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Abstract

Lovász and Schrijver [17] introduced several lift and project methods for 0-1 integer
programs, now collectively known as Lovász-Schrijver (LS) hierarchies. Several lower
bounds have since been proven for the rank of various linear programming relaxations
in the LS and LS+ hierarchies. In this paper we investigate rank bounds in the more
general LS∗ hierarchy, which allows lifts by any derived inequality as opposed to just
x ≥ 0 and 1 − x ≥ 0 in the LS hierarchy. Rank lower bounds for LS∗ were obtained
for the symmetric knapsack polytope by Grigoriev et al [14]. In this paper we show that
LS∗ rank is incomparable to other hierarchies like LS+ and Sherali-Adams (SA) and
show rank lower bounds for PHPn+1

n and integrality gaps for optimization problems
like MAX-CUT in LS∗. The rank lower bounds for LS∗ follow from rank lower bounds
for the SA∗ hierarchy which is a generalization of the SA hierarchy in the same vein
as LS∗. We show that the LS∗ rank of PHPn+1

n is ∼ log2 n. We also extend the
polynomial rank lower bounds and integrality gaps for MAX-CUT studied in Charikar et
al. [5] for SA hierarchy to corresponding logarithmic rank lower bounds and integrality
gaps in the LS∗ hierarchy. The proof translates various known SA rank lower bounds [5]
to weaker SA∗ (and LS∗) rank lower bounds as long as the number of variables in the
constraints of the initial linear program is small. In the reverse direction we give an
example of a linear program with large number of variables in a constraint which has
unit rank in SA∗ (and LS∗) hierarchies but linear rank in SA (and LS+) hierarchies.

∗Department of Computer Science, University of Chicago, Chicago IL 60637; email:
pworah@uchicago.edu.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 3 (2012)



1 Introduction

Lift and project hierarchies like the Lovász-Schrijver (LS) hierarchy [17] and the
Sherali-Adams (SA) hierarchy [24] have been extensively studied in the past few years
both from an optimization perspective [7] and a proof complexity perspective [14].
Such hierarchies can be thought of as “lifting” a polytope to higher dimensions by
multiplying the initial inequalities with inequalities of the form x ≥ 0 and 1 − x ≥ 0
to obtain lifted inequalities. This raises the natural question of lifting the intial in-
equalities with more general inequalities, say the already known inequalities. Both [17]
and [24] raise this question but leave it for future investigation. Grigoriev et al [14]
formally introduced the LS∗ proof system which allows for multiplication of any two
derived inequalities i.e. the lifts are not restricted to x ≥ 0 and 1− x ≥ 0 and investi-
gated rank lower bounds for LS∗. In this paper we continue the investigation of rank
bounds for LS∗ and its counterpart without projection - SA∗. We show upper bounds
on LS∗ and SA∗ rank which demonstrate that even these simple generalizations of LS
and SA can be relatively powerful and yet we can solve relevant optimization problems
over polytopes obtained within a constant number of rounds in polynomial time. We
also show that it is possible to generalize many rank lower bounds and integrality gaps
for SA to SA∗ and LS∗ using current techniques. But first we give some background
and motivation for studying such hierarchies.

A 0-1 integer program can be used to encode a combinatorial optimization prob-
lem (say MAX-SAT, MAX-CUT, Vertex Cover and so on). Essentially one is given a
linear objective function which one wishes to minimize/maximize in presence of linear
constraints such that the variables take 0-1 values. Since many of the optmization
problems are known to be NP-complete one can attempt to relax the integer program-
ming problem to a linear programming problem which can be solved tractably. The
obtained fractional solution is rounded to give an integer solution which would ideally
be provably close to the optimal [25]. Therefore the quality of the linear program-
ming relaxation, usually measured by the worst case integrality gap of the problem
instances, would be crucial in determining the quality of the final rounded solution. In
the past two decades many linear programming hierarchies have been devised which on
the one hand produce a sequence of linear programs (or even semidefinite programs)
with non-increasing integrality gaps such that the sequence converges to the integer
program eventually and on the other hand also ensure that it is easy to find the optimal
(or approximately optimal) solution for any linear program, which occurs early in the
sequence, relatively efficiently. See the surveys [7, 16].

Another motivation to study such hierarchies comes from proof complexity where
they are treated as weak proof systems [20, 14]. The overall goal in proof complex-
ity is to prove lower bounds on the size (and other natural parameters) for stronger
and stronger proof systems starting from resolution all the way upto extended Frege.
See [15, 23] for a survey. To summarize, from a proof systems perspective one ignores
the objective function and starts with an infeasible integer program obtained by a suit-
able encoding of an unsatisfiable CNF. New inequalities are derived from the old using
inference rules corresponding to the hierarchy under consideration. A valid proof i.e.
a refutation is a succesful derivation of the empty polytope using the inference rules
corresponding to the hierarchy in consideration. The aim is to prove bounds on the
size and even the depth of the proof. For the purposes of this paper we will not make
much of the differences between the above two viewpoints.
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In this paper we will focus on the Lovász-Schrijver hierarchy [17] and the Sherali-
Adams hierarchy [24] and their generalizations. Both these hierarchies can be described
as “lift and project” hiearchies. In other words given the initial linear program one
“lifts” it by introducing new “lifted” variables and “lifted” inequalities obtained from
multiplying the original inequalities with expressions xi and 1 − xi (where xi is a
variable in the initial linear program). Next the variables xixi are identified with xi
for reasons of soundness and completeness that are formally explained in [7, 10, 17].
The difference between LS and SA lies in the next step i.e. the “project” step. In
LS one must project back to the original variables before the next iteration of the lift
step while in SA one needs to project back only at the end of all the lift steps. Both
the seminal papers [17, 24] raise the prospect of lifts with respect to expressions other
than just xi and 1− xi. However they do not investigate such general lifts any further
and leave it for future investigation. Rank bounds for LS∗ [14] and the closely related
SA∗ (formally defined later), which deal with such general lifts, are the main object of
investigation in this paper.

