
Witness Finding in the Black-Box Setting

Akinori Kawachi∗, Benjamin Rossman∗, and Osamu Watanabe∗

∗Department of Mathematical and Computing Sciences,

Tokyo Institute of Technology, Tokyo 152-8552, Japan

{kawachi, rossman, watanabe}@is.titech.ac.jp

Abstract

We propose an abstract framework for studying search-to-decision reductions for NP. Specifically, we study

the following witness finding problem: for a hidden nonempty set W ⊆ {0, 1}n, the goal is to output a witness

in W with constant probability by making randomized queries of the form “is Q ∩ W nonempty?” where

Q ⊆ {0, 1}n. Algorithms for the witness finding problem can be seen as a general form of search-to-decision

reductions for NP. This framework is general enough to express the average-case search-to-decision reduction

of Ben-David et al., as well as the Goldreich-Levin algorithm from cryptography.

We show that the witness finding problem requires Ω(n2) non-adaptive queries with the error-free oracle,

matching the upper bound of Ben-David et al. We also give a new witness finding algorithm that achieves an

improved error tolerance of O(1/n) with O(n2) non-adaptive queries. Further, we investigate a list-decoding

version of the witness finding problem, where a witness is unique, i.e., |W | = 1, and answers from the oracle

may contain some errors. For this setting, it has been known that an improved version of the Goldreich-Levin

algorithm with O(n/ε2) non-adaptive queries and O(1/ε2) list size solves the problem with any (1/2− ε)-error

bounded oracle. We show that this query complexity is optimal up to a constant factor (if we want to keep the

list size polynomially bounded) even if queries are adaptive.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 2 (2012)

1 Introduction

We propose an abstract framework for studying the relationship between the search and decision versions of NP

problems. As a generalization of search-to-decision reductions, we study the following witness finding problem:

for a hidden nonempty subset W of {0, 1}n, the goal is to produce an element in W by asking NP-type queries

of the form “is Q ∩W nonempty?” where Q ⊆ {0, 1}n. Algorithms solving the witness finding problem can be

seen as generic search-to-decision reductions that apply to any NP problem. This witness finding problem is also

relevant to cryptography. The algorithms of Ben-David, Chor, Goldreich, and Luby (hereafter, Ben-David et

al.) [BCGL92] and Goldreich and Levin [GL89] can be seen as witness finding algorithms. We discuss the query

complexity of these algorithms. We also consider the situation where queries may be answered incorrectly, and we

study witness finding algorithms from the perspective of error tolerance as well.

The complexity class NP is characterized as the class of sets with a polynomial-size and polynomial-time

checkable witness system. That is, for any set L ⊆ {0, 1}∗, it is in NP if and only if it is characterized by

L = { x | ∃w such that |w| ≤ q(|x|) and R(x,w) }

with some polynomial q and some polynomial-time computable predicate R. For any set L ∈ NP, a pair (q,R)

characterizing L as above is called a witness system, and for any x ∈ L, a string w satisfying |w| ≤ q(|x|)∧R(x,w)
is called a witness (for x ∈ L). The decision problem for L is the task of deciding, for a given x ∈ {0, 1}n, whether
there exists some witness w for x ∈ L. The search problem for L is the task of producing a witness for a given

x ∈ L.

The relationship between decision and search problems has been investigated in several contexts. In order to

be specific, let us consider the 3SAT problem and the standard witness system that uses, for any 3CNF formula

ϕ, a satisfying assignment as a witness for ϕ ∈ 3SAT. Here the search problem is the task of finding a satisfying

assignment for a given ϕ ∈ 3SAT. A question that has been often asked is how to compute one of the satisfying

assignments of ϕ by asking queries to 3SAT. It is easy to obtain a satisfying assignment for ϕ ∈ 3SAT (e.g. the

lexicographically first one) deterministically by asking queries to 3SAT adaptively. That is, the search problem for

3SAT is PNP-computable. On the other hand, Ben-David et al. [BCGL92] used the “isolation technique” to give

a randomized algorithm that solves this NP-type search problem in polynomial-time by asking queries to 3SAT

nonadaptively; that is, the witness finding problem for 3SAT is ZPPNP
|| -computable. In this paper, we focus on the

query complexity of such computations. Consider any ϕ ∈ 3SAT with n variables. Then a witness, i.e. satisfying

assignment, can be expressed as a binary string of length n. For computing such a witness, the above mentioned

PNP-algorithm can be implemented with n adaptive queries, whereas O(n2) nonadaptive queries are needed in the

ZPPNP
|| -algorithm. We investigate in this paper whether this difference in query complexity is inherent between

the adaptive and nonadaptive ways of asking queries. As an abstract framework for discussing this type of query

complexity, we introduce the witness finding problem, a problem of searching for a witness in an unknown set

W ⊆ {0, 1}n (as a generic NP-type search problem) by using queries of the form “is Q∩W nonempty?” for some

Q ⊆ {0, 1}n (as instances of a generic NP-type decision problem). Here the set W is called a witness set and

every w ∈ W is regarded as a witness; on the other hand, the set Q is regarded as a specification of a query. A

randomized algorithm for solving the witness finding problem in this abstract setting is a pair (Q,F), where Q is

a procedure to generate queries Q1, Q2, ..., Qm (either adaptively or nonadaptively) and F : {0, 1}m → {0, 1}n is a

procedure to give a witness in W based on answers to these queries. Let AW : 2{0,1}
n → {0, 1} denote the oracle

answering decision queries. An algorithm is successful if it produces a witness in W with constant probability for

every witness set W . That is, W (or more precisely, the oracle AW) is considered as a blackbox. By contrast, an

algorithm for solving a concrete NP-type search problem only needs to succeed on a specific class of witness sets.

However, even in our abstract setting, both the standard PNP-algorithm and the ZPPNP
|| -algorithm of Ben-David

et al. succeed in solving the witness finding problem for every witness set W . In particular, the PNP-algorithm

uses only n queries whereas the ZPPNP
|| -algorithm uses O(n2) queries. On the other hand, we prove that any

1

randomized nonadaptive query algorithm that solves the witness finding problem for every W ⊆ {0, 1}n (with

probability Ω(1)) needs to ask Ω(n2) queries. That is, in this abstract framework, we show that the nonadaptive

query complexity for the witness finding problem is Θ(n2) and illustrate the difference between adaptive and

nonadaptive query complexity.

