
Lower Bounds against Weakly Uniform Circuits

Ruiwen Chen∗ Valentine Kabanets†

January 28, 2012

Abstract

A family of Boolean circuits {Cn}n>0 is called γ(n)-weakly uniform if there is a polynomial-
time algorithm for deciding the direct-connection language of every Cn, given advice of size γ(n).
This is a relaxation of the usual notion of uniformity, which allows one to interpolate between
complete uniformity (when γ(n) = 0) and complete non-uniformity (when γ(n) > |Cn|). Weak
uniformity is essentially equivalent to succinctness introduced by Jansen and Santhanam [JS11].

Our main result is that Permanent is not computable by polynomial-size no(1)-weakly
uniform TC0 circuits. This strengthens the results by Allender [All99] (for uniform TC0) and
by Jansen and Santhanam [JS11] (for weakly uniform arithmetic circuits of constant depth).
Our approach is quite general, and can be used to extend to the “weakly uniform” setting all
currently known circuit lower bounds proved for the “uniform” setting. For example, we show
that Permanent is not computable by polynomial-size (log n)O(1)-weakly uniform threshold
circuits of depth o(log log n), generalizing the result by Koiran and Perifel [KP09].

1 Introduction

Understanding the power and limitation of efficient algorithms is the major goal of complexity
theory, with the “P vs. NP” problem being the most famous open question in the area. While
proving that no NP-complete problem has a uniform polynomial-time algorithm would suffice for
separating P and NP, a considerable amount of effort was put into the more ambitious goal of
trying to show that no NP-complete problem can be decided by even a nonuniform family of
polynomial-size Boolean circuits.

More generally, an important goal in complexity theory has been to prove strong (exponential or
super-polynomial) circuit lower bounds for “natural” computational problems that may come from
complexity classes larger than NP, e.g., the class NEXP of languages decidable in nondeterministic
exponential time. By the counting argument of Shannon [Sha49], a randomly chosen n-variate
Boolean function requires circuits of exponential size. However, the best currently known circuit
lower bounds for explicit problems are only linear for NP problems [LR01, IM02], and polynomial
for problems in the polynomial-time hierarchy PH [Kan82].

To make progress, researchers introduced various restrictions on the circuit classes. In particu-
lar, for Boolean circuits of constant depth, with NOT and unbounded fan-in AND and OR gates
(AC0 circuits), exponential lower bounds are known for the Parity function [FSS84, Yao85, H̊as86].
For constant-depth circuits that additionally have (unbounded fan-in) MODp gates, one also needs

∗School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada; ruiwenc@sfu.ca
†School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada; kabanets@cs.sfu.ca

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 7 (2012)

exponential size to compute the MODq function, for any two distinct primes p and q [Raz87, Smo87].
With little progress for decades, Williams [Wil11] has recently shown that a problem in NEXP is not
computable by polynomial-size ACC0 circuits, which are constant-depth circuits with NOT gates
and unbounded fan-in AND, OR and MODm gates, for any integer m > 1. However, no lower
bounds are known for the class TC0 of constant-depth threshold circuits with unbounded fan-in
majority gates.1

To make more progress, another restriction has been added: uniformity of circuits. Roughly
speaking, a circuit family is called uniform if there is an efficient algorithm that can construct any
circuit from the family. There are two natural variations of this idea. One can ask for an algorithm
that outputs the entire circuit in time polynomial in the circuit size; this notion of uniformity is
known as P-uniformity. In the more restricted notion, one asks for an algorithm that describes the
local structure of the circuit: given two gate names, such an algorithm determines if one gate is the
input to the other gate, as well as determines the types of the gates, in time linear (or polynomial)
in the input size (which is logarithmic or polylogarithmic time in the size of the circuit described
by the algorithm); such an algorithm is said to decide the direct-connection language of the given
circuit. This restricted notion is called DLOGTIME-(or POLYLOGTIME-)uniformity [Ruz81, AG94].
We will use the notion of POLYLOGTIME-uniformity by default, and, for brevity, will omit the word
POLYLOGTIME.

It is easy to show (by diagonalization) that, for any fixed exponential function s(n) = 2n
c

for a constant c > 1, there is a language in EXP (deterministic exponential time) that is not
computable by a uniform (even P-uniform) family of Boolean s(n)-size circuits.2 Similarly, as
observed in [All99], a PSPACE-complete language requires exponential-size uniform TC0 circuits.
For the smaller complexity class #P ⊆ PSPACE, Allender and Gore [AG94] showed Permanent
(which is complete for #P [Val79]) is not computable by uniform ACC0 circuits of sub-exponential
size. Later, Allender [All99] proved that Permanent cannot be computed by uniform TC0 circuits
of size s(n) for any function s such that, for all k, s(k)(n) = o(2n) (where s(k) means the function s
composed with itself k times). Finally, Koiran and Perifel [KP09] extended this result to show that
Permanent is not computed by polynomial-size uniform threshold circuits of depth o(log log n).

Recently, Jansen and Santhanam [JS11] have proposed a natural relaxation of uniformity,
termed succinctness, which allows one to interpolate between non-uniformity and uniformity. Ac-
cording to [JS11], a family of s(n)-size circuits {Cn} is succinct if the direct-connection language of
Cn is decided by some circuit of size s(n)o(1). In other words, while there may not be an efficient
algorithm for describing the local structure of a given s(n)-size circuit Cn, the local structure of Cn

can be described by a non-uniform circuit of size s(n)o(1). Note that if we allow the non-uniform
circuit to be of size s(n), then the family of circuits {Cn} would be completely non-uniform. So,
intuitively, the restriction to the size s(n)o(1) makes the notion of succinctness close to that of
non-uniformity.

The main result of [JS11] is that Permanent does not have succinct polynomial-size arithmetic
circuits of constant depth, where arithmetic circuits have unbounded fan-in addition and multipli-
cation gates and operate over integers. While relaxing the notion of uniformity, [JS11] were only
able to prove a lower bound for the weaker circuit class, as polynomial-size constant-depth arith-

1A plausible explanation of this “barrier” is given by the “natural proofs” framework of [RR97], who argue it is
hard to prove lower bounds against the circuit classes that are powerful enough to implement cryptography.

2Unlike the nonuniform setting, where every n-variate Boolean function is computable by a circuit of size about
2n/n [Lup58], uniform circuit lower bounds can be bigger than 2n.

2

metic circuits can be simulated by polynomial-size TC0 circuits. A natural next step was to prove
a super-polynomial lower bound for Permanent against succinct TC0 circuits. This is achieved
in the present paper.

1.1 Our main results

We improve upon [JS11] by showing that Permanent does not have succinct polynomial-size TC0

circuits. In addition to strengthening the main result from [JS11], we also give a simpler proof. Our
argument is quite general and allows us to extend to the “succinct” setting all previously known
uniform circuit lower bounds of [AG94, All99, KP09].

