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Abstract. In this paper we study quantum nondeterminism in multiparty
communication. There are three (possibly) different types of nondeterminism
in quantum computation: i) strong, ii) weak with classical proofs, and iii)
weak with quantum proofs. Here we focus on the first one. A strong quantum
nondeterministic protocol accepts a correct input with positive probability,
and rejects an incorrect input with probability 1. In this work we relate strong
quantum nondeterministic multiparty communication complexity to the rank
of the communication tensor in the Number-On-Forehead and Number-In-
Hand models. In particular, by extending the definition proposed by de Wolf to
nondeterministic tensor-rank (nrank), we show that for any boolean function
f with communication tensor Tf ,
(1) in the Number-On-Forehead model, the cost is upper-bounded by the

logarithm of nrank(Tf );
(2) in the Number-In-Hand model, the cost is lower-bounded by the loga-

rithm of nrank(Tf ).
This naturally generalizes previous results in the field and relates for the first
time the concept of (high-order) tensor rank to quantum communication. Fur-
thermore, we show that strong quantum nondeterminism can be exponentially
stronger than classical multiparty nondeterministic communication. We do so
by applying our results to the matrix multiplication problem.

1. Introduction

1.1. Background. Nondeterminism plays a fundamental role in complexity the-
ory. For instance, the P vs NP problem asks if nondeterministic time is strictly
more powerful than deterministic time. Even though nondeterministic models are
unrealistic, they can give insights into the power and limitations of realistic models
(i.e., deterministic, random, etc.).

There are two ways of defining a nondeterministic machine, using randomness
or as a proof system: a nondeterministic machine i) accepts a correct input with
positive probability, and rejects an incorrect input with probability one; or ii) is a
deterministic machine that receives besides the input, a proof or certificate which
exists if and only if the input is correct. For classical machines (i.e., machines based
on classical mechanics), these two notions of nondeterminism are equivalent. How-
ever, in the quantum setting they can be different. In fact, these two notions give
rise to (possibly) three different kinds of quantum nondeterminism. In strong quan-

tum nondeterminism, the quantum machine accepts a correct input with positive
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probability. In weak quantum nondeterminism, the quantum machine outputs the
correct answer when supplied with a correct proof, which could be either classical
or quantum.

The study of quantum nondeterminism started with de Wolf [4], in the context
of query and communication complexities. In particular, de Wolf [4] introduced the
notion of nondeterministic rank of a matrix, which was later proved to completely
characterize strong quantum nondeterministic communication [5]. In the same
piece of work, it was proved that strong quantum nondeterministic protocols are
exponentially stronger than classical nondeterministic protocols. In the same spirit,
Le Gall [9] studied weak quantum nondeterministic communication with classical
proofs and showed a quadratic separation for a total function.

Weak nondeterminism seems a more suitable definition, mainly due to the re-
quirement of the existence of a proof, a concept that plays fundamental roles in
complexity theory. In contrast, strong nondeterminism lends itself to a natural
mathematical description in terms of matrix rank. Moreover, strong nondetermin-
ism is a more powerful model capable of simulating weak nondeterminism with
classical and quantum proofs. The reverse, if weak nondeterminism is strictly a less
powerful model or not is still an open problem.

The previous results by de Wolf [5] and Le Gall [9] were on the context of 2-
party communication complexity, i.e., there are two players with two inputs x and
y each, and they want to compute a function f(x, y). Let rank(f) be the rank
of the communication matrix Mf , where Mf [x, y] = f(x, y). A known result is
1
2 log rank(f) ≤ Q(f) ≤ D(f) [2], where D(f) is the deterministic communication

complexity of f and Q(f) the quantum exact communication complexity1. It is
conjectured that D(f) = O(logc rank) for some arbitrary constant c. This is the
log-rank conjecture in communication complexity, one the biggest open problems
in the field. If it holds, implies that Q(f) and D(f) are polynomially related.
This is in contrast to the characterization given by de Wolf [5] in terms of the
nondeterministic matrix-rank, which is defined as the minimal rank of a matrix
(over the complex field) whose (x, y)-entry is non-zero if and only if f(x, y) = 1.

