . . , Pn−1 not containing the variable z, such that

DET(zIn +X) = zn + Pn−1z
n−1 + · · ·+ P0

has a polynomial-size P−1
c (F) proof. Moreover, this proof is defined for z = 0.

Proof. Let F be a circuit in which z does not occur in the scope of any inverse gate. Then,
we define the z-degree of F as the syntactic-degree of F considered as a circuit computing a
univariate polynomial in z (so that all other variables are treated as constants).

By induction, we will construct matrices A1, . . . , An with the following properties:

1. A1 = X + zIn,

2. Every Ak is an (n− k + 1)× (n− k + 1) matrix of the form

(
zk + f w
vt zIn−k +Q

)

where all the entries are circuits with divisions in which z does not occur in the scope of
any division gate, v, w are 1 × (n − k) vectors and moreover: f as well as every entry of
w have z-degree less than k and v,Q do not contain the variable z.

3. The identity DET(Ak) = DET(Ak+1) has a polynomial-size proof.

4. The entries of Ak are algebraically independent (this is to guarantee that divisions are
defined).
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Assume that Ak is given, and let us partition it as

Ak =




zk + f1 w f2
ut1 zIm +Q ut2
a1 v z + a2




where m = (n− k− 1) and we allow the possibility that m = 0. By assumption f1, w and f2
have z-degree smaller than k, and z does not occur in u1, u2, Q, a1, a2 and v. By Lemma 36
part (i), we can switch the first and last column to obtain a P−1

c proof of

DET(Ak) = −DET




f2 w zk + f1
ut2 zIm +Q ut1
z + a2 v a1


 .

By Lemma 36 part (iv), we have

DET(Ak) = −a1DET

(
f2 − a−1

1 (zk + f1)(z + a2) w − a−1
1 (zk + f1)v

ut2 − a−1
1 ut1(z + a2) zIm +Q− a−1

1 ut1v

)
=

DET

(
(zk + f1)(z + a2)− a1f2 a1w − (zk + f1)v

ut2 − a−1
1 ut1(z + a2) zIm +Q− a−1

1 ut1v

)
.

We can write (zk+f)(z+a2) = zk+1+(fz+a2z
k+fa2), where the z-degree of (fz+a2z

k+fa2)
as well as of every entry of a1w−(zk+f1)v is at most k. Hence the matrix is of the correct form,
apart from the occurrence of zut1 in the first column. This can be remedied by multiplying

by

(
1 0

−a−1
1 ut1 Im

)
from the right to obtain Ak+1 of the required form.

This indicates that, given a circuit computing Ak, we can compute Ak+1 using polyno-
mially many additional gates. Altogether, every Ak has a polynomial size circuit. The proof
of DET(Ak) = DET(Ak+1) has a polynomial number of lines and, as it involves polynomial
size circuits, also polynomial size.

Finally, we obtain a polynomial size proof of DET(An) = DET(A1) = zn + f , where f
is a circuit with z-degree smaller than n in which z is not in the scope of any division gate.
Writing f as

∑n−1
i=0 Piz

i concludes the lemma. QED

Proposition 38.

(i). If U is a triangular matrix with u1, . . . , un on the diagonal then det(U) = u1 · · ·un has
a polynomial size P−1

c proof.

(ii). Let X be an n× n matrix of distinct variables. Then

DET(X) = det(X)

has a polynomial-size P−1
c proof.

Proof. Part (i) follows from Proposition 35. For we have DET(In + zU) = (1 + zu1) · · · (1 +
zun), and the proof is defined for z = 0. Thus, by Proposition 27

det(U) = ∆zn((1 + zu1) · · · (1 + zun)) = u1 · · ·un
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has a polynomial-size P−1
c proof.

Part (ii) follows from the previous lemma, as follows. We obtain polynomial-size P−1
c

proofs of the following substitution instance:

DET(zIn +X−1) = zn +Qn−1z
n−1 + · · ·+Q0, (49)

where the Qi’s are circuits with divisions that do not contain the variable z and the proof is
defined for z = 0.

