
A remark on one-wayness versus pseudorandomness

Periklis A. Papakonstantinou Guang Yang

Institute for Theoretical Computer Science
Tsinghua University

Abstract

Every pseudorandom generator is in particular a one-way function. If we only consider part
of the output of the pseudorandom generator is this still one-way? Here is a general setting
formalizing this question. Suppose G : {0, 1}n → {0, 1}`(n) is a pseudorandom generator with
stretch `(n) > n. Let MR ∈ {0, 1}m(n)×`(n) be a linear operator computable in polynomial time
given randomness R. Consider the function

F (x,R) =
(
MRG(x), R

)
We obtain the following results.

• There exists a pseudorandom generator such that for every constant µ < 1 and for an
arbitrary polynomial time computable MR ∈ {0, 1}(1−µ)n×`(n), F is not one-way.

Furthermore, our construction yields a tradeoff between the hardness of the pseudorandom
generator and the output length m(n). For example, given α = α(n) and a 2cn-hard
pseudorandom generator we construct a 2αcn-hard pseudorandom generator such that F
is not one-way, where m(n) ≤ βn and α+ β = 1− o(1).

• We show this tradeoff to be tight for 1-1 pseudorandom generators. That is, for any G
which is a 2αn-hard 1-1 pseudorandom generator, if α + β = 1 + ε then there is MR ∈
{0, 1}βn×`(n) such that F is a Ω(2εn)-hard one-way function.

1 Introduction

A one-way function is a function easy to compute but hard to invert. A pseudorandom generator is
an efficient deterministic algorithm that stretches a short random seed to a longer one which is hard
to distinguish from random. They are both fundamental primitives in private-key cryptography.

We tend to believe that one-wayness is a weaker notion than pseudorandomness. One reason is
that every pseudorandom generator is in particular a one-way function, but the other direction fails
dramatically. In this paper we consider the effect on the one-wayness of a pseudorandom generator
when “hashing” its output. A natural way to formalize this is to consider the application of an
efficiently sampleable linear operator, which also captures (but a minor twist) universal families of
hash functions and certain randomness extractors. Formally, let G : {0, 1}n → {0, 1}`(n), `(n) > n
be a pseudorandom generator, and fix an arbitrary polynomial time algorithm that on input R it
outputs a matrix MR ∈ {0, 1}m(n)×`(n). Consider the following “hashing method”:

FG(x,R) =
(
MRG(x), R

)
We study the effect of the size of m(n) on the one-wayness of FG. In fact, all of our results hold
for affine F(x,R) =

(
MRG(x) + bR,R

)
as well.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 5 (2012)

1.1 Previous work and motivation

Studying relations among basic cryptographic primitives is fundamental for cryptography. Since
the seminal work of H̊astad-Impagliazzo-Levin-Luby [HILL89], the first to construct a pseudo-
random generator from any one-way function, there is a line of excellent works (e.g. [HRV10,
HHR06a, HHR06b]) improving its efficiency. Questions regarding the other direction have so far
been neglected1.

Instead of asking whether one-wayness is preserved when hashing the output of every pseu-
dorandom generator, we can ask the weaker question of whether there exists a pseudorandom
generator that has this property. If we have such a pseudorandom generator at hand (also enjoying
an additional mild property), then via an adaptation of the work of Applebaum-Ishai-Kushilevitch
[AIK04, AIK05] we can implement cryptographic primitives in a streaming fashion. Streaming
Cryptography [BJP11], not to be confused with stream ciphers, concerns the computation of cryp-
tographic primitives with a device that has small working memory, e.g. logarithmic or sub-linear,
and it makes a small number of passes, e.g. poly-logarithimic, over its input. Our results rule out
a certain class of constructions in Streaming Cryptography.

1.2 Our results

We have obtained both negative and positive results. We show that there exists a pseudorandom
generator where if we apply a length-shrinking, even by a constant factor, linear operator on its
output then this is not a one-way function. Our construction (Theorem 1) yields a tradeoff between
the hardness of this generator and the shrinkage factor. Theorem 1 is also, in particular, about
universal families of hash functions, but with a minor detail regarding the zero input vector (this
does not affect the results). In Theorem 2 we show that this construction is optimal, in the sense
that if instead we use any generator which is a little harder, or if the shrinkage factor is a little
bigger, then the resulting function is one-way.