1.2. Contributions. In this paper, we continue with the study of strong quantum
nondeterminism in the context of multiparty protocols. Let k ≥ 3 be the number
of players evaluating a function f(x1, . . . , xk). The players take turns predefined
at the beginning of the protocol. Each time a player sends a bit (or qubit if it is a
quantum protocol), he sends it to the player who follows next. The communication
complexity of the protocol is defined as the minimum number of bits that need to
be transmitted by the players in order to compute f(x1, . . . , xk). There are two
common ways of communication: The Number-On-Forehead model (NOF), where
player i knows all inputs except xi; and, Number-In-Hand model (NIH), where
player i only knows xi. Also, any protocol naturally defines a communication

tensor Tf , where Tf [x1, . . . , xk] = f(x1, . . . , xk).
Tensors are natural generalizations of matrices. They are defined as multi-

dimensional arrays while matrices are 2-dimensional arrays. In the same way, the
concept of matrix rank extends to tensor rank. However, the nice properties of ma-
trix rank do not hold anymore for tensors; for instance, the rank could be different
if the same tensor is defined over different fields [7].

1All logarithms in this paper are base 2.
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We extend the concept of nondeterministic matrices to nondeterministic tensors.
The nondeterministic tensor rank, denoted nrank(f), is the minimal rank of a
tensor (over the complex field) whose (x1, . . . , xk)-entry is non-zero if and only if
f(x1, . . . , xk) = 1.

Let NQNOF
k and NQNIH

k denote the k-party strong quantum nondeterministic
communication complexity for the NOF and NIH models respectively.

Theorem 1.1. Let f : ({0, 1}n)k → {0, 1}, then NQNOF
k (f) ≤ ⌈lognrank(f)⌉+1,

and NQNIH
k (f) ≥ ⌈lognrank(f)⌉+ 1.

This theorem generalizes the previous result by de Wolf, as it can be seen that by
letting k = 2 we obtain exactly [5, Lemma 3.2]. Also, since NQNIH

k is a lower bound
for exact NIH quantum communication2, denoted QNIH

k , we obtain the following
corollary:

Corollary 1.2. ⌈lognrank(f)⌉+ 1 ≤ QNIH
k (f).

One of the first direct consequences of Theorem 1.1 is on the equality function.
The k-party equality function EQk(x1, . . . , xk) = 1 if and only if x1 = · · · = xk. A
nondeterministic tensor for EQk is superdiagonal with non-zero entries in the main
diagonal, and 0 anywhere else. Thus, it has 2n rank, and implies NQNOF

k (EQk) ≤
n + 1 and NQNIH

k (EQk) ≥ n + 1. However, note that EQk is upper-bounded
by O(n) in the NOF model, however this could be a very loose bound. In general,
NQNOF

k cannot be lower-bounded by lognrank. To see this, it is easy to show that
in the NOF model there exists a classical protocol for EQk with a cost of 2 bits3.
In contrast, the lower bound on NQNIH

k (EQk) is not that loose; using the trivial
protocol, where all players send their inputs, we have that NQNIH

k (EQk) = O(kn).
A more interesting function is the generalized inner product defined formally

as GIPk(x1, . . . , xk) = (
∑k

i=1

∧n
j=1 xij) mod 2. We know that (2n − 1)k/2 ≤

nrank(GIPk) (see Appendix A for a proof), and thus, NQNIH
k (GIPk) ≥ n +

⌈log(k/2)⌉ + 1. In NIH, using the trivial protocol where each player send their
inputs, we obtain (with Corollary 1.2) a bound in quantum exact communication
of ⌈log(k/2)⌉+ n+ 1 ≤ QNIH

k (GIPk) ≤ (k − 1)n+ 1. Improving the lower bound
will require new techniques for explicit construction of linear-rank tensors, with
important consequences to circuit lower bounds [15] (see for example the paper by
Alexeev, Forbes, and Tsimerman [1] for state-of-the-art tensor constructions). In
general, we are still unable to upper-bound NQNIH

k (f) in terms of lognrank.
Although the bounds given by Theorem 1.1 could be loose for some functions,

they are good enough for other applications. For instance, we show in Section 4 a
super-polynomial separation between the NOF models of strong quantum nonde-
terminism and classical nondeterminism. We do so by applying Theorem 1.1 to the
matrix multiplication problem. To our knowledge, this is the first super-polynomial
quantum-classical separation in any multiparty communication model.

2An exact quantum protocol accepts a correct input and rejects an incorrect input with prob-
ability 1.

3Let the first player check if x2, . . . , xk are equal. If they are, he sends a 1 bit to the second
player, who will check if x1, x3, . . . , xk are equal. If his strings are equal and he received a 1 bit
from the first player, he sends a 1 bit to all players indicating that all strings are equal [8, Example
6.3].
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2. Mathematical Preliminaries

In this paper we assume basic knowledge of communication complexity and quan-
tum computing. We refer the interested reader to the books by Kushilevitz and
Nisan [8] and Nielsen and Chuang [12]. Nevertheless, in this section we give a small
review of tensors and quantum communication.

