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Abstract

Invariance with respect to linear or affine transformations of the domain is arguably the most
common symmetry exhibited by natural algebraic properties. In this work, we show that any low
complexity affine-invariant property of multivariate functions over finite fields is testable with a
constant number of queries. This immediately reproves, for instance, that the Reed-Muller code
over Fp of degree d < p is testable, with an argument that uses no detailed algebraic information
about polynomials, except that low degree is preserved by composition with affine maps.

The complexity of an affine-invariant property P refers to the maximum complexity, as
defined by Green and Tao (Ann. Math. 2008), of the sets of linear forms used to characterize
P. A more precise statement of our main result is that for any fixed prime p ≥ 2 and fixed
integer R ≥ 2, any affine invariant-property P of functions f : Fn

p
→ [R] is testable, assuming

the complexity of the property is less than p. Our proof involves developing analogs of graph-
theoretic techniques in an algebraic setting, using tools from higher-order Fourier analysis.

1 Introduction

The field of property testing, as initiated by [BLR93, BFL91] and defined formally by [RS96,
GGR98], is the study of algorithms that query their input a very small number of times and
with high probability decide correctly whether their input satisfies a given property or is “far”
from satisfying that property. A property is called testable, or sometimes strongly testable or locally
testable, if the number of queries can be made independent of the size of the object without affecting
the correctness probability. Perhaps surprisingly, it has been found that a large number of natural
properties satisfy this strong requirement; see e.g. the surveys [Fis04, Rub06, Ron09, Sud10] for a
general overview.
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A fundamental problem in the area is then to find a combinatorial characterization of the testable
properties. The characterization problem was explicitly raised even in the early work of [GGR98].
In this work, we make progress towards such a characterization for the class of affine-invariant
properties of multivariate functions over finite fields. Before stating our results, let us define some
useful notions that will be helpful to know throughout this paper.

1.1 Testability and Invariances

Fix a prime p ≥ 2 and an integer R ≥ 2 throughout. Given a property P of functions in {Fn
p → [R]},

we say that f : Fn
p → [R] is ǫ-far from P if ming∈P Prx∈Fn

p
[f(x) 6= g(x)] > ǫ, and we say that it is ǫ-

close otherwise. P is said to be testable (with one-sided error) if there is a function q : (0, 1) → Z
+

and an algorithm T that, given as input a parameter ǫ ∈ (0, 1) and oracle access to a function
f : Fn

p → [R], makes at most q(ǫ) queries to the oracle for f , always accepts if f ∈ P and rejects
with probability at least 2/3 if f is ǫ-far from P.

As an example of a testable property, let us recall the famous result by Blum, Luby and Rubinfeld
[BLR93] which started off this whole line of research. They showed that for testing whether a
function f : Fn

p → Fp is linear or whether it is ǫ-far from linear, it is enough to query the value of
f at only O(1/ǫ) points of the domain.

Linearity, in addition to being testable, is also an example of an affine-invariant property. We
say that a property P ⊆ {Fn

p → [R]} is affine-invariant if it is the case that for any f ∈ P
and for any affine transformation A : F

n
p → F

n
p , it holds that f ◦ A ∈ P. Similarly, a linear-

invariant property is closed under composition with linear transformations L : Fn
p → F

n
p . Other well-

studied examples of affine-invariant (and hence, linear-invariant) properties include Reed-Muller
codes (in other words, bounded degree polynomials) [BFL91, BFLS91, FGL+96, RS96, AKK+05],
homogenous polynomials of bounded degree [KS08], and subspace juntas [VX11].

In general, invariance under a large group of symmetries seems to be a common trait of mathemat-
ically natural properties, and in particular, affine invariance underlies most interesting properties
that one would classify as “algebraic”. Kaufman and Sudan in [KS08] made explicit note of this
phenomenon and urged a study of the testability of properties with focus on their invariance. In
their paper, Kaufman and Sudan showed that linear affine-invariant properties are automatically
testable but left open the general question. Note that arbitrary affine-invariant properties are not
testable; in fact, testing a random affine-invariant property requires querying nearly all of the do-
main. So, the question becomes: what is the minimal set of restrictions an affine-invariant property
must satisfy in order to be testable? In order to state the conjectured answer to this question, as
well as our progress here, we need to introduce some more notions.

1.2 Hereditariness and Induced Affine Constraints

We now introduce the subclass of affine-invariant properties which, we believe, captures every
testable property.

Definition 1 (Affine subspace hereditary properties) An affine-invariant property P is said
to be affine subspace hereditary if for any f : Fn

p → [R] satisfying P, the restriction of f to any
affine subspace of Fn

p also satisfies P.
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Affine subspace hereditariness thus provides something like a uniformity condition, relating the
definition of the property for different values of n. Specializing the conjecture in [BGS10] for
linear-invariant properties to affine-invariant properties gives the following:

Conjecture 2 ([BGS10]) Every affine subspace hereditary property is testable.

Moreover, [BGS10] show that every affine-invariant property testable by a “natural” tester is very
“close” to an affine subspace hereditary propery1. In fact, resolving Conjecture 2 would yield a
combinatorial characterization of the (natural) one-sided testable affine-invariant properties, similar
to the characterization for dense graph properties [AS08a].

Before proceeding, let us give some examples of affine subspace hereditary properties in order to
build intuition about how to test them. Consider the property of linearity, by which we mean here
that the function is a polynomial of degree at most 1. This is clearly an affine subspace hereditary
property. As we remarked earlier, the property is known to be testable. Note that here, we could
also have defined linearity as the condition of satisfying the identity f(x)− f(x+ y)− f(x+ z) +
f(x + y + z) = 0 for every x, y, z ∈ F

n
p . This is a “local” characterization of linearity in the sense

that the functional equation does not depend on the value of n. Moreover, this characterization
automatically suggests a linearity test: pick random x, y, z ∈ F

n
p and check whether the identity

holds or not for that choice of x, y, z.

More generally, consider the property of being a polynomial of degree at most d, for some fixed
positive integer d. Again, the property is clearly affine subspace hereditary. It is also known to be
testable [AKK+05] over finite fields. And just as in the case of linearity, the test arises out of a
local characterization for degree d: the (d+ 1)th derivative in every d+ 1 directions at every point
should be 0. The test is then to choose a random point and random d+ 1 directions and to check
if the (d+ 1)th derivative in the chosen directions at the chosen point is 0 or not.

In fact, one can describe any affine subspace hereditary property using such local characterizations.
To state this formally, let us make a useful definition.

Definition 3 (Affine constraints)

• An affine constraint of size m on ℓ variables is a tuple A = (a1, . . . , am) of m linear
forms a1, . . . , am over Fp on ℓ variables, where a1(X1, . . . , Xℓ) = X1 and for every i ≥ 2,

ai(X1, . . . , Xℓ) = X1 +
∑ℓ

j=2 ci,jXj where each ci,j ∈ Fp.

• An induced affine constraint of size m on ℓ variables is a pair (A, σ) where A is an affine
constraint of size m on ℓ variables and σ ∈ [R]m.

• Given such an induced affine constraint (A, σ), a function f : Fn
p → [R] is said to be (A, σ)-

free if there exist no x1, . . . , xℓ ∈ F
n
p such that (f(a1(x1, . . . , xℓ)), . . . , f(am(x1, . . . , xℓ))) = σ.

On the other hand, if such x1, . . . , xℓ exist, we say f induces (A, σ) at x1, . . . , xℓ.

1We omit the technical definitions of “natural” and “close” here, since they are unimportant here. Informally, the
behavior of a “natural” tester is independent of the size of the domain and “close” means that the property deviates
from an actual affine subspace hereditary property on functions over a finite domain. See [BGS10] for details, or
[AS08a] for essentially the same definitions in a graph-theoretic context.
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• Given a (possibly infinite) collection A = {(A1, σ1), (A2, σ2), . . . , (Ai, σi), . . . } of induced
affine constraints, a function f : Fn

p → [R] is said to be A-free if it is (Ai, σi)-free for every
i ≥ 1.

The connection between affine subspace hereditariness and affine constraints is given by the follow-
ing proposition, whose (straightforward) proof we omit.

Proposition 4 An affine-invariant property P is affine subspace hereditary if and only if it is
equivalent to the property of A-freeness for some fixed collection A of induced affine constraints.

Thus, resolving Conjecture 2 boils down to showing testability for all A-freeness properties.

1.3 Main Result

We show that A-freeness is testable as long as all affine constraints in A are of complexity less than
p. We next define the complexity of an affine constraint, and more generally, of an arbitrary set of
linear forms.

Definition 5 (Cauchy-Schwarz complexity, [GT10b]) Let L = {L1, . . . , Lm} be a set of lin-
ear forms. The (Cauchy-Schwarz) complexity of L is the minimal s such that the following holds.
For every i ∈ [m], we can partition {Lj}j∈[m]\{i} into s+ 1 subsets such that Li does not belong to
the linear span of each subset.

We put our main finding into a theorem.

Theorem 6 (Main theorem) For any ǫ ∈ (0, 1) and for any (possibly infinite) fixed collection
A = {(A1, σ1), (A2, σ2), . . . , (Ai, σi), . . . } of induced affine constraints such that each Ai has
complexity less than p, there is a function qA : (0, 1) → Z

+ and a one-sided tester which determines
whether a function f : Fn

p → [R] is A-free or ǫ-far from A-free while making at most qA(ǫ) queries
to f .