Valiant and Vazirani [VV86] gave a procedure, known as the “isolation technique”, to modify a given NP

instance to some other NP instance that reduces the number of witnesses to exactly one with a certain probability.

To be specific, consider 3SAT. The isolation technique of Valiant-Vazirani is a randomized reduction fiso from 3SAT

to Liso with the following property: each instance φ ∈ 3SAT (that may have more than one satisfying assignment)

is reduced to ψ = fiso(φ) such that, with a certain probability, ψ ∈ Liso and this is witnessed by exactly one

satisfying assignment of ψ. Recently, Dell, Kabanets, van Melkebeek, and Watanabe [DKvMW12] showed the

optimality of the isolation technique of Valiant-Vazirani. They showed that the “isolation probability”, i.e. the

probability of a unique satisfying assignment, is at most O(1/n) by any randomized reduction under a certain

blackbox computation model. While the isolation technique of Valiant-Vazirani is a many-one reduction, the

witness finding algorithm of Ben-David et al. [BCGL92] can be regarded as a more general truth-table reduction,

and by this generalized reduction, we can achieve 1− o(1) isolation probability. On the other hand, in Section 3

we show a limitation of this type of isolation by proving under a similar blackbox model that any truth-table

reduction type isolation needs Ω(n2) queries. This can be viewed as a multi-query version of the result of Dell et

al. [DKvMW12], which discussed the success probability of black-box isolation with a single query. In fact, it is

easy to see that the isolation probability upper bound of [DKvMW12] follows from our Ω(n2) query lower bound.

We also consider the situation where queries may be answered incorrectly. In fact, the motivation of Ben-David

et al. was to solve a given witness finding problem on average by using a polynomial-time algorithm A that solves

the corresponding NP-type decision problem with high probability on random instances. The algorithm A can be

seen as an erroneous oracle; on the other hand, the algorithm of Ben-David et al. is tolerant against a small fraction

of errors and solves the witness finding problem with high probability by using A as an oracle. We investigate

the question of whether the algorithm of Ben-David et al. is optimal also in terms of its error tolerance. For this,

we extend our abstract framework to include a notion of “ε-error tolerance.” The algorithm of Ben-David et al.

is O(1/n2)-error tolerant in our framework. In Section 3 we show how to improve this error tolerance parameter

by presenting a randomized nonadaptive algorithm that is O(1/n)-error tolerant while still making only O(n2)

queries.

Finally, in Section 4 we consider the setting where the witness is unique, that is, the witness set consists of one

element. This situation is typical for solving decoding problems. For example, for analyzing the hardcore property

of one-way functions, Goldreich and Levin gave a randomized polynomial-time algorithm that solves the unique

witness finding problem by using some NP oracle; see, e.g., [Gol01]. For any singleton witness set W = {w}, the
Goldreich-Levin algorithm gives a list of candidates for this witness w by making queries to an erroneous oracle

whose error probability is bounded by 1/2 − ε. This may be regarded as a “list decoding algorithm” where the

unique witness w is a “message” and the erroneous oracle is a “corrupted codeword”. We again would like to

discuss the limitations of such algorithms. For this, we relax our notion of an abstract witness finding algorithm to

allow the output to be a list of candidate witnesses. It is easy to see that, for any ε = n−O(1), the Goldreich-Levin

algorithm achieves (1/2 − ε)-error tolerance with O(n2/ε2) query complexity and O(n/ε2) list size; furthermore,

this can be improved to one with O(n/ε2) query complexity and O(1/ε2) list size. We show that the query

complexity of the improved version is close to the optimal in the following sense: There exists some small c1 > 0

such that for any ε = n−O(1), no randomized query algorithm (even an adaptive one) exists with c1n/ε
2 query

complexity that has (1/2− ε)-error tolerance and polynomially bounded list size. This can be also interpreted as

a lower bound of the query complexity for list decoding algorithms.

2

2 Preliminaries

We use standard notions and notations in computational complexity theory. Throughout this paper, we assume

strings are encoded in {0, 1}∗, and we use Ωn = {0, 1}n (or more simply Ω when n is clear by the context) to

denote the universe of witnesses for a given length parameter n. For any set X and any distribution D on X, by

“Prx:D[Φ(x)]” we mean the probability that Φ(x) holds when x is chosen under the distribution D. When D is

the uniform distribution on X, we simply write it as “Prx:X [Φ(x)].”

Definition 1 A witness set is a nonempty subset of Ωn denoted by W , and each element of W is a witness. A

query is a set Q ⊆ Ωn interpreted as the question “is Q ∩W nonempty?” Let AW (Q) ∈ {0, 1} denote the answer

from the (error-free) oracle to the query Q; that is, AW (Q) = 1 if and only if Q ∩W 6= ∅.

The witness finding problem is the problem of obtaining any one of the witnesses in W by asking queries and

using oracle answers to those queries. Here we define the following abstract notion of “algorithm” for this task.

Definition 2 A randomized witness finding query algorithm (hereafter, we omit “randomized” and “query”

for simplicity) is a pair (Q,F) of randomized algorithms where, for every witness length n and random seed

s ∈ {0, 1}r(n), Q produces a sequence of queries Q1, . . . , Qm(n) ⊆ Ωn (where Qi may depend on the oracle answers

to queries Q1, . . . , Qi−1) and F outputs an element in Ωn based on the answers to queries Q1, . . . , Qm(n). For

a witness set W , the algorithm succeeds w.r.t. to W whenever F correctly outputs an element of W . The suc-

cess probability of the algorithm is the probability Prs:{0,1}r(n) [F(s, ÃW (Q)) succeeds] for the worst witness set.

Parameters r(n) and m(n) are called the seed length and query complexity.

Wemay sometimes use the term “success probability” in a more general way meaning the probability Pr[F(s, ÃW (Q))

succeeds] under some distribution defined in each context. An algorithm is said to be nonadaptive if the distribu-

tion of queries Q1, . . . , Qm does not depend on the answers to these queries; otherwise, the algorithm is adaptive.

When n is fixed, we write simply r andm. We writeAW (Q) as a shorthand for the sequenceAW (Q1), . . . , AW (Qm)

of answers to queries Q1, . . . , Qm issued by Q, and we write F(AW (Q)) for the output of F . This notation sup-

presses the random seed s; to make this dependence explicit, we write F(s,AW (Q)).