2.1. Tensors. A tensor is a multi-dimensional array defined over some field. An
order-d tensor is an element of the tensor product of d vector spaces.

Definition 2.1. Let |vi〉 ∈ V ni be an ni-dimensional vector for 1 ≤ i ≤ d on some
vector space V ni . The jthi component of |vi〉 is denoted by vi(ji) for 1 ≤ ji ≤ ni.
The tensor product of {|vi〉} is the tensor T ∈ V n1 ⊗ · · · ⊗ V nd whose (j1, . . . , jd)-
entry is v1(j1) · · · vd(jd), i.e., T [j1, . . . , jd] = v1(j1) · · · vd(jd). Then T = |v1〉⊗ · · ·⊗
|vd〉 and we say T is a rank-1 or simple order-d tensor. We also say that a tensor
is of high order if its order is three or higher.

From now on, we will refer to high-order tensors simply as tensors, and low-order
tensor will be matrices, vectors, and scalars as usual.

It is important to note that the set of simple tensors span the space V n1 ⊗ · · · ⊗
V nd , and hence, there exists tensors that are not simple. This leads to the definition
of rank.

Definition 2.2. The rank of a tensor is the minimum r such that T =
∑r

i=1Ai

for simple tensors Ai.

This agrees with the definition of matrix rank. The complexity of computing
tensor rank was studied by H̊astad [6] who showed that it is NP-complete for any
finite field, and NP-hard for the rational numbers.

The process of arranging the elements of an order-k tensor into a matrix is known
as matrization. Since there are many ways of embedding a tensor into a matrix, in
general the permutation of columns is not important, as long as the corresponding
operations remain consistent [7].

2.2. Strong Quantum Nondeterministic Multiparty Communication. In
a multiparty communication protocol there are k ≥ 3 players trying to compute a
function f . Let f : Xk → {0, 1} be a function on k strings x = (x1, . . . , xk), where
each xi ∈ X and X = {0, 1}n. There are two common ways of communication
between the players: The Number-In-Hand (NIH) and the Number-On-Forehead
(NOF) models. In NIH, player i only knows xi, and in NOF, player i knows all
inputs except xi. First we review the classical defintion.

Definition 2.3 (Classical nondeterministic multiparty protocol). Let k be the
number of players. Besides the input x, the protocol receives a proof or certificate
c ∈ {0, 1}+. The players take turns in an order predefined at the beginning of the
protocol. To communicate, a player sends exactly one bit to the player that follows
next. The computation of the protocol ends when the last player computes f . If
f(x) = 1 then, there exists a c that makes the protocol accept the input, i.e., the
last player outputs 1. If f(x) = 0 then, the protocol rejects the input for all c, i.e.,
the last player outputs 0. The cost of the protocol is the length of c plus the total
number of bits communicated.
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Hence, the classical nondeterministic multiparty communication complexity, de-
noted Nk(f), is defined as the minimum number of bits required to compute f(x).
If the model is NIH or NOF, we add a superscript NNIH

k (f) or NNOF
k (f) respec-

tively. Note that, the definition of the multiparty protocols in this paper (classical
and quantum) are all unicast, i.e., a player sends a bit only to the player that fol-
lows next. This is in contrast to the more common blackboard model. In this latter
model, when a player sends a bit, he does so by broadcasting it and reaching all
players inmediately. Clearly, any lower bound on the blackboard model is a lower
bound for the unicast model.

To model NOF and NIH in the quantum setting, we follow the work of Lee,
Schechtman, and Shraibman [10].

Definition 2.4 (Quantum multiparty protocol). Let k be the number of players
in the protocol. Define the Hilbert space by H1 ⊗ · · · ⊗ Hk ⊗ C, where each Hi

is the Hilbert space of player i, and C is the one qubit channel. To communicate
the players take turns predefined at the beginning of the protocol. On the turn of
player i:

(1) in NIH, an arbitrary unitary that only depends on xi is applied on Hi ⊗C,
and acts as the identity anywhere else;

(2) in NOH, an arbitrary unitary independent of xi is applied on Hi ⊗ C, and
acts as the identity anywhere else.

The cost of the protocol is the number of rounds.