The function qA has rather horrible, Ackermann function-like, dependence on 1/ǫ. Our primary
concern in this work though is to establish testability, and we make no effort in improving the
growth of qA. We note though that recent work by Kalyanasundaram and Shapira [KS11] and by
Conlon and Fox [CF11], building on previous work by Gowers [Gow97], suggests that very rapid
growth of the query complexity function is inherent with our proof techniques.

Let us lastly note that Theorem 6 is quite nontrivial even when the collection A is finite. Indeed,
even if A consists only of a single induced affine constraint of complexity > 1, it was not known
previously how to show testability. We give more details about past work in Section 1.5.
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1.4 Overview of the Proof

Let us give an overview of our proof of Theorem 6. For simplicity of exposition, assume for now
that A consists only of a single induced affine constraint (A, σ) where A is the tuple of linear forms
(a1, . . . , am), each over ℓ variables, and σ ∈ [R]m. For i ∈ [R], let f (i) : Fn

p → {0, 1} be the indicator
function for the set f−1({i}). Our goal will then be to show that, when f is ǫ-far from (A, σ)-free,
then:

E
x1,...,xℓ

[

f (σ1)(a1(x1, . . . , xℓ)) · f
(σ2)(a2(x1, . . . , xℓ)) · · · f

(σm)(am(x1, . . . , xℓ))
]

(1)

is at least δ(ǫ), where crucially, δ does not depend on n. If we could show this, then we would be
done since a valid test would be to repeat the following procedure O(1/δ) times: uniformly pick
x1, . . . , xℓ ∈ F

n
p and reject if (f(a1(x1, . . . , xℓ)), . . . , f(am(x1, . . . , xℓ))) = σ.

Studying averages of products, as in (1), has been crucial to a wide range of problems in additive
combinatorics and analytic number theory. Szemerédi’s theorem about the density of arithmetic
progressions in subsets of the integers is a classic example. Szemerédi’s work [Sze75] arguably
initiated such questions in additive combinatorics, but the major development which led to a more
systematic understanding of these averages was Gowers’ definition of a new notion of uniformity
in a Fourier-analytic proof for Szemerédi’s theorem [Gow01]. In particular, Gowers introduced the
Gowers norm ‖ · ‖Ud for a parameter d ≥ 1, which allows us to say the following about (1). If, for
a suitably large value of d,

‖f (σj)‖Ud < ǫ

for some j ∈ [m], then the entire expectation in (1) is less than ǫ.

This observation leads to the study of decomposition theorems, that express an arbitrary function
as a linear combination of functions which have either small Gowers norm or are structured in some
sense. This is an extension of classical Fourier analysis over Fn

p where a function is expressed as a
linear combination of a small number of characters with high Fourier mass plus a small error term.
To deal with Gowers norm, the “characters” need to be exponentials of not linear functions, as
in classical Fourier analysis, but of higher degree polynomials. Approximate orthogonality among
these “characters” was established by Green and Tao in [GT09] and by Kaufman and Lovett in
[KL08]. At this stage, one might expect that results by Hatami and Lovett [HL11a, HL11b] can
allow us to use orthogonality to approximate the expectation of the form in (1).

Unfortunately, the proof does not follow that easily from [HL11a]. There are two main reasons for
this. The first is that the only information we have about the original function f is ǫ-farness from
(A, σ)-freeness. Information about correlation, as was assumed in [HL11a], allows more straight-
forward application of the higher-order Fourier analytic tools. We use ideas from previous work on
graph property testing, as in [AFKS00] and [AS08b], to locate regions of the domain in which we are
guaranteed to find at least one induced occurrence of (A, σ). This leads to interesting formulations
of the decomposition theorems which might be of independent interest.

The second problem we face is one which also arose in a work by Green and Tao on decomposition
theorems (a.k.a., regularity lemmas) over the integers [GT10a]. Namely, the decomposition theorem
we use decomposes an arbitrary function f : Fn

p → R as a sum of three functions f1, f2, f3. f1
consists of the approximate “characters” as mentioned above, f2 has small Gowers norm, and f3
has low L2-norm. Now, the closeness to orthogonality for f1 and the smallness of the Gowers norm
for f2 decreases as a function of the “complexity” of the decomposition, and are thus, essentially
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negligible for the purposes of the proof. On the other hand, the bound on the L2-norm for f3
is only moderately small and cannot be made to decrease as a function of the complexity of the
decomposition. The way we get around this is by making the norm decrease as a function of the
complexity of a coarser decomposition, and we show that this is enough for our purposes.

1.5 Previous Work

This work is part of a sequence of works investigating the relationship between invariance and
testability of properties. As described, Kaufman and Sudan [KS08] initiated the program. Sub-
sequently, Bhattacharyya, Chen, Sudan and Xie [BCSX11] investigated monotone linear-invariant
properties of functions f : Fn

2 → {0, 1}, where a property P is monotone if it satisfies the condition
that for any function g ∈ P, modifying g by changing some outputs from 1 to 0 does not make it
violate P. Král, Serra and Vena [KSV12] and, independently, Shapira [Sha09] showed testability
for any monotone linear-invariant property characterized by a finite number of linear constraints
(of arbitrary complexity).

Progress has been significantly slower for the non-monotone properties. Bhattacharyya, Grigorescu,
and Shapira proved in [BGS10] that linear-invariant properties of functions in {Fn

2 → {0, 1}} are
testable if the complexity of the property is 1. When restricted to affine-invariant properties, the
result of [BGS10] is a special case of the main result here for p = 2. The previous works did not
explicitly use higher-order Fourier analysis; [KSV12] and [Sha09] used variants of the hypergraph
regularity lemma which are similar in spirit to higher-order Fourier analysis but are somewhat
harder to manipulate due to the lack of analytic tools.

Higher-order Fourier analysis began with the work of Gowers [Gow98] and parallel ergodic-theoretic
work by Host and Kra [HK05]. Applications to analytic number theory inspired much more study by
Gowers, Green, Tao, Wolf, and Ziegler among others. A book in preparation by Tao [Tao11] surveys
the current theory of higher-order Fourier analysis. Our work in this paper relies on decomposition
theorems over finite fields of the type first explicitly described by Green in [Gre07].

At a high level, the argument to prove our main theorem mirrors ideas used in a sequence of works
by Alon et al. [AFKS00, AS08b, AS08a, AFNS06] to characterize the testable graph properties.
In particular, the technique of simultaneously decomposing the domain into a coarse partition and
a fine partition with very strong regularity properties is due to [AFKS00], and the compactness
argument used to handle infinitely many constraints is due to [AS08b]. However, implementing
these graph-theoretic techniques using higher-order Fourier analysis required several new ideas
which, we hope, can be extended to prove Conjecture 2.

1.6 Further research

We study affine subspace hereditary properties, and show that if they are defined by affine con-
straints of low complexity then they are locally testable. There are several obvious possible gener-
alizations to this work:

1. Remove the condition that the field size is larger than the complexity of the affine forms; this
requires non-trivial generalizations of several technical lemmas to small fields.
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2. Handle all linear invariant properties (and not just affine invariant properties).

A third generalization, which we suspect may be too strong to hold, is to remove the low complexity
assumption on the linear forms. Indeed, in several analogs of this line of research in hypergraph
testing, this requirement is analogous to requiring bounded uniformity from the hypergraphs, which
is implicitly assumed in all previous works on hypergraph testing.

1.7 Organization

The proof of our main result requires some technical preparation. In Section 2, we describe useful
arithmetic decomposition theorems and prove extensions that are helpful for proving testability.
In Section 3, we show that we can accurately count the number of linear structures localized to
particular cells of the decomposition. Finally, in Section 4, we complete the proof of Theorem 6.

2 Decomposition into Polynomial Factors

In this section, we build the arithmetic decomposition theorems which we will need later on. Defin-
ing the decompositions requires us to introduce the Gowers norm first.

2.1 The Gowers Norm

We define Gowers norms in the general setting of arbitrary finite Abelian groups.

Definition 7 (Gowers norm) Let G be a finite abelian group and f : G → C. For an integer
k ≥ 1, the k’th Gowers norm of f , denoted ‖f‖Uk is defined by:

‖f‖2
k

Uk = E
x,y1,y2,...,yk∈G





∏

S⊆[k]

Ck−|S|f

(

x+
∑

i∈S

yi

)





where C denotes the complex conjugation operator.

Two facts about the Gowers norm will be absolutely crucial in what follows. First is the Gowers
Inverse theorem, established by [BTZ10, TZ10]. Throughout, we let e (x) denote the complex
number e2πix/p for x ∈ Fp.

Theorem 8 (Gowers Inverse Theorem) Given a positive integer d < p, for every δ > 0, there
exists ǫ = ǫ8(δ) such that if f : Fn

p → R satisfies ‖f‖∞ ≤ 1 and ‖f‖Ud+1 ≥ δ, then there exists a
polynomial P : Fn

p → Fp of degree at most d so that |Ex[f(x) · e (P (x))]| ≥ ǫ.

The second is a lemma due to Green and Tao [GT10b] based on repeated applications of the
Cauchy-Schwarz inequality. Refer to Definition 5 for the term “complexity”.