By Proposition 35 we have a polynomial-size P−1
c proof of

DET(In + zX) = DET(zIn +X−1) ·DET(X) .

The proof is defined for z = 0 (as is witnessed by letting X := In). From equation (49) we
get a polynomial-size proof of

DET(In + zX) = znDET(X) + zn−1Q′
n−1 + · · ·+Q′

0,

where Q′
n−1, . . . , Q

′
0 do not contain z. The proof is defined for z = 0 and so Proposition 27

gives a polynomial-size P−1
c proof of

∆zn(DET(In + zX)) = ∆zn(z
nDET(X) + zn−1Q′

n−1 + · · ·+Q′
0).

But by the definition of det(X), ∆zn(DET(I + zX)) is det(X) and by the definition of ∆zn ,
∆zn(z

nDET(X) + zn−1Q′
n−1 + · · ·+Q′

0) is DET(X), and we are done. QED

8 Concluding the main theorem

We can now finally prove Theorem 4 (Main Theorem), which we rephrase as follows:

Proposition 39 (Theorem 4, rephrased). Let X,Y, Z be n × n matrices such that X,Y
consist of different variables and Z is a triangular matrix with z11, . . . , znn on the diagonal.
Then there exist an arithmetic circuit detc and a formula detf such that:

(i). The identity detc(XY ) = detc(X) · detc(Y ) and detc(Z) = z11 · · · znn have polynomial-
size O(log2 n)-depth proofs in Pc.

(ii). The identity detf (XY ) = detf (X) · detf (Y ) and detf (Z) = z11 · · · znn have Pf proofs
of size nO(logn).

Proof. Let det(X) = ∆znDET(I + zX) be the circuit defined in (48). Lemma 38 part (ii)
and Proposition 35 imply that the equations

det(XY ) = det(X) · det(Y ) and det(Z) = z11 · · · znn (50)

have polynomial-size P−1
c proofs. By definition, the syntactic degree of det(X) is at most

n. Hence, by Theorem 9 the identities in (50) have polynomial-size Pc proofs. This almost
concludes part (i), except for the bound on the depth. To bound the depth, let

detc(X) := [det(X)],
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where [F ] is the balancing operator as defined in Section 4. Thus, Theorem 5 implies that

[det(XY )] = [det(X) · det(Y )] and [det(Z)] = [z11 · · · znn]

have Pc proofs of polynomial-size and depth O(log2 n). By means of Lemma 20, we have such
proofs also for

[det(X) · det(Y )] = [det(X)] · [det(Y )] = detc(X) ·detc(Y ) and [det(Z)] = z11 · · · znn.

Hence it is sufficient to construct (polynomial-size and O(log2 n) depth proofs) of

[det(XY )] = detc(XY ) and [det(Z)] = detc(Z)

(note that defining detc(X) as [det(X)] does not imply that [det(XY )] = detc(XY )). This
follows from the following more general claim:

Claim. Let F (x1/g1, . . . , xn/gn) be a circuit of size s and syntactic degree d. Then

[F (x1/g1, . . . , xn/gn)] = [F (x1, . . . , xn)] (x1/ [g1] , . . . , xn/ [gn])

has a Pc proof of size poly(n, d) and depth O(log d log s+ log2 d).

Proof. This follows by induction using Lemma 20. We omit the details. QED

To prove part (ii), recall the definition of F • from Remark 3. Let detf (X) := (detc(X))•.
Then the statement follows from part (i) and Claim 1 in the proof of Theorem 22. QED

We should note that in the Pc-proof of the equation det(XY ) = det(X) · det(Y ) no
divisions occur and so it is defined for any substitution. In particular,

det(AX) = det(A) · det(X) = a· det(X)

has a short Pc proof for any matrix A of field elements whose determinant is a ∈ F. Similarly,
the elementary Gaussian operations stated in Lemma 36 carry over to polynomial-size Pc

proofs of the corresponding properties of det.