This abstract definition of witness finding algorithms is suitable for our information-theoretic lower bounds.

Of course, we should consider more concrete algorithms for our upper bounds, including an appropriate definition

of polynomial-time computability.

Definition 3 A witness finding algorithm (Q,F) is polynomial-time if the seed length r(n) is bounded by a poly-

nomial in n, and Q and F are polynomial-time algorithms taking (1n, s) as input where s ∈ {0, 1}r(n); Q outputs

a sequence of Boolean circuits C1, . . . , Cm such that Ci computes a function {0, 1}n × {0, 1}i−1 → {0, 1} with

Qi = {x | Ci(x,AW (Q1), . . . , AW (Qi−1)) = 1}, and F outputs a Boolean circuit computing F(AW (Q)) as a

function {0, 1}m → {0, 1}n.

Remark 1 In many situations, a witness set W is determined by an “input” x to a witness finding algorithm. In

the case of 3SAT, for example, x is a satisfiable 3CNF formula and Wx is the set of its satisfying assignments.

However, it is not essential to consider such inputs in our abstract framework, so we omit specifying inputs to

witness finding algorithms.

Remark 2 In actual witness finding algorithms for NP sets, we may relax some of the above conditions. For

example, we may allow queries of the form “|W ∩ Q| ≥ k?” for some k that is polynomially bounded by n. The

following discussion does not change much if such generalized queries are allowed. Another relaxation is to allow

an algorithm to output a list of polynomially many candidate witnesses; the algorithm succeeds if W contains any

element in this list. We call an algorithm of this type a witness-list finding algorithm, and for any witness-list

3

finding algorithm, we write `(n) to denote its list size, a function bounding the number of elements in the list that

the algorithm produces for any witness set in Ωn. For the search version of an NP problem, this relaxation does

not make any difference since one can check the correctness of a witness candidate in polynomial-time.

Definition 4 For a witness finding algorithm (Q,F), we denote by Dom the set of queries produced by Q for

all possible random seeds and oracle answers. (For a polynomial-time algorithm, note that |Dom| is bounded by

2poly(n).) For a witness set W , a function ÃW : Dom → {0, 1} is ε-error bounded if its error probability is at

most ε when queries are chosen uniformly from Dom; that is,

Pr
Q:Dom

[ÃW (Q) 6= AW (Q)] < ε

holds. For an algorithm (Q,F) with random seed length r, its success probability with ε-error bounded oracle is

the probability Prs:{0,1}r [F(s, ÃW (Q)) succeeds] with the worst ε-error bounded oracle for the worst witness set.

An algorithm (Q,F) is ε-error tolerant it has Ω(1) success probability.

Remark 3 For measuring the oracle’s error probability, we assume a certain distribution D over Dom instead

of the distribution of queries made by the witness finding algorithm. This is because the error model is usually

given independently from algorithms. In fact, in the context of using the Goldreich-Levin algorithm, the uniform

distribution is used to measure oracle’s error probability that is different from the distribution of queries of the

algorithm. Throughout this paper, we consider the case where D is the uniform distribution over Dom, and we

omit specifying it.

3 Witness Finding for Isolation

In this section we consider nonadaptive algorithms for the general witness finding problem. As mentioned in

Section 1, these algorithms can be regarded as truth-table type witness isolation reductions.

We first state the algorithm of Ben-David et al. in our framework. Here we consider the error-free oracle AW

(we will consider error tolerance later in this section).

Proposition 1 There is a polynomial-time nonadaptive witness finding algorithm (QBD,FBD) with Ω(1) success

probability and O(n2) query complexity.

We first show that (QBD,FBD) is optimal in terms of query complexity.

Theorem 2 There is no nonadaptive witness finding algorithm with Ω(1) success probability and o(n2) query

complexity.

Proof. Consider any nonadaptive witness finding algorithm (Q,F) which makes m = o(n2) queries. We will

show that there exists a witness set W such that Prs:{0,1}r [F(s,AW (Q)) ∈ W] = o(1). For our analysis, we use

Yao’s principle [Yao77]. That is, we have

min
W

Pr
s:{0,1}r

[F(s,AW (Q)) ∈W] ≤ max
ρ

min
W

Pr
s:ρ

[F(s,AW (Q)) ∈W]

= min
W

max
s∈{0,1}r

Pr
W :W

[F(s,AW (Q)) ∈W] ≤ max
s∈{0,1}r

Pr
W :W∗

[F(s,AW (Q)) ∈W],

where W is any witness set, ρ is any distribution on {0, 1}r, W is any distribution on witness sets (i.e., on

nonempty subsets of Ω), and W∗ is a particular distribution on witness sets that we define below. Note that the

lefthand term of the first inequality is what we would like to estimate. To prove the theorem, we need to show

that PrW :W∗ [F(s,AW (Q)) ∈W] = o(1) for any fixed s ∈ {0, 1}r.

4

Our distribution W∗ on witness sets is defined by the following procedure to generate a witness set W : first

we choose K uniformly at random from [n], then we define W by including each w ∈ Ω in W independently with

probability 2−K .1 A small technicality is that W may possibly be the empty set; however, since W = ∅ occurs

with probability o(1) for W : W∗, we can ignore this degenerate case. 2 Note that, for k ∈ [n], the expected size

of W conditioned on K = k is 2n−k. Below we keep using K and W to denote these random variables.

We now fix an arbitrary seed s ∈ {0, 1}r. Let Q1, . . . , Qm be the queries given by Q(s), and let f be the

function from {0, 1}m to Ω given by F(s, · · ·) (which attempts to output a witness in W given the answers to

queries Q1, . . . , Qm). For i ∈ [m], let Ai = AW (Qi). That is, Ai ∈ {0, 1} is the indicator random variable for the

event that Qi ∩W 6= ∅.
Below by Pr[· · ·], we mean PrW :W∗ [· · ·]. Then Pr[f(A1, . . . , Am) ∈ W] is the success probability of the

algorithm (Q,F) with respect to the distribution W∗ when running with a fixed seed s. Our goal is to show

that Pr[f(A1, . . . , Am) ∈ W] = o(1). Toward that end, we view f(A1, . . . , Am) as a random variable over Ω and

estimate its entropy. Below we use the standard notations for discussing entropy.3

Claim 1 H(f(A1, ..., Am)) ≤ log n+O(m/n).