Lemma 9 Let f1, . . . , fm : Fn
p → [−1, 1]. Let L = {L1, . . . , Lm} be a system of m linear forms in

ℓ variables of complexity s. Then:
∣

∣

∣

∣

∣

E
x1,...,xℓ∈Fn

p

[

m
∏

i=1

fi(Li(x1, . . . , xℓ))

]∣

∣

∣

∣

∣

≤ min
i∈[m]

‖fi‖Us+1
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2.2 Decomposition Theorems

While partitioning the domain to affine linear subspaces would be the most intuitive for counting
affine cubes, we in fact need higher degree algebraic partitions.

Definition 10 (Polynomial factor) A polynomial factor B is a sequence of polynomials
P1, . . . , PC : F

n
p → Fp. We also identify it with the function B : F

n
p → F

C
p sending x to

P1(x), . . . , PC(x). A cell of B is a preimage B−1(y) for some y ∈ F
C
p . The partition induced

by B is the partition of F
n
p given by

{

B−1(y) : y ∈ F
C
p

}

. The complexity of B is the number of
defining polynomials |B| = C. The degree of B is the maximum degree among its defining polyno-
mials P1, . . . , PC .

Next, we define the notion of conditional expectation with respect to a given factor.

Definition 11 (Expectation over polynomial factor) Given a factor B and a function f :

F
n
p → {0, 1}, the expectation of f over a cell y ∈ F

|B|
p is the average E[f |B−1(y)], which we denote

by E[f |y]. The conditional expectation of f over B, is the real-valued function over F
n
p given by

E[f |B](x) = E[f |B(x)]. In particular, it is constant on each atom of the polynomial factor.

The decomposition theorems will iteratively partition the domain F
n
p into finer and finer partitions.

We will need to be careful about distinguishing between two different types of refinements.

Definition 12 (Refinement of polynomial factor) B′ is called a syntactic refinement of B,
and denoted B′ �syn B, if the sequence of polynomials defining B′ extends that of B. It is called a
semantic refinement, and denoted B′ �sem B if the induced partition is a combinatorial refinement
of the partition induced by B. In other words, if for every x, y ∈ F

n
2 , B′(x) = B′(y) implies

B(x) = B(y). The relation � (without subscripts) is a synonym for �syn.

Clearly, being a syntactic refinement is stronger than being a semantic refinement. However in
essence, these are almost the same thing.

Observation 13 If B′ is a semantic refinement of B, then there exists a syntactic refinement B′′

of B that induces the same partition of Fn
p , and for which |B′′| ≤ |B′|+ |B|.

Proof: Just add the defining polynomials of B to those of B′.

We can now describe our basic decomposition theorem2.

2Most theorems in this section are implicit in previous work by Green and Tao (and explicit in [HL11a]). The
exceptions are our remarks that pertain to the distinction between syntactic and semantic refinements and Theorem
22 and its Corollary. In any case, for completeness, we give the missing proofs for the decomposition theorems in the
appendix.
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Theorem 14 (Basic Decomposition Theorem) Suppose δ > 0 and d, C0 ≥ 1 are integers so
that d < p. Let η : N → R

+ be an arbitrary non-increasing function. Then there exist N =
N14(δ, η, d, p) and C = C14(δ, η, d, C0) such that the following holds.

Given f : Fn
p → {0, 1} where n > N and a polynomial factor B0 of degree at most d and complexity

at most C0, there exist three functions f1, f2, f3 : F
n
p → R and a polynomial factor B � B0 of degree

at most d and complexity at most C such that the following hold:

• f = f1 + f2 + f3

• f1 = E[f |B]

• ‖f2‖Ud+1 ≤ η(|B|)

• ‖f3‖2 ≤ δ

• f1 and f1 + f3 have range [0, 1]; f2 and f3 have range [−1, 1].

This basic decomposition theorem is not enough for our purposes though. Recall that our goal is
to control expectations of the form3:

E
x

[

∏

i

f(Li(x))

]

for some function f : Fn
p → {0, 1} and linear forms Li over Fp. The f in the above expectation

will arise from an application of a decomposition theorem. If f = f2 from Theorem 14 and so
‖f‖Ud+1 is small (for an appropriate d), then the expectation is already small by Lemma 9. The
next decomposition theorem will allow us to control the expectation when f = f1 from Theorem 14.
It turns out that in order to do so, one needs the polynomials defining the factor to be independent
in a strong sense. To this end, we define the rank of a polynomial factor [GT09].

Definition 15 (Rank of polynomial factors) Suppose B is a polynomial factor defined by poly-
nomials P1, . . . , PC : F

n
p → Fp. The rank of B is the largest integer r such that for every

(α1, . . . , αC) ∈ F
C
p \ {0C}, the polynomial Pα =

∑C
i=1 αiPi cannot be expressed as a function of

r polynomials of degree d− 1, where d = maxi∈[C]:αi 6=0 deg(Pi).

The following result, proved by Kaufman and Lovett [KL08] for all p (extending previous work of
Green and Tao [GT10b] over large characteristic fields), is crucial:

Theorem 16 Suppose ǫ > 0 and integer d ≥ 1. Then, there exists r = r16(d, ǫ) such that: If
P : Fn

p → Fp is a degree-d polynomial with rank at least r, then |Ex[e (P (x))]| < ǫ.

As an example of how useful Theorem 16 is, consider the following simple lemma which states that
every cell of a polynomial factor with large enough rank has approximately the same size.

3Actually, in the expectations we will analyze, each multiplicand in the product will involve a different “f” but
this does not pose additional issues.
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Lemma 17 Given a polynomial factor B of degree d, complexity C, and rank at least r16(d, ǫ)
generated by the polynomials P1, . . . , PC : Fn

p → Fp, and an element b ∈ F
C
p , we have that:

Pr
x∈Fn

p

[B(x) = b] = p−C ± ǫ

Proof: This is implicit in previous work, e.g. [Gre07]. For completeness, we repeat the argument:

Pr
x∈Fn

p

[B(x) = b] = E
x





∏

i∈[C]

1

p

∑

λi∈Fp

e (λi · (Pi(x)− bi))





= p−C
∑

λi∈Fp:i∈[C]

E
x



e





∑

i∈[C]

λi(Pi(x)− bi)









= p−C
(

1± pCǫ
)

where the last line uses Theorem 16 whenever not all the λi equal 0.

Notice that for Lemma 17 to be nontrivial, we will want ǫ to be smaller than p−C , and hence, the
rank of the factor to be large as a function of C. The following theorem shows that one can indeed
make the rank larger than an arbitrary function of the complexity, without making the complexity
superconstant.

Lemma 18 ([GT09]) Let r : Z+ → Z
+ be a non-decreasing function. Then, there is a function

τr : Z+ → Z
+ such that the following is true. If B is a polynomial factor with complexity at most

C, then there is a semantic refinement B′ �sem B with complexity C ′ ≤ τr(C) and rank > r(C ′).

Moreover if B is itself a syntactic refinement of some B̂ that is of rank at least r(C ′) + C ′, then
additionally B′ will be a syntactic refinement of B̂.

With Lemma 18 in hand, we can strengthen the Basic Decomposition Theorem so that the poly-
nomials defining the factor are of arbitrarily high rank.

Theorem 19 (Strong Decomposition Theorem) Suppose δ > 0 and d, C0 ≥ 1 are integers so
that d < p. Let η : N → R

+ be an arbitrary non-increasing function and r : N → N be an arbitrary
non-decreasing function. Then there exist N = N19(δ, η, r, d, p) and C = C19(δ, η, r, d, C0) such
that the following holds.

Given f : Fn
p → {0, 1} where n > N and a polynomial factor B0 of degree at most d and complexity

at most C0, there exist three functions f1, f2, f3 : Fn
p → R and a polynomial factor B �sem B0 of

degree at most d and complexity at most C such that the following hold:

• f = f1 + f2 + f3

• f1 = E[f |B]

• ‖f2‖Ud+1 ≤ 1/η(|B|)

10



• ‖f3‖2 ≤ δ

• f1 and f1 + f3 have range [0, 1]; f2 and f3 have range [−1, 1].

• B is of rank at least r(|B|)

Moreover, if B0 is a syntactic refinement of some B̂ of rank at least r(C) + C, then B will also be
a syntactic refinement of B̂ (in particular, if B0 = B̂).

It turns out though that this Strong Decomposition Theorem is still not enough for our needs.
The issue is that the bound on f3 above is a constant δ. Ideally, we would want δ to decrease as a
function of the complexity of the polynomial factor, but we cannot achieve this. The way we resolve
the issue is by using the non-negativity of f1 and f1+f3 to localize our analysis to certain cells c′ so
that there is a guarantee that the L2-norm of f3 conditioned inside c′ (i.e., Ex∈c′ [|f3(x)|

2]) is small.
Inspired by [AFKS00], we choose these cells c′ to be atoms from a polynomial factor B′, with each
cell c′ contained inside a cell c of a coarser factor B. To make the localization argument work, we
will want that the function f : Fn

p → {0, 1} in consideration have roughly the same density on c
and c′. To this end, we make the following definition:

Definition 20 (Polynomial factor represents another factor) Given a function f : F
n
p →

{0, 1}, a polynomial factor B′ that refines another factor B and a real ζ ∈ (0, 1), we say B′ ζ-
represents B with respect to f if for at most ζ fraction of cells c of B, more than ζ fraction of the
cells c′ lying inside c satisfy |E[f |c]− E[f |c′]| > ζ.