Results and Techniques: First, we provide a formal definition of SA∗ and relate
it to LS∗. We also observe that it is possible to optimize over polytopes obtained
within constant rounds of SA∗ and LS∗ in polynomial time. Next we investigate upper
bounds for LS∗ and SA∗ on polytopes derived from matching problems in graphs. The
reason for selecting such problems is that on the one hand the lifted inequalities have
a simple structure making them easier to manipulate and on the other hand they are
known to be hard for LS, LS+, SA and even Lasserre hierarhies. The following table
summarizes the known rank bounds for a linear encoding of the pigeon-hole principle
on Kn+1,n and the matching polytope on K2n+1.

LS SA LS+ Lasserre SA∗ LS∗
PHP on
Kn+1,n

n− 1 [14] n− 1 [9] 1 [14] 1 ∼ n
2 (this) ∼ log2 n

(this)
Matching
polytope on
K2n+1

≥ 2n − 1,≤
2n2 − 1 [13]

2n− 1 [18] n [13] Θ(n) [1] ≤ n (this) ?

We also provide a simple pathological example where LS∗ and SA∗ require rank 1 but
SA and LS+ require rank n. In Section 5 we prove the following matching lower bound
for the linear encoding of the PHP principle (LPHPn+1

n ) in SA∗ and together with
Observation 3.1 it implies a ∼ log2 n rank lower bound for LS∗.

Theorem 5.6. Deriving the empty integer polytope for LPHPn+1
n requires rank greater

than bn2 c − 1 in SA∗.

A common feature of the above examples is that they all have some inequalities
with many variables and the intuition behind this is discussed in Section 6 in context
of the proof of Theorem 6.5 stated below.

Theorem 6.5. The SA∗ rank of MAX-CUT is Ω(nγ(ε)) and the LS∗ rank of MAX-
CUT is Ω(log2 n) and the integrality gap is 2− ε in each case for a given ε > 0.

The proof is based on ideas in [5] and also extends to other similar optimization
problems. Our bounds proceed by translating the SA lower bound to SA∗ lower bounds
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which then translate to LS∗ lower bounds. We take such an indirect route because it
is more difficult to characterize the facets or even verify that a given point belongs to
the polytope obtained after even a few rounds of LS∗ as opposed to SA or LS. The
difficulty lies with understanding the projection operation which, not coincidentally,
also seems to be a bottleneck for obtaining size lower bounds for LS and other similar
proof systems [19].

A brief walkthrough of the paper follows. In Section 2 we give pointers to back-
ground material and other basic definitions. In Section 3 we give a survey of the
couple of known rank bounds in LS∗ and also discuss the relationship between SA∗
and LS∗ rank and algorithmic aspects related to these hierarchies. In Section 4 we
give upper bounds on the LS∗ and SA∗ ranks of some polytopes with large LS, SA
or LS+ ranks. In Section 5 we use ideas from [9] to obtain a matching logarithmic
lower bound (Theorem 5.6) on the LS∗ rank of PHPn+1

n via a n
2 lower bound on the

SA∗ rank. In Section 6 we use ideas in [5] to obtain LS∗ and SA∗ rank lower bounds
and integrality gaps (Theorem 6.5) for MAX-CUT and discuss its extension for several
other optimization problems as long as the initial linear program has constraints with
only a small / constant number of variables. Finally, we present some open problems.

2 Preliminaries and definitions

We assume the reader is familiar with basics of combinatorial optimization and proof
complexity. For details about polytopes, facets, extreme rays, linear programs and
other definitions related to convex optimization the reader can refer to [3]. For details
about linear programming hierarchies the reader can refer to [16, 7, 14] and for details
about complexity theory and proof complexity the reader can refer to [15, 23, 22]. In
this section we recollect a handfull of basic definitions needed for the purposes of this
paper.

In this paper, the input is a polytope K := {x ∈ Rn|Ax ≥ b} in Qn i.e., the unit
cube [0, 1]n for some n ∈ N. The constraints are assumed to be polynomially many in n
and explicitly given. The definition of LS [17] uses the homogenized cone K̃ instead of
the polytope K. The polytope K corresponding to the homogenized cone K̃ is simply
obtained by intersecting it with the hyperplane x0 = 1.

Definition 2.1 ([17]). Given convex cones K̃1, K̃2 in Rn+1 define the cone M(K̃1, K̃2)
(the lifted LS cone) as the cone consisting of all (n + 1) × (n + 1) matrices Y in R
satisfying the conditions:

1. Y is symmetric

2. Yii = Yi0

3. K̃1
∗
Y K̃2

∗ ≥ 0.

Let N(K̃1, K̃2) denote the projection Y e0 of M(K̃1, K̃2). Define N(K̃, Q̃n) (or simply
N(K)) as the cone (polytope) obtained after a single LS lift and project step.

N r(K) = N(N r−1(K)) denotes the LS polytope of rank r. The SA hierarchy [24]
is just like the LS hierarchy but with one difference: the project step is applied only
at the end of all the lift steps. We do not give a moment matrix definition of SA
hierarchy but it can be found in [16]. In this paper we will be mainly concerned
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with the characterization of LS and SA which is based on lifted constraints instead
of lifted points (see [5, 18] or [16]) as in the above definition. Using essentially the
Farkas Lemma and linear algebra the LS lift and project (2.1) can be alternatively
characterized as follows.

Lemma 2.2 ([10, 17]). Given an initial polytope K in Rn, point x ∈ N(K) iff it
satisfies all linear inequalities of the form∑

i,j

µixihj(x) +
∑
i,j

νi(1− xi)hj(x) +
∑
i

γi(x2
i − xi)

where hi ≥ 0 are the constraints of K, µi, νi are non-negative reals and γ is any real.

Therefore one can formally define the LS proof system as follows.

Definition 2.3 ([14]). Given a set C of linear inequalities on the variables {x1, ..., xn}
and add to that axioms x2

i − xi = 0, we have the following inference rules for LS:

1. p≥0
p·q≥0 where deg(pq) ≤ 2 and q ∈ {xi, 1− xi : i ∈ [n]}.

2. p≥0 q≥0
αp+βq≥0 for α, β ∈ R+.

A valid refutation must obtain the contradiction −1 ≥ 0.

The following is an alternative characterization of the LS rank from [14] in view
of Definition 2.3. One can naturally visualize a LS derivation as a directed acyclic
graph (DAG) and the LS rank of an inequality is its depth in the DAG where we only
take into account edges corresponding to inference rule 1 from Definition 2.3 when
measuring depth in the DAG. The LS rank of a polytope is the maximum of the LS
ranks of the facet inequalities.