9 Applications

In this section, we prove Propositions 11 and 12, as well as a Pc-version of Cayley-Hamilton
theorem. First, one should show that the cofactor expansion of the determinant has short
proofs. For an n × n matrix X and i, j ∈ [n], let Xi,j denote the (n − 1) × (n − 1)-matrix
obtained by removing the ith row and jth column from X. Let Adj(X) be the n× n matrix
whose (i, j)-th entry is (−1)i+jdetc(Xj,i) (where detc is the circuit from Proposition 39).

Proposition 40 (Cofactor expansion). Let X = {xij}i,j∈[n] be an n×n matrix, for variables

xij. Then the following identities have polynomial-size O(log2 n)-depth Pc proofs:

(i) detc(X) =
∑n

j=1(−1)i+jxijdetc(Xi,j), for any i ∈ [n];

(ii) X ·Adj(X) = Adj(X) ·X = detc(X) · I.
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Proof. For part (i) we prove detc(X) =
∑n

j=1(−1)1+jx1jdetc(X1,j). The general case follows
if we multiply X by an appropriate permutation matrix using Proposition 39. It is sufficient
to construct a polynomial size P−1

c proof, for we can then eliminate the division gates by
means of Theorem 9 and bound the depth of the proof by means of Theorem 5.

For j ∈ {1, . . . , n}, let Xj be the matrix obtained by replacing x1i by 0 in X, for every
i 6= j. We want to show that

detc(X) = detc(X1) + · · ·+ detc(Xn) (51)

detc(Xj) = (−1)1+jx1jdetc(X1,j) , j ∈ {1, . . . , n} (52)

have polynomial size P−1
c proofs.

For (52), it is sufficient to consider j = 1, the other cases follow by an permutation of
rows. By Proposition 33 we there exist a lower resp. upper triangular matrix L and U such
that X1,1 = LU has a polynomial size proof. If w := (x21, . . . , x(n−1)1), we have

X1 =

(
x11 0
wt X1,1

)
=

(
x11 0
wt L

)(
1 0
0 U

)

and so by Proposition 39

detc(X1) = x11detc(L)detc(U) = x11detc(LU) = x11detc(X1,1) .

Equation (51) follows from the general identity

detc(X[u+ v]) = detc(X[u]) + detc(X[v]) ,

where X[v] denotes the matrix obtained by replacing the first row of X by the vector v.
Writing u = (u1, ū) and v = (v1, v̄), we have

X[u] =

(
u1 ū
wt X1,1

)
=

(
u1 − ūX−1

1,1w
t ūX−1

1,1

0 In

)
·

(
1 0
wt X1,1

)
.

Hence X[u] = detc(X1,1)(u1 − ūX−1
1,1w

t), and similarly for X[v] and X[u+ v]. Therefore

detc(X[u+ v]) = detc(X1,1)(u1 + v1 − (ū+ v̄)X−1
1,1w

t)

= detc(X1,1)(u1 − ūX−1
1,1w

t) + detc(X1,1)(v1 − v̄X−1
1,1w

t)

= detc(X[u]) + detc(X[v]) .

Part (ii) is an application of part (i). The i, j-entry of X ·Adj(X) is

aij =
n∑

k=1

(−1)i+kxikdetc(Xj,k) .

Hence we already know that aij = detc(X) whenever i = j and it remains to show that
aij = 0 if i 6= j. By part ii

∑n
k=1(−1)i+kxikdetc(Xj,k) = detc(Y ), where Y is the matrix

obtained by replacing the j-th row in X by (xi1, . . . , xin). I.e., if i 6= j, Y contains two
identical rows. Then Y can be written as Y = AJY , where J is a diagonal matrix with some
entry on the diagonal equal to zero, and so detc(Y ) = detc(A)detc(J)detc(Y ) = 0. The proof
for Adj(X)X is similar, or note that we can now conclude Adj(X) = detc(X)X−1.

QED
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Proposition 41 (Proposition 12 restated). The identities Y X = In have polynomial-size
and O(log2 n)-depth Pc proofs from the equations XY = In. In the case of Pf , the proofs
have quasipolynomial-size.