Using a standard defect version of Cauchy-Schwarz yields:

Observation 21 If f : Fn
p → {0, 1} and B′ is a refinement of B which is not ζ-representing with

respect to f , then E[(E[f |B′])2] ≥ E[(E[f |B])2] + γ21(ζ).

We now put forth a Super Decomposition Theorem and a corollary, which produces two factors
B′ �syn B and picks out a representative subcell of B′ inside each cell of B so that, as described
above, the L2-norm of f3 inside each subcell is sufficiently small.

Theorem 22 (Super Decomposition Theorem) Suppose ζ > 0 and d, C0 ≥ 1 are integers
so that d < p. Let η : N → R

+ and δ : N → R
+ be arbitrary non-increasing functions, and

r : N → N be an arbitrary non-decreasing function. Then there exist N = N22(δ, η, r, d, ζ, C0) and
C = C22(δ, η, r, d, ζ, C0) such that the following holds.

Given f : Fn
p → {0, 1} where n > N and a polynomial factor B0 of degree at most d and complexity

at most C0, there exist functions f1, f2, f3 : Fn
p → R, a semantic refinement B of B0 of degree at

most d and a syntactic refinement B′ of B of degree at most d and of complexity at most C, such
that the following hold:

• f = f1 + f2 + f3

• f1 = E[f |B′]

11



• ‖f2‖Ud+1 ≤ η(|B′|)

• ‖f3‖2 ≤ δ(|B|)

• f1 and f1 + f3 have range [0, 1]; f2 and f3 have range [−1, 1].

• B is of rank at least r(|B|).

• B′ is of rank at least r(|B′|).

• B′ ζ-represents B with respect to f .

Proof: Set the following two parameters in order:

C ′(m) = C19(δ(m), η, r, d,m)

R(m) = r(C ′(m)) + C ′(m)

Now, apply Theorem 19 to get a factor B1 �sem B0 of complexity at most C =
C19(δ(1), η, R, d, C0). Apply Theorem 19 once again to get a factor B2 �sem B1 of complexity
at most C19(δ(C), η, r, d, C) = C ′(C) and rank at least r(C ′(C)). In fact, because of the last case
of Theorem 19 and the rank lower bound for B1, B2 is actually a syntactic refinement of B1. If
we let f1, f2, f3 be the functions resulting from the last application of Theorem 19 and let B = B1

and B′ = B2, then all the requirements of our Theorem are satisfied, except the last claim about
ζ-representation.

To have B′ ζ-represent B, we repeat the above argument. With B2 taking the place of B0, we
get B4 �syn B3 �sem B2. Continuing in this fashion, we get Bi+1 �syn Bi �sem Bi−1, for i ∈
{1, 3, 5, . . . }. Notice that 1 ≥ E[(E[f |Bi+1])

2] ≥ E[(E[f |Bi])
2] ≥ 0. By the pigeonhole principle, for

some odd i ≤ 1/γ21(ζ), we must have E[(E[f |Bi+1])
2] − E[(E[f |Bi])

2] ≤ γ21(ζ), which means that
Bi+1 ζ-represents Bi with respect to f by Observation 21. Letting B = Bi, B

′ = Bi+1, and letting
f1, f2, f3 be the functions resulting from the (i + 1)th application of Theorem 19 satisfies all our
requirements.

Corollary 23 (Subatom Selection) Suppose ζ > 0 and d ≥ 1 is an integer less than p. Let
η, δ : N → R

+ be arbitrary non-increasing functions, and let r : N → N be an arbitrary non-
decreasing function. Then, there exist C = C23(δ, d, r, ζ, η) such that the following holds.

Given f : Fn
p → {0, 1}, there exist functions f1, f2, f3 : Fn

p → R, a polynomial factor B with cells

denoted by elements of F
|B|
p , a syntactic refinement B′ of B with complexity at most C and cells

denoted by elements of F
|B|
p × F

|B′|−|B|
p , and an element s ∈ F

|B′|−|B|
p such that the following is true:

• f = f1 + f2 + f3

• f1 = E[f |B′]

• ‖f2‖Ud+1 < η(|B′|)

• f1 and f1 + f3 have range [0, 1]; f2 and f3 have range [−1, 1].

12



• B is of rank at least r(|B|)

• B′ is of rank at least r(|B′|)

• For every c ∈ F
|B|
p , the subcell c′ = (c, s) ∈ F

|B′|
2 has the property that Ex∈B′−1(c′)[(f3(x))

2] <
(δ(|B|))2.

• Pr
c∈F

|B|
p
[|E[f |c]− E[f |(c, s)]| > ζ] < ζ

Proof: Let r′(C) = r16(d, p
−C/10) do that by Theorem 16, if a polynomial factor B of degree d

and rank at least r′(|B|), then for any c ∈ F
|B|
p ,

0.9 p−|B| ≤ Pr
x∈Fn

p

[B(x) = c] ≤ 1.1 p−|B|.

Set C23(δ, d, r, ζ, η) = C22(∆, η, r′′, d, ζ/4, 1), where ∆(m) = 0.1 · δ(m)/pm and r′′(C) =
max(r(C), r′(C)). Apply Theorem 22 with B0 being the trivial partitioning consisting of one cell.
This yields a factor B with rank at least r′′(|B|), and a syntactic refinement B′ of B with rank at

least r′′(|B′|). Let s be a uniformly chosen random element from F
|B′|−|B|
p .

Observe that for every cell c ∈ F
|B|
p of B, at most 0.1p−|B| fraction of the subcells c′ ∈ {c}×F

|B′|−|B|
2

of B′ have Ex∈B′−1(c′)[(f3(x))
2] > δ(|B|)2. It’s so, since if for even one cell c ∈ F

|B|
p , this event does

not occur, then ‖f3‖
2
2 = Ex∈Fn

p
[(f3(x))

2] > δ(|B|)2 Prx∈Fn
p
[B(x) = c] ≥ 0.8 δ(|B|)2/p2|B| > ∆(|B|)2, a

contradiction to the guarantee of Theorem 22. Hence, by the union bound, with probability at least

3/4, for every c ∈ F
|B|
2 , the subcell c′ = (c, s) has the property that Ex∈B′−1(c′)[(f3(x))

2] ≤ δ(|B|)2.

Also, because B′ ζ/4-represents B, the expected number of cells c for which |E[f |c]−E[f |(c, s)]| > ζ
is less than ζ/4 · p|B|. So, with probability at least 3/4,

Pr
c∈F

|B|
p

[|E[f |c]− E[f |(c, s)]| > ζ] < ζ

.

We conclude then that an s exists with both the desired properties.

The theorems so far referred to only a single function. Here, we actually require decomposition
theorems which work for several functions simultaneously with a single polynomial factor. It is
quite straightforward to adapt the previous proofs to get the following.

Theorem 24 (Subatom Selection - Multiple Functions) Suppose ζ > 0 and d ≥ 1 is an
integer less than p. Let η, δ : N → R

+ be arbitrary non-increasing functions, and let r : N → N be
an arbitrary non-decreasing function. Then, there exist C = C24(δ, d, r, ζ, η) such that the following
holds.

Given f (1), . . . , f (R) : Fn
p → {0, 1}, there exist functions f

(i)
1 , f

(i)
2 , f

(i)
3 : Fn

p → R for all i ∈ [R],

a polynomial factor B with cells denoted by elements of F
|B|
p , a syntactic refinement B′ of B with

complexity at most C and cells denoted by elements of F
|B|
p × F

|B′|−|B|
p , and an element s ∈ F

|B′|−|B|
p

such that the following is true:

13



• f (i) = f
(i)
1 + f

(i)
2 + f

(i)
3 for each i ∈ [R].

• f
(i)
1 = E[f (i)|B′] for each i ∈ [R].

• ‖f
(i)
2 ‖Ud+1 < η(|B′|) for each i ∈ [R].

• Ex[(f
(i)
3 (x))2 | B′(x) = (c, s)] < (δ(|B|))2 for each i ∈ [R], c ∈ F

|B|
p .

• For each i ∈ [R], f
(i)
1 and f

(i)
1 + f

(i)
3 have range [0, 1], and f

(i)
2 and f

(i)
3 have range [−1, 1].