Recall that the direct-connection language for a circuit describes the local structure of the
circuit; more precise definitions will be given in the next section. For a function α : N → N, we
say that a circuit family {Cn} of size s(n) is α-weakly uniform if the direct-connection language
Ldc of {Cn} is decided by a polynomial-time algorithm that, in addition to the input of Ldc of size
m ∈ O(log s(n)), has an advice string of size α(m); the advice string just depends on the input size
m. The notion of α-weakly uniform is essentially equivalent to the notion of α-succinct introduced
in [JS11]; see the next section for more details.

We will call a circuit family subexp-weakly uniform if it is α-weakly uniform for α(m) ∈ 2o(m).
Similarly, we call a circuit family poly-weakly uniform if it is α-weakly uniform for α(m) ∈ mO(1).
Observe that for m = O(log s), we have 2o(m) = so(1) and mO(1) = poly log s.

Our main results are the following. First, we strengthen the lower bound of [JS11].

Theorem 1.1. Permanent is not computable by subexp-weakly uniform poly-size TC0 circuits.

Let us call a function s(n) sub-subexponential if, for any constant k > 0, we have that the

k-wise composition s(k)(n) 6 2n
o(1)

. We use subsubexp to denote the class of all sub-subexponential
functions s(n). We extend a result of [All99] to the “weakly-uniform” setting.

Theorem 1.2. Permanent is not computable by poly-weakly uniform subsubexp-size TC0 circuits.

Finally, we extend the result of [KP09].

Theorem 1.3. Permanent is not computable by poly-weakly uniform poly-size threshold circuits
of depth o(log log n).

Table 1 below summarizes these results, and refers to the statements later in the paper where
these results are proved.

Table 1: Lower bounds for Permanent against α-weakly uniform threshold circuits.

α(m) = α(O(log s(n))) Depth d(n) Size s(n) Theorem

2o(m) = no(1) O(1) nO(1) Theorem 4.6

mO(1) = (log s(n))O(1) 6 no(1) O(1) s(k)(n) 6 2n
o(1)

Theorem 4.8

mO(1) = (log n)O(1) o(log log n) nO(1) Theorem 4.10

3

1.2 Our techniques

At the high level, we use the method of indirect diagonalization:

• assuming Permanent is easy and using diagonalization, we first show the existence of a
“hard” language in a certain complexity class C (the counting hierarchy, to be defined below);

• assuming Permanent is easy, we show that the above “hard” language is actually “easy”
(as the easiness of Permanent collapses the counting hierarchy), which is a contradiction.

In more detail, we first extend the well-known correspondence between uniform TC0 and alter-
nating polylog-time Turing machines (that use majority states) to the weakly uniform setting, by
considering alternating Turing machines with advice. To construct the desired “hard” language, we
use diagonalization against such alternating Turing machines with advice. The assumed easiness
of Permanent is used to argue two things about the constructed “hard” language Lhard:

1. Lhard is in fact “hard” for a much more powerful class A of algorithms;

2. Lhard is decided by a “simple” algorithm A.

The contradiction ensues since the algorithm A turns out to be from the class A.

1.3 Relation to the previous work

A similar indirect-diagonalization strategy was used (explicitly or implicitly) in all previous papers
showing uniform or weakly uniform circuit lower bounds for Permanent [AG94, All99, KP09,
JS11]. Our approach is most closely related to that of [All99, KP09]. The main difference is that
we work in the weakly uniform setting, which means that we need to handle a certain amount of
non-uniform advice. To that end, we have adapted the method of indirect diagonalization, making
it modular (as outlined above) and sufficiently general to work also in the setting with advice. Due
to this generality of our proof argument, we are able to extend the afore-mentioned lower bounds
from the uniform setting to the weakly uniform setting.

The approach adopted by [JS11] goes via the well-known connection between derandomization
and circuit lower bounds (cf. [HS82, KI04, Agr05]). Since the authors of [JS11] work with the
algebraic problem of Polynomial Identity Testing (given an arithmetic circuit computing some
polynomial over integers, decide if the polynomial is identically zero), their final lower bounds are
also in the algebraic setting: for weakly uniform arithmetic constant-depth circuits. By making the
diagonalization arguments in [JS11] more explicit (along the lines of [All99]), we are able to get
the lower bound for weakly uniform Boolean (TC0) circuits, thereby both strengthening the results
and simplifying the proofs from [JS11].

The remainder of the paper. We give the necessary background in Section 2. Section 3
provides the details of our indirect diagonalization method. This set-up is then used in Section 4
to prove our main results (Theorems 1.1–1.3 above). We give other weakly uniform circuit lower
bounds in Section 5. We give concluding remarks in Section 6.

2 Preliminaries

For details on the basic complexity notions, we refer to [AB09].

4

2.1 Circuits

Recall that a Boolean circuit Cn on n inputs x1, . . . , xn is a directed acyclic graph with a single
output gate (the node of out-degree 0), n nodes of in-degree 0 (input gates labeled x1, . . . , xn), and
internal nodes of in-degree 2 (for AND and OR gates) or 1 (for NOT gates). The size of the circuit
Cn is defined to be the number of gates, and is denoted by |Cn|. For a function s : N → N and a
circuit family {Cn}n>0, we say that the circuit family is in SIZE(s), if for all sufficiently large n we
have |Cn| 6 s(n).

The depth of a circuit Cn is defined to be the length of a longest path from some input gate to
the output gate. We will be talking about constant-depth circuits, in which case we allow all gates
(other than the NOT gates) to have unbounded fan-in. In addition to AND and OR, we may have
other types of gates: MAJ (which is 1 iff more than half of its inputs are 1), or MODm gate for
some integer m > 0 (which is 1 iff the integer sum of the inputs is divisible by m).

AC0 circuits are constant-depth Boolean circuits with NOT gates and unbounded fan-in AND
and OR gates. ACC0 circuits are constant-depth Boolean circuits with unbounded fan-in AND, OR
and MODm gates for some positive integer m. Finally, TC0 circuits are constant-depth Boolean
circuits with unbounded fan-in AND, OR and MAJ (or threshold) gates. For a function s : N→ N
and a circuit type C ∈ {AC0,ACC0,TC0}, we denote by C(s) the class of families of s(n)-size n-input
circuits of type C. When s(n) is a polynomial in n, we may drop it and simply write C to denote
the class of polynomial-size C-circuits. Finally, we drop the superscript 0 in AC0,ACC0, and TC0,
when we want to talk about the corresponding type of circuits where the depth d(n) may be a
function of the input size n.