Let Sn(R) denote the Smolensky ring R[{xi}]/({x2
i − xi}). The definition below is

adapted from Section 3.2 of [16].

Definition 2.4. Given a set C of linear inequalities on the variables {x1, ..., xn} in
Sn(R), we have the following inference rule for r rounds of SA:

1. p · q ≥ 0 where p ∈ C, q = Πi∈Iqi, qi ∈ {xi, 1− xi : i ∈ [n]} and |I| ≤ r.
2. p≥0 q≥0

αp+βq≥0 for α, β ∈ R+.

Again a valid refutation must obtain −1 ≥ 0.

Observe that if we wanted to derive all extreme inequalities obtained within r
rounds of LS then we would have to first derive the extreme inequalities that can be
obtained within r− 1 rounds of LS and then do one more lift and project step i.e. use
both rules 1 and 2 in Definition 2.3. Unlike LS, the SA hierarchy is “static” in nature
i.e. we might as well derive all our lifted inequalities, that we can derive in r rounds,
at once via rule 1 in Definition 2.4 and then take relevant convex combinations with
rule 2 as necessary. For more details about static (and dynamic) derivations see [14].

Proof systems vs. Linear program hierarchies: In general when the integer poly-
topes are not necessarily empty, the proof lines above can be equivalently represented
as lifted linear inequalities (in higher dimensions) by mapping each Πi∈Ixi to lifted
variables xI . A more detailed discussion on lifted inequalities can be found in the
papers [5, 18] and the surveys [7, 16]. Therefore we can always obtain the definition
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of a hierarchy in terms of lifted inequalities from the definition of the corresponding
proof system, which is in terms of multinomials, and vice versa.

Finally, one can naturally generalize LS and SA by relaxing the restriction in the
first inference rule in the definitions above. The LS∗ proof system was defined by
Grigoriev et al [14] as follows.

Definition 2.5 ([14]). Given a set C of linear inequalities on the variables {x1, ..., xn}
and add to that axioms x2

i − xi = 0, we have the following inference rules for LS∗:

1. p≥0 q≥0
p·q≥0 where deg(p · q) ≤ 2.

2. p≥0 q≥0
αp+βq≥0 for α, β ∈ R+.

A valid refutation must obtain the contradiction −1 ≥ 0.

Again only use of inference rule 1 counts towards the LS∗ rank. Closely inspired
by [14] and [24] one can formally define the intermediate generalization SA∗ as follows:

Definition 2.6. Given a set C of linear inequalities on the variables {x1, ..., xn} in
Sn(R), we have the following inference rule for r rounds of SA∗:

1. p · q ≥ 0 where p ∈ C, q = Πi∈Iqi, qi ∈ C and |I| ≤ r.
2. p≥0 q≥0

αp+βq≥0 for α, β ∈ R+.

Again a valid refutation must obtain −1 ≥ 0.

Observe that the difference between inequalities obtained within r rounds of SA
and SA∗ is that in the latter we can lift (or multiply) an initial constraint with respect
to at most another r initial constraints as opposed to at most r constraints of the form
xi and 1 − xi for i ∈ [n]. We refer the reader to [14] for definitions of other closely
related geometric proof systems. Throughout this paper we are concerned with rank
(and not size) so we can assume that, for r rounds of SA∗ relaxation, projection to Rn

is applied only at the end, if needed. Note that for brevity we always assume that the
inequalities xi ≥ 0 and 1− xi ≥ 0 are implicitly present in C i.e. our polytopes are in
Qn. Finally, note that the polytope defined by rank r inequalities in LS∗ (resp. SA∗)
is a subset of the polytope defined by rank r inequalities in LS (resp. SA).

3 The LS∗ hierarchy

3.0.1 Algorithmic aspects

Lovász and Schrijver [17] constructed a weak separation oracle forN(K,Q) andN(K,K)
from a weak separation oracle for K assuming K is explicitly given by a polynomial
number of constraints. The last assumption implies that one can not solve the sepa-
ration problem over constant r, r ≥ 2, rounds of LS∗ in polynomial time by simple
iteration over the facets of N r−1(K,K) (= N(N r−2(K,K), N r−2(K,K))), since the
intermediate polytopes may have exponentially many facets. It is possible that the sit-
uation for LS∗ is similar to the case for Gomory-Chvátal cuts where the corresponding
separation problem is known to be NP-complete [12]. However, it is possible to opti-
mize over the projected polytope obtained after r rounds of SA∗ relaxations in time
nO(r) by simply solving the nO(r) sized lifted linear program. The following observation
then allows for optimization over r rounds of LS∗ by solving the lifted linear program
for 2r − 1 rounds of SA∗ instead.
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Observation 3.1. Given a polytope K ∈ Rn, the projection (to Rn) of the polytope
obtained after at most 2k − 1 rounds of SA∗ is a subset of the polytope obtained in k
rounds of LS∗.

Proof. The proof is by induction on k. The base case k = 0 (we start with the same
initial constraints for both) and even k = 1 (when LS∗ = SA∗) are clear. Assume
that any LS∗ inequality derived within k − 1 rounds can be expressed as a positive
linear combination of SA∗ inequalities obtained after at most 2k−1−1 rounds. We now
derive all the rank k LS∗ inequalities in at most 2k − 1 rounds of SA∗. Since all lifted
inequalities in round k of LS∗ are generated by multiplying at most two inequalities
obtained after round k−1, induction hypothesis and the defintion of SA∗ (2.6) implies
that the resulting lifted inequality can be generated by some positive linear combination
of inequalties obtained in 2.(2k−1 − 1) + 1 (= 2k − 1) rounds of SA∗. Hence the proof
follows.

3.0.2 Known rank bounds

Grigoriev et al. [14] prove the following lower bound for symmetric knapsack inequalities
(i.e.

∑n
i=1 xi = α for α ∈ R \ Z).

Theorem 3.2 ([14]). Let SKn denote the symmetric knapsack inequality with n odd
and α = n

2 then

1. Any LS+ refutation of SKn has rank at least n
4 .

2. Any LS+,∗ refutation of SKn has rank at least log2 n− 1.

The only known super-logarithmic rank lower bound in LS∗ is due to Beame et
al. [2]. For brevity we restate their main result without a detailed explanation but
simply note that LS∗ proofs can be simulated by Rcc(k) proofs with only O(log n)
factor increase in rank and polynomial increase in size.