• B′ is of rank at least r(|B′|)

• Pr
c∈F

|B|
p
[|E[f (i)|c]− E[f (i)|(c, s)]| > ζ] < ζ for each i ∈ [R]

3 Counting Patterns inside Cells

Let B be a polynomial factor generated by the polynomials P1, . . . , PC : F
n
p → Fp, and let

b1, . . . , bm ∈ F
C
p denote the images of m cells of B. We will want to estimate probabilities of

the following form:

Pr
x1,...,xℓ

[B(a1(x1, . . . , xℓ)) = b1 ∧ B(a2(x1, . . . , xℓ)) = b2 ∧ · · · ∧ B(am(x1, . . . , xℓ)) = bm] (2)

where (a1, . . . , am) is an affine constraint of size m on ℓ variables. In Lemma 17, we analyzed the
expectation when ℓ = m = 1 and a1(x1) = x1. In order to deal with the more general form, let us
reexpress (2) in the following way:

Pr
x1,...,xℓ

[B(L1(x1, . . . , xℓ)) = b1 ∧ · · · ∧ B(Lm(x1, . . . , xℓ)) = bm]

= E
x1,...,xℓ∈Fn

p





∏

i∈[C]

∏

j∈[m]

1

p

∑

λi,j∈Fp

e (λi,j · (Pi(aj(x1, . . . , xℓ)− bi,j))





= p−mC
∑

λi,j∈Fp:

i∈[C],j∈[m]

e



−
∑

i∈[C]

∑

j∈[m]

λi,jbi,j



 E
x1,...,xℓ



e





∑

i∈[C]

∑

j∈[m]

λi,jPi(aj(x1, . . . , xℓ))







 (3)

Hatami and Lovett in [HL11a, HL11b] studied expectations such as those in (3) and proved the
following dichotomy.

Lemma 25 (Lemma 5.1 in [HL11b]) Suppose we are given ǫ ∈ (0, 1), positive integer d < p and
an affine constraint (a1, . . . , am) of size m on ℓ variables. Let P1, . . . , PC : Fn

p → Fp be a collection of
polynomials of degree at most d such that the rank of the polynomial factor generated by P1, . . . , PC

is at least r16(d, ǫ). Then, for every set of coefficients Λ = {λi,j ∈ Fp : i ∈ [C], j ∈ [m]}, if
PΛ : (Fn

p )
ℓ → Fp is the polynomial defined by:

PΛ(X1, . . . , Xℓ) =
C
∑

i=1

m
∑

j=1

λi,jPi (aj(X1, . . . , Xℓ))

either PΛ is the zero polynomial or else,
∣

∣

∣
Ex1,...,xℓ∈Fn

p
e (PΛ(x1, . . . , xℓ))

∣

∣

∣
< ǫ.
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Thus, to bound (3), we need to count the number of sets Λ such that PΛ ≡ 0, in the language of
Lemma 25. To this end, let us make the following definition, following the works of Gowers and
Wolf [GW10b, GW10a].

Definition 26 (Dimension of linear forms) For a positive integer d and linear form
L(X1, . . . , Xℓ) = λ1X1 + λ2X2 + · · · + λℓXℓ where λ1, . . . , λℓ ∈ Fp, let the dth tensor power of
L denote:

L⊗d def
=





d
∏

j=1

λij : i1, . . . , id ∈ [ℓ]



 ∈ F
ℓd

p

Given positive integers d1, . . . , dC and an affine constraint A = (a1, . . . , am) of size m on ℓ variables,
define the (d1, . . . , dC)-dimension of A to be:

C
∑

i=1

dim
({

a⊗di
1 , . . . , a⊗di

m

})

The following lemma shows the relevance of this definition:

Lemma 27 Let the notation here be same as in Lemma 25. If d1, . . . , dC are the respective degrees
of the polynomials P1, . . . , PC and if s is the (d1, . . . , dC)-dimension of (a1, . . . , am), then the number
of sets Λ for which PΛ ≡ 0 equals pmC−s.

Proof: Notice that we want to show that the number of sets Λ for which PΛ ≡ 0 is dependent
just on the degrees of the polynomials P1, . . . , PC and not on any other specifics. The reason we
can claim this is the following lemma from [HL11b].

Lemma 28 (Lemma 5.2 in [HL11b]) Suppose λi,j ∈ Fp for i ∈ [C], j ∈ [m], and d1, . . . , dC ∈
[d], where d < p. Also, let let A = {a1, . . . , am} be an affine constraint where each linear form aj
is on variables X1, . . . , Xℓ. Then, one of the following holds:

• For every collection of linearly independent polynomials P1, . . . , PC of degree d1, . . . , dC re-
spectively:

C
∑

i=1

m
∑

j=1

λi,jPi (aj(X1, . . . , Xℓ)) ≡ 0

• For every collection of linearly independent polynomials P1, . . . , PC of degree d1, . . . , dC re-
spectively:

C
∑

i=1

m
∑

j=1

λi,jPi (aj(X1, . . . , Xℓ)) 6≡ 0

Thus, for the purposes of our claim, instead of having the polynomials P1, . . . , PC , we can substitute
any collection of linearly independent polynomials of respective degrees d1, . . . , dC . In particular, let
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us define P ′
i (x) = xdii for each i ∈ [C] (we assume n > C). Then, the polynomial P ′

Λ(X1, . . . , Xℓ) =
∑C

i=1

∑m
j=1 λi,jP

′
i (aj(X1, . . . , Xℓ)) is identically zero exactly when for each i ∈ [C],

m
∑

j=1

λi,ja
⊗di
j = 0

Usual linear algebra and the definition of (d1, . . . , dC)-dimension then shows that the set of Λ’s for
which P ′

Λ ≡ 0 forms a linear subspace of codimension s.

At this point, we can quickly prove the main theorem of this section. For notational convenience,
let us make the following definition.

Definition 29 Given an affine constraint A = (a1, . . . , am) and positive integers d1, . . . , dC , we
say that elements b1, . . . , bm, where each bj = (b1,j , . . . , bC,j) ∈ F

C
p , are consistent with respect to

A and d1, . . . , dC if the following is true. For any set Λ = {λi,j ∈ Fp : i ∈ [C], j ∈ [m]} for which
∑

j∈[m] λi,j(aj(X1, . . . , Xℓ))
⊗di equals 0 for all i ∈ [C], it is the case that

∑

j∈[m] λi,jbi,j = 0 as well
for all i ∈ [C].

The Theorem shows that the expectation in (2) is nonzero if and only if b1, . . . , bm are consistent.

Theorem 30 Let ǫ ∈ (0, 1), let A = (a1, . . . , am) be an affine constraint on ℓ variables, and let
B be a polynomial factor of degree d, complexity C and rank at least r16(d, ǫ) generated by the
polynomials P1, . . . , PC : Fn

p → Fp. For each i ∈ [C], let di be the degree of Pi. Let s denote the
(d1, . . . , dC)-dimension of A over Fp. Finally, for each j ∈ [m], fix the image of a cell in B, indexed
by bj = (b1,j , . . . , bC,j) ∈ F

C
p .

Suppose b1, . . . , bm are consistent with respect to A and d1, . . . , dC . Then:

Pr
x1,...,xℓ∈Fn

p

[B (aj(x1, . . . , xℓ)) = bj ∀j ∈ [m]] = p−s ± ǫ

If b1, . . . , bm are not consistent with respect to A and d1, . . . , dC , then the above probability is 0.

Proof: Assume first that the supposition is true. Let us rewrite the probability in question as
in (3):

p−mC
∑

λi,j∈Fp:

i∈[C],j∈[m]

e



−
∑

i∈[C]

∑

j∈[m]

λi,jbi,j



 E
x1,...,xℓ



e





∑

i∈[C]

∑

j∈[m]

λi,jPi(aj(x1, . . . , xℓ))









According to Lemma 25, the expectation in the above expression is at most ǫ in absolute value
if
∑

i∈[C]

∑

j∈[m] λi,jPi(aj(X1, . . . , Xℓ)) is not the zero polynomial. On the other hand, by the

argument of Lemma 27, if
∑

i∈[C],j∈[m] λi,jPi(aj(X1, . . . , Xℓ)) ≡ 0, then
∑

i∈[C],j∈[m] λi,ja
⊗di
j equals

0. Hence, in this case, by consistency,
∑

i∈[C]

∑

j∈[m] λi,jbi,j = 0, and so, such a choice of {λi,j}

contributes 1 to the outermost summation. The number of such choices of {λi,j} is pmC−s by
Lemma 27.

Pr
x1,...,xℓ∈Fn

p

[Pi (aj(x1, . . . , xℓ)) = bi,j ∀i ∈ [C], ∀j ∈ [m]] = p−mC(pmC−s ± pmCǫ) = p−s ± ǫ
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The last part of the Theorem follows easily. Suppose the probability in question is nonzero
and so, there exist x1, . . . , xℓ so that B (aj(x1, . . . , xℓ)) = bi,j ∀i ∈ [C], ∀j ∈ [m]. Then,
∑

i∈[C],j∈[m] λi,jbi,j =
∑

i∈[C],j∈[m] λi,jPi (aj(x1, . . . , xℓ)). But, by the argument of Lemma 27,
∑

j∈[m] λi,jPi (aj(x1, . . . , xℓ)) ≡ 0 if
∑

j∈[m] λi,j(aj(X1, . . . , Xℓ))
⊗di = 0 for any i ∈ [C], and so

the supposition is true.

4 The Proof of Testability

We prove the main result, Theorem 6, in this section. In fact, we will show the following.

Theorem 31 Suppose we are given a possibly infinite collection of labeled affine constraints A =
{(A1, σ1), (A2, σ2), . . . , (Ai, σi), . . . } where each affine constraint Ai is of complexity less than p
and consists of mi linear forms on ℓi variables and and each pattern string σi ∈ [R]mi . Then, there
are functions NA(·), ℓA(·) and δA(·) such that the following is true for any ǫ ∈ (0, 1). If a function
f : Fn

p → [R] with n > NA(ǫ) is ǫ-far from being A-free, then f induces δ · pnℓi many copies of
(Ai, σi) where ℓi < ℓA(ǫ) and δ > δA(ǫ).