If there is no entanglement, the initial state is a pure state |0〉 ⊗ · · · ⊗ |0〉|0〉. In
general, the initial state could be anything that is independent of the input with
no prior entanglement. If the final state of the protocol on input x1, . . . , xk is |ψ〉,
it outputs 1 with probability p(x1, . . . , xk) = 〈ψ|Π1|ψ〉, where Π1 is a projection
onto the |1〉 state of the channel.

We say that T is a nondeterministic communication tensor if T [x1, . . . , xk] 6= 0 if
and only if f(x1, . . . , xk) = 1. Thus, T can be obtained by replacing each 1-entry in
the original communication tensor by a non-zero complex number. We also define
the nondeterministic rank of f , denoted nrank(f), to be the minimum rank over
the complex field among all nondeterministic tensors for f .

Definition 2.5. A k-party strong quantum nondeterministic communication pro-

tocol outputs 1 with positive probability if and only if f(x) = 1.

The k-party quantum nondeterministic communication complexity is the cost of
an optimum (i.e., minimal cost) k-party quantum nondeterministic communication
protocol, and is denoted NQk(f). If the model is NIH or NOF, we add a superscript
NQNIH

k (f) or NQNOF
k (f) respectively. From the definition it follows that NQk is

a lower bound for the exact quantum communication complexity Qk for both NOF
and NIH.

Lemma 2.6 (Lee, Schechtman, and Shraibman [10]). After ℓ qubits of communi-

cation on input (x1, . . . , xk), the state of a quantum protocol without shared entan-

glement can be written as
∑

m∈{0,1}ℓ

|A1
m(x1)〉|A2

m(x2)〉 · · · |Ak
m(xk)〉|mℓ〉,

where m is the message sent so far, mℓ is the ℓ-th bit in the message, and each

vector |At
m(xt)〉 corresponds to the t-th player which depends on m and the input



6 M. VILLAGRA, M. NAKANISHI, S. YAMASHITA, AND Y. NAKASHIMA

xt. If the protocol is NOF then xt = (x1, . . . , xt−1, xt+1, . . . , xk); if it is NIH then

xt = (xt).

3. Proof of Theorem 1.1

The arguments in this section are generalizations of a previous result by de Wolf
[5] from 2-party to k-party communication.

We start by proving the lower bound. First we need the following technical
lemma. It is a generalization of [5, Lemma 3.2] from k = 2 to any k ≥ 3. See below
for a proof.

Lemma 3.1. If there exists k families of vectors {|Ai
1(xi)〉, . . . , |A

i
r(xi)〉} ⊆ Cd for

all i with 2 ≤ i ≤ k and xi ∈ {0, 1}n such that

r
∑

i=1

|A1
i (x1)〉 ⊗ · · · ⊗ |Ak

i (xk)〉 = 0 if and only if f(x1, . . . , xk) = 0,

then nrank(f) ≤ r.

Now we proceed to prove the lower bound in Theorem 1.1.

Lemma 3.2. NQNIH
k (f) ≥ ⌈lognrank(f)⌉+ 1

Proof. Consider a NIH ℓ-qubit protocol for f . By Lemma 2.6 its final state is

(3.1) |ψ〉 =
∑

m∈{0,1}ℓ

|A1
m(x1)〉 · · · |A

k
m(xk)〉|mℓ〉.

Assume all vectors have the same dimension d. Let S = {m ∈ {0, 1}ℓ : mℓ = 1},
and consider only the part of the state that is projected onto the 1 state of the
channel,

(3.2) |φ(x1, . . . , xk)〉 =
∑

m∈S

|A1
m(x1)〉 · · · |A

k
m(xk)〉|1〉.

The vector |φ(x1, . . . , xk)〉 is 0 if and only if f(x1, . . . , xk) = 0. Thus, by Lemma
3.1, we have that nrank(f) ≤ |S| = 2ℓ−1, which implies the lower bound. �

Proof of Lemma 3.1. First note that the case k=2 was proven by de Wolf [5, Lemma
3.2]. Here we give a proof for k ≥ 3. We divide it in two cases: when k is odd and
even.