Proof. We have

H(f(A1, ..., Am)) ≤ H(A1, ..., Am) ≤ H(A1, ..., Am,K) = H(K) + H(A1, ..., Am | K)

≤ log n+

m∑
i=1

H(Ai | K) = log n+
1

n

m∑
i=1

n∑
k=1

H(Ai | K = k).

To finish the proof of the claim, we show that
∑n

k=1 H(Ai|K = k) = O(1) for all i ∈ [m] (where O(1) is some

universal constant). Fix arbitrary i ∈ [m]. For k ∈ [n], let pk = Pr[Ai = 1|K = k] (= Pr[Qi ∩W 6= ∅|K = k]).

We have H(Ai|K = k) = H(pk) where H : [0, 1] → [0, 1] is the binary entropy function H(p) = −p log p − (1 −
p) log(1− p). Note the inequality

min(p, 1− p) ≤ q ≤ 1/2 =⇒ H(p) ≤ −2q log q.

We use this inequality to bound H(pk).

Let λ = log |Qi|. We consider three cases depending on k ∈ [n].

• Case k ≤ λ−1: We have 1−pk = (1−2−k)|Qi| ≤ e−2λ−k

(< 1/2). Hence, we have H(pk) ≤ −2 ln(e−2λ−k

)e−2λ−k

= 2λ−k+1−log(e)2λ−k

= 2−Ω(2λ−k).

• Case λ− 1 < k < λ+ 1 (at most two k’s): We have H(pk) ≤ 1.

• Case k ≥ λ+ 1: We have pk ≤ |Qk|2−k = 2λ−k. Hence, H(pk) ≤ (k − λ)2λ−k+1.

Now it follows that

n∑
k=1

H(Ai | K = k) =

n∑
k=1

H(pk) ≤
bλ−1c∑
k=1

2−Ω(2λ−k) + 2 +

n∑
k=dλ+1e

(k − λ)2λ−k+1

< O

 ∞∑
j=1

2−Ω(2j)

+ 2 +O

 ∞∑
j=1

j2−j

 = O(1).

1The same distribution was considered in [DKvMW12] to show an O(1/n) upper bound on the success probability of witness finding

algorithms.
2Precisely speaking, we should consider a distribution W ′

∗ conditioned that the empty set is never obtained. But the difference,

which is negligible, is ignored here.
3For discrete random variables X and Y , H(X) =

∑
x −Pr[X = x] log Pr[X = x] and H(X|Y) =

∑
y Pr[Y = y]H(X|Y = y), where

H(X|Y = y) =
∑

x −Pr[X = x|Y = y] log Pr[X = x|Y = y]. For a sequence of random variables X1, . . . , Xj , H(X1, . . . , Xj) is the

entropy of the joint distribution (X1, . . . , Xj).

5

tu (Claim 1)

Using this entropy bound, we now show that Pr[f(A1, ..., Am) ∈ W] = o(1). Fix an arbitrary constant ε > 0.

For w ∈ Ω, let p(w) denote the probability that f(A1, ..., Am) takes value w. Let U = {w | p(w) ≥ 2−εn} and note

that |U | ≤ 2εn. For all w /∈ U , we have − log p(w) > εn and thus (by Claim 1)

Pr[f(A1, ..., Am) /∈ U]

=
∑
w/∈U

p(w) ≤
∑
w/∈U

−p(w) log p(w)
εn

≤ H(f(A1, ..., Am))

εn
= o(1).

Next we have

Pr[U ∩W 6= ∅] ≤ Pr[K ≤ 2εn] + Pr[U ∩W 6= ∅ | K > 2εn]

≤ 2ε+
∑
u∈U

Pr[u ∈W | K > 2εn]

< 2ε+ |U |2−2εn ≤ 2ε+ 2−εn = 2ε+ o(1).

Combining these inequalities, we have

Pr[f(A1, ..., Am) ∈W] ≤ Pr[f(A1, ..., Am) /∈ U ∨ U ∩W 6= ∅]
≤ Pr[f(A1, ..., Am) /∈ U] + Pr[U ∩W 6= ∅] ≤ 2ε+ o(1).

Since ε is arbitrarily small, we have Pr[f(A1, ..., Am) ∈W] = o(1). tu
Next we consider error tolerance. Note that the algorithm (QBD,FBD) is O(1/n2)-error tolerant since it makes

only O(n2) queries, which are uniformly distributed over the hash functions. Here we present a new polynomial-

time algorithm based on some standard error-correcting code that has a better O(1/n)-error tolerance while still

making only O(n2) queries. (Note that in our framework we do not assume any error-free checking procedure

for the obtained witnesses, as in [BT06]. One interesting point in the following algorithm is that we can indeed

implement the checking procedure with erroneous oracles.)

Theorem 3 There is a polynomial-time, nonadaptive, and O(1/n)-error tolerant witness finding algorithm with

O(n2) query complexity.

Proof. We first prepare some polynomial-time encodable and decodable code with some specific property

suitable for our usage. Below for any binary strings x and y, we denote by |x| the Hamming weight of x and by

dist(x, y) the Hamming distance between x and y.

Lemma 4 There exists a polynomial-time encodable and decodable code with the following property for some

constants c > 1 and δ > 0: For any n, let C ⊆ {0, 1}2cn denote the set of codewords encoding messages in {0, 1}n.
Then we have (i) |y| = cn for all y ∈ C, and for all distinct y, y′ ∈ C, we have (ii) dist(y, y′) ≥ 2δcn, and (iii)

|y ∨ y′| = cn+ 1
2dist(y, y

′) ≥ (1+ δ)cn, where y ∨ y′ is the bit-wise OR of y and y′. Below we use C also to denote

a function mapping any message in {0, 1}n to the corresponding codeword in {0, 1}2cn.