Theorem 1. Suppose G is a pseudorandom generator with hardness sG(·). Then, there is a
pseudorandom generator G∗ : {0, 1}n → {0, 1}`(n) for an arbitrary polynomial `(n), such that

FG
∗
(x,R) = (MRG

∗(x), R) is not one-way, where MR ∈ Fm(n)×`(n)
2 is a linear operator sampled

in polynomial time using randomness R, m(n) ≤ (1 − µ)n for any constant µ > 0. Moreover, G∗

preserves the injectivity of G and its hardness is at least sG(µn− nδ) for every δ > 0.

The “moreover” part makes the theorem stronger. Also, preserving injectivity in this theorem
finds application in explaining a subtle issue regarding the optimal output length of hash functions
in the first step of [HILL89] construction (see Section 4 in [HILL89], or p.138 in [Gol01]).

Here is a variant of Theorem 1 restricted to projections (i.e. when we just sample from the
output of the pseudorandom generator) of size O(n

log(n)).

Lemma 1. If MR in Theorem 1 is restricted to random projections with m(n) = O(n
log(n)), then

there exists (some other) G∗ such that FG
∗

is invertible in non-uniform NC2.

On the other hand, we prove that when hashing a 2cn-hard pseudorandom generator to a little
more than (1− c)n bits then its one-wayness is preserved.

1This is not surprising, since a pseudorandom generator is in particular a one-way function.

2

Theorem 2. Suppose f : {0, 1}n → {0, 1}`(n) is a 2cn-hard 1-1 pseudorandom generator. Let
F := F f (x, h) =

(
h(f(x)), h

)
, where h : {0, 1}`(n) → {0, 1}m(n) is a hash function from a universal

family of hash functions S
m(n)
`(n) . If m(n) ≥ (1 − c + ε)n for constant ε ∈ (0, c5), then F is one-way

with hardness 2εn.

In fact, the above theorem holds true if instead of a pseudorandom generator we consider f to
be an injective one-way function.

1.3 Outline

In Section 2, we introduce notation, definitions, and basic facts. In Section 3, we construct G∗ from
a pseudorandom generator G such that FG

∗
is not one-way when hashing down its output by a

constant factor. In Section 4 we show that for every 1-1 pseudorandom generator f with hardness
2cn and m(n) ≥ (1 − c + ε)n, F f preserves the one-wayness and has hardness at least 2εn. We
conclude in Section 5 with some further research directions.

2 Preliminary

2.1 Notation and definitions

Probability notation. For probability distributions X,Y , we denote by X ∼ Y that X and Y
are identically distributed. x ← X denotes that x is sampled from X, and x ∈R S denotes that
x is sampled uniformly from S. Un denotes the uniform distribution over {0, 1}n. The statistical
distance between two distributions X and Y is defined as ∆(X,Y) = 1

2

∑
z |Pr[X = z]−Pr[Y = z]|.

Universal families of hash functions. Let Smn denote a set of functions from {0, 1}n to {0, 1}m.
Let Hm

n be a random variable uniformly distributed over Smn . Smn is called a universal family of
hash functions if the following conditions hold:

• Smn is a pairwise independent family of mappings: for every x 6= y ∈ {0, 1}n, Hm
n (x) and

Hm
n (y) are independent distributions and both identically distributed to Um.

• Smn has a succinct representation: for every h ∈ Smn , the description of h is poly(n,m).

• Smn can be efficiently evaluated: there is a polynomial time algorithm H such that for every
h ∈ Smn , x ∈ {0, 1}n, H(h, x) = h(x).

Specifically, h(x) = M ·x+ b is a universal family of hash functions when the matrix M and vector
b are uniformly distributed. In fact, h(x) = M · x satisfies all above conditions except that Hm

n (x)
is not uniformly distributed at the point x = 0.

Cryptographic primitives. Here are the definitions of one-way functions, pseudorandom gen-
erators, and k-wise independent distributions. The definitions are for uniform adversaries, however
our results hold in the non-uniform setting as well (c.f. [Gol01, Vad11]).

A one-way function f : {0, 1}∗ → {0, 1}∗ is a polynomial time computable function where no
probabilistic polynomial time algorithm A inverts f with non-negligible probability; i.e. for every k
and every probabilistic polynomial time algorithm A, we have Prx←Un [A(f(x), 1n) ∈ f−1(f(x))] <
n−k, for sufficiently large n.

3

Furthermore, we say that f has hardness s(n) if for every sufficiently large input of length
n, f cannot be inverted with probability ≥ 1

s(n) by any adversary A which runs in time ≤ s(n).