2.2 Weakly uniform circuit families

Following [Ruz81, AG94], we define the direct connection language of a circuit family {Cn} as

Ldc = {(n, g, h) : g = h and g is a gate in Cn, or g 6= h and h is an input to g in Cn},

where n is in binary representation, and g and h are binary strings encoding the gate types and
names. The type of a gate could be constant 0 or 1, Boolean logic gate NOT, AND, or OR, majority
gate MAJ, modulo gate MODm for some integer m, or input x1, x2, . . . , xn. For a circuit family of
size s(n), we need c0 log s(n) bits to encode (n, g, h), where c0 is a constant at most 4.

A circuit family {Cn} is uniform [BIS90, AG94] if its direct connection language is decidable in
time polynomial in its input length |(n, g, h)|. This condition was referred to as POLYLOGTIME-
uniformity in [AG94]. It is a more relaxed notion than the usual DLOGTIME-uniformity [BIS90],
which requires that the direct connection language be decided in linear time.

Following [JS11], for a time-constructible function α : N→ N, we say that a circuit family {Cn}
of size s(n) is α-succinct if its direct connection language Ldc is in SIZE(α); i.e., Ldc has (non-
uniform) Boolean circuits of size α(m), where m = c0 log s(n) is the input size for Ldc. Trivially, for
α(m) > 2m, every circuit family is α-succinct. The notion becomes nontrivial when α(m)� 2m/m.
We will use α(m) = 2o(m) (slightly succinct) and α(m) = mO(1) (highly succinct).

We recall the definition of Turing machines with advice from [KL82]. Given functions t : N×N→
N and α : N → N, we say that a language L is in DTIME(t)/α, if there is a deterministic Turing
machine M and a sequence of advice strings {an} of length α(n) such that, for any x ∈ {0, 1}n,
M(x, an) decides whether x ∈ L in time t(n, α(n)). If the function t(n,m) is upper-bounded by a
polynomial in n+m, we say that L ∈ P/α.

5

Definition 2.1. A circuit family {Cn} of size s(n) is α-weakly uniform if its direct connection
language is decided in P/α; recall that the input size for the direct-connection language describing
Cn is m = c0 log s(n), and so the size of the advice string needed in this case is α(c0 log s(n)).

The two notions are closely related.

Lemma 2.2. In the notation above, α(m)-succinctness implies α(m) logα(m)-weak uniformity,
and conversely, α(m)-weak uniformity implies (α(m) +m)O(1)-succinctness.

Proof sketch. A Boolean circuit of size s can be represented by a binary string of size O(s log s);
and a Turing machine running in time t can be simulated by a circuit family of size O(t log t).

The notion of weak uniformity (succinctness) interpolates between full uniformity on one end
and full non-uniformity on the other end. For example, 0-weak uniformity is the same as uniformity.
On the other hand, α-weak uniformity for α(m) > 2m is the same as non-uniformity. For that
reason, we will assume that the function α in “α-weakly uniform” is such that 0 6 α(m) 6 2m.

Definition 2.3. We say a circuit family {Cn} is subexp-weakly uniform if it is α-weakly uniform
for α(m) ∈ 2o(m); similarly, we say {Cn} is poly-weakly uniform if it is α-weakly uniform for
α(m) ∈ mO(1).

2.3 Alternating Turing machines

Following [CKS81, PS86, AG94], an alternating Turing machine (ATM) is a nondeterministic Tur-
ing machine with two kinds of states: universal states and existential states. In the usual definition
of an ATM, each configuration has either zero or two successor configurations; configurations with
no successors, which are called leaves, are halting configurations; a configuration in universal (exis-
tential) state is accepting iff all (at least one) of its successors are accepting. We also consider the
generalized ATMs where each configuration has an unbounded number of successors, obtained by
replacing a subtree of “bounded branching” configurations by a single configuration. We assume
an ATM has random access to the input.

A threshold Turing machine is an ATM with majority (MAJ) states; a configuration in a
majority state may have an unbounded number of successors, and it is accepting iff more than half
of its successors are accepting. We denote by Thd(n)TIME(t(n)) the class of languages accepted by
threshold Turing machines having at most d(n) alternations and running in time O(t(n)). Note that
the class Thd(n)TIME(t(n)) is closed under complement, since the negation of majority is simply
the majority of negations.

Recall that a language A is in PP (C=P) if there is a nondeterministic polynomial-time Turing
machine M such that x ∈ A iff the number of accepting paths of M on input x is greater than
(equal to) the number of rejecting paths. The counting hierarchy, studied in [Wag86, Tor91], is
defined as CH = ∪d>0CHd, where CH0 = P and CHd+1 = PPCHd . This definition is unchanged if
we replace PP with C=P. The counting hierarchy can be equivalently defined via threshold Turing
machines: CHd = ThdTIME(nO(1)).

Alternating Turing machines can be also equipped with modulo states MODm for some fixed
m; a MODm configuration is accepting iff the number of its accepting successors is 0 modulo m.
We denote by Modd(n)TIME(t(n)) the class of languages decided by ATMs with MODm states for
some fixed m > 0 dependent on the language, making at most d(n) alternations and running in
time O(t(n)). Following [GKR+95, All99], we denote by ModPH the class ∪d>0ModdTIME(nO(1)).

6

In general, on different inputs, an ATM may follow computation paths with different sequences
of alternations; however, by introducing dummy states, it is always possible to transform the
machine into an equivalent machine such that all computation paths on inputs of the same size will
follow the same sequence of alternations, whereas the number of alternations and the running time
will change only by a constant factor; see [AG94] for details.

2.4 Weak uniformity vs. alternating Turing machines with advice

It is well-known that uniform AC0(2poly(n)) corresponds to the polynomial-time hierarchy PH [FSS84].
There are similar correspondences between uniform ACC0(2poly(n)) and ModPH [GKR+95, AG94], as
well as between uniform TC0(2poly(n)) and the counting hierarchy CH [GKR+95, AG94]; see Table 2
below for the summary. More precisely, for time constructible t(n) such that t(n) = Ω(log n),

∪d>0ThdTIME(poly(t(n))) = uniform TC0(2poly(t(n))),

∪d>0ModdTIME(poly(t(n))) = uniform ACC0(2poly(t(n))).

Table 2: Correspondence between hierarchies and uniform circuit classes.

Alternation Hierarchy Circuits Reference

∃, ∀ PH uniform AC0 [FSS84]

∃, ∀,MOD2,MOD3, . . . ModPH uniform ACC0 [GKR+95, AG94]

∃, ∀,MAJ CH uniform TC0 [PS86, BIS90]

The following gives the correspondence between weakly uniform threshold circuits and threshold
Turing machines with advice.

Lemma 2.4. Let L be any language decided by a family of α-weakly uniform d(n)-depth threshold
circuits of size s(n). Then L is decidable by a threshold Turing machine with d′(n) = 3d(n) + 2
alternations, taking advice of length α(m) for m = c0 log s(n), and running in time t(n) = d′(n) ·
poly(m+ α(m)).