Proof. First consider any polynomial-time encodable and decodable binary code of some constant rate 1/c

and constant relative minimum distance δ. That is, for each n, every message in y ∈ {0, 1}n is encoded by some

codeword ŷ ∈ {0, 1}cn, and we have dist(ŷ, ŷ′) ≥ δcn for any two distinct codewords ŷ, ŷ′ ∈ {0, 1}cn. For example,

Justesen code satisfies all these requirements (see, e.g., [Rot06]). Now for any x ∈ {0, 1}n, our C(x) is defined by

C(x) = (ŷ1, ..., ŷcn, 1− ŷ1, ..., 1− ŷcn),

where ŷ = Ĉ(x). It is easy to see that C satisfies properties (i), (ii) and (iii) of the lemma. tu (Lemma 4)

6

We present our algorithm (Q,F) as a modification of the algorithm of Ben-David et al. [BCGL92] by using

this code. For this, we recall their algorithm first. The key tool of their algorithm is the isolation technique

of Valiant and Vazirani [VV86]. In the abstract setting, their technique is a polynomial-time algorithm QVV

that generates/recognizes a random subset QVV(s) of Ω (= {0, 1}n) from a random seed s ∈ {0, 1}riso for some

polynomial riso (again we write simply riso for riso(n)); the important property here is that for any nonempty

W ⊆ Ω, we have |QVV(s) ∩ W | = 1 with probability ≥ 1
4n [VV86]. For QVV(s) that achieves isolation (i.e.,

|QVV(s)∩W | = 1), we can ask each bit of the unique witness w ∈ QVV(s)∩W nonadaptively. In our framework,

this is implemented by asking queries { v | v ∈ QVV(s) ∧ vi = 1 } for all i ∈ [n]. The algorithm of Ben-David et

al. asks a set of these n queries for 4n random seeds for s to achieve Ω(1) success probability. Clearly, in order

for the algorithm to work, no error should occur for these O(n2) queries, and for this, we need an O(1/n2)-error

bounded oracle.

In our algorithm, instead of asking for each bit of the isolated witness directly, we ask for bits of the codeword

of the isolated witness. That is, for each s ∈ {0, 1}riso , we consider queries

Qs,j = { v | v ∈ QVV(s) ∧ C(v)j = 1 }

for all j ∈ [2cn]. Again, to achieve Ω(1) success probability, the query algorithm Q asks a set of these 2cn

queries for 4n independent random seeds s1, . . . , s4n ∈ {0, 1}riso . Thus, Q is an algorithm that takes random seeds

s1, . . . , s4n ∈ {0, 1}riso , and asks queries Qsk,j for all k ∈ [4n] and j ∈ [2cn]. Hence, the algorithm makes 8cn2

nonadaptive queries. Let Dom denote the set {Qs,j | s ∈ {0, 1}riso , j ∈ [4cn]} of all such queries.

For explaining the algorithm F , we first see answers we can expect from an erroneous oracle. Let ÃW : 2Ω →
{0, 1} be any δ

32n -error bound oracle for some unknown witness set W . That is, we assume that

Pr
Q:Dom

[ÃW (Q) 6= AW (Q)] (= Pr
s:{0,1}r,j:[2cn]

[ÃW (Qs,j) 6= AW (Qs,j)]) ≤ δ

32n
.

For s ∈ {0, 1}riso , we define

α(s) =
1

2cn

∑
j∈[2cn]

AW (Qs,j) and α̃(s) =
1

2cn

∑
j∈[2cn]

ÃW (Qs,j).

Let Good(s) be the event that |α(s)− α̃(s)| < δ/4. By Markov’s inequality we have

Pr
s
[¬Good(s)] = Pr

s
[Pr

j
[ÃW (Qs,j) 6= AW (Qs,j)] ≥ δ/4]

≤ Es[Prj [ÃW (Qs,j) 6= AW (Qs,j)]]

δ/4
≤ 1

8n
. (1)

Let Isolated(s) be the event that |QVV(s) ∩W | = 1.

Claim 2 If Good(s) holds, then Isolated(s) ⇔ | 12 − α̃(s)| < δ
4 . Moreover, if Good(s)∧ Isolated(s) holds, then given

ÃW (Qs,1), . . . , ÃW (Qs,2cn), the unique element in QVV(s) ∩W can be computed in polynomial-time.

Proof. The claim follows from the properties of C. If Good(s), then

|QVV(s) ∩W | = 0 ⇒ α(s) = 0 ⇒ α̃(s) < δ
4 (<

1
2 − δ

4),

|QVV(s) ∩W | = 1 ⇒ α(s) = 1
2 ⇒ 1

2 − δ
4 < α̃(s) < 1

2 + δ
4 ,

|QVV(s) ∩W | ≥ 2 ⇒ α(s) ≥ 1
2 + δ

2 ⇒ α̃(s) > 1
2 + δ

4 .

Thus, Good(s) implies Isolated(s) ⇔ | 12 − α̃(s)| < δ
4 . In the event that both Good(s) and Isolated(s) hold, we can

decode (ÃW (Qs,1), ..., ÃW (Qs,2cn)) ∈ {0, 1}2cn in polynomial-time to recover the original message w ∈ {0, 1}n;
this w is then the unique element of QVV(s) ∩W . tu (Claim 2)

7

Now the following description of algorithm F is clear from this claim: For given answers from the oracle,

compute α̃(si) for all i ∈ [4n]. If there exists i ∈ [4n] such that | 12 − α̃(si)| <
δ
4 , then for the first such i, output the

unique element of QVV(si) ∩W according to Claim 2 under the (possibly false) assumption that Good(si) holds.

(If | 12 − α̃(si)| ≥ δ
4 for all i ∈ [4n], the algorithm simply fails.)

To analyze its success probability, note that it successfully outputs a witness in W whenever
∧

i∈[4n] Good(si)∧∨
i∈[4cn] Isolated(si) holds. Using the bound (1) and the fact that Prs:{0,1}riso [Isolated(s)] ≥ 1

4n , we have

Pr
s1,...,s4n

[∧
i∈[4n] Good(si) ∧

∨
i∈[4n] Isolated(si)

]
≥ 1− Pr

s1,...,s4n

[∨
i∈[4n] ¬Good(si)

]
− Pr

s1,...,s4n

[∧
i∈[4n] ¬Isolated(si)

]
≥ 1− 4nPr

s
[¬Good(s)]−

(
1− Pr

s
[¬Isolated(s)]

)4n
≥ 1− 1

2 − 1
e > 0.13.

Therefore, the algorithm succeeds with constant probability > 0.13 for any δ
32n -error bounded oracle. tu

4 Witness Finding for Decoding

We consider the case where a witness set is restricted to a singleton set, the situation typical for decoding problems.