Therefore, f is a one-way function if f has super-polynomial hardness s(n).
A pseudorandom generator G is a polynomial time computable function which stretches every

input x to an output of length |G(x)| = `(|x|) > |x| = n, such that every probabilistic polyno-
mial time algorithm D cannot distinguish between U|G(x)| and G(U|x|); i.e. for every k and D,

|Pr[D(G(Un), 1n) = 1]− Pr[D(U|G(Un)|, 1
n) = 1]| < n−k when n is sufficiently large. We call ` the

stretch of G. Similar to one-way functions we define an s(n)-hard pseudorandom generator.
We subscript a string σ ∈ {0, 1}n with R ⊆ {1, . . . , n}, and we write σR, to denote the substring

of σ keeping exactly the bits indexed byR. In this notation, a function h is called k-wise independent
if for every K ⊆ {1, . . . , n} where |K| = k we have that h(Un)K ∼ Uk.

Circuit classes. We denote by NC2 the functions computed by non-uniform families of poly-size
boolean circuits with multiple outputs, where the gates are of constant fan-in and the depth of the
circuit is O(log2 n) for input length n.

2.2 Basic facts and lemmas

The following is a well-known fact (see e.g. [Gol01]).

Lemma 2. Let G be a pseudorandom generator. Then, G is a one-way function.

The following lemma states that a uniform randomly chosen matrix has a good chance of being
row independent. In fact, more general results hold for n×n matrices (see e.g. [BKW97, Muk84]).
The proof of the following lemma is an easy exercise and is given for completeness in the appendix.

Lemma 3. Uniformly at random pick a p × q matrix N over F2; i.e. N ∈R Fp×q2 . Then, N has
full row-rank with probability at least 1− 2p−q.

A deep result due to Mulmuley [Mul87] (which derandomizes [BvzGH82]) states that Gauss
elimination for linear systems over F2 can be done in uniform NC2. Later on, when we apply this
lemma, we introduce non-uniformity for a different reason.

Lemma 4 ([Mul87]). Gauss elimination can be done in uniform NC2.

3 Length-shrinking linear operators destroy one-wayness:
a shrinkage-hardness tradeoff

We prove Theorem 1. That is, given a pseudorandom generator G of hardness sG(n) we construct
a pseudorandom generator G∗ of almost the same hardness sG∗(n) = sG

(
(µ − o(1))n

)
for some

constant µ, such that an application of any efficiently sampled linear operator, which outputs
(1− µ)n bits, on the output of G∗ does not preserve one-wayness.

First we introduce the construction of G∗. It is easy to see that it preserves pseudorandomness
and injectivity; i.e. if G is 1-1 then G∗ is also 1-1.

Construction 1. Construct G∗ as

G∗(x1, x2, x3) = (Ĝ(x1) + (PG(x3) · x2), x2, x3) (1)

4

|x1| = n1, |x2| = n2, |x3| = n3, n1 + n2 + n3 = n. Ĝ(x1) = G(z)(x1)|{1,2,··· ,`′(n)} where G(z)

denotes z iterated compositions of G with itself for sufficient large z, such that |G(z)(x1)| ≥ `′(n) =
`(n) − n2 − n3. PG(x3) is an `′(n) × n2 matrix generated by iteratively applying pseudorandom
generator G and random seed x3. All operations are over F2.

By definition of Ĝ, |Ĝ(x1)| = `′(n). That is, |G∗(x1, x2, x3)| = `′(n) + n2 + n3 = `(n). Since
we XOR Ĝ(x1) with PG(x3) · x2, then sG(n1) lower bounds the hardness of G∗(x). We can choose
n3 to be an arbitrarily small polynomial in n. The parameters n1 and n2 determine a tradeoff
between the hardness of the pseudorandom generator G∗ and the shrinking length. This tradeoff
is not a minor issue. If we were to choose arbitrarily close to 1 the constants in the hardness and
in the shrinking length then a modification of [HILL89] would have shown that exponentially hard
pseudorandom generators, unconditionally, do not exist (this is not an immediate argument).

The following lemma is the main ingredient of the proof of Theorem 1.

