
Lower Bounds against Weakly-Uniform Threshold Circuits

Ruiwen Chen1, Valentine Kabanets2, and Jeff Kinne3

1 School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada
ruiwenc@sfu.ca

2 School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada
kabanets@cs.sfu.ca

3 Indiana State University, USA
jkinne@cs.indstate.edu

Abstract. A family of Boolean circuits {Cn}n>0 is called γ(n)-weakly-uniform if there is a polynomial-
time algorithm for deciding the direct-connection language of every Cn, given advice of size γ(n). This
is a relaxation of the usual notion of uniformity, which allows one to interpolate between complete
uniformity (when γ(n) = 0) and complete non-uniformity (when γ(n) > |Cn|). Weak uniformity is
essentially equivalent to succinctness introduced by Jansen and Santhanam [JS11].
Our main result is that Permanent is not computable by polynomial-size no(1)-weakly-uniform TC0

circuits. This strengthens the results by Allender [All99] (for uniform TC0) and by Jansen and San-
thanam [JS11] (for weakly-uniform arithmetic circuits of constant depth). Our approach is quite gen-
eral, and can be used to extend to the “weakly-uniform” setting all currently known circuit lower
bounds proved for the “uniform” setting. For example, we show that Permanent is not computable
by polynomial-size (logn)O(1)-weakly-uniform threshold circuits of depth o(log logn), generalizing the
result by Koiran and Perifel [KP09].

Keywords: advice complexity classes, alternating Turing machines, counting hierarchy, permanent,
succinct circuits, threshold circuits, uniform circuit lower bounds, weakly-uniform circuits

1 Introduction

Understanding the power and limitation of efficient algorithms is the major goal of complexity
theory, with the “P vs. NP” problem being the most famous open question in the area. While
proving that no NP-complete problem has a uniform polynomial-time algorithm would suffice for
separating P and NP, a considerable amount of effort was put into the more ambitious goal of
trying to show that no NP-complete problem can be decided by even a nonuniform family of
polynomial-size Boolean circuits.

More generally, an important goal in complexity theory has been to prove strong (exponential or
super-polynomial) circuit lower bounds for “natural” computational problems that may come from
complexity classes larger than NP, e.g., the class NEXP of languages decidable in nondeterministic
exponential time. By the counting argument of Shannon [Sha49], a randomly chosen n-variate
Boolean function requires circuits of exponential size. However, the best currently known circuit
lower bounds for explicit problems are only linear for NP problems [LR01,IM02], and polynomial
for problems in the polynomial-time hierarchy PH [Kan82] and counting hierarchy CH [Tod91].
Super-polynomial lower bounds are known only for classes such as MAEXP [BFT98,MVW99].

To make progress, researchers introduced various restrictions on the circuit classes. In particular,
for Boolean circuits of constant depth, with NOT and unbounded fan-in AND and OR gates (AC0

circuits), exponential lower bounds are known for the Parity function [FSS84,Yao85,Has86]. For
constant-depth circuits that additionally have (unbounded fan-in) MODp gates, one also needs
exponential size to compute the MODq function, for any distinct primes p and q [Raz87,Smo87].

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 7 (2012)

With little progress for decades, Williams [Wil11] has recently shown that a problem in NEXP
is not computable by polynomial-size ACC0 circuits, which are constant-depth circuits with NOT
gates and unbounded fan-in AND, OR and MODm gates, for any integer m > 1. However, no lower
bounds are known for the class TC0 of constant-depth threshold circuits with unbounded fan-in
majority gates4, a class of circuits that includes ACC0 circuits as a sub-class (see, e.g., [BIS90]).

To make more progress, another restriction has been added: uniformity of circuits. Roughly
speaking, a circuit family is called uniform if there is an efficient algorithm that can construct any
circuit from the family. There are two natural variations of this idea. One can ask for an algorithm
that outputs the entire circuit in time polynomial in the circuit size; this notion of uniformity is
known as P-uniformity. In the more restricted notion, one asks for an algorithm that describes the
local structure of the circuit: given two gate names, such an algorithm determines if one gate is the
input to the other gate, as well as determines the types of the gates, in time linear (or polynomial) in
the input size (which is logarithmic or polylogarithmic time in the size of the circuit described by the
algorithm); such an algorithm is said to decide the direct-connection language of the given circuit.
This restricted notion is called DLOGTIME- (or POLYLOGTIME-) uniformity [Ruz81,BIS90,AG94].
We will use the notion of POLYLOGTIME-uniformity by default, and, for brevity, will omit the word
POLYLOGTIME.

It is easy to show (by diagonalization) that, for any fixed exponential function s(n) = 2n
c

for a
constant c > 1, there is a language in EXP (deterministic exponential time) that is not computable
by a uniform (even P-uniform) family of Boolean s(n)-size circuits.5 Similarly, as observed in [All99],
a PSPACE-complete language requires exponential-size uniform TC0 circuits – due to the space
hierarchy theorem and the fact that TC0 circuits can be decided by a logarithmic space Turing
machine. For the smaller complexity class #P ⊆ PSPACE, Allender and Gore [AG94] showed
Permanent (which is complete for #P [Val79]) is not computable by uniform ACC0 circuits of
sub-exponential size. Later, Allender [All99] proved that Permanent cannot be computed by
uniform TC0 circuits of size s(n) for any function s such that, for all k, s(k)(n) = o(2n) (where s(k)

means the function s composed with itself k times). Finally, Koiran and Perifel [KP09] extended
this result to show that Permanent is not computed by polynomial-size uniform threshold circuits
of depth o(log log n).