Theorem 6 immediately follows. Consider the following test: choose uniformly at random x1, . . . ,

xℓA(ǫ) ∈ F
n
p , let H denote the affine space {x1 +

∑ℓA(ǫ)
j=2 cjxj : cj ∈ Fp}, and check whether f

restricted to H is A-free or not. By Theorem 31, if f is ǫ-far from A-freeness, this test rejects
with probability at least δA(ǫ). Repeating the test O(1/δA(ǫ)) times then guarantees a constant
rejection probability. And of course, if f is A-free, the test always accepts.

Proof of Theorem 31: We begin with some preliminaries. Let d be the maximum complexity of
an affine constraint Ai appearing in A. By hypothesis, d < p. For i ∈ [R], define f (i) : Fn

p → {0, 1}

so that f (i)(x) equals 1 when f(x) = i and equals 0 otherwise. Additionally, set the following
parameters, where ΨA : Z+ → Z

+ is a fast-growing function that we define later:

α(C) = p−2ΨA(C)C

ρ(C) = r16(d, α(C))

∆(C) =
1

8

( ǫ

8R

)ΨA(C)

η(C) =
1

8(3p)CΨA(C)

( ǫ

8R

)ΨA(C)

ζ =
ǫ

8R

Next, apply Theorem 24 to the functions f (1), f (2), . . . , f (R) in order to get polynomial factors

B′ �syn B of complexity at most C24(∆, d, ρ, ζ, η), an element s ∈ F
|B′|−|B|
p , and functions

f
(i)
1 , f

(i)
2 , f

(i)
3 : F

n
p → R for each i ∈ [R]. The sequence of polynomials generating B′ will be

denoted by P1, . . . , P|B′|. Since B′ is a syntactic refinement, B is generated by the polynomials
P1, . . . , P|B|.

Based on B′ and B, we construct a function F : Fn
p → [R] that is ǫ-close to f and hence, still

violates A-freeness. The structure of F will help us locate the induced constraint violated by f . F
is constructed by executing the following steps in order:
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1. For every z ∈ F
n
p , let F (z) = f(z).

2. For every cell c of B for which there exists i ∈ [R] such that |Pr[f(x) = i | B(x) = c] −
Pr[f(x) = i | B′(x) = (c, s)]| > ǫ/(8R), do the following. For every z ∈ B−1(c), set F (z) =
argmaxj∈[R] Pr[f(x) = j | B′(x) = (c, s)], the most popular value inside the subatom (c, s).

3. For every cell c of B, for every i ∈ [R] such that Pr[f(x) = i | B′(x) = (c, s)] < ǫ/(8R), set
F (z) = argmaxj∈[R] Prx∈(c,s)[f(x) = j] for any z ∈ f−1(i) ∩ B−1(c).

Lemma 32 F is ǫ/2-close to f , and therefore, F is not A-free.

Proof: Observe that the second step changes the value of F on at most ǫ/(8R) fraction of the
cells, since B′ ǫ/(8R)-represents B with respect to each f (1), . . . , f (R). By Lemma 17, each cell
occupies at most p−C +α(C) fraction of the entire domain. So, the fraction of points whose values

changed in the second step is at most ǫ
8Rp

C(p−C + α(C)) = ǫ
8R + α(C)ǫ

8R pC < ǫ
4R .

The third step doesn’t apply to any cell of B affected by the second step. Therefore, in the third
case, if Pr[f(x) = i | B′(x) = (c, s)] < ǫ/(8R), then Pr[f(x) = i | B(x) = c] < ǫ/(4R). Hence,
the fraction of the domain modified in the third case is at most ǫ/4. The distance of F from f is
bounded by ǫ/(4R) + ǫ/4 < ǫ/2.

We now want to use F to find the affine constraint induced in f . We extract a finitary description of
F using its structure and then employ a compactness argument (analogous to one used in [AS08b])
to bound the size of the constraint induced by F . Let us make the following two definitions:

Definition 33 (Partially induce) Suppose we are given positive integers d1, . . . , dC , a function4

P : FC
p → 2[R], and an induced affine constraint (A, σ) of size m on ℓ variables. We say that P

partially (d1, . . . , dC)-induces (A, σ) if there exist {bj = (b1,j , . . . , bC,j) ∈ F
C
p : j ∈ [m]} making the

following true.

• b1, . . . , bm are consistent with respect to A and d1, . . . , dC .

• σj ∈ P(bj) for each j ∈ [m].

Definition 34 (The function ΨA) Suppose we are given positive integer C and a possibly infinite
collection of induced affine constraints A = {(A1, σ1), (A2, σ2), . . . , (Ai, σi), . . . } where each affine
constraint Ai is of size mi and of complexity at most d. For fixed d1, . . . , dC ∈ [d], denote by
P(d1, . . . , dC) to be the set of functions P : F

C
p → 2[R] that partially (d1, . . . , dC)-induce some

(Ai, σi) ∈ A. Now, we define the following function:

ΨA(C) = max
d1,...,dC∈[d]

max
P∈P(d1,...,dC)

min
(Ai,σi) partially
induced by P

mi

(ΨA is the same function appearing in the parameter settings at the start of the proof.)

Define the function P : F
|B|
p → 2[R] by letting P(c) = {F (x) : x ∈ B−1(c)} for each c ∈ F

|B|
p .

42[R] denotes the set of all subsets of [R].
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Lemma 35 If d1, . . . , d|B| are the respective degrees of the polynomials P1, . . . , P|B| generating B,
then P partially (d1, . . . , d|B|)-induces some (Ai, σi) ∈ A of size at most ΨA(|B|).

Proof: Let (Ai, σi) ∈ A be a constraint of minimum size induced by F . The claim is that (Ai, σi)
is also (d1, . . . , d|B|)-partially induced by P. To see this, suppose F induces (Ai, σi) at x1, . . . , xℓi ,

and let c1, . . . , cmi
∈ F

|B|
p be the images of mi cells in B defined by c1 = B(a1(x1, . . . , xℓi)), c2 =

B(a2(x1, . . . , xℓi)), . . . , cmi
= B(ami

(x1, . . . , xℓi)) where Ai = (a1, . . . , ami
). Then, because of the

last condition in Theorem 30, it must be the case that c1, . . . , cm are consistent with respect to Ai

and d1, . . . , d|B|. This fulfills the first condition of Definition 33, and the second condition is true
by the definition of P. The bound of ΨA(|B|) on mi now follows from Definition 34 and the fact
that each of d1, . . . , d|B| is at most d.

Fix (Ai, σi) partially (d1, . . . , d|B|)-induced by P. Let m
def
=mi ≤ ΨA(|B|). Also, let ℓ

def
= ℓi, and let

σ1, . . . , σm denote σi
1, . . . , σ

i
m respectively. As in the above proof of Lemma 35, denote the linear

forms in Ai by a1, . . . , am, so that there exist x1, . . . , xℓ ∈ F
n
p satisfying F (aj(x1, . . . , xℓ)) = σj for

each j ∈ [m]. Let c1 = (c1,1, . . . , c|B|,1), . . . , cm = (c1,m, . . . , c|B|,m) ∈ F
|B|
p index the cells of B where

(Ai, σi) is induced, i.e., cj = B(aj(x1, . . . , xℓ)) for each j ∈ [m]. Also, let c′1, . . . , c
′
m ∈ F

|B′|
p index

the associated subcells of B′, obtained by letting c′j = cj ◦ s for each j ∈ [m].

Our goal will now be to lower bound:

E
x1,...,xℓ∈Fn

p

[

f (σ1)(a1(x1, . . . , xℓ)) · · · f
(σm)(am(x1, . . . , xℓ))

]

(4)

The theorem obviously follows if the above expectation is more than δA(ǫ). We rewrite the expec-
tation as:

E
x1,...,xℓ∈Fn

p

[

(f
(σ1)
1 + f

(σ1)
2 + f

(σ1)
3 )(a1(x1, . . . , xℓ)) · · · (f

(σm)
1 + f

(σm)
2 + f

(σm)
3 )(am(x1, . . . , xℓ))

]

(5)

We can expand the expression inside the expectation as a sum of 3m terms. The expectation of any

term which involves f
(σj)
2 for any j ∈ [m] can be upperbounded in absolute value by ‖f

(σj)
2 ‖Ud+1 ≤

η(|B′|), because of Lemma 9 and the fact that the complexity of Ai is bounded by d. Hence, the
expression (5) is at least:

E
x1,...,xℓ

[

(f
(σ1)
1 + f

(σ1)
3 )(a1(x1, . . . , xℓ)) · · · (f

(σm)
1 + f

(σm)
3 )(am(x1, . . . , xℓ))

]

− 3mη(|B′|) (6)

Because of the non-negativity of f
(σj)
1 + f

(σj)
3 for each j ∈ [m], the expectation in (6) is at least:

E
x1,...,xℓ

[ (

f
(σ1)
1 + f

(σ1)
3

)

(a1(x1, . . . , xℓ)) · · ·
(

f
(σm)
1 + f

(σm)
3

)