Lemma 5. Suppose FG
∗
(x,R) = (MRG

∗(x), R) and G∗(x1, x2, x3) be as in Construction 1. Let
MR ∈ {0, 1}m(n)×`(n), m(n) < n2, be computable in polynomial time given R. Then, there exists a
probabilistic polynomial time algorithm A such that

Pr
y,R

[FG
∗
(A(y,R)) = (y,R)] > 1− 2−(n2−m(n)) − poly(

1

sG(n3)
)

Proof. Recall that G∗(x1, x2, x3) =
(
Ĝ(x1) + (PG(x3) · x2), x2, x3

)
, where x = (x1, x2, x3) and

x1, x2, x3 has length n1, n2, n3 respectively. Then,

FG
∗
(x,R) =

(
MRG

∗(x), R
)

=
(
MR(Ĝ(x1) + (PG(x3) · x2), x2, x3), R

)
Therefore for the goal FG

∗
(x,R) = (y,R), it suffices to find an x such that

MR

(
Ĝ(x1) + (PG(x3) · x2), x2, x3

)
= y (2)

We analyze further the structure of the above matrix equation. Without loss of generality, we
may assume that MR is already in reduced row echelon form, after applying Gauss elimination,
and it has full row-rank (easy to guarantee by deleting all zero rows). To match the form of the
column vector

(
Ĝ(x1) + (PG(x3) · x2), x2, x3

)
, we partition MR into MR = (M1|M2|M3) where the

sub-matrices M1,M2,M3 have `′(n), n2 and n3 columns respectively. Then

MR =
(
M1 M2 M3

)
=

 M ′1 M ′′2 M ′′′3

0 M ′2 M ′′3
0 0 M ′3

where M ′1,M

′
2 and M ′3 have full row-rank. Note that depending on MR, it is possible that M ′2,M

′
3

and M ′′3 are empty (i.e. size 0, instead of having 0-entries). Equation (2) can be written as M ′1
(
Ĝ(x1) + PG(x3)x2

)
+ M ′′2 x2+ M ′′′3 x3 = y1

M ′2x2+ M ′′3 x3 = y2

M ′3x3 = y3

(3)

Rewriting it as a linear system in x2,
(
M ′1PG(x3)+ M ′′2

)
x2 = y1 +M ′′′3 x3 +M ′1Ĝ(x1)

M ′2 x2 = y2 +M ′′3 x3

0 = y3 +M ′3x3

(4)

5

Now the problem reduces to finding a solution x to (4). We present an adversary A which finds
a solution to the above system.

A : Inverting FG
∗

(on input (y,R)):

1 Compute MR with input R;
2 Do Gauss elimination on the left of (MR|y);
3 Delete zero-rows and return “No answer” if detecting a row (0, 0, 0, · · · , 0, 1);
4 Compute M ′1,M

′
2,M

′′
2 ,M

′
3,M

′′
3 ,M

′′′
3 ;

5 Set x1 to a fixed value u, say n1 zeros;
6 Uniformly at random pick v from {x3

∣∣M ′3x3 = y3} ⊆ {0, 1}n3 (v ← Un3 if M ′3 is empty);

7 Compute PG(v) and Ĝ(u);

8 Consider:

(
M ′1PG(v) +M ′′2

M ′2

)
x2 =

(
y1 +M ′1Ĝ(u) +M ′′′3 v

y2 +M ′′3 v

)
;

9 Solve x2 and output (x,R) = ((u, x2, v), R). Output “Fail” if there is no solution.

It is easy to verify that A runs in polynomial time and the output is a pre-image of (y,R).
Now, we analyze the probability that A succeeds. It suffices to calculate the probability that A

outputs “Fail”, which is upper bounded by the probability that M =

(
M ′1PG(v) +M ′′2

M ′2

)
does

not have full row-rank. Let M′ =

(
M ′1 · U`′(n)×n2

+M ′′2
M ′2

)
. Since M ′1,M

′
2 have full row-rank,

M′ ∼
(
Ur1×n2

M ′2

)
does not have full row-rank with probability at most

∑
1≤i≤r1

2r2+i−1

2n2 < 2r1+r2
2n2 =

2−(n2−r1−r2) by Lemma 3, where r1, r2 is the number of rows in M ′1,M
′
2 respectively. Moreover,

the gap between Pr[M has full row-rank] and Pr[M′ has full row-rank] is bounded by poly(1
sG(n3)),

since otherwise there exists a polynomial time distinguisher for PG(v) and U`′(n)×n2
with advantage

at least poly(1
sG(n3)). Therefore, we have

Pr[M has full row-rank] ≥ Pr[M′ has full row-rank]− poly(
1

sG(n3)
)

≥ 1− 2−(n2−r1−r2) − poly(
1

sG(n3)
).