Proof. The proof follows directly from [AG94] in which ACC0 circuits are considered. Let {Cn}
be the circuit family deciding L. Its direct connection language Ldc is accepted by some Turing
machine U , on input size m = c0 log s(n), taking advice am of size α(m) and running in time
poly(m+α(m)) . We will construct a threshold Turing machine M which takes advice and decides
L. For any input x of length n, machine M takes advice bn ≡ am, and does the following:

• (∃) guess gate g of Cn, and check that U accepts (n, g, g), i.e., g is a gate in Cn;

• (∀) guess gate h and check that U rejects (n, h, g), i.e., g is the output;

• Call Eval(g), which is a recursive procedure defined below.

The procedure Eval(g) is as follows:

• (∃) If g is an OR gate, then guess its input h; if U rejects (n, g, h) then reject, otherwise call
Eval(h).

7

• (∀) If g is an AND gate, then guess its input h; if U rejects (n, g, h) then accept, otherwise
call Eval(h).

• (MAJ) If g is a MAJ gate, then guess its input h and a bit b ∈ {0, 1}; if U rejects (n, g, h),
then accept when b = 1 and reject when b = 0, otherwise call Eval(h).

• If g is a constant gate, then accept iff it is 1.

• If g is an input, then accept iff the corresponding input bit is 1.

It is easy to verify that M with advice bn accepts x iff Cn(x) = 1. The number of alternations
thatM takes on any computation path is at most d(n)+2. However, each path may follow a different
sequence of states. To resolve this, we replace each state on each path by a sequence of three states
(∃, ∀,MAJ), where two of them are dummy. This gives a machine with each computation path
following the same alternations, and the total number of alternations is at most 3d(n) + 2. The
access to inputs is only at the last step of each computation path (corresponding to the bottom
level of the circuit).

At each alternation, the machine simulates U and runs in time poly(m+α(m)). Therefore, the
total running time is bounded by d′(n) · poly(m+ α(m)).

Similar to Lemma 2.4, we have the following correspondence between weakly uniform ACC
circuits and alternating Turing machines with modulo states.

Lemma 2.5. Let L be any language decided by a family of α-weakly uniform d(n)-depth ACC
circuits of size s(n) with MODr gates, for some integer r > 0. Then L is decidable by an alternating
Turing machine with MODr states and d′(n) = O(d(n)) alternations, taking advice of length α(m)
where m = c0 log s(n), and running in time d′(n) · poly(m+ α(m)).

3 Indirect diagonalization

Here we establish the components needed for our indirect diagonalization, as outlined in the In-
troduction. First, in Section 3.1, we give a diagonalization argument against alternating Turing
machines with advice, getting a language in the counting hierarchy CH that is “hard” against weakly
uniform TC0 circuits of certain size. Then, in Section 3.2, using the assumption that a canonical
P-complete problem has small weakly uniform TC0 circuits, we conclude that the “hard” language
given by our diagonalization step is actually hard for a stronger class of algorithms: weakly uniform
Boolean circuits of some size s′ without any depth restriction. Finally, in Section 3.3, using the
assumption that Permanent has small weakly uniform TC0 circuits, we show that CH collapses,
and our assumed hard language is in fact decidable by weakly uniform s′-size Boolean circuits,
which is a contradiction. (Our actual argument is more general: we consider threshold circuits of
not necessarily constant depth d(n), and non-constant levels of the counting hierarchy.)

3.1 Diagonalization against alternating Turing machines with advice

Lemma 3.1. For any time-constructible functions α, d, t, T : N → N such that t(n) log t(n) =
o(T (n)) and α(n) ∈ o(n), there exists a language D ∈ Thd(n)TIME(T (n)) which is not decided by
threshold Turing machines with d(n) alternation running in time t(n) and taking advice of length
α(n).

8

Proof. The proof is by diagonalization. Define the language D consisting of those inputs x of length
n that have the form x = (M,y) (using some pairing function) such that the threshold TM M with
advice y, where |y| = α(n), rejects input (M,y) in time t(n) using at most d(n) alternations.
Language D is decided in Thd(n)TIME(T (n)) by simulating M and flipping the result.

For contradiction, suppose that D is decided by some threshold Turing machine M0 with d(n)
alternations taking advice {an} of size α(n). Consider the input (M0, an) with |M0| = n − α(n);
we assume that each TM has infinitely many equivalent descriptions (by padding), and so for large
enough n, there must exist such a description of size n − α(n). By the definition of D, we have
(M0, an) is in D iff M0 with advice an rejects it; but this contradicts the assumption that M0 with
advice {an} decides D.

Lemma 3.2. For any time-constructible functions α, d, t, T : N → N such that t(n) log t(n) =
o(T (n)) and α(n) ∈ o(n) and any integer m > 1, there exists a language D ∈ Modd(n)+1TIME(T (n))
which is not decided by alternating Turing machines with MODm states and d(n) alternation run-
ning in time t(n) and taking advice of length α(n).

Proof sketch. The proof is similar to the proof of Lemma 3.1, except that when flipping the result,
the negation can be simulated by a MODm state, using the identity ¬x = MODm(x).

3.2 If P is easy

Let L0 be a P-complete language under uniform projections (functions computable by uniform
Boolean circuits with NOT gates only, without any AND or OR gates). For example, the standard
P-complete set {(M,x, 1t) : M accepts x in time t} works.

Lemma 3.3. Suppose L0 is decided by a family of α-weakly uniform d(n)-depth threshold circuits of
size s(n). Then, for any time-constructible function t(n) > n and 0 6 β(m) 6 2m, every language
L in β-weakly uniform SIZE(t(n)) is decided by µ(n)-weakly uniform d(poly(t(n)))-depth threshold
circuits of size s′(n) = s(poly(t(n))) on n inputs, where µ(n) = α(c0 log s′(n)) + β(c0 log t(n)).

Proof. Let U be an advice-taking algorithm deciding the direct-connection language for the t(n)-
size circuits for L. For any string y of length β(m) for m = c0 log t(n), we can run U with the
advice y to construct some circuit Cy of size t(n) on n inputs. We can construct the circuit Cy in
time at most poly(t(n)), and then evaluate it in time O(t(n)) on any given input of size n.

Consider the language L′ = {(x, y, 1t(n)) | |x| = n, |y| = β(m), Cy(x) = 1}. By the above, we
have L′ ∈ P. Hence, by assumption, L′ is decided by an α-weakly uniform d(l)-depth threshold
circuits of size s(l), where l = |(x, y, 1t(n))| 6 poly(t(n)). To get a circuit for L, we simply use
as y the advice of size β(m) needed for the direct-connection language of the t(n)-size circuits
for L. Overall, we need α(c0 log s(l)) + β(m) amount of advice to decide L by weakly uniform
d(poly(t(n)))-depth threshold circuits of size s(poly(t(n))).