Lemma 3.3 ([2]). There is a family of bipartitie graphs G and a family of polysize CNF
formulae G := Liftk−1(GPHP ) on n variables that require refutation rank nΩ(1/k) and
tree-like size exp(nΩ(1/k)) in any Rcc(k) system for any k ≤ (1 − ε) log log n for some
positive absolute constant ε.

The author is unaware of any systematic investigation of upper bounds for LS∗ or
SA∗ rank.

4 Upper bounds on LS∗ and SA∗ rank

In this section we show that some well known inequalities have small LS∗ and SA∗
rank when compared with other hierarchies like SA and LS+. The lower bounds in
the following sections imply that LS∗ and SA∗ do not provide any algorithmic advan-
tage when compared with SA as long as the intial linear program has constraints with
few variables. However, this still leaves out various versions of the travelling salesman
problem and the bounded degree spanning tree problem which occur in practical sce-
narios. In this paper we will only deal with upper bounds on LS∗ and SA∗ rank of
much simpler linear programs which have an inequality with many variables. We start
with the pigeon hole principle (PHPn+1

n ).
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The motivation behind studying PHP comes from the fact that it is one of the cor-
nerstone problems in proof complexity as witnessed by the survey [21]. The PHPn+1

n

(falsely) claims that there exists a (possibly) multivalued everywhere defined injection
between the two partitions of the bigraph Kn+1,n. A refutation of this claim in a
proof system successfully derives a contradiction using the proof rules starting from
the suitably encoded axioms for PHP . It is known that PHP has polynomial size
and logarithmic rank in the Gomory-Chvátal cutting planes (CP ) proof system [20].
Pudlak [20] shows that PHP has a polynomial size refutation in LS. Grigoriev et
al. [14] prove a rank lower bound of n − 1 for PHPn+1

n in LS and Dantchev et al [9]
prove a rank lower bound of n− 1 for PHPn+1

n in SA. PHPn+1
n can be encoded as a

linear programming relaxation as follows.

Definition 4.1 ([4]). For m > n, define the LPHPm
n polytope as a Linear encoding

of the PHPmn principle by the set of linear inequalities

Qi :=
∑
j∈[n]

xij − 1 ≥ 0, (∀i ∈ [m]). (4.1)

Qjk,i := 1− xji − xki ≥ 0, (∀j 6= k, j, k ∈ [m], i ∈ [n]) (4.2)

In the integer solution variable xij is 1 if i 7→ j and 0 otherwise and so the integer
polytope for LPHPmn is empty. The L in LPHP stands for Linear (encoding).

Theorem 4.2. The LS∗ rank of LPHPn+1
n (Definition 4.1) is at most dlog2(n+1)e−1.

Proof. We give only a brief proof sketch. Given Qjk,i ≥ 0 one round of LS implies
xjixki = 0 for j 6= k. Using this fact to cancel out the quadratic terms and with some
algebraic simplification one can rewrite Qlm,iQpq,i ≥ 0 as 1 − xli − xmi − xpi − xqi ≥
0, for distinct l,m, p and q, after one round of LS∗. Now in the second round of
the LS∗ refutation we can multiply two such different linear inequalities derived in
first round and cancel out the quadratic terms to obtain an inequality of the form
1−

∑8
k=1 xjki ≥ 0 for distinct jk. Iterating for dlog2(n+ 1)e − 1 rounds of LS∗ we can

derive Ri := 1−
∑

j∈[n+1] xji ≥ 0 for i ∈ [n]. Next we observe that

n+1∑
i=1

Qi +
n∑
i=1

Ri = −1 ≥ 0

which gives the empty polytope as required.

Using similar ideas we can show it is possible to derive inequalities Ri ≥ 0, and
therefore refute LPHPn+1

n , in dn+1
2 e rounds of SA∗.

In the next example we move on to the complete graph K2n+1. The fractional
matching polytope MF [13] of K2n+1 is given by the following constraints

Qv := 1−
∑

u∈N(v)

xuv ≥ 0, ∀v ∈ [2n+ 1].

Let E(S) denote the set of edges induced by the set of vertices S. Then the corre-
sponding integer polytope MI is given by the following constraints

RS :=
|S| − 1

2
−
∑

e∈E(S)

xe ≥ 0, ∀S ⊆ [2n+ 1], |S| odd.
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The inequalities in MI are known as “blossom” inequalities. They share similarities
with the comb inequalities in travelling salesman polytopes. The SA rank of MI is
2n− 1 [18] while the LS rank lies between 2n− 1 and 2n2 − 1 [13]. MI has LS+ rank
n [13] and Lasserre rank Θ(n) [1]. We now show that the SA∗ rank of MI is n i.e. equal
to the LS+ rank as opposed to the SA rank. We will use the following characterization
of SA relaxations of MF from Proposition 3.1 in [18].

For I, J ⊆ E(K2n+1), let Πe∈IxeΠe∈J(1−xe) denote the “standard multiplier” SI,J
where I is a matching, J is a star, and the vertex sets V (I) and V (J) induced by I
and J are disjoint. Given polynomial p(x̄) on xis we multilinearize it to m(x̄). For
a multinomial m(x̄), let φ(m) denote the linear combination over variables zi i ∈ N
obtained by replacing each monomial Πe∈Lxe by the variable z|L| provided that L is a
matching and 0 otherwise.

Lemma 4.3 ([18]). The value of the k-lifted SA linear program for maximum matching
in K2n+1 is equal to that of the following modified linear program:

max
z1,z2..

(
2n+ 1

2

)
z1

such that

1. z|I| = 0 if |I| ≥ n+ 1, |I| ≤ k.

2. All constraints of the form φ(QvSI,J) ≥ 0 where SI,J is a standard multiplier with
|I|+ |J | ≤ k and v 6∈ V (I) ∪ V (J).

3. All constraints of the form φ(SI,J) ≥ 0 where SI,J is a standard multiplier with
|I|+ |J | ≤ k + 1.

Mathieu and Sinclair [18] prove that for k = 2n− 1 the projection of the above SA
polytope coincides with MI . Based on their result we have the following result.

Theorem 4.4. The SA∗ rank of the matching polytope for K2n+1 is at most n.