Even k: There are k size-r families of d-dimensional vectors. We will construct two
new families of vectors denoted D and F . First, divide the k families in two groups
of size k/2. Then, tensor each family in one group together in the following way:
for each family {|Ai

1(xi)〉, . . . , |A
i
r(xi)〉} for 1 ≤ i ≤ k/2 construct a new family

D =







k/2
⊗

i=1

|Ai
1(xi)〉, . . . ,

k/2
⊗

i=1

|Ai
r(xi)〉







= {|A1(y)〉, . . . , |Ar(y)〉} ,

where y = (x1, . . . , xk/2). Do the same to construct F for k/2+1 ≤ i ≤ k obtaining

F =







k
⊗

i=k/2+1

|Ai
1(xi)〉, . . . ,

k
⊗

i=k/2+1

|Ai
r(xi)〉







= {|B1(z)〉, . . . , |Br(z)〉} ,
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where z = (xk/2+1, . . . , xk). Thus, D and F will become two size-r family of
vectors, each vector with dimension dk/2. Then apply the theorem for k = 2 on
these two families and the lemma follows.

Odd k: Here we can use the same approach by constructing again two new families
D and F by dividing the families in two groups of size ⌊k/2⌋ and ⌈k/2⌉. However,
although both families will have the same size r, the dimension of the vectors will be
different. In fact, the dimension of the vectors in one family will be d′ = d⌊k/2⌋ and
in the other d′ + 1. So, in order to prove the theorem we will consider having two
size-r families {|A1(y)〉, . . . , |Ar(y)〉} ⊆ Cd′

and {|B1(z)〉, . . . , |Br(z)〉} ⊆ Cd′+1.
Denote the entry of each vector |Ai(y)〉, |Bi(z)〉 byAi(y)u and Bi(z)v respectively

for all (u, v) ∈ [d′]× [d′ + 1]. Note that

if f(y, z) = 0 then
∑r

i=1Ai(y)uBi(z)v = 0 for all (u, v);
if f(y, z) = 1 then

∑r
i=1Ai(y)uBi(z)v 6= 0 for some (u, v).

This holds because each vector |Ai(y)〉 and |Bi(z)〉 are the set of vectors |At
i(x

t)〉
tensored together and separated in two families of size ⌊k/2⌋ and ⌈k/2⌉ respectively.

The following lemma was implicitly proved by de Wolf [5] for families of vectors
with the same dimension. However, we show that the same arguments hold even if
the families have different dimensionality (see Appendix B).

Lemma 3.3. Let I be an arbitrary set of numbers of size 22n+1. Let α1, . . . , αd′

and β1, . . . , βd′+1 be numbers from I, and define the quantities

ai(y) =

d′

∑

u=1

αuAi(y)u and bi(z) =

d′+1
∑

v=1

βvBi(z)v.

Also let

v(y, z) =

r
∑

i=1

ai(y)bi(z) =

d′

∑

u=1

d′+1
∑

v=1

αuβv

(

r
∑

i=1

Ai(y)jBi(z)k

)

.

There exists with positive probability α1, . . . , αd′ , β1, . . . , βd′+1 ∈ I such that for

every (y, z) ∈ f−1(1) we have v(y, z) 6= 0.

Therefore, by the lemma above we have that v(y, z) = 0 if and only if f(y, z) = 0.
Now let |ai〉 and |bi〉 be 2n-dimensional vectors indexed by elements from {0, 1}n,
and let M =

∑r
i=1 |ai〉〈bi|. Thus M is an order-k tensor with rank r. �

Now we continue the proof with the upper bound.

Lemma 3.4. NQNOF
k (f) ≤ ⌈lognrank(f)⌉+ 1.

The proof of Lemma 3.4 follows by fixing a proper matrization (separating the
cases of odd and even k) of the communication tensor, and then applying the 2-
party protocol by de Wolf [5] (see Appendix B).

4. A Quantum-Classical Super-polynomial Separation

In this section, we show that there exists a function with a super-polynomial gap
between classical and quantum NOF models of quantum strong nondeterminism.

Theorem 4.1. There is a super-polynomial gap between NNOF
k and NQNOF

k when

k = o(log n).
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In particular, we analyze the following total function: Let X1 = · · · = Xk =
{0, 1}n×n be the set of all n × n boolean matrices. Also let xi ∈ Xi be a n × n
boolean matrix, and denote by xixj the multiplication of matrices xi and xj . Define

F (x1, . . . , xk) = (x1x2 · · ·xk)11,

i.e., F (x1, . . . , xk) is the entry in the first row and first column in x1 · · ·xk.
This matrix multiplication function was studied by Raz [14], who showed a

Ω(n/2k) lower bound in the blackboard model of NOF bounded-error communica-
tion. However, this lower bound also holds for the classical blackboard nondeter-
ministic NOF communication denoted NNOF

k (F ). The reason is that the proof by
Raz is based on an upper bound for discrepancy. Since NNOF

k (f) = Ω(1/Disc(f))
for any f whereDisc(f) is the discrepancy [11], we inmediately obtain the following
corollary:

Corollary 4.2. NNOF
k (F ) = Ω(n/2k).