3.3 If Permanent is easy

Since Permanent is hard for the first level of the counting hierarchy CH, assuming that Perma-
nent is “easy” implies the collapse of CH (see, e.g., [All99]). It was observed in [KP09] that is also
possible to collapse super-constant levels of CH, under the same assumption. Below we argue the
collapse of super-constant levels of CH under the assumption that Permanent has “small” weakly
uniform circuits.

9

We use the notation f ◦ g to denote the composition of the functions f and g, and the notation
f (i) is used to denote the composition of f with itself for i times; we use the convention that f (0)

is the identity function.

Lemma 3.4. Suppose that Permanent is in γ-weakly uniform SIZE(s(n)), for some γ(m) 6 2o(m).
For every d(n) 6 no(1), every language A in Thd(n)TIME(poly) is also in (2d(n) · γ)-weakly uniform

SIZE((s ◦ q)(d(n)+1)(n)), for some polynomial q dependent on A.

Proof. Consider an arbitrary n. Let d = d(n). The language A restricted to inputs of size n has
a threshold circuit C of depth d and size 2poly(n) such that the direct-connection language of C
is decided by a polynomial-time Turing machine M (where M is determined by the language A).
More precisely, we identify the gates of the circuit with the configurations of the given threshold
TM for A; the output gate is the initial configuration; leaf (input) gates are halting configurations;
deciding if one gate is an input to the other gate is deciding if one configuration follows from the
other according to our threshold TM, and so can be done in polynomial time (dependent on A);
finally, given a halting configuration, we can decide if it is accepting or rejecting also in polynomial
time (dependent on A).

For a gate g of C, we denote by Cg the subcircuit of C that determines the value of the gate g.
We say that g is at depth i, for 1 6 i 6 d, if the circuit Cg is of depth i. Note that each gate at
depth i > 1 is a majority gate.

For every 0 6 i 6 d, let Bi be a circuit that, given x ∈ {0, 1}n and a gate g at depth i, outputs
the value Cg(x).

Claim 3.5. There are polynomials q and q′ dependent on A such that, for each 0 6 i 6 d, there
are 2iγ-weakly uniform circuits Bi of size (s ◦ q)(i) ◦ q′.

Proof. We argue by induction on i. For i = 0, to compute B0(x, g), we need to decide if the halting
configuration g of our threshold TM for A on input x is accepting or not; by definition, this can be
done by the TM M in deterministic polynomial time. Hence, B0 can be decided by a completely
uniform circuit of size at most q′(n) for some polynomial q′ dependent on the running time of M .

Assume that we have the claim for i. Let s′ be the size of the γ′-weakly uniform circuit Bi,
where s′ 6 (s ◦ q)(i) ◦ q′ and γ′ 6 2iγ. Consider the following Turing machine N :

“On input z = (x, g, U, y, 1s
′/2), where |x| = n, g is a gate of C, |U | = γ(c0 log s′),

|y| = γ′(c0 log s′), interpret U as a Turing machine that takes advice y to decide the
direct-connection language of some circuit D of size s′ on inputs of length |(x, g)|.
Construct the circuit D using U and y, where to evaluate U on a given input we
simulate U for at most s′ steps. Enter the MAJ state. Nondeterministically guess a
gate h of C and a bit b ∈ {0, 1}. If h is not an input gate for g, then accept if b = 1
and reject if b = 0; otherwise, accept if D(x, h) = 1 and reject if D(x, h) = 0.”

If U is a polynomial-time TM, then each simulation of U on a given input takes time poly(c0 log s′+
γ′(c0 log s′)), which is less than s′ by our assumptions that γ(m) 6 2o(m) and d 6 (s′)o(1). Thus, to
evaluate U on a particular input, it suffices to simulate U for at most s′ steps, which is independent
of what the actual polynomial time bound of U is. It follows that we can construct the circuit D
(given U and y) in time p(s′), where p is a polynomial that does not depend on U . Also, to decide
if h is an input gate to g, we use the polynomial-time TM M . We conclude that N is a PP machine
which runs in some polynomial time (dependent on A). Since Permanent is PP-hard [Val79], we

10

have a uniform reduction mapping z (an input to N) to an instance of Permanent of size q(|z|),
for some polynomial q (dependent on A).

By our assumption on the easiness of Permanent, we get that the language of N is decided
by γ-weakly uniform circuits CN of size at most s′′ = s(q(s′)). If we plug in for U and y the actual
Turing machine description and the advice needed to decide the direct-connection language of Bi,
we get from CN the circuit Bi+1. Note that the direct-connection language of this circuit Bi+1 is
decided in polynomial time (using the algorithm for direct-connection language of CN) given the
advice needed for CN plus the advice needed to describe U and y. The total advice size is at most
γ(c0 log s′′) + γ(c0 log s′′) + γ′(c0 log s′) 6 2(i+ 1)γ(c0 log s′′).

Finally, we take the circuit Bd and use it to evaluate A(x) by computing the value Bd(x, g)
where g is the output gate of C, which can be efficiently constructed (since this is just the initial
configuration of our threshold TM for A on input x). By fixing g to be the output gate of C, we get
the circuit for A which is 2dγ-weakly uniform of size at most (s ◦ q)(d)(r(n)), where the polynomial
r depends on the language A. Upper-bounding the polynomial r by (s ◦ q) yields the result.

4 Proofs of the main results

Here we use the technical tools from the previous section in order to prove our main results. Recall
that L0 is the P-complete language defined earlier.

4.1 Proof of Theorem 1.1

First, assuming L0 is easy, we construct a hard language in CH.

Lemma 4.1. Suppose L0 is in subexp-weakly uniform TC0 of depth d. Then, for a constant d′

dependent on d, there is a language Ldiag ∈ CHd′ which is not in subexp-weakly uniform SIZE(poly).

Proof. Let α(m) ∈ 2o(m) be such that L0 is in α-weakly uniform TC0 of depth d. Consider
an arbitrary language L in β-weakly uniform SIZE(poly), for an arbitrary β(m) ∈ 2o(m). By
Lemma 3.3, L has µ(n)-weakly uniform threshold circuits of depth d and polynomial size, where
µ(n) = α(O(log n))+β(O(log n)) 6 no(1). By Lemma 2.4, we have that L is decided by a threshold
Turing machine with d′ = O(d) alternations, taking advice of length µ(n) 6 no(1) 6 n/ log2 n, and
running in time d′ · poly(O(log n) + no(1)) 6 no(1) 6 n/ log2 n. We conclude that every language
in subexp-weakly uniform SIZE(poly) is also decided by some threshold Turing machine in time
n/ log2 n, using d′ alternations and advice of size n/ log2 n.