(am(x1, . . . , xℓ))·

1(B′(aj(x1, . . . , xℓ)) = c′j ∀j ∈ [m])

]

(7)

Here 1 is the indicator function that is 1 when its input is true and 0 otherwise. In other words,
what we are doing now is counting only patterns that arise from the selected subcells c′1, . . . , c

′
m.
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We next expand the product inside the expectation into 2m terms. The main contribution will
come from:

E
x1,...,xℓ

[

f
(σ1)
1 (a1(x1, . . . , xℓ)) · · · f

(σm)
1 (am(x1, . . . , xℓ)) · 1(B

′(aj(x1, . . . , xℓ)) = c′j ∀j ∈ [m])
]

(8)

But first, let us show that the contribution from each of the other 2m − 1 terms is small. Consider

a term that contains f
(σk)
3 for some k ∈ [m]. Letting g be an arbitrary function with ‖g‖∞ ≤ 1,

such a term is of the form:

E
x1,...,xℓ

[

f
(σk)
3 (ak(x1, . . . , xℓ))g(x1, . . . , xℓ) · 1(B

′(aj(x1, . . . , xℓ)) = c′j ∀j ∈ [m])
]

(9)

We can assume without loss of generality that ak(x1, . . . , xℓ) is of the form x1+
∑

i∈[ℓ] αixi for some

α ∈ F
ℓ
p. By a change of variables x1 → x1 −

∑

i∈[ℓ] αixi and letting a′1, . . . , a
′
m denote the linear

forms after the change of variables, we can bound the square of (9) using Cauchy-Schwarz as:
(

E
x1,...,xℓ

[

f
(σk)
3 (ak(x1, . . . , xℓ))g(x1, . . . , xℓ) · 1(B

′(aj(x1, . . . , xℓ)) = c′j ∀j ∈ [m])
]

)2

(10)

≤

(

E
x1,...,xℓ

[∣

∣

∣
f
(σk)
3 (x1)

∣

∣

∣
· 1(B′(a′j(x1, . . . , xℓ)) = c′j ∀j ∈ [m])

]

)2

(11)

≤ E
x1

(

|f
(σk)
3 (x1)|

2 · 1(B′(x1) = c′k)
)

· E
x1

(

E
x2,...,xℓ

[

1(B′(a′j(x1, . . . , xℓ)) = c′j ∀j ∈ [m])
]

)2

(12)

≤ ∆2(|B|) · Pr
x1

[B′(x1) = c′k] · Ex1

(

E
x2,...,xℓ

[

1(B′(a′j(x1, . . . , xℓ)) = c′j ∀j ∈ [m])
]

)2

(13)

≤ ∆2(|B|) · (p−|B′| + α(|B′|)) · E
x1

∣

∣

∣

∣

∣

∣

∣

E
x2,...,xℓ

∏

i∈[|B′|]
j∈[m]

1

p

∑

λi,j∈Fp

e

(

λi,j · (Pi(a
′
j(x1, . . . , xℓ))− c′i,j)

)

∣

∣

∣

∣

∣

∣

∣

2

(14)

≤
2∆2(|B|)

p2|B′|m+|B′|
E
x1

∣

∣

∣

∣

∣

∣

∣

∣

∑

λi,j∈Fp:

i∈[|B′|],j∈[m]

e






−
∑

i∈[|B′|]
j∈[m]

λi,jc
′
i,j






E

x2,...,xℓ

e







∑

i∈[|B′|]
j∈[m]

λi,jPi(a
′
j(x1, x2, . . . , xℓ))







∣

∣

∣

∣

∣

∣

∣

∣

2

(15)

≤
2∆2(|B|)

p2|B′|m+|B′|

∑

λi,j ,τi,j∈Fp:

i∈[|B′|],j∈[m]

e






−
∑

i∈[|B′|]
j∈[m]

λi,jc
′
i,j






e







∑

i∈[|B′|]
j∈[m]

τi,jc
′
i,j







E
x1,x2,...,xℓ
y2,...,yℓ

e







∑

i∈[|B′|]
j∈[m]

λi,jPi(a
′
j(x1, x2, . . . , xℓ))






e






−
∑

i∈[|B′|]
j∈[m]

τi,jPi(a
′
j(x1, y2, . . . , yℓ))







(16)

≤
2∆2(|B|)

p2|B′|m+|B′|

∑

λi,j ,τi,j∈Fp:

i∈[|B′|],j∈[m]

∣

∣

∣

∣

∣

∣

∣

E
x1,x2,...,xℓ
y2,...,yℓ

e







∑

i∈[|B′|]
j∈[m]

λi,jPi(a
′
j(x1, x2, . . . , xℓ))−

∑

i∈[|B′|]
j∈[m]

τi,jPi(a
′
j(x1, y2, . . . , yℓ))







∣

∣

∣

∣

∣

∣

∣

(17)
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First, observe that the (d1, . . . , d|B′|)-dimension of {a1, . . . , am} equals the (d1, . . . , d|B′|)-dimension

of {a′1, . . . , a
′
m}. For, if there’s a linear dependency among {a⊗di

j : i ∈ [|B′|], j ∈ [m]}, then the same

linear dependency exists among the {(a′j)
⊗di : i ∈ [|B′|], j ∈ [m]} by making a change of variables,

and vice versa.

Let q denote the (d1, . . . , d|B′|)-dimension of {a1, . . . , am}. We can now make the following claim.

Lemma 36 The (d1, . . . , d|B′|)-dimension of the 2m linear forms

{a′1(X1, X2, . . . , Xℓ), . . . , a
′
m(X1, X2, . . . , Xℓ), a

′
1(X1, Y2, . . . , Yℓ), . . . , a

′
m(X1, Y2, . . . , Yℓ)}

is 2q − |B′|.

Proof: Let qi denote the di-dimension of {a′1, . . . , a
′
m}, so that q =

∑|B′|
i=1 qi. We show that for each

i ∈ [|B′|], the di-dimension of {a′1(X1, X2, . . . , Xℓ), . . . , a
′
m(X1, X2, . . . , Xℓ), a

′
1(X1, Y2, . . . , Yℓ), . . . ,

a′m(X1, Y2, . . . , Yℓ)} is 2qi − 1. We recall that a′1(X1, X2, . . . , Xℓ) = a′1(X1, Y2, . . . , Yℓ) = X1 and all
other linear forms are distinct.

Take S ⊆ {2, . . . ,m} to be a subset of size qi − 1 such that the qi ele-

ments

{

(

a′j(X1, X2, . . . , Xm)
)⊗di

: j ∈ S ∪ {1}

}

are linearly independent and span
{

(

a′j(X1, X2, . . . , Xm)
)⊗di

: j ∈ [m]

}

. Clearly, also

{

(

a′j(X1, Y2, . . . , Ym)
)⊗di

: j ∈ S ∪ {1}

}

are linearly independent and span

{

(

a′j(X1, Y2, . . . , Ym)
)⊗di

: j ∈ [m]

}

. Thus, the di-rank of the

2m linear forms is at most 2qi − 1. To conclude, we will show that the di-rank is at least 2qi − 1.
To this end, we will show that

{

(X1)
⊗di
}

∪
{

(

a′j(X1, X2, . . . , Xm)
)⊗di : j ∈ S

}

∪
{

(

a′j(X1, Y2, . . . , Ym)
)⊗di : j ∈ S

}

are linearly independent. To see this, note that any element in

span
{

(

a′j(X1, X2, . . . , Xm)
)⊗di : j ∈ S ∪ {1}

}

∩ span
{

(

a′j(X1, Y2, . . . , Ym)
)⊗di : j ∈ S ∪ {1}

}

must be a multiple of X⊗di
1 since no other variable is shared between the forms in the two sets. But

on the other hand, by construction of S, X⊗di
1 is not in span

{

(aj(X1, X2, . . . , Xm))⊗di : j ∈ S
}

nor in span
{

(aj(X1, Y2, . . . , Ym))⊗di : j ∈ S
}

. This shows that the di-dimension of the 2m linear

forms is exactly 2qi − 1 as claimed.

Now, just as in the proof of Theorem 30, the above information is enough to upperbound (17).
Lemma 36 and Lemma 27 allows to count the number of λi,j and τi,j such that the quantity inside
the expectation in (17) is identically 1, and Lemma 25 along with the high-rank condition on the
polynomials Pi bounds the expectation otherwise. It follows that (17), and therefore the square of
(9), is at most:

2∆2(|B|)

p2m|B′|+|B′|

(

p2m|B′|−(2q−|B′|) + p2m|B′|α(|B′|)
)

≤ 2∆2(|B|) · (p−2q + α(|B′|)) (18)
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Finally, we lowerbound the contribution from the main term (8). To begin with, we need to convince
ourselves that f induces at least one copy of (Ai, σi) among the subcells c′1, . . . , c

′
m.

Lemma 37 The subcells c′1, . . . , c
′
m are consistent with respect to Ai and d1, . . . , d|B′|.

Proof: Recall that for each j ∈ [m], c′j = (c′1,j , c
′
2,j , . . . , c

′
|B′|,j) ∈ F

|B′| satisfies c′i,j = ci,j for all

1 ≤ i ≤ |B| and c′i,j = si−|B|+1 for all |B| < i ≤ |B′|. Also, recall that we have chosen c1, . . . , cm in

such a way they index cells of B where (Ai, σi) is induced by f at least once.