Throughout this section, we consider only singleton witness sets, and the conditions of, e.g., Definition 2 are

modified for this restriction. Also, since our target witness set is singleton, we specify the target by a witness

w ∈ Ω instead of a witness setW = {w} in the following. Throughout this section, we use ε to denote any function

on N such that 0 < ε(n) < 1/2 holds for any n.

As explained in Introduction, the original Goldreich-Levin algorithm is a (1/2 − ε)-error tolerant witness-list

finding algorithm with O(n2/ε2) query complexity and O(n/ε2) list size, and this has been improved as follows4

(see for example [Gol01]).

Proposition 5 There is a randomized polynomial-time, nonadaptive, and (1/2 − ε)-error tolerant witness-list

finding algorithm with O(n/ε2) query complexity and O(1/ε2) list size.

Our second main result shows that the above query complexity is optimal. In fact, if both constant success

probability and polynomially bounded list size are required, then we show that m > c1n/ε
2 queries are necessary

while the above theorem shows that m = ĉ1n/ε
2 is sufficient for some constants c1 < ĉ1.

Theorem 6 Consider any witness-list finding algorithm with seed length r, query complexity m, and list size `.

For any sufficiently small ε > 0, let α denote its success probability with (1/2− ε)-error bounded oracle. Then for

some constants c1 > 0, if m ≤ c1n/ε
2, then we have α = O(`2−Ω(n)/ε). (In the proof below, we use c1 = 1/640.)

Proof. Consider any witness-list finding algorithm (Q,F) with random seed length r, query complexity m,

and list size `. Also consider any ε > 0 for the advantage parameter. We may assume that ε < 1/4. As usual, fix

sufficiently large n, and consider the problem of finding a given witness w ∈ Ω = {0, 1}n; from now on, r, m, `,

and ε are some numbers determined by n. In particular, let us fix the query number bound m to m = c1n/ε
2 for

c1 = 1/640.

Let Dom be the set of all possible queries made by Q with any random seed and any oracle answers. We

consider two cases depending on D := |Dom|; the case (a) where D ≤ d1ε
−2 for some sufficiently large constant

4By using a different technique, we can show some deterministic and non-adaptive witness-list finding algorithm of the same order

of query complexity and list size respectively; that is, the upper bound can be achieved with deterministic and non-adaptive queries,

while the almost tight lower bound (Theorem 6) holds even for randomized and adaptive queries. A drawback is that we do not know

whether it can be executed in polynomial-time. For the completeness, we give the algorithm in Appendix, Theorem 9.

8

d1 (that will be specified later), and the case (b) where D > d1ε
−2. (What follows is for the case (b); the proof

for the case (a) is given in Appendix.)

Consider the case (b), i.e., the case where Dom is sufficiently large. Let OKw denote the set of all oracles that

are (1/2− ε)-error bounded. Our goal is to estimate the success probability α defined by

α = min
w∈Ω

min
Ãw∈OKw

Pr
s:{0,1}r

[F(s, Ãw(Q)) 3 w].

Again by using Yao’s principle, we consider some distributions on w ∈ Ω and on Ãw ∈ OKw, and discuss the

probability of F(s, Ãw(Q)) 3 w under these distributions while any s ∈ {0, 1}r is fixed.

For the distribution of witnesses, we consider the uniform distribution on Ω; the symbol Ω is used also for

denoting this distribution. For defining a distribution on OKw and for analyzing the adaptive query computation of

the algorithm, we use a folklore argument attributed to Rudich (see, e.g., [GNW95]). We use, as a “noise function”,

a random function ∆ defined on Dom; ∆ takes, for each Q ∈ Dom independently, value 0 with probability 1/2+2ε

and value 1 with probability 1/2− 2ε. Then we assume that our oracle is generated by Ãw(Q) = Aw(Q)⊕∆(Q);

this is our distribution5 on OKw, which is again denoted by OKw.

Now we fix an arbitrary random seed s ∈ {0, 1}r. Since s is fixed, the computation of the algorithm and the

produced list of witness candidates are determined by a sequence of answers from oracle Ãw that is determined by w

and ∆. We use a string a ∈ {0, 1}m to denote this answer sequence that can be also regarded as a computation path

of the algorithm. (If the number of queries is smaller thanm on some path, then a prefix a′ of a is used to determine

the computation. That is, in this case, we consider that a′u yields the same answer for any u ∈ {0, 1}m−|a′|; for

the sake of the following analysis, we regard the case ui = 1 as the case that the oracle makes an error.) Note

that, no matter which w is given, every answer sequence a occurs depending on ∆, and that the algorithm behaves

in the same way on the same answer sequence. On the other hand, depending on w, the probability that each a

occurs may differ. For each w ∈ Ω and a ∈ {0, 1}m, let Ea,w denote the event that the algorithm receives this

answer sequence a with respect to w, and let #1(a,w) denote the number of queries Q such that ∆(Q) = 1. Then

the probability p(a,w) that this event holds is

p(a,w) =

(
1

2
− 2ε

)#1(a,w)(
1

2
+ 2ε

)m−#1(a,w)

. (2)

Here we assume, without loss of generality, that all queries on each computation path are different and hence

errors occur independently along each computation path.

We fix any w ∈ Ω and discuss the algorithm’s success probability αw. We say that an answer sequence is good

(with respect to w) if it yields a list containing w. Though Ea,w and Ea′,w may be correlated, they are disjoint;

hence, we have

αw =
∑

a:good

p(a,w) =
∑

a:good

(
1

2
− 2ε

)#1(a,w)(
1

2
+ 2ε

)m−#1(a,w)

.

We would like to express the number Mw of good answer sequences in terms of this αw. Consider the ordering of

sequences a with respect to p(a,w). Note that Mw is minimized if the set of good sequences consists of the first

Mw sequences in this ordering. For the case where αw < 1/2, let kw be the smallest number satisfying

αw ≤
kw∑
i=0

(
m

i

)(
1

2
− 2ε

)i(
1

2
+ 2ε

)m−i

, (3)

5Note that under this distribution some Ãw may not be (1/2− ε)-error bounded although this probability is small since |Dom| ≥
d1ε−2 and d1 is sufficiently large. Thus, precisely speaking, the distribution that we should consider is the one that defines oracles by

using ∆ satisfying the condition that |{Q ∈ Dom|∆(Q) = 1}| ≤ (1/2− ε)|Dom|. But the difference is within at most constant factor,

and we argue here by using the distribution OKw defined above.