Since MR has m(n) rows in total, which implies r1 + r2 ≤ m(n),

Pr
y

[A succeeds] ≥ Pr[M has full row-rank] ≥ 1− 2−(n2−m(n)) − poly(
1

sG(n3)
)

Thus completes our proof of Lemma 5.

Corollary 1. If m(n) ≤ n2 − ω(log(n)) and n3 = nΩ(1), then FG
∗
(x,R) =

(
MRG

∗(x), R
)

is not
(even weakly) one-way.

Let n1 = µn−nδ, n2 = (1−µ)n+log2(n), and n3 = n−n1−n2 = nδ− log2(n) in Construction 1
and m(n) = n2 − log2(n) = (1 − µ)n. Applying Lemma 5 and Corollary 1, we conclude the proof

6

of Theorem 1. Therefore in general, hashing down the output of a pseudorandom generator by
a constant factor does not preserve its one-wayness, even when the pseudorandom generator is
exponential hard.

Regarding the roles of n1, n2, n3 in above argument, we first notice that n3 is the least impor-
tant one since we only need sG(n3) super-polynomial. In most common cases of interest sG(·) is
monotonically increasing (hence, s−1

G is well defined), it suffices to set n3 = s−1
G (nω(1)) which could

be as small as logO(1)(n) when sG is exponential. Meanwhile, the difference between m(n) and n2

is also negligible. Therefore it turns out n1 + m(n) = n − o(n). Recalling that G∗ has hardness
sG(n1), thus there is a tradeoff between the hardness of G∗ and the output length of MR. Letting
n1 = αn and m(n) = βn, we get α+ β = 1− o(1) as stated in the abstract.

Special case of random projections. When MR is a projection of length O(n
logn) we construct

a simpler pseudorandom generator G∗ where FG
∗

can even be inverted in NC2. For this we combine
the “strong pseudorandom” (cryptographic) object G with a “weak pseudorandom” object, a k-
wise independent generator. Specifically, let G∗(x1, x2) = (Ĝ(x1) +Hx2) where H realizes a k-wise
generator with k = Θ(n

log(n)). See Proposition 6.5 in [ABI86] and Chap. 7.6 in [MS77] for details.

Lemma 6. Let m(n) ≤ k, where k is as above. Then, FG
∗
(x,R) =

(
MRG

∗(x), R
)

can be inverted
in NC2.

The adversary is a modification of A which appears in the proof of Lemma 5. In particular,
in Step 4, only M ′1 matters since other matrices are 0-sized; in Step 6,7,8, PG(v) is replaced by
H and the linear system in Step 8 becomes M ′1Hx2 = y1 + Ĝ(u). Although Ĝ is polynomial time
computable, we can non-uniformly hardwire the value of Ĝ on a constant one for each input length.
Since u can be fixed, then by Lemma 4 we have that M ′1H is invertible in NC2.

4 Tightness of the construction

Even if we assume that a pseudorandom generator of hardness 20.99n exists, Theorem 1 says that
then there is a generator of hardness 20.99αn such that when applying a linear map on its output
shrinking it down to βn many bits then this is not one-way, for α + β = 1 − o(1). We show that
this tradeoff between α and β is tight, i.e. when α+ β = 1 + ε and a 1-1 generator f has hardness
2αn, then F f forms a 2εn-hard one-way function.

Below, we prove of Theorem 2. For this we apply the following well-known lemma, but in a
non-uniform setting.

Lemma 7 ([Gol01] Lemma 3.5.1, or e.g. [HILL89, Sip83, GL89]). Let m < ` be integers, Sm` be

a universal family of hash functions, and b,δ be two reals such that m ≤ b ≤ ` and δ ≥ 2−
b−m
2 .

Suppose that X` is a random variable distributed over {0, 1}` such that for every x, it holds Pr[Xn =
x] ≤ 2−b. Then for every ξ ∈ {0, 1}m and for all but at most 2−(b−m)δ−2 fraction of the h’s in Sm` ,
it holds that

Pr
X`

[h(X`) = ξ] ∈ (1± δ)2−m

Proof of Theorem 2. We present the proof for a non-uniform adversary, simpler to present but
already a rather involved argument. Fix one efficient construction of sampling from a universal
family of hash functions (e.g. choose one from [Vad11]). Now F is well-defined for a given f .

7

Assume that F is not a 2εn-hard one-way function. Let A be a probabilistic algorithm which runs
in time TA = O(2εn) and inverts F with probability pA(n), i.e.