From this last fact, we know that Prx1,...,xℓ
[B(aj(x1, . . . , xℓ)) = cj ∀j ∈ [m]] > 0. By the last remark

of Theorem 30, it follows that c1, . . . , cm are consistent with respect to Ai and d1, . . . , d|B|. This
immediately implies that c′1, . . . , c

′
m are also consistent with respect to Ai and d1, . . . , d|B|.

To complete the argument for i > |B|, recall that each aj is of the form X1 +
∑ℓ

r=2 crXr for
cr ∈ Fp. So, whenever

∑

j∈[m] λi,j(aj)
⊗di = 0 for any di > 0, we have that

∑

j∈[m] λi,j = 0, simply

by looking at the sum along the coordinate of a⊗di
j corresponding to X⊗di

1 . Since for any i > |B|,

c′i,j = si−|B|+1 is independent of j, it follows that for any i > |B|, if
∑

j∈[m] λi,j(aj)
⊗di = 0, then

∑

j∈[m] λi,jc
′
i,j = si−|B|+1

∑

j∈[m] λi,j = 0.

We can now lowerbound (8) as follows:

E
x1,...,xℓ

[

f
(σ1)
1 (a1(x1, . . . , xℓ)) · · · f

(σm)
1 (am(x1, . . . , xℓ)) · 1(B

′(aj(x1, . . . , xℓ)) = c′j ∀j ∈ [m])
]

= Pr[B′(aj(x1, . . . , xℓ)) = c′j ∀j ∈ [m]] · E
x1,...,xℓ

[

f
(σ1)
1 (a1(x1, . . . , xℓ)) · · · f

(σm)
1 (am(x1, . . . , xℓ))|

B′(aj(x1, . . . , xℓ)) = c′j ∀j ∈ [m]

]

(19)

≥ (p−q − α(|B′|)) ·
( ǫ

8R

)m
(20)

Let us justify the last line. The first term is due to Lemma 37 and the lowerbound on the probability

from Theorem 30. The second term in (20) is because each f
(σj)
1 is constant on the cells of B′,

and because by construction, the function F , on which (Ai, σi) was also induced, supports a value
inside a cell c of B only if the original function f acquires the value on at least ǫ/(8R) fraction of
the subcell (c, s).

Combining the bounds from (6), (18) and (20), and using our parameter settings, we get that (4)
is at least:

(p−q − α(|B′|)) ·
( ǫ

8R

)m
−
√

2∆2(|B|) · (p−2q + α(|B′|))− 3m · η(|B′|) (21)

>
p−q

2
·
( ǫ

8R

)ΨA(|B|)
− 2∆(|B|) · p−q − 3ΨA(|B|) · η(|B′|) (22)

>
p−ΨA(|B|)|B′|

4
·
( ǫ

8R

)ΨA(|B|)
(23)

where both |B| and |B′| are upperbounded by C24(∆, d, ρ, ζ, η) .
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A Decomposition Theorems

Proof of Theorem 14: We need a standard “index increment” argument.

Lemma 38 Suppose B is a polynomial factor of degree d and complexity C, and suppose f : Fn
p →

{0, 1} is such that ‖f −E[f |B]‖Ud+1 ≥ δ. Then, there exists a refined polynomial factor B′ of degree
d and complexity at most C + 1 such that:

‖E[f |B′]‖22 ≥ ‖E[f |B]‖22 + (ǫ8(δ))
2

where ǫ8(·) is the function in Theorem 8.

Proof: g = f−E[f |B] is bounded to [−1, 1]. So, applying Theorem 8 yields a degree-d polynomial
q satisfying |E[g(x) · e (P (x))]| ≥ ǫ8(δ). The polynomial q generates a factor B̂ of complexity 1.

Define B′ to be the common refinement of B and B̂; it’s of complexity C + 1.

Observe that:

‖E[g|B′]‖1 = E
x

[

|E[g|B′](x)|
]

≥
∣

∣

∣
E
x

[

E[g|B′](x) · e (P (x))
]

∣

∣

∣
=
∣

∣

∣
E
x
[g(x) · e (P (x))]

∣

∣

∣
≥ ǫ8(δ)

The last equality uses the fact that P is constant on each atom of B′. Now:

‖E[f |B′]‖22 − ‖E[f |B]‖22 = ‖E[f |B′]− E[f |B]‖22 = ‖E[g|B′]‖22 ≥ ‖E[g|B′]‖21 ≥ ǫ28(δ)

First, consider a weaker version of Theorem 14. For any constant η, we find a factor B′ � B0 and a
decomposition f = g1 + g2 where g1 = E[f |B′] and g2 = f − E[f |B′] satisfies ‖g2‖Ud+1 ≤ η. This is
straightforward to obtain by starting with the factor initially being B0 and then repeatedly applying
Lemma 38 while the Ud+1-norm of g2 is larger than η. Each time, the ℓ22-norm of g1 increases by
(ǫ8(η))

2, which on the other hand, cannot increase to more than 1. Hence, the complexity of the
final factor B′ is bounded by a function of only η and C0.

For Theorem 14, we iterate this argument. Let B(1) denote B′, and let C1 be its complexity. For
i ≥ 2, let B(i) be the refinement of B(i−1) resulting from applying the above argument with η
chosen to be smaller than η(Ci−1), and let Ci denote the complexity of B(i). Because each B(i) is a
refinement of B(i−1), the quantities ‖E[f |B(i)]‖22 form a non-decreasing sequence. By the pigeonhole
principle, there exists i ≤ 1/δ2 such that ‖E[f |B(i+1)]‖22 − ‖E[f |B(i)]‖22 ≤ δ2. Set f1 = E[f |B(i)],
f2 = f − E[f |B(i+1)] and f3 = E[f |B(i+1)]− E[f |B(i)]. The conditions of the theorem are now met.

Proof of Lemma 18: Suppose B is defined by the polynomials P1, . . . , PC , each of degree at
most d. Define the degree vector of B to be (M1, . . . ,Md) where Mi is the number of polynomials in
P1, . . . , PC of degree exactly i. Given two degree vectors M = (M1, . . . ,Md) and N = (N1, . . . , Nd),
say M ≺ N if there exists i ∈ [d] such that Mi < Ni and Mj = Nj for all j ∈ [i + 1, d]. It is a
standard fact in set theory that this is a well-ordering of the degree vectors. We perform induction
on the degree vectors using this ordering.

26



Suppose B is of rank ≤ r(C) with degree vector M = (M1, . . . ,Md). Then, there exists α1, . . . , αC

not all zero such that Pα =
∑C

i=1 αiPi can be expressed as a function of r(C) many polynomials
Q1, . . . , Qr(C) of degree e−1 where e = maxi:αi 6=0 deg(Pi). Without loss of generality, assume α1 6= 0
and deg(P1) = e. Consider the polynomial factor B′ generated by the polynomials {P2, . . . , PC} ∪
{Q1, . . . , Qr(C)}. B′ has complexity ≤ C + r(C), and it clearly semantically refines B. Its degree

vector N = (N1, . . . , Nd) has Ne = Me − 1 and
∑e−1

i=1 Ni ≤
∑e−1

i=1 Mi + r(C). Since N ≺ M , we are
done by induction.

Now, let’s turn to the last remark about an existing B̂. We follow the same argument as above, but
at each step of the induction, instead of replacing P1, we find a polynomial Pi0 to replace where
i0 > Ĉ = |B̂|. That is, we claim there exists i0 > Ĉ with αi0 6= 0 and deg(Pi0) = e. The reason is
that if for all i > Ĉ, either αi = 0 or deg(Pi) < e, we would contradict the rank assumption on B̂.

In particular, the e-degree polynomial
∑Ĉ

i=1 αiPi would be expressible as a function of the lower

degree polynomials Q1, . . . , Qr(C) and
∑C

i=Ĉ+1
αiPi. So, the polynomials P1, . . . , PĈ will remain in

the polynomial factor throughout the induction, and hence, the final factor B′ will be a syntactic
refinement of B̂.

Proof of Theorem 19: First, apply Theorem 14 to get a factor B syntactically refining B0 and a
decomposition f = f1+ f2+ f3 such that f1 = E[f |B], ‖f2‖Ud+1 ≤ η(τr(C)) and ‖f3‖2 ≤ δ/2 where
τr is the function from Lemma 18 and C ≤ C14(δ/2, η ◦ τr, k, C0) is the complexity of B. Now,
apply Lemma 18 to get a semantically refined factor B′ �sem B with complexity τr(C) and rank at
least r(τr(C)). This yields a new decomposition: f = f ′

1 + f ′
2 + f ′

3 with:

f ′
1 = E[f |B′] f ′

2 = f2 f ′
3 = f3 + E[f |B]− E[f |B′]

The only problem is that we might have ‖f ′
3‖2 > δ. But then, ‖E[f |B] − E[f |B′]‖2 > δ/2, since

‖f3‖2 ≤ δ/2. This means that:

‖E[f |B′]‖22 > ‖E[f |B]‖22 + δ2/4

So, if we keep repeating the entire argument for at most O(1/δ2) times, it must be the case that
we eventually satisfy all the claims of Theorem 19.

The last part of the Theorem is true because of the last part of Lemma 18.
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