9

and let δw be defined so that kw = b(1/2− 2ε− δw)mc holds. Then we have δw > 0, and by the Hoeffding bound

the righthand side is at most exp(−2δ2wm)/2, and hence,

αw ≤ 1

2
exp(−2δ2wm). (4)

On the other hand, for the case where αw ≥ 1/2, we simply set kw = b(1/2− 2ε)mc and δw = 0. Then from the

above observation, we have

Mw ≥
kw−1∑
i=0

(
m

i

)
≥
(
m

kw

)
≥ cstr2

m

√
m

exp(−4(2ε+ δw)
2m), (5)

where the last bound is from Claim 3 below.

Now we bound Mw by αw. First consider the special case where ε ≤ δw. In this case, we have αw < 1/2, and

from (4), we immediately have αw ≤ exp(−2δ2wm) ≤ exp(−2ε2m) ≤ exp(−2c1n) = 2Ω(−n), which leads to our

desired bound. Thus, in the following, we consider the case δw ≤ ε. Recall that m = c1n/ε
2 for c1 = 1/640. Then

from (4) and (5) (and using the bound αw ≤ 1 for the case αw ≥ 1/2), we have, for some constant d2 > 0, that

Mw ≥ cstr2
m

√
m

exp(−4(2ε+ δw)
2m)

≥ cstr2
m

√
m

exp(−32ε2m− 4δ2wm) ≥ d22
m2−n/10

√
m

α2
w. (6)

Note that each answer sequence cannot be good for more than ` witnesses, and that there are 2m answer

sequences. Hence, we have
∑

w∈ΩMw ≤ `2m, and thus from (6) we have
∑

w∈Ω α
2
w ≤ `

√
m2n/10

d2
. Then by the

Cauchy-Schwartz inequality, we have(∑
w∈Ω

αw

)2

≤

(∑
w∈Ω

α2
w

)
·

(∑
w∈Ω

1

)
≤ `

√
m2n/102n

d2
=

`
√
m211n/10

d2
.

Thus, we have

Pr
w:Ω, Ãw:OKw

[F(s, Ãw) = w] =
1

2n

∑
w∈Ω

αw ≤
√
`
√
m2−9n/20

√
d2

= O

(
`2−Ω(n)

ε

)
.

Since this holds for all s ∈ {0, 1}r, by Yao’s principle, we have the desired bound for α. tu

Claim 3 By the Stirling bound, for some constant cstr > 0 and for any ε ≤ 1/4, we have(
u

(12 − ε)u

)
≥ cstr2

u

√
u

exp(−4ε2u).

Recall that the algorithm given in Proposition 5 outputs a list of size O(1/ε2) even with the optimal query

complexity. In fact, this list size is optimal up to a constant factor subject to achieving constant success probability.

More precisely, we have the following bound.

Theorem 7 Consider any witness-list finding algorithm with list size `, and for any sufficiently small ε > 0, let α

be its success probability with (1/2−ε)-error bounded oracle. Then for some constants c2 > 0, if n > c2 log(1/ε)/ε
2,

then we have α = O(`ε2).

10

References

[BCGL92] S. Ben-David, B. Chor, O. Goldreich, and M. Luby, On the theory of average-case complexity, Journal

of Computer and System Sciences, 44(2):193–219, 1992.

[BT06] A. Bogdanov and L. Trevisan, On worst-case to average-case reductions for NP problems, SIAM J.

Comput., 36(4):1119–1159, 2006.

[DKvMW12] H. Dell, V. Kabanets, D. van Melkebeek, and O. Watanabe, Is the Valiant-Vazirani isolation lemma

improvable?, in Proc. 27th Conference on Computational Complexity, 2012, to appear.

[Gol01] O. Goldreich, Foundations of Cryptography, Basic Tools, Cambridge Univ. Press, 2001.

[GHK11] V. Guruswami, J. H̊astad, and S. Kopparty, On the list-decodability of random linear codes, IEEE

Transactions on Information Theory, 57(2):718–725, 2011.

[GL89] O. Goldreich and L. Levin, Hard-core predicates for any one-way function, in Proc. 21st ACM Sympos.

on the Theory of Comput., 25–32, 1989.

[GNW95] O. Goldreich, N. Nisan, and A. Wigderson, On Yao’s XOR-lemma, Technical Report TR95-050, ECCC

Report, 1995.

[GV10] V. Guruswami and S. Vadhan, A lower bound on list size for list decoding, IEEE Transactions on

Information Theory, 56(11):5681–5688, 2010.

[Rot06] R.M. Roth, Introduction to Coding Theory. Cambridge Univ. Press, 2006.

[VV86] L. Valiant and V. Vazirani, NP is as easy as detecting unique solutions, Theoretical Computer Science,

47:85–93, 1986.

[Yao77] A.C. Yao, Probabilistic computations: toward a unified measure of complexity, Proc. of the 18th IEEE

Sympos. on Foundations of Comput. Sci., IEEE, 222–227, 1977.

11

Appendix

We state proofs left out of the body of the paper.

Proof. (Proof of Case (a) in the proof of Theorem 6)

We list all possible queries in Dom under some ordering, and let Q1, ..., QD be this list. Oracle answers to these

queries can be specified naturally by a string a ∈ {0, 1}D. For any a ∈ {0, 1}D and w ∈ Ω, we say that a and w are

(1/2 + ε)-consistent if the Hamming distance between a and Aw(Q1)Aw(Q2) · · ·Aw(QD) is ≤ D′ := (1/2 − ε)D.

Note that each w ∈ Ω has
(
D
D′

)
strings that are (1/2+ ε)-consistent with w; hence, the total number of pairs (a,w)

that are (1/2 + ε)-consistent is exactly 2n
(
D
D′

)
. Thus, there exists some a0 ∈ {0, 1}D that is (1/2 + ε)-consistent

with at least
2n
(
D
D′

)
2D

≥ 2ncstr2
D

2D
√
D exp(4ε2D)

≥ cstr2
n

√
D exp(4d1)

= O (ε2n)

witnesses, where we use the bound given by Claim 3 below for
(
D
D′

)
. Let W0 denote the set of such witnesses.