The condition on the number of players k = o(log n) in Theorem 4.1 comes from
this lower bound. Improving it will require new techniques for classical multiparty
communication.

Since any lower bound in the blackboard model also holds in the unicast model,
we can use Corollary 4.2 to prove a separation for the unicast models in this paper.
The following lemma implies the theorem.

Lemma 4.3. NQNOF
k (F ) = O(k logn).

Proof. By Theorem 1.1 we just need to give a tensor with rank at most O(nk).
Denote each entry of the matrix xi by xi[p, q], i.e., the (p, q)-entry of xi. Also, all
the operations in this proof are assumed to be over the binary field.

Let

T [x1, . . . , xk] = (x1 · · ·xk)11,

which is just the function F plugged into T .
First, note that the multiplication is between n × n matrices. Hence, the max-

imum rank of the product is at most n. Therefore, we can write each entry of T
as

T [x1, . . . , xk] =









n
∑

j1=1

xj11



 · · ·





n
∑

jk=1

xjkk









11

=

n
∑

j1,...,jk=1

(xj11 · · ·xjkk )11.(4.1)

The notation xji can be interpreted as the jth term in the rank decomposition of
matrix xi. Now fix j1, . . . , jk, and by the definition of matrix multiplication we get
that

(4.2) (xj11 · · ·xjkk )11 =
n
∑

i1,...,ik−1=1

xj11 [1, i1]x
j2
2 [i1, i2] · · ·x

jk
k [ik−1, 1].

Equations (4.1) and (4.2) have nk and nk−1 terms. Putting them both together,
we have that T [x1, . . . , xk] have n

2k−1 summands. This already have O(nk) terms;
however, we need to make sure that each term in the summation defines a rank-1
tensor.

For each m ∈ {1, . . . , nk} define

(4.3) Tm[x1, . . . , xk] = xj11 [1, i1]x
j2
2 [i1, i2] · · ·x

jk
k [ik−1, 1],
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for some j1, . . . , jk, i1, . . . , xk−1 that directly corresponds to m (fix some bijection
between m and j1, . . . , jk, i1, . . . , xk−1). Then, let y1, . . . , yn×n ∈ {0, 1}n×n be a
enumeration of all n×n boolean matrices. For instance, y1 is the all-0 matrix, and
yn×n is the all-1 matrix. Define vectors

|v1〉 =
(

yj11 [1, i1], . . . , y
j1
2n×n [1, i1]

)

and |vk〉 =
(

yjk1 [ik−1, 1], . . . , y
jk
2n×n [ik−1, 1]

)

;

and for r = 2, . . . , k − 1 define

|vr〉 =
(

yj11 [ir−1, r], . . . , y
jk
2n×n [ir−1, r]

)

.

Note that each vector has 2n×n components, and are indexed by the set of n × n
boolean matrices. If we pick k matrices yi1 , . . . , yik , we get that

(4.4) Tm[yi1 , . . . , yik ] = yj1i1 [1, i1] . . . , y
jk
i1
[ik−1, 1].

This way, Tm = |v1〉 ⊗ |v2〉 ⊗ · · · ⊗ |vk〉 for all m. Thus, Tm has rank 1, and

T =
∑n2k−1

m=1 Tm. �

5. Concluding Remarks

In this paper we studied strong quantum nondeterministic communication com-
plexity in multiparty protocols. In particular, we showed that i) strong quantum
nondeterministic NOF communication complexity is upper-bounded by the tensor-
rank of the nondeterministic communication tensor; ii) strong quantum nondeter-
ministic NIH communication complexity is lower-bounded by the tensor-rank of the
nondeterministic communication tensor. These results naturally generalizes previ-
ous work by de Wolf [5]. Moreover, the lower bound on NIH is also a lower bound
for quantum exact NIH communication. This fact was used to show a Ω(n+ log k)
lower bound for the generalized inner product function.

We also showed an exponential separation between quantum strong nondeter-
ministic communication and classical nondeterministic communication in the NOF
model. To our knowledge, this is the first separation in any multiparty model.
However, it remains an open problem a separation (of any kind) between more
common multiparty models, e.g., bounded-error communication.