Pr
x←Un,h←RS

m(n)
`(n)

[A(h(f(x)), h) ∈ F−1(h(f(x)), h)] = pA(n) >
1

2εn

We show that f is not 2cn-hard with oracle access to A. That is, we construct a non-uniform
adversary Af that given y ← f(Un), Af computes x′ such that f(x′) = y in time O(2cn) and with
probability at least Ω(2−cn).

Here is the description of Af : suppose the non-uniform advice is h0 ∈ Sm(n)
`(n) , where h0 depends

on n, and y ← f(Un) is the input. Af first computes (h0(y), h0). Then apply A on (h0(y), h0) to
compute x′ such that h0(f(x′)) = h0(y).

Therefore, Af runs in time O(TA) = O(2εn) = O(2cn). In what follows we denote by x′ =
x′(h(y), h) the output of A on input (h(y), h). Now, we calculate the probability that Af outputs
x′. We will determine later how to find h0, in fact why h0 exists.

Pr
y←f(Un)

[Af inverts f on y] = Pr
y←f(Un)

[x′ = A(h0(y), h0), f(x′) = y] = Pr
x←Un

[f(x′) = f(x)] (5)

where in the last equation we omit writing how x′ is derived and mentioning its dependence.

Pr
x←Un

[f(x′) = f(x)]

=
∑

z∈h0(f({0,1}n))

Pr
x←Un

[h0(f(x)) = z] Pr
x←Un

[f(x′) = f(x)
∣∣h0(f(x)) = z]

=
∑

z∈h0(f({0,1}n))

Pr
x←Un

[h0(f(x)) = z] Pr
x∈R(h0◦f)−1(z)

[x = x′ = x′(z, h0)]

f(x′) = f(x) is equivalent to x′ = x since f is 1-1. From this point on, x′(z, h0) is uniquely defined
and constant from z and h0. Therefore we can take it out of the probability.

=
∑

z∈h0(f({0,1}n))

|(h0 ◦ f)−1(z)|
2n

·
(1

|(h0 ◦ f)−1(z)|
· I[h0(f(x′(z, h0))) = z]

)
=

1

2n

∑
z∈h0(f({0,1}n))

I[h0(f(x′)) = z] =
1

2n

∑
z∈{0,1}m

I[h0(f(x′)) = z] (6)

where I[h0(f(x′)) = z] is the indicator of the event “h0(f(x′)) = z for x′ = A(z, h0)”. Note that
the sum

∑
z∈{0,1}m I[h0(f(x′)) = z] corresponds to the number of z’s that A inverts (z, h0).

However, when fixing h0, the probability “A succeeds” is

Pr
x←Un

[A inverts (h0(f(x)), h0)] =
∑

z∈{0,1}m
Pr

x←Un
[h0(f(x)) = z] · I[h0(f(x′)) = z] (7)

Notice that (7) is the probability of “A succeeds on
(
h0(f(Un)), h0

)
”, while (6) counts the

number of z’s that A inverts
(
z, h0

)
. There two are related in the following sense. Remember that

8

hashing down a weak random source smooths the distribution, hence h0(f(Un)) seems close to Um.
In this sense, we make an estimation with error upper bounded by their statistical distance.∣∣ Pr

x←Un
[A inverts (h0(f(x)), h0)]− 1

2m

∑
z∈{0,1}m

I[h0(f(x′)) = z]
∣∣

=
∣∣ ∑
z∈{0,1}m

Pr
x←Un

[h0(f(x)) = z] · I[h0(f(x′)) = z]−
∑

z∈{0,1}m

1

2m
I[h0(f(x′)) = z]

∣∣
≤

∑
z∈{0,1}m

∣∣ Pr
x←Un

[h0(f(x)) = z]− 1

2m
∣∣ · I[h0(f(x′)) = z]

=2∆
(
h0(f(Un)), Um

)
(8)

Plugging (8) into (6), it immediately leads to the lower bound

Pr
x←Un

[f(x′) = f(x)] ≥2m−n
(

Pr
x←Un

[A inverts (h0(f(x)), h0)]− 2∆
(
h0(f(Un)), Um

))
(9)

Now, our goal is to show that there exists a choice for h0 in (9) giving the Ω(1
2cn) lower bound.

Claim 1. There is a (good) h0 ∈ Sm(n)
`(n) such that

• Property 1: ∆
(
h0(f(Un)), Um

)
< 2 · 2

1+εn−(n−m)
3 ;

• Property 2: Prx←Un [h0(f(x′)) = h0(f(x))] ≥ 2−(1+εn).