Now we again follow Yao’s principle and consider some distribution on witnesses while we fix a random seed

used by (Q,F) to any s in {0, 1}r. Our distribution is simply the uniform distribution on W0. Note that a0 is

(1/2−ε)-error bounded for any witness w ∈W0. Thus, for any w ∈W0, we consider the execution of the algorithm

with random seed s and oracle answers specified by a0. Then the output, i.e., the list of ` candidates for w, is

fixed, and it can be correct for at most ` witnesses w ∈ W0. Hence, under the uniform distribution on W0, the

success probability of our algorithm (with respect to s and a0) is at most `
W0

= O (`2−n/ε), which can be used

as an upper bound for the success probability of the algorithm in the worst case by Yao’s principle. tu

Claim 3. By the Stirling bound, for some constant cstr > 0 and for any ε ≤ 1/4, we have(
u

(12 − ε)u

)
≥ cstr2

u

√
u

exp(−4ε2u).

Proof. We use the following approximation by Stirling: For some constants clow and cup and for any n ≥ 1, we

have

clow
√
n
(n
e

)n
< n! < cup

√
n
(n
e

)n
.

Let β = 1/2− ε. Then for some constant d > 0, we have(
u

βu

)
=

u!

((1− β)u)!(βu)!
≥ d√

β(1− β)u
· uu

((1− β)u)(1−β)u(βu)βu

=
d√

β(1− β)u
· (1− β)−(1−β)uβ−βu.

This can be modified further to(
u

βu

)
≥ d√

(1/4− ε2)u
·
(
1

2
− ε

)−(1/2−ε)u(
1

2
+ ε

)−(1/2+ε)u

=
d√

(1/4− ε2)u
·
(
1

4
− ε2

)−u/2+εu(
1

2
+ ε

)−2εu

≥ d√
(1/4− ε2)u

· 4u/2−εu22εu(1 + 2ε)−2εu

=
d2u√

(1/4− ε2)u
· (1 + 2ε)−2εu ≥ cstr2

u

√
u

· exp(−4ε2u).

12

tu

Theorem 7. Consider any witness-list finding algorithm with list size `, and for any sufficiently small ε > 0, let α

be its success probability with (1/2−ε)-error bounded oracle. Then for some constants c2 > 0, if n > c2 log(1/ε)/ε
2,

then we have α = O(`ε2).

Proof. The proof follows immediately from the lemma stated below, which is a special case of the result of

Guruswami and Vadhan [GV10] on a lower bound of list size for list-decoding, and the outline of Case (a) in the

proof of Theorem 6 with Yao’s principle.

Lemma 8 ([GV10]) For some constants d1, d2 > 0, the following holds: For any integer D > 0 and any C ⊆
{0, 1}D, if ε < d1 and |C| > 2d2/(2ε

2 log(1/ε)), then there exists some a0 ∈ {0, 1}D such that |C ∩B(1/2− ε, a0)| =
Ω(ε−2).

Consider any witness-list finding algorithm (Q,F). Consider any advantage ε, 0 < ε < d1, and let c2 be the

constant d2 specified in Lemma 8. Let D = |Dom|, and we list all possible queries Q1, ..., QD in Dom under some

ordering. We view C in Lemma 8 as the set of oracle answers Aw(Q1), ..., Aw(QD) to these queries for some w ∈ Ω

(= {0, 1}n). We may assume that |C| ≥ 2n/2; since otherwise, there are large number of w’s with the same oracle

answers, and the success probability α becomes small and the desired upper bound for α can be shown rather

easily (by using the condition that n > c2/ε
2 log(1/ε)). Thus, the condition |C| > 2d2/(2ε

2 log(1/ε)) of the lemma

is satisfied if n > c2/ε
2 log(1/ε). Then by Lemma 8, there exists a0 ∈ {0, 1}D that is (1/2 + ε)-consistent with

Ω(ε−2) witnesses. Let W0 be the set of such witnesses. Now, we again follow Yao’s principle, and by the same

reasoning of Case (a) in the proof of Theorem 6, the desired upper bound `/|W0| = O(`ε2) for α is derived. tu
Finally, we give a deterministic witness finding algorithm whose performance (except its time bound) is similar

to the improved Goldreich-Levin algorithm (see the footnote on page 8).

Theorem 9 There is a deterministic, nonadaptive, and (1/2−ε)-error tolerant witness-list finding algorithm with

O(n/ε2) query complexity and O(1/ε2) list size.

Proof. The proof is almost trivial from the following lemma, which provides an optimal list-decodable code.

Lemma 10 ([GHK11]) For some m = O(n/ε2), there exists a set C ⊆ {0, 1}m of size 2n such that for every

v ∈ C, we have |B(1/2 − ε, v) ∩ C| = O(1/ε2), where B(γ, v) ⊆ {0, 1}m denotes the Hamming ball of radius γm

centered at v.

(Note that [GHK11] proved much stronger statement.)

We use this lemma to design our algorithm. Consider any ε and fix any n. Let C be the set given in Lemma 10.

We associate every witness w ∈ Ω (= {0, 1}n) with an element in C in any one-to-one manner. Denote by C(w) an

element in C corresponding to w ∈ Ω. Our algorithm is deterministic and works as follows: The i-th query is given

by Qi = {v : C(v)i = 1}, where C(v)i denotes the ith bit of C(v) ∈ {0, 1}m. Namely, the query “{w} ∩Qi 6= ∅?”
asks whether the i-th bit of C(w) is 1 or not. On the answers Ãw(Q1), ..., Ãw(Qm), the algorithm outputs a list

of all the elements of {v|C(v) ∈ B(1/2− ε, α̃w)∩C}, where α̃w := (Ãw(Q1), ..., Ãw(Qm)) ∈ {0, 1}m. Note that we

do not know an efficient way for enumerating these elements and thus the algorithm makes such a list by brute

force.

From a coding-theoretic viewpoint, w is an n-bit message, C(w) is its codeword of m-bit length, and α̃w

is an corrupted codeword. Hence, if Ãw makes at most (1/2 − ε)m errors, then we have the target witness in

{v|C(v) ∈ B(1/2 − ε, α̃w) ∩ C}. Clearly, the algorithm makes m queries and it follows from Lemma 10 that the

list size is O(1/ε2). tu

13

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