Using Lemma 3.1, define Ldiag to be the language in Thd′TIME(n) which is not decidable by
any threshold Turing machine in time n/ log2 n, using d′ alternations and advice of size n/ log2 n.
It follows that Ldiag is different from every language in subexp-weakly uniform SIZE(poly).

Next, assuming Permanent is easy, we show that every language in CH is easy.

Lemma 4.2. If Permanent is in subexp-weakly uniform SIZE(poly), then every language in CH
is in subexp-weakly uniform SIZE(poly).

Proof. The proof is immediate by Lemma 3.4.

We now show that L0 and Permanent cannot both be easy.

11

Theorem 4.3. At least one of the following must be false:

1. L0 is in subexp-weakly uniform TC0;

2. Permanent is in subexp-weakly uniform SIZE(poly).

Proof. The proof is immediate by Lemmas 4.1 and 4.2.

To unify the two items in Theorem 4.3, we use the following result.

Lemma 4.4 ([Val79, AG94]). For every language L ∈ P, there are uniform AC0-computable func-
tion M (mapping a binary string to a polynomial-size Boolean matrix) and Boolean function f such
that, for every x, we have x ∈ L iff f(Permanent(M(x)) = 1.

This lemma immediately yields the following.

Corollary 4.5. If Permanent has α-weakly uniform d(n)-depth threshold circuits of size s(n),
then L0 has α-weakly uniform (d(nO(1)) +O(1))-depth threshold circuits of size s(nO(1)).

Now we prove Theorem 1.1, which we re-state below.

Theorem 4.6. Permanent is not in subexp-weakly uniform TC0.

Proof. Otherwise, by Corollary 4.5, both claims in Theorem 4.3 would hold, which is impossible.

4.2 Proof of Theorem 1.2

Recall that a function r(n) is sub-subexponential if, for every constant k > 0, r(k)(n) 6 2n
o(1)

. Also
recall that subsubexp denotes the class of all sub-subexponential functions r(n). Below, we will use
the simple fact that, for every constant k > 0, the composition of k sub-subexponential functions
is also sub-subexponential.

Lemma 4.7. Suppose L0 is in poly-weakly uniform TC0(subsubexp) of depth d. Then, for a constant
d′ = O(d), there is a language Ldiag ∈ CHd′ which is not in poly-weakly uniform SIZE(subsubexp).

Proof. The proof is similar to that of Lemma 4.1. Let α(m) ∈ poly(m) and s(n) ∈ subsubexp be
such that L0 is in α-weakly uniform d-depth TC0(s(n)).

Consider an arbitrary language L in β-weakly uniform SIZE(t(n)), for arbitrary β(m) ∈ poly(m)
and t(n) ∈ subsubexp. By Lemma 3.3, L is in µ(n)-weakly uniform d-depth TC0(s′(n)), where
s′(n) = s(poly(t(n))) and µ(n) = α(c0 log s′(n)) + β(c0 log t(n)) 6 no(1) (since s′ and t are sub-
subexponential). By Lemma 2.4, we have that L is decided by a threshold Turing machine with
d′ = O(d) alternations, taking advice of length µ(n) 6 no(1) 6 n/ log2 n, and running in time
d′ · poly(c0 log s′(n) + α(c0 log s′(n))) 6 no(1) 6 n/ log2 n. We conclude that every language in
poly-weakly uniform SIZE(subsubexp) is also decided by some threshold Turing machine in time
n/ log2 n, using d′ alternations and advice of size n/ log2 n.

Using Lemma 3.1, define Ldiag to be the language in Thd′TIME(n) which is not decidable by
any threshold Turing machine in time n/ log2 n, using d′ alternations and advice of size n/ log2 n.
It follows that Ldiag is different from every language in poly-weakly uniform SIZE(subsubexp).

Now we are ready to prove Theorem 1.2, which we re-state below.

12

Theorem 4.8. Permanent is not in poly-weakly uniform TC0(subsubexp).

Proof. Suppose that, for some α(m) ∈ poly(m) and s(n) ∈ subsubexp, Permanent is in α-weakly
uniform TC0(s(n)); this also implies that Permanent is in α-weakly uniform SIZE(poly(s(n)).
By Corollary 4.5, L0 is in α-weakly uniform TC0(poly(s(n))), and so, by Lemma 4.7, there is a
language Ldiag ∈ CH which is not in poly-weakly uniform SIZE(subsubexp). But, by Lemma 3.4,
every language L in CH is in poly-weakly uniform SIZE(subsubexp). A contradiction.

4.3 Proof of Theorem 1.3

Lemma 4.9. Suppose L0 is computable by poly-weakly uniform poly-size threshold circuits of depth
o(log log n). Then there is a language Ldiag ∈ Thlog lognTIME(n) which is not computable by poly-
weakly uniform SIZE(npoly(logn)).

Proof. Let α(m) ∈ poly(m), s(n) ∈ poly(n), and d(n) ∈ o(log log n) be such that L0 is computable
by α-weakly uniform d(n)-depth threshold circuits of size s(n).

Consider an arbitrary language L in β-weakly uniform SIZE(t(n)), for arbitrary β(m) ∈ poly(m)
and t(n) ∈ npoly(logn). By Lemma 3.3, L is in µ(n)-weakly uniform d′(n)-depth threshold circuits
of size s′(n), where d′(n) = d(poly(t(n))) 6 o(log log n), s′(n) = s(poly(t(n))) 6 npoly(logn), and
µ(n) = α(c0 log s′(n)) + β(c0 log t(n)) 6 poly(log n).

By Lemma 2.4, we have that L is decided by a threshold Turing machine with at most
O(d′(n)) < log logn alternations, taking advice of length µ(n) 6 no(1) 6 n/ log2 n, and running
in time O(d′(n)) · poly(c0 log s′(n) + α(c0 log s′(n))) 6 no(1) 6 n/ log2 n. We conclude that every
language in poly-weakly uniform SIZE(npoly(logn)) is also decided by some threshold Turing machine
in time n/ log2 n, using log log n alternations and advice of size n/ log2 n.

Using Lemma 3.1, define Ldiag to be the language in Thlog lognTIME(n) which is not decidable
by any threshold Turing machine in time n/ log2 n, using log log n alternations and advice of size
n/ log2 n. It follows that Ldiag is the required language.

Now we prove Theorem 1.3, re-stated below.

Theorem 4.10. Permanent is not computable by poly-weakly uniform poly-size threshold circuits
of depth o(log log n).