In order to prove strong lower bounds using tensor-rank in NIH, we need stronger
construction techniques for tensors. The fact that computing tensor-rank is NP-
complete suggests that this could be a very difficult task. Alternatives for finding
lower bounds on tensor-rank include computing the norm of the communication
tensor, or a hardness result for approximating tensor-rank.
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Appendix A. Rank Lower Bound on GIPk

Lemma A.1. nrank(GIPk) ≥ (2n − 1)k/2.

Proof. First, we start by generalizing the concept of rows and columns for tensors.
Define a fiber to be a vector obtained by fixing every index except by one. Thus, a
matrix column is a mode-1 fiber, and a row is a mode-2 fiber. For order-3 tensors,
we have columns, rows and tubes, and so on for higher order tensors. In general, a
mode-i fiber is a vector obtained by fixing every but except the ith index. In the
same way we define a slice to be a two-dimensional section of T obtained by fixing
all but two indices.

Here we will consider a particular form of matrization. Let T ∈ Cn1×···×nk be an
order-k tensor, with ni = 2n for every i. The i-mode unfolding of T , denoted T(i), is
the matrix obtained by arranging the i-mode fibers as columns. The permutations
of the columns of T(i) is not important, as long as the corresponding operations
remain consistent [7]. Define the i-rank of T as ranki(T ) = rank(T(i)). It is trivial
that ranki(T ) ≤ rank(T ) for every i [3].

Now we proceed with the proof. Let T be the order-k communication tensor for
GIPk. Let MIPn

be the communication matrix for GIP2, i.e., the 2-party inner
product function on n bits. It is well known that rank(MIPn

) = 2n − 1 (cf. [8,
Example 1.29]).

Fix the x′3, . . . , x
′
k inputs to be the all-1 strings and consider the (x′3, . . . , x

′
k)-slice

of T denoted Tx′

3...x
′

k
. Then rank(Tx′

3...x
′

k
) = rank(MIPn

) = 2n − 1, because by

fixing x3, . . . , xk to all 1s, the entries of T become 〈x1|x2〉 for all x1, x2 ∈ {0, 1}n.
Let x(i) denote the string x with the ith bit flipped. For i = 3, . . . , k consider

the slice T
x′

3...x
′

k−1x
′(i)
k

of T . Then

T
x′

3...x
′

k−1x
′(i)
k

[x1, x2] = 〈x1|x2〉 − x1ix2i,
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where the non-zero entries agrees with the non-zero entries of MIPn−1 by deleting

the ith bits of x1 and x2. Thus, rank(Tx′

3...x
′

k−1
x
′(i)
k

) = (2n − 1)/2.

The 1-mode unfolding of T is obtained by fixing every index except x1. Thus

T(1) =
[

Tx′

3...x
′

k
T
x′

3...x
′(3)
k

· · · T
x′

3...x
′(k)
k

· · ·
]

,

with 2(k−1)n columns. We known that Tx′

3...x
′

k
and T

x′

3...x
′(i)
k

for each i = 3, . . . , k

have (2n − 1) and (2n − 1)/2 linearly independent columns respectively. Also, each
of these columns are pair-wise linearly independent. Thus, rank1(T ) ≥ (2n−1)k/2,
which implies rank(T ) ≥ (2n − 1)k/2. �

Appendix B. Proofs of Technical Lemmas

B.1. Proof of Lemma 3.3. If f(x, y) = 0 then v(x, y) = for all αu, βv. If f(x, y) 6=
0 there exists (u′, v′) such that v(x, y) 6= 0. Here we use the same arguments given
by de Wolf [5], i.e., we show that v(x, y) = 0 happens with small probability. In fact,
having families of vectors with different dimensions does not affect the argument.
Consider the situation where all αu and βv were chosen except αu′ and βv′ . Write
v(x, y) in terms of these two coefficients

v(x, y) = c0αu′βv′ + c1αu′ + c2βv′ + c3,

where c0 =
∑r

i=1Ai(x)uBi(y)v 6= 0. If we fix αu′ then, v(x, y) is a linear equation
with at most one solution (zero). Therefore, we have at most 22n+1 · 1 ways of
choosing αu′ and βv′ such that v(x, y) = 0. Thus

Pr[v(x, y) = 0] ≤
22n+1

(22n+1)2
<

22n+2

(22n+1)2
= 2−2n.

By the union bound

Pr[∃(x, y) ∈ f−1(1) s.t. v(x, y) = 0] ≤
∑

(x,y)∈f−1(1)

Pr[v(x, y) = 0] < 22n · 2−2n = 1.