For Property 1, it suffices for concluding the the proof to have δ = 2
1+εn−(n−m)

3 and

Pr
ξ←Um

[Pr[h0(f(Un)) = ξ] /∈ (1± δ) · 2−m] < 21+εn−(n−m)δ−2

Let δ = 2
1+εn−(n−m)

3 , b = n,m = m(n), ` = `(n) and X = f(Un) as in Lemma 7. Since m ≤ b ≤
`(n) and f is injective (so that PrX [X = z] ≤ 1

2n for every z), we have that for every ξ ∈ {0, 1}m and

for all but at most 2−(n−m)δ−2 fraction of the h’s in S
m(n)
`(n) , it holds Pr[h(f(Un)) = ξ] ∈ (1±δ) ·2−m.

Let B(h, ξ) denote the event Pr[h(f(Un)) = ξ] /∈ (1± δ) ·2−m, then taking probability over ξ and h,

Pr
ξ←Um,h←Sm(n)

`(n)

[B(h, ξ)] ≤ 2−(n−m)δ−2

=⇒ Pr
h←Sm(n)

`(n)

[Pr
ξ←Um

[B(h, ξ)] ≥ 21+εn−(n−m)δ−2] ≤ 1

21+εn
(10)

Thus, Prξ←Um [Pr[h(f(Un)) = ξ] /∈ (1 ± δ) · 2−m] < 21+εn−(n−m)δ−2 holds for at least 1 − 1
21+εn

fraction of the h’s in S
m(n)
`(n) . In particular, Property 1 is satisfied by that many h’s.

For Property 2, we lower bound the probability that A performs not so bad for a randomly
chosen h, i.e. Pr

h←Sm(n)
`(n)

[Prx←Un [h(f(x′)) = h(f(x))] ≥ 1
21+εn

]. Let Eh denote the event that

9

Prx←Un [h(f(x′)) = h(f(x))] ≥ 2−1−εn, we have

2−εn ≤ pA(n) = Pr
h←Sm(n)

`(n)
,x←Un

[h(f(x′)) = h(f(x))]

= Pr
h←Sm(n)

`(n)

[Eh] Pr
x←Un

[h(f(x′)) = h(f(x))
∣∣Eh] + Pr

h←Sm(n)
`(n)

[¬Eh] Pr
x←Un

[h(f(x′)) = h(f(x))
∣∣¬Eh]

≤ Pr
h←Sm(n)

`(n)

[Eh] · 1 + Pr
h←Sm(n)

`(n)

[¬Eh] · 2−1−εn = (1− 2−1−εn) Pr
h←Sm(n)

`(n)

[Eh] + 2−1−εn

=⇒ Pr[Eh] > 2−1−εn

Hence, we lower bound the probability of h having Property 2 as follows

Pr
h←Sm(n)

`(n)

[Pr
x←Un

[h(f(x′)) = h(f(x))] ≥ 2−1−εn︸ ︷︷ ︸
Eh

] > 2−1−εn

The following calculation shows that an h0 as required exists.

Pr
h←Sm(n)

`(n)

[h satisfies both Property 1 and 2] > (1− 1

21+εn
) + 2−1−εn − 1 = 0

Using this h0 in (9), and recalling that m = m(n) = (1− c+ ε)n, we obtain

Pr
y←f(Un)

[Af inverts f on y] = Pr
x←Un

[f(x′) = f(x)]

≥2m−n
(
2−(1+εn) − 2(2 · 2

1+εn−(n−m)
3)

)
= 2−1−cn − 2(7+(5ε−4c)n)/3 = Ω(2−cn)

Note that the running time of Af is bounded by O(2cn). In conclusion, F (x, h) =
(
h(f(x)), h

)
is one-way, and its hardness is at least 2εn.

5 Conclusions and open questions

We have showed that “hashing” the output of a pseudorandom generator to a constant fraction
of its input length, in general, destroys its one-wayness. We prove this in the form of a tradeoff
between cryptographic hardness and output length of the hash. We also show that this tradeoff is
tight.

The question asked in this paper is of independent interest. It is further motivated by Stream-
ing Cryptography in logarithmic space (see e.g. [KGY89, BJP11]). In particular, our main result
precludes the possibility of basing Streaming Cryptography in this specific way on arbitrary pseu-
dorandom generators.