Proof. Assume otherwise. Then Permanent is also in poly-weakly uniform SIZE(poly), and so, by
Lemma 3.4, every language in Thlog lognTIME(n) is in poly-weakly uniform SIZE(npoly(logn)). On the
other hand, by Corollary 4.5, L0 is computable by poly-weakly uniform threshold circuits of poly-
size and depth o(log log n), and so, by Lemma 4.9, there is a language Ldiag ∈ Thlog lognTIME(n)
such that Ldiag is not in poly-weakly uniform SIZE(npoly(logn)). A contradiction.

5 Other lower bounds

Here we use diagonalization against advice classes to prove exponential lower bounds for weakly
uniform circuits of both constant and unbounded depth.

13

5.1 Lower bounds for ACC0 and AC0

The following result generalizes the result in [AG94] on uniform ACC0 circuits.

Theorem 5.1. Permanent is not in poly-weakly uniform ACC0(2n
o(1)

).

Proof. It is shown in [BT94, AG94] that every language L in uniform ACC0(2n
o(1)

) is also decidable

by uniform depth-two circuits of related size s′(n) ∈ 2n
o(1)

where (i) the bottom level consists of
AND gates of fan-in (log s′(n))O(1), and (ii) the top level is a symmetric gate (whose value depends
only on the number of inputs that evaluate to one). Using this fact as well as the #P-completeness
of Permanent [Val79], Allender and Gore [AG94] argue that L is in DTIME(n9)Permanent[1] (with
a single oracle query to Permanent). This result can be easily generalized to the case when L has

weakly uniform circuits. That is, for α(m) = mO(1), any language in α-weakly uniform ACC0(2n
o(1)

)
is also in DTIME(n9)Permanent[1]/γ(n) for some γ(n) = no(1).

For the sake of contradiction, suppose that Permanent is in α-weakly uniform ACC0(2n
o(1)

).
Consider a language L ∈ DTIME(n10)Permanent[1] which is not in DTIME(n9)Permanent[1]/no(1); the
existence of such an L is easy to argue by diagonalization (similarly to the proof of Lemma 3.1).
Let M be the corresponding oracle machine deciding L. Consider the following languages:

L′ = {(x, y) : M uses y as the answer of the oracle query and accepts x},

L′′ = {(x, i) : the ith bit of the oracle query made by M on input x is 1}.

Clearly, both L′ and L′′ are in P. Since P is reducible to Permanent via uniform AC0 reduction,
we get that both L′ and L′′ are in α-weakly uniform ACC0(2n

o(1)
). To construct circuits for L, on

any input x, we use the circuit for L′′ to construct the oracle query, use the circuit for Permanent
to answer the query, and then use the circuit for L′ to decide whether x ∈ L. Since L′, L′′ and Per-
manent all have α-weakly uniform ACC0(2n

o(1)
) circuits, the resulting circuit is also in α-weakly

uniform ACC0(2n
o(1)

). This implies that L is in DTIME(n9)Permanent[1]/no(1). A contradiction.

We note that one can also show a lower bound for NP against weakly uniform AC0 circuits.

Theorem 5.2. NP is not in poly-weakly uniform AC0(subsubexp).

Proof. The proof is analogous to that of Theorem 4.8, by replacing Permanent with Sat, CH
with PH, and threshold circuits with Boolean circuits.

Note, however, that this lower bound is weaker than the well-known result that Parity requires
exponential-size non-uniform AC0 circuits [H̊as86].

5.2 Lower bounds for general circuits

We use the following diagonalization result.

Lemma 5.3 ([HM95, Pol06]). For any constants c and d, EXP 6⊆ DTIME(2n
d
)/nc, and PSPACE 6⊆

DSPACE(nd)/nc.

14

Proof sketch. We will construct a language Ldiag ∈ EXP which is different from every language in

DTIME(2n
d
)/nc. Let M be an arbitrary machine which takes advice of length nc and runs in time

2n
d
. Fix the input length n = 2|M |, where |M | is the length of the binary description of M . Let

x1, . . . , xnc be distinct inputs in {0, 1}n. We use these nc inputs to diagonalize against all advice of
length nc. On input x1, we enumerate all possible advice in {0, 1}nc

, simulate M with each advice
on x1, and accept iff the majority rejects; then we delete all advice for which the output is in the
majority. We then repeat the process on x2, . . . , xnc , but only check the advice that are not deleted
by the previous inputs. In this way, we have Ldiag is different from the language decided by M
with any advice of length nc. To diagonalize against all machines of the same length as M , we need
only nc · 2|M | � 2n inputs. It is obvious that the constructed diagonal language is in EXP.

The proof for PSPACE is similar. The only difference is that we do not have enough space to
write down the exponential number of advice strings. Instead, on input x, we need to check whether
each advice string is already diagonalized against by inputs that are lexicographically smaller than
x, and then compute the majority output over all remaining advice strings. All this can be done
in polynomial space.

Theorem 5.4. EXP is not in poly-weakly uniform SIZE(2n
o(1)

).

Proof. Let L be an arbitrary language in poly-weakly uniform SIZE(2n
o(1)

). For any input length

n, given advice of length poly(log 2n
o(1)

) 6 no(1), we can construct a circuit for L of size 2n
o(1)

in

time at most 2n
o(1)

, and evaluate it on any given input of size n in time at most 2n
o(1)

. Thus,
L ∈ DTIME(2n

o(1)
)/no(1).

Using Lemma 5.3, construct Ldiag ∈ EXP which is not in DTIME(2n)/n. By the above, this

Ldiag is not in poly-weakly uniform SIZE(2n
o(1)

).

Recall that a Boolean circuit is called a formula if the underlying DAG is a tree (i.e., the fan-out
of each gate is at most 1). We denote by FSIZE(s(n)) the class of families of Boolean formulas of
size s(n). We use a modified definition of the the direct-connection language for bounded fan-in
formulas with AND, OR, and NOT gates: we assume that, for any given gate in the formula, we
can determine in polynomial time who its parent gate is, and who its left and right input gates are.

Lynch [Lyn77] gave a log-space algorithm for the Boolean formula evaluation problem, which
can be adapted to work also in the case of input formulas given by the direct connection language
(instead of the usual infix notation).

Lemma 5.5 (implicit in [Lyn77]). Let {Fn} be a uniform family of Boolean formulas of size s(n).
There is a poly(log s(n))-space algorithm that, on input x of length n, computes Fn(x).

Proof sketch. The input formula can be viewed as a tree, where each node has at most two children,
and the evaluation algorithm will traverse the tree following specific rules. We assume that the
formula is well-formed, which can be verified in poly(log s(n))-space.

The traversal starts from the left-most leaf, which can be identified in poly(log s(n))-space.
Then, we traverse the tree such that, for each node A, (i) when we arrive at A from its left child,
we either go to its parent (if the value of the left child fixes the value of A), or go to its right child
and continue traversing the tree; (ii) when we arrive at A from its right child, we go directly to A’s
parent (the value of A is now determined by the value of the right child, as we know the left child
has already been visited). The final node in this traversal is the root, which has no parent.