Recently, Jansen and Santhanam [JS11] have proposed a natural relaxation of uniformity, termed
succinctness, which allows one to interpolate between non-uniformity and uniformity. According
to [JS11], a family of s(n)-size circuits {Cn} is succinct if the direct-connection language of Cn is
decided by some circuit of size s(n)o(1). In other words, while there may not be an efficient algorithm
for describing the local structure of a given s(n)-size circuit Cn, the local structure of Cn can be
described by a non-uniform circuit of size s(n)o(1). Note that if we allow the non-uniform circuit to
be of size s(n), then the family of circuits {Cn} would be completely non-uniform. So, intuitively,
the restriction to the size s(n)o(1) makes the notion of succinctness close to that of non-uniformity.

The main result of [JS11] is that Permanent does not have succinct polynomial-size arithmetic
circuits of constant depth, where arithmetic circuits have unbounded fan-in addition and multipli-
cation gates and operate over integers. While relaxing the notion of uniformity, [JS11] were only
able to prove a lower bound for the weaker circuit class, as polynomial-size constant-depth arith-

4 A plausible explanation of this “barrier” is given by the “natural proofs” framework of [RR97], who argue it is
hard to prove lower bounds against the circuit classes that are powerful enough to implement cryptography.

5 Unlike the nonuniform setting, where every n-variate Boolean function is computable by a circuit of size about
2n/n [Lup58], uniform circuit lower bounds can be > 2n.

metic circuits can be simulated by polynomial-size TC0 circuits. A natural next step was to prove
a super-polynomial lower bound for Permanent against succinct TC0 circuits. This is achieved in
the present paper.

1.1 Our main results

We improve upon [JS11] by showing that Permanent does not have succinct polynomial-size TC0

circuits. In addition to strengthening the main result from [JS11], we also give a simpler proof. Our
argument is quite general and allows us to extend to the “succinct” setting all previously known
uniform circuit lower bounds of [AG94,All99,KP09].

Recall that the direct-connection language for a circuit describes the local structure of the
circuit; more precise definitions will be given in the next section. For a function α : N → N, we
say that a circuit family {Cn} of size s(n) is α-weakly-uniform if the direct-connection language
Ldc of {Cn} is decided by a polynomial-time algorithm that, in addition to the input of Ldc of size
m ∈ O(log s(n)), has an advice string of size α(m); the advice string just depends on the input size
m. The notion of α-weakly uniform is essentially equivalent to the notion of α-succinct introduced
in [JS11]; see the next section for details.

We call a circuit family subexp-weakly-uniform if it is α-weakly-uniform for α(m) ∈ 2o(m).
Similarly, we call a circuit family poly-weakly-uniform if it is α-weakly-uniform for α(m) ∈ mO(1).
Observe that for m = O(log s), we have 2o(m) = so(1) and mO(1) = poly log s.

Our main results are as below. First, we strengthen the lower bound of [JS11].

Theorem 1. Permanent is not computable by subexp-weakly-uniform poly-size TC0 circuits.

Let us call a function s(n) sub-subexponential if, for any constant k > 0, we have that the

k-wise composition s(k)(n) 6 2n
o(1)

. We use subsubexp to denote the class of all sub-subexponential
functions s(n). We extend a result of Allender [All99] to the “weakly-uniform” setting.

Theorem 2. Permanent is not computable by poly-weakly-uniform subsubexp-size TC0 circuits.

We extend the result of [KP09] to the weakly-uniform setting as well.

Theorem 3. Permanent is not computable by poly-weakly-uniform poly-size threshold circuits of
depth o(log log n).

We also state a single parameterized result that implies a tradeoff between the amount of non-
uniformity, circuit size, and depth. The precise statement is given in Section 5 and implies Theorems
1, 2, and 3.

Finally, we obtain lower bounds for weakly-uniform ACC0, AC0, and general circuits. These
results are stated and proved in Section 6.

1.2 Our techniques

We give two different proofs of our main results. The two proofs are similar, but each implies
corollaries that cannot be achieved by the other.

At a high level, both proofs use the method of indirect diagonalization.

(i) We begin with a language in the counting hierarchy that is “hard” for a certain class of algo-
rithms.

(ii) Assuming Permanent is easy, we show that the above “hard” language is actually “easy” –
as the easiness of Permanent collapses the counting hierarchy in much the same way that NP
= P implies the collapse of the polynomial hierarchy – which is a contradiction.

The key technical hurdle in using this approach is to deal appropriately with non-uniformity. To
see the structure of the proofs, we give an outline of how each comes to a contradiction if we assume
Permanent has no(1)-weakly-uniform polynomial-size constant-depth threshold circuits (Theorem
1).

First Proof The first proof is naturally viewed from the perspective of threshold Turing machines,
which are one method for defining the counting hierarchy. It is well-known that uniform threshold
circuits can be transformed into threshold Turing machines that run in time logarithmic in the size
of the original circuit. We extend this correspondence to include weakly-uniform threshold circuits.
Thus a small weakly-uniform threshold circuit for Permanent can be used to make arguments
about hard languages in the counting hierarchy. The proof follows the following main steps.

1. Hierarchy theorem. For any constant k > 1, there is a language Lhard decided by a threshold
Turing machine running in polynomial time that differs from all languages decided by threshold