Proof. Let S′I,J := (1 −
∑

e∈J xe)Πe∈Ixe denote the “modified” standard multiplier
obtained from SI,J . Let vertex rJ be the root of star J . Observe that 1−

∑
e∈J xe =

QrJ +
∑
{e:rJ∈e}\J xe is a valid inequality for MF . Therefore the lifted constraint

corresponding to QvS′I,J ≥ 0 can be derived in at most min{n, |I|+ 1} rounds of SA∗.
We need at most |I| + 1 rounds if J is non-empty and |I| < n as V (I) and V (J) are
disjoint by definition, and we need at most min{n, |I|} rounds if J is empty as the
edges in I form a matching. Next we cancel out all lifted variables xL, where L is not
a matching, by using the following useful fact: If edges e1, e2 share a vertex then the
lifted variable xe1,e2 = 0 after one round of SA and therefore any lifted variable xI = 0
for e1, e2 ∈ I after |I| − 1 rounds of SA. Note that all necessary xL = 0 above can
also be derived in n rounds of SA. The following result is essentially a restatement of
Lemma 3.3 in [18] which does not really depend on the properties of SA hierarchy. We
repeat the proof in the appendix.

Lemma 4.5 ([18]). There exists an optimal symmetric solution ys to the maximum
matching linear program for K2n+1 obtained after r rounds of SA∗ such that ysL is the
same for every set of |L| ≤ r + 1 edges which form a matching i.e. for matchings L
and L′, |L| = |L′| =⇒ ysL = ysL′.
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Hence given an optimal point y for the linear program obtained after n rounds
of SA∗ there exists a symmetric point ys which is also feasible and optimal for the
same linear program. Therefore if the point ys satisfies the lifted constraint obtained
from QvS

′
I,J ≥ 0 after removing all lifted variables corresponding to non-matchings,

then ys satisfies the constraint φ(QvS′I,J) ≥ 0 where z|L| 7→ ysL for some matching L.
Similarly if ys satisfies the lifted constraint from S′I,J ≥ 0 then it satisfies φ(S′I,J) ≥ 0
where z|L| 7→ ysL for some matching L. But by definition of SI,J , S′I,J and φ we have
φ(QvSI,J) = φ(QvS′I,J) and φ(SI,J) = φ(S′I,J). So any extreme point in the n-lifted
SA∗ polytope obtained as above can be extended to an optimal point in the linear
program in Lemma 4.3 for k = 2n − 1, by appending zeros in the coordinates for the
variables z|I| when |I| ≥ n+ 1. Since in the case of the matching polytope proving an
integrality gap of 1 with respect to the natural objective function (max

∑
e∈E(K2n+1) xe)

suffices to show that we have converged to the integer polytope, the preceeding discus-
sion together with the SA rank bound in [18] implies Theorem 4.4.

Next we move on to a third example which is a bit removed from graph matchings.
It demonstrates that LS∗ and SA∗ rank are not comparable to SA and LS+ rank when
the intial linear program has inequalities with many variables.

Let Kn
α denote the polytope in Rn defined by the following two constraints

gnα :=
n∑
i=1

xi − α ≥ 0, α ∈ (0, 1); f := 1−
n∑
i=1

xi ≥ 0 (4.3)

over variables xi ∈ [0, 1]. Note that (Kn
α)I := {x ∈ [0, 1]n :

∑n
i=1 xi = 1} denotes the

required integer polytope. Cheung [6] (also Cook and Dash [8]) prove that the LS+

and SA rank of the polytope gnα ≥ 0 (for α ∈ (0, 1)) is n. The following theorem gives
an upper bound on the LS∗ and SA∗ rank of Kn

α .

Theorem 4.6. ∀α ∈ (0, 1) the LS∗ and SA∗ rank of Kn
α is 1.

Proof. Observe that using the multiplication and summation rules of LS∗ give

(
n∑
i=1

xi − α)(1−
n∑
i=1

xi) +
n∑
i=1

(x2
i − xi) +

∑
i 6=j

xixj = α

n∑
i=1

xi − α ≥ 0

which immediately gives (Kn
α)I .

It remains to show that rank lower bounds given in [6] from gnα ≥ 0 in SA and LS+

hierarchies extend to Kn
α .

In the case of SA, the proof given in [6] just verifies that the point

i ∈ [n]⇒ y{i} =
α

αn+ 1− α
, |I| ≥ 2⇒ yI = 0 (4.4)

lies in the polytope obtained after n − 1 SA-lifts of gnα ≥ 0 for α ∈ (0, 1). It is
also easy to verify that y is contained in n − 1 SA-lifts of 1 −

∑n
i=1 xi ≥ 0. This is

because any SA lift other than with Πi∈I(1− xi) leads to 0 ≥ 0 on instantiation with
coordinates of y. Moreover even in case of lifts with Πi∈I(1 − xi) we are left with
1−

∑
i∈[n] yi = 1−α

αn+1−α > 0 for α ∈ (0, 1). Hence we get the following result.

Observation 4.7. The SA rank of Kn
α is n.

The rank lower bound proof for gnα ≥ 0 in LS+ is by induction on n and shows that
y ∈ Nn−1

+ (gnα ≥ 0). The proof also works in prescence of f ≥ 0 and is deferred to the
appendix.
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5 PHP

In this section we give the proof of a linear lower bound on the SA∗ rank of LPHP
(Theorem 5.6) and therefore a logarithmic lower bound on the LS∗ rank of LPHP .
The strategy of the proof will be to show that the SA∗ lifted polytope is non-empty
i.e. it contains a given point. This point is the same as that in [9] but defined using
different notation for consistency with the usual definition of SA.

Definition 5.1 ([9]). A partial bijection in Pnn−1 is a bijection [2..n+1]\{i} → [2..n]
for i ∈ [2..n+ 1]. Pnn−1 denotes the set of partial bijections from [2..n+ 1]→ [2..n].

Definition 5.2 ([9]). Given I ⊆ {(p, q)|p ∈ [2..n+1], q ∈ [2..n]}, I is self-inconsistent
if (i, j), (i, k) ∈ I and j 6= k, or (j, i), (k, i) ∈ I and j 6= k.

If I is not self-inconsistent then I is self-consistent. Intuitively a self-consistent set
I naturally corresponds to a bijection of two sets of size |I|.