Another question is whether there exists a pseudorandom generator of reasonable hardness
where one-wayness is preserved when hashing its output. This question remains open. We speculate
that is a difficult mathematical problem. For example, an interesting direction would be to show
that this question is equivalent to constructing 2n

ε
-hard one-way functions; i.e. a problem essentially

about Ω(2n
ε
) circuit lower bounds.

Finally, we ask whether starting from generic assumptions there is a possibly different avenue
to computing cryptographic primitives in a streaming fashion.

10

Acknowledgements

We would like to thank John Steinberger, and Andrew Wan for the helpful remarks on a previous
draft. We would also like to thank Andrej Bogdanov and Oded Goldreich for the helpful discussions.

References

[ABI86] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for
the maximal independent set problem. Journal of Algorithms, 7:567–583, 1986.

[AIK05] B. Applebaum, Y. Ishai, and E. Kushilevitz. Computationally private randomizing
polynomials and their applications. Computational Complexity, 15(2):115–162, 2006
(also CCC’05).

[AIK04] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. SIAM Journal on
Computing (SICOMP), 36(4):845–888, 2006 (also FOCS’04).

[BJP11] J. Bronson, A. Juma, and P. A. Papakonstantinou. Limits on the stretch of non-
adaptive constructions of pseudo-random generators. In Theory of Cryptography Con-
ference (TCC), pages 504–521, 2011.

[BKW97] J. Blömer, R. Karp, and E. Welzl. The rank of sparse random matrices over finite
fields. Random Structures Algorithms, 10(4):407–419, 1997.

[BvzGH82] A. Borodin, J. von zur Gathen, and J. Hopcroft. Fast parallel matrix and GCD com-
putations. Information and Control, 52(3):241–256, 1982.

[GL89] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In
Symposium on Theory Of Computing (STOC), pages 25–32, 1989.

[Gol01] O. Goldreich. Foundations of cryptography. Cambridge University Press, Cambridge,
2001. Basic tools (Vol. I).

[HHR06a] I. Haitner, D. Harnik, and O. Reingold. Efficient pseudorandom generators from expo-
nentially hard one-way functions. In International Colloquium on Automata, Languages
and Programming(ICALP), 2006.

[HHR06b] I. Haitner, D. Harnik, and O. Reingold. On the power of the randomized iterate. In
Advances in Cryptology—CRYPTO 2006, volume 4117, pages 22–40. 2006.

[HILL89] J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from
any one-way function. SIAM Journal on Computing (SICOMP), 28(4):1364–1396, 1999
(also STOC’89).

[HRV10] I. Haitner, O. Reingold, and S. Vadhan. Efficiency improvements in constructing pseu-
dorandom generators from one-way functions. In Symposium on Theory Of Computing
(STOC), pages 437–446, 2010.

[KGY89] M. Kharitonov, A. V. Goldberg, and M. Yung. Lower bounds for pseudorandom number
generators. In Foundations of Computer Science (FOCS), pages 242–247, 1989.

11

[MS77] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-
Holland, 1977.

[Muk84] A. Mukhopadhyay. On the probability that the determinant of an n× n matrix over a
finite field vanishes. Discrete Math., 51(3):311–315, 1984.

[Mul87] K. Mulmuley. A fast parallel algorithm to compute the rank of a matrix over an
arbitrary field. Combinatorica, 7(1):101–104, 1987.

[Sip83] M. Sipser. A complexity theoretic approach to randomness. In Symposium on Theory
Of Computing (STOC), pages 330–335, 1983.

[Vad11] S. Vadhan. Pseudorandomness. April 2011.

A Appendix

A.1 proof of Lemma 3

Proof. Suppose N ← Up×q whose row vectors are λ1, λ2, · · · , λp ← Uq.

Pr
N←Up×q

[N has full row-rank]

= Pr
λ1,··· ,λp←Uq

[∀γ ∈ {0, 1}p\{0}, γ · (λ1, · · · , λp) 6= 0]

= Pr
λ1,··· ,λp←Uq

[
∧

1≤i≤p
(λi /∈ span(λ1, · · · , λi−1))]

≥1−
∑

1≤i≤p
Pr
λi

[λi ∈ span(λ1, · · · , λi−1)] = 1−
∑

1≤i≤p

|span(λ1, · · · , λi−1)|
2q

≥1−
∑

1≤i≤p

2i−1

2q
≥ 1− 2p−q,

where span(·) denotes the linear space spanned by these vectors.

12

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