The following is a probabilistic method argument. Since the above probability is
strictly less than 1, there exists with positive probability sets {a1(x), . . . , ar(x)}
and {b1(y), . . . , br(y)} such that for every (x, y) ∈ f−1(1) we have v(x, y) 6= 0. �

B.2. Proof of Lemma 3.4. Let T be a nondeterministic tensor for a function f
with nrank(f) = r. We divide the proof in two cases.

Even k: Fix two players, say P1 (Alice) and Pk (Bob). Also fix some matrization of
T , i.e., letM be such matrization and consider it as an operatorM : Hk/2+1⊗· · ·⊗

Hk → H1⊗· · ·⊗Hk/2. Thus M is a 2kn/2× 2kn/2-matrix that maps elements from
the Hk/2+1⊗· · ·⊗Hk subspace to the H1⊗· · ·⊗Hk/2 subspace. Let alsoM = UΣV

be the singular value decomposition of M such that U, V are 2kn/2 × 2kn/2 unitary
matrices, and Σ is a 2kn/2 × 2kn/2 diagonal matrix containing the singular values
of M in the diagonal. The number of singular values is at most rank(M) ≤ r.

Bob computes the state |φ1···k/2〉 = c1···k/2ΣV |x1, . . . , xk/2〉 where c1···k/2 is some
normalizing constant that depends on x1, . . . , xk/2. Since only the first entries of Σ
are non-zero, |φ1···k/2〉 has at most r non-zero entries, so the state can be compressed
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using log r qubits4. Bob send these qubits to Alice. Alice then computes U |φ1···k/2〉
and measure that state. If Alice observes xk/2+1, . . . , xk then she puts a 1 on the
qubit channel, and otherwise she puts a 0. The probability of Alice putting a 1 on
the channel is
∣

∣〈xk/2+1, . . . , xk|U |φ1···k/2〉
∣

∣

2
= |c1...,k/2|

2
∣

∣〈xk/2+1, . . . , xk|UΣV |x1, . . . , xk/2〉
∣

∣

2

= |c1...,k/2|
2
∣

∣〈xk/2+1, . . . , xk|M |x1, . . . , xk/2〉
∣

∣

2

= |c1...,k/2|
2 |M [x1, . . . , xk]|

2

= |c1...,k/2|
2 |T [x1, . . . , xk]|

2
.

Since T [x1, . . . , xk] is non-zero if and only if f(x1, . . . , xk) = 1, this probability
will be positive if and only if f(x1, . . . , xk) = 1. Thus, this is a nondeterministic
protocol with total cost log r + 1.

Odd k: To use the protocol given in the even case, we add an extra degree of
freedom to T .

Lemma B.1. If T is an order-k tensor with rank r then, there exists a tensor T ′

of order k + 1 with rank r where T [x1, . . . , xk] = T ′[x1, . . . , xkxk+1] for all xk+1.

By the above lemma, we have that for any given xk+1, T
′[x1, . . . , xkxk+1] = 0 if

and only if f(x1, . . . , xk) = 0 . See below for a proof of Lemma B.1.
Before the protocol starts, each player knows T ′ (which has even order) and its

matrization M ′. We fix two players, P1 (Alice) and Pk (Bob), and they can now
use the protocol for even k. �

B.3. Proof of Lemma B.1. Let T =
∑r

i=1 |v
i
1〉 · · · |v

i
k〉 for some family of d-

dimensional vectors. Define T ′ =
∑r

i=1 |v
i
1〉 · · · |v

i
k〉|v

i
k+1〉 where each |vik+1〉 is the

all-1 vector. Thus, component-wise we have that

T [x1, . . . , xk] =

r
∑

i=1

vi1(x1) · · · v
i
k(xk),

and

T ′[x1, . . . , xkxk+1] =

r
∑

i=1

vi1(x1) · · · v
i
k(xk)v

i
k+1(xk+1),

where vik+1(xk+1) = 1 for all i and for all inputs xk+1. Then T ′[x1, . . . , xkxk+1] =
∑r

i=1 v
i
1(x1) · · · v

i
k(xk) and T

′[x1, . . . , xkxk+1] = T [x1, . . . , xk] for any xk+1. �

4A n dimensional vector can be encoded as a quantum state with logn qubits by observing
that a k-qubit state is a 2k-dimensional vector. This fact was used by Raz to show an exponential
separation between classical and quantum 2-party communication [13].
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