Definition 5.3 ([9]). Given I ⊆ {(p, q)|p ∈ [2..n + 1], q ∈ [2..n]}, I is inconsistent
with π ∈ Pnn−1 if either I is self-inconsistent or

• (i, j) ∈ I and π(k) = j for i 6= k

• (i, j) ∈ I and π(i) = l for j 6= l.

If I is not inconsistent with π then I and π are consistent with each other. Intuitively
a restriction of π would correspond to the bijection represented by I. For brevity let (∗)
denote the wildcard character (for example (r, ∗) stands for the set {(r, a)|a ∈ [2..n]})
and let N = n2 + n i.e. the number of variables in LPHPn+1

n . Now we define the
evaluation function i.e. the lifted point.

Definition 5.4 ([9]). An evaluation V : xI → R is a function defined on all lifted
variables obtained from monomials of degree at most n− 1 and linearly extended to the
lifted inequalities. For I ⊆ {(p, q)|p ∈ [2..n+ 1], q ∈ [2..n]}, |I| ≤ n− 1 define V (xI) as
the fraction of all n! partial bijections Pnn−1 consistent with I.

If (1, i) ∈ I (resp. (i, 1) ∈ I) then V (xI) := V (x(r,i):I) (resp. V (xI) := V (x(i,r):I)),
where (r, i) : I (resp. (i, r) : I) denotes (r, i) (resp. (i, r)) substituted for all instances
of the form (1, i) (resp. (i, 1)) in I and (r, ∗) 6∈ I (resp. (∗, r) 6∈ I). Note that such an
r exists since |I| ≤ n− 1.

Observe (by symmetry arguments) that V is well defined for all monomials in SN (R)
of degree at most n − 1. Note the similarities with the definition in Section 4 of [9].
Using ideas in the proof of Proposition 11 in [9] we can prove the following Lemma.

Lemma 5.5. Let Qi be defined as in equation (4.1) then V (xIQi) = 0 for any mono-
mial xI and |I| ≤ n− 2.

Proof. First suppose i 6= 1 and (1, ∗), (∗, 1) 6∈ I. Observe that I is self-consistent
otherwise the statement of the Lemma follows immediately. Let P ′i denote the set of
π ∈ Pnn−1 consistent with I such that i remains unmatched. By Definition 5.4

n∑
j=2

V (xI∪(i,j)) +
|P ′i |
n!

= V (xI). (5.1)

Equation 5.1 is true since either

11



1. (∃a ∈ [2..n])((i, a) ∈ I) then observe that by the definition of evaluation: (∀b 6=
a)(V (xI∪(i,b)) = 0), P ′i = 0 (since π′ ∈ P ′i ⇒ ((∃l 6= i)(π′(l) = a)), and
V (xI∪(i,a)) = V (xI). Note that in this case the statement of the Lemma fol-
lows so we may assume (i, ∗) 6∈ I from now.

2. Otherwise, equation (5.1) follows from definition of V .

Observe that |I| ≤ n− 2⇒ ((∃l ∈ [2..n])((∗, l) 6∈ I)) so that V (xI∪(i,1)) := V (xI∪(i,l)).
Note that I self-consistent and (i, ∗) 6∈ I implies that I ∪ (i, l) is self-consistent. It now
suffices to show that there is a bijection between P ′i and the set of partial bijections
consistent with I ∪ (i, l) (denoted by Pil).

To see |Pil| ≥ |P ′i |, observe that for π′ ∈ P ′i ⇒ (∃!i′ ∈ [2..n+1])(i′ 7→ l) one replaces
i′ by i to obtain a unique π ∈ Pil. The consistency of π with I ∪ (i, l) follows from
consistency of π′ with I and the construction of π.

To see |Pil| ≤ |P ′i |, given π ∈ Pil ⇒ ((∃!i′ ∈ [2..n+ 1] \ {i})(i′ 6∈ Dom(π)) replace i
by i′ to obtain a unique π′ ∈ P ′i . The consistency of π′ with I follows from consistency
of π with I ∪ (i, l).

Therefore |P
′
i |
n! = V (xI∪(i,l)) so the statement is true when i 6= 1 and (1, ∗), (∗, 1) 6∈ I.

Otherwise, if i = 1 or (1, a) ∈ I or (a, 1) ∈ I then we can reduce this case to the
previous case by substituting i′ ∈ [2..n+1], j′ ∈ [2..n] such that (i′, ∗), (∗, j′) 6∈ I∪(i, j),
in place of 1. After the substitutions note if I is not self-consistent or (i, ∗) ∈ I then
V (xIQi) = 0 immediately follows. Otherwise, if i = 1 or (1, a) ∈ I then substituting
1 with i′ reduces this case to when i 6= 1 and (1, ∗) 6∈ I respectively. If (a, 1) ∈ I then
observe that

∑n
j=1 V (xI∪(i,j)) = V (x(a,j′′):I∪(i,j′)) +

∑n
j=1,j 6=j′ V (x(a,j′):I∪(i,j)) where

j′′ 6= j′ and (∗, j′′) 6∈ I. Let I ′ := (a, j′) : I. By definition of V , V (x(a,j′′):I∪(i,j′)) =
V (xI′∪(i,j′′)) = V (xI′∪(i,1)). So by essentially interchanging the roles of 1 and j′ in
the right coordinates of I while keeping V (xIQi) invariant we now need to prove
V (xI′Qi) = 0. Therefore if i = 1 or (1, ∗) ∈ I or (∗, 1) ∈ I then we are able to reduce
all such cases to the previous one. Hence the proof follows.

Theorem 5.6. Deriving the empty integer polytope for LPHPn+1
n (Definition 4.1)

requires rank greater than bn2 c − 1 in SA∗.

Proof. A rank k∗ SA∗ form is derived from lifting an expression of the form:

F := Πi∈S1QiΠ(jk,l)∈S2
Qjk,lΠp∈S3(1− xp)Πq∈S4xq

where the meaning of the sets Si is intuitive, Σ4
i=1|Si| ≤ k∗ + 1, and F ∈ SN (R).

Observe that,

Qjk,l = 1− xjl − xkl = (1− xjl)(1− xkl)− xjlxkl.

Any evaluation of F which is defined by a linear combination of its value on lifted
monomials will be invariant under the above rewrite. Therefore we can rewrite F as a
linear combination of forms with at most one Qjk,l without changing V (F ) as below.