Proof. Note that we are dealing with a Pc proof from assumptions, and hence we are not
allowed to use division gates. The proof is constructed as follows. Assume XY = In. By
Proposition 39, this gives detc(X)detc(Y ) = 1. By Proposition 40, we can multiply from left
both sides of XY = In by Adj(X), to obtain detc(X)Y = Adj(X). Hence,

detc(X)Y X = Adj(X)X = detc(X)In,

and so
detc(Y )detc(X)Y X = detc(Y )detc(X)In,

which, using detc(X)detc(Y ) = 1 gives Y X = In. The Pf proof is identical, except that the
steps involving the determinant require a quasipolynomial size. QED

Proof of Proposition 11. The proof proceeds via a simulation of the construction in [Val79]
(compare also with the presentation in [HWY10]). The matrix M is constructed inductively
with respect to the size of the formula. It is convenient to maintain the property

Mi,i+1 = 1 and Mi,j = 0, if j > i+ 1 .

Let us call matrices of this form nearly triangular. Let M1,M2 be nearly triangular
matrices of dimensions s1 × s1 and s2 × s2, respectively. In order to prove the correctness
of the simulation of Valiant’s construction [Val79], it is sufficient to show that the following
equations have polynomial-size Pc proofs:

(i). detc(M) = detc(M1) · detc(M2), where

M =

(
M1 E
0 M2

)
,

and E has 1 in the lower left corner and 0 otherwise.

(ii). detc(M) = detc(M1) + detc(M2), with

M =




1 v 0 0
0 M1 v1 0

M2[1] 0 v2 M2[2
+],


 ,

where v is a row vector with 1 in the leftmost entry and 0 elsewhere, v1 is a column
vector with 1 in the bottom entry and 0 elsewhere, v2 is a column vector with (−1)s2+1

in the bottom entry and 0 elsewhere, M2[1] is the first column of M2, and M2[2
+] is

the matrix M2 without the first column.

Both parts are an application of Proposition 40. QED
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Cayley-Hamilton theorem

Let X = {xi,j}i,j∈[n] be an n×n matrix of distinct variables. For i ∈ {0, . . . , n}, let pi be the
circuit in variables X defined by

pi := ∆zi(detc(zIn −X))

and let PX(z) be the circuit

PX(z) :=
n∑

i=0

piz
i .

PX(z) computes the characteristic polynomial of the matrix X and we can prove the following
version of Cayley-Hamilton theorem:

Proposition 42.

PX(X) =
n∑

i=0

piX
i = 0

has a polynomial-size Pc-proof.

As before, if we replace the pi’s by their balanced versions, we can obtain a polynomial-size
Pc-proof of depth O(log2(n)).

Proof. Since detc(zIn − X) has a syntactic degree n, we have a polynomial-size proof of
detc(zIn −X) = PX(z) by Proposition 27. Proposition 40 gives

Adj(zIn −X) · (zIn −X) = detc(zIn −X)In = PX(z)In .

Since every entry of Adj has a syntactic degree less than n, we can write Adj(zIn − X) =∑n−1
i=0 Aiz

i, where the matrices Ai do not contain z. Hence we also have
(

n−1∑

i=0

Aiz
i

)
· (zIn −X) = PX(z)In .

Expanding the left-hand side and collecting terms with the same power of z gives

−A0X +
n−1∑

i=1

(Ai−1 −AiX)zi +An−1z
n = pX(z)In . (53)

Since PX(z) =
∑n

i=0 piz
i, where the pi’s do not contain z, we can compare the coefficients

on the left and right-hand side of (53) (see Proposition 27) to conclude

p0In = −A0X , piIn = Ai−1 −AiX if i ∈ {1, . . . , n− 1} , pnIn = An−1 .

Hence
n∑

i=0

piX
i = p0In + p1X + p2X

2+ · · ·+ pn−1X
n−1 + pnX

n

= −A0X + (A0 −A1X)X + (A1 −A2X)X2+ · · ·+ (An−2 −An−1X)Xn−1 +An−1X
n

= (−A0X +A0X) + (−A1X
2 −A1X

2) + . . .+(−An−1X
n +An−1X

n)

= 0 .

QED
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