15

The traversal is in poly(log s(n))-space since we only need to remember the current node of
the tree (and the direct-connection language is decided in time, and hence also in space, at most
poly(log s(n))) .

We have the following.

Theorem 5.6. PSPACE is not in poly-weakly uniform FSIZE(2n
o(1)

).

Proof. Let L be an arbitrary language decided by a family {Fn} of poly-weakly uniform Boolean

formulas of size 2n
o(1)

; its direct connection language is decided in deterministic time no(1) with
advice of size no(1). Using Lemma 5.5 (generalized in the straightforward way to handle weakly
uniform formulas), we get that L can be decided in DSPACE(no(1))/no(1). Appealing to Lemma 5.3
completes the proof.

6 Conclusion

We have shown how to use indirect diagonalization to prove lower bounds against weakly uniform
circuit classes. In particular, we have proved that Permanent cannot be computed by polynomial-
size TC0 circuits that are only slightly uniform (whose direct-connection language can be efficiently
computed using sublinear amount of advice). We have also extended to the weakly uniform setting
other circuit lower bounds that were previously known for the case of uniform circuits.

One obvious open problem is to improve the TC0 circuit lower bound for Permanent to be
exponential, which is not known even for the uniform case. Another problem is to get super-
polynomial uniform TC0 lower bounds for a language from a complexity class below #P (e.g.,
PH). Strongly exponential lower bounds even against uniform AC0 would be very interesting. One
natural problem is to prove a better lower bound against uniform AC0 (say for Permanent) than
the known non-uniform AC0 lower bound for Parity.

References

[AB09] S. Arora and B. Barak. Complexity theory: a modern approach. Cambridge University
Press, New York, 2009.

[AG94] E. Allender and V. Gore. A uniform circuit lower bound for the permanent. SIAM
Journal on Computing, 23(5):1026–1049, 1994.

[Agr05] M. Agrawal. Proving lower bounds via pseudo-random generators. In Proceedings
of the Twenty-Fifth Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, pages 92–105, 2005.

[All99] E. Allender. The permanent requires large uniform threshold circuits. Chicago Journal
of Theoretical Computer Science, 1999.

[BIS90] D.A.M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1.
Journal of Computer and System Sciences, 41:274–306, 1990.

[BT94] R. Beigel and J. Tarui. On ACC. Computational Complexity, 4:350–366, 1994.

16

[CKS81] A.K. Chandra, D. Kozen, and L.J. Stockmeyer. Alternation. Journal of the Association
for Computing Machinery, 28(1):114–133, 1981.

[FSS84] M. Furst, J.B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy.
Mathematical Systems Theory, 17(1):13–27, April 1984.

[GKR+95] F. Green, J. Köbler, K.W. Regan, T. Schwentick, and J. Toran. The power of the middle
bit of a #P function. Journal of Computer and System Sciences, 50:456–467, 1995.

[H̊as86] J. H̊astad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
Eighteenth Annual ACM Symposium on Theory of Computing, pages 6–20, 1986.

[HM95] S. Homer and S. Mocas. Nonuniform lower bounds for exponential time classes. In
Proceedings of the Twentieth International Symposium on Mathematical Foundations
of Computer Science, pages 159–168. Springer Verlag, 1995.

[HS82] J. Heintz and C.-P. Schnorr. Testing polynomials which are easy to compute.
L’Enseignement Mathématique, 30:237–254, 1982.

[IM02] K. Iwama and H. Morizumi. An explicit lower bound of 5n − o(n) for boolean cir-
cuits. In Proceedings of the Twenty-Seventh International Symposium on Mathematical
Foundations of Computer Science, pages 353–364. Springer Verlag, 2002.

[JS11] M.J. Jansen and R. Santhanam. Permanent does not have succinct polynomial size
arithmetic circuits of constant depth. In Proceedings of the Thirty-Eighth International
Colloquium on Automata, Languages, and Programming, Part I, pages 724–735, 2011.

[Kan82] R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information
and Control, 55:40–56, 1982.

[KI04] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means prov-
ing circuit lower bounds. Computational Complexity, 13(1–2):1–46, 2004.

[KL82] R.M. Karp and R.J. Lipton. Turing machines that take advice. L’Enseignement
Mathématique, 28(3-4):191–209, 1982.

[KP09] P. Koiran and S. Perifel. A superpolynomial lower bound on the size of uniform non-
constant-depth threshold circuits for the permanent. In Proceedings of the Twenty-
Fourth Annual IEEE Conference on Computational Complexity, pages 35–40, 2009.

[LR01] O. Lachish and R. Raz. Explicit lower bound of 4.5n − o(n) for boolean circuits. In
Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing,
pages 399–408, 2001.

[Lup58] O.B. Lupanov. On the synthesis of switching circuits. Doklady Akademii Nauk SSSR,
119(1):23–26, 1958. English translation in Soviet Mathematics Doklady.

[Lyn77] N.A. Lynch. Log space recognition and translation of parenthesis languages. Journal
of the Association for Computing Machinery, 24:583–590, 1977.

17

[Pol06] C. Pollett. Languages to diagonalize against advice classes. Computational Complexity,
14:341–361, 2006.

[PS86] I. Parberry and G. Schnitger. Parallel computation with threshold functions. In Pro-
ceedings of the First Annual IEEE Conference on Structure in Complexity Theory, pages
272–290, 1986.

[Raz87] A.A. Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical Notes, 41:333–338, 1987.

[RR97] A.A. Razborov and S. Rudich. Natural proofs. Journal of Computer and System Sci-
ences, 55:24–35, 1997.

[Ruz81] W.L. Ruzzo. On uniform circuit complexity. Journal of Computer and System Sciences,
22(3):365–383, 1981.

[Sha49] C.E. Shannon. The synthesis of two-terminal switching circuits. Bell System Technical
Journal, 28(1):59–98, 1949.

[Smo87] R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing, pages 77–82, 1987.

[Tor91] J. Torán. Complexity classes defined by counting quantifiers. Journal of the Association
for Computing Machinery, 38:752–773, 1991.

[Val79] L. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8:189–201, 1979.

[Wag86] K.W. Wagner. The complexity of combinatorial problems with succinct input represen-
tation. Acta Informatica, 23:325–356, 1986.

[Wil11] R. Williams. Non-uniform ACC circuit lower bounds. In Proceedings of the Twenty-Sixth
Annual IEEE Conference on Computational Complexity, pages 115–125, 2011.

[Yao85] A.C. Yao. Separating the polynomial-time hierarchy by oracles. In Proceedings of the
Twenty-Sixth Annual IEEE Symposium on Foundations of Computer Science, pages
1–10, 1985.

18

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