F ′ :=
∑
i

Qigi +
∑
j 6=k,l

xjlxklhjk,l

+
∑
j 6=k,l

α+
j,k,lQjk,lΠp∈S(1− xp)Πq∈Txq

+
∑
p,q

β+
p,qΠp∈S′(1− xp)Πq∈T ′xq
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such that (∀gi ∈ SN (R))(deg(gi) ≤ 2k∗), (∀hjk,l ∈ SN (R))(deg(hjk,l) ≤ 2k∗), |S|+|T | ≤
2k∗, |S′|+ |T ′| ≤ k∗ + 1 and α+, β+ ∈ R+.

Now suppose one could refute LPHP by a rank k∗ (for 2k∗ ≤ n−2) SA∗ proof i.e.,
one could derive −1 by some positive linear combination of lifted inequalities derived
from forms in equation 5.2. At this point it suffices to prove that V (from definition 5.4)
has V (F ′) ≥ 0, since it would give an immediate contradiction.

By definition 5.4 V is linear and (∀j, k, l)(V (xjlxklhjk,l) = 0). Furthermore Lemma 5.5
implies that (∀i)(V (Qigi) = 0) hence only the last two types of expressions in equa-
tion 5.2 i.e., Qjk,lΠp∈S(1 − xp)Πq∈Txq and Πp∈S′(1 − xp)Πq∈T ′xq, remain to be taken
care of. However, these two lifted expressions can also be derived by 2k∗ rounds of SA
alone so the fact that their valuations are non-negative follows simply from the proof of
Dantchev et al. [9] for SA ([9] proves a lower bound of n− 1 on the rank of LPHPn+1

n

in SA). Note that this can also be proved directly with a little more work. Therefore
the statement follows.

Corollary 5.7. The LS∗ rank of LPHPn+1
n is at least log2bn2 c.

Proof. The result follows from Observation 3.1 and Theorem 5.6.

Note that the bound above extends to the weaker functional-PHP but not to onto-
PHP (see [21] for definitions) which can be shown to have LS∗ rank 1. In the latter
case, the natural LS+ refutation is also an LS∗ refutation.

6 MAX-CUT and related bounds

The proof in Section 5 used some of the structure of the PHP inequalities in order to
translate the SA bounds to SA∗. In this section we will make minimal use of such
problem structure. We will extend SA rank lower bounds for MAX-CUT in the SA∗
hierarchy (and LS∗ hierarchy via Observation 3.1) using ideas from [5]. The proof
techniques extend to other optimization problems as long as the initial linear program
has small number of variables in each constraint. Throughout this sectionG = (VG, EG)
will represent a graph on n vertices.

Definition 6.1 ([11]). Given graph G and distributions (i.e. discrete probability mea-
sure) µT on cuts (i.e. subsets) of T ⊆ VG for every T such that |T | ≤ k, the
distributions µT are k-locally consistent if for any A,Q, T , A ⊆ Q ⊆ T implies
µT ({B|B ⊆ T,B ∩Q = A}) = µQ(A).

Charikar et al [5] (also [11]) deduce that given a linear program it is sufficient to
prove the existence of “locally consistent” probability distributions on subsets of size
k to show Ω(k) rank lower bound (and also integrality gaps) in the SA hierarchy for
the original linear program.

Lemma 6.2 ([11, 5]). Given k-locally consistent probability distribution of cuts on
graph G, the vector xij = µ{i,j}({{i}, {j}}) (i.e. equivalently interpretable as the prob-
ability that i, j lie on different sides of the cut) lies in the SA cut polytope obtained
after k

2 −
3
2 rounds.

Charikar et al. [5] also show that the existence of certain discrete metric spaces leads
to Ω(nγ(ε))-locally consistent distributions over cuts such that xij = µ{i,j}({{i}, {j}})
(the probability that i and j are separated by the cut), with integrality gap 2− ε.
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Definition 6.3 ([5]). Let xij ∈ [0, 1] denote variables corresponding to vertex pair i, j
(i 6= j) in an undirected graph G.

xij ≥ 0, 1− xij ≥ 0, xij = xji, (6.1)

xij + xjk − xik ≥ 0 ∀i, j, k ∈ V (G), (6.2)

2− xij − xjk − xik ≥ 0 ∀i, j, k ∈ V (G). (6.3)

The above polytope is referred to as the cut polytope. The MAX-CUT linear pro-
gramming relaxation optimizes

∑
e∈EG xe over the cut polytope.

In order to generalize the above mentioned two step approach in [5] to the SA∗
hierarchy one just needs to generalize Lemma 6.2 to SA∗. The proof is based on ideas
in [5, 11] and relies mainly on the linearity of expectation.

Lemma 6.4. Given k-locally consistent distribution of cuts on graph G, the vector
xij = µ{i,j}({{i}, {j}}) (i.e. equivalently probability that i, j lie on different sides of a
cut) lies in SA∗ cut polytope obtained after k

3 − 1 rounds.

Proof. Consider a non-empty set I = {(i1, j1), ..., (ip, jp)} of size at most k
2 . Let QI ⊆

VG denote the set {i1, j1, ..., ip, jp} of size at most k. Let 1Iij(X) denote an indicator
variable that is 1 if the cut X on QI seprates vertices i and j for i, j ∈ QI and 0
otherwise. Using the convention in Section 5, the coordinates of the SA∗ solution are
again given by a linear evaluation function V : xI → R, where I ⊆ VG × VG, |QI | ≤ k.
V is defined as follows.

V (xI) := EµQI (Π(i,j)∈I1
I
ij). (6.4)

In other words V (xI) is the probability that all pairs of vertices in I are separated by
a cut chosen according to µQI .

Let V (Ri({xab, xcd, xef})) denote the evaluation of an intial constraint Ri in the
MAX-CUT linear program (for eg. 6.2 or 6.3) for the vertex pairs (a, b), (c, d) and
(e, f). Consider an inequality obtained after r lifts of SA∗:

Πp∈IRp ≥ 0. (6.5)

Let QI =
⋃
i∈Rp,p∈I i denote the set of vertices present as indices in the above lifted

inequality. Let QS ⊆ QI such that QI ⊆ QS for all xI in the lifted constraint 6.5. The
valuation of the LHS of inequation 6.5 is a sum of expectations of the form∑

I⊆VG×VG,QI⊆QS

αIEµQI (Π(i,j)∈I1
I
ij)

where αI ∈ R. Using linearity of expectation and k-local consistency one can simplify
(recombine) the above expression as follows

V (Πp∈IRj(xab, xcd, xef )) = EµQS (Πp∈IRj({1Sab, 1Scd, 1Sef )}). (6.6)

Since Πp∈IRp(X) ≥ 0 for any given cut X on QS the expectation on RHS above is
non-negative. Since we only have k-locally consistent distributions we need |QS | ≤ k
in 6.6, which is implied by |QI | ≤ k i.e.

3(r + 1) ≤ k. (6.7)

Therefore the image of V lies in the SA∗ polytope for MAX-CUT obtained after k
3 − 1

rounds.
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Therefore following Theorem 5.3 in [5] we get the following lower bounds.

Theorem 6.5. The SA∗ rank of MAX-CUT is Ω(nγ(ε)) and the LS∗ rank of MAX-
CUT is Ω(log2 n) and the integrality gap is 2− ε in each case for a given ε > 0.

The two step approach of Charikar et al [5] (esp. Lemma 6.2) is quite modular and
can be used to prove integrality gaps for problems other than MAX-CUT (for example
Vertex Cover, Sparsest Cut and other SA rank bounds which proceed by construct-
ing locally consistent distributions as above). Unlike SA, an exact generalization of
Lemma 6.2 to SA∗ i.e., existence of k-locally consistent distributions implies Ω(k) rank
lower bound in SA∗ hierarchy, is not likely for different problems (see the last example
in Section 4). However, given k-locally consistent distributions a proof of k

ct rank lower
bound in the SA∗ hierarchy follows from the proof of the k

c SA rank lower bound by
suitably changing the coefficient on the LHS of equation 6.7 in the SA proof. The
constant c is usually the ratio between the size of indices of the set over which we
take the linear combination in the objective function and the size of indices of the set
underlying the locally consistent distribution and it depends on the canonical linear
programming formulation of the problem. The parameter t can be bounded by the
maximum number of variables in any inequality of the initial linear program. In the
case of MAX-CUT, c = 2 and t = 3 so ct = 6. However, the total number of vertices
involved in any inequality of the cut polytope is 3 instead of 6 so we are able to reduce
the denominator above to 3 for the case of MAX-CUT.

7 Open Problems

Some interesting problems, besides the ones posed in [14], remain. For example, is it
possible to optimize over LS∗ relaxations of even restricted classes of polytopes more
efficiently? Do small rounds of SA∗ or LS∗ relaxation produce a smaller integrality
gap for any version of the travelling salesman problem then the corresponding linear
programming relaxation (or its LS, SA relaxations)? Finally, for the LS∗ rank of
blossom inequaities we conjecture the right answer to be ω(log n) due to the similarities
of the problem with symmetric knapsack [14].
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A Matching polytope

A proof of Lemma 4.5, repeated from [18] for convenience.

Proof. Given an optimal solution y of the lifted maximum matching linear program
permute the vertices of K2n+1 to obtain, by symmetry, another optimal solution σ(y).
Define ys to be the solution obtained after componentwise averaging over all (2n+ 1)!
solutions over permuted instances and we observe that ys is still optimal and feasible.

B LS+ rank lower bound for Kn
α

The following defintions are required for the LS+ rank lower bound from Section 4.
Let ei denote the ith standard unit vector (where the dimension will be clear from the
context) and let e denote the all 1s vector. For a ∈ Rn+1 define ā ∈ Rn as a = (1, ā).
Let F 0

i denote the face of Q with ith coordinate set to 0.

Definition B.1 ([8]). Define embedding embI : Rn → Rn+k such that if y = embI(x)
then yij = xj for I := {ij ∈ [n+ k]|j ∈ [n]}, and yi ∈ {0, 1} for i 6∈ I.

For a face F of Qn let embF denote the embedding where Qdim(F ) 7→ F (i.e. embF
is short for embI , I = [n] \ {i} where i is the coordinate fixed to {0, 1} in F ). Lemma
2.1 in Cook and Dash [8] is restated below

Lemma B.2 ([8]). Given polytope P ⊆ Q and embedding emb : Rn → Rm, N+(emb(P )) =
emb(N+(P )).

Theorem B.3. The LS+ rank of Kn
α is n.

Proof. It suffices to show yk,ne0 ∈ Nk
+(Kn

α) for k < n and some yk,n ∈ R(n+1)×(n+1)

defined below. Let

yk,n0,0 = 1, yk,ni,i = yk,n0,i = yk,ni,0 =
α

n− (1− α)k

and yk,n is 0 elsewhere. Hence yk,n is a symmetric, positive semidefinite (diagonally
dominant) matrix for all k < n. Note that

∑
i∈[n] y

k,n
{i} < 1 as required.
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The proof proceeds by induction on k, n. In the base case n = 1 and k = 0 the
hypothesis holds. Suppose the induction hypothesis (i.e. yk,ne0 ∈ Nk

+(Kn
α) for k < n)

holds for Kn−1
α with n ≥ 2 and k < n.

For brevity let yk,n defined above be denoted by y. Observe that yei is a positive
multiple of ei ∈ (Kn

α)I therefore yei ∈ Nk−1
+ (Kn

α) for k < n.
Let zi = y(e0 − ei). Then

zi=
n−(1−α)k−α
n−(1−α)k

e0+
Pn
j=1,j 6=i

α
n−(1−α)k

ej⇒z̄i=
Pn
j=1,j 6=i

α
n−(1−α)k−α ej .

So z̄i ∈ F 0
i . Also α

n−(1−α)k−αe = α
n−1−(1−α)(k−1)e hence by induction hypothesis

α
n−(1−α)k−α e∈N

k−1
+ (Kn−1

α )⇒z̄i∈embF0
i

(Nk−1
+ (Kn−1

α ))=Nk−1
+ (Kn

α∩F 0
i )⊆Nk−1

+ (Kn
α).

The equality on the the RHS of the implication above follows from Lemma B.2 and
the observation Kn

α ∩ F 0
i = embF 0

i
(Kn−1

α ). Hence y ∈ M+(Nk−1
+ (Kn

α)) for k < n and
so (y{i}) ∈ Nk

+(Kn
α). Hence the proof follows.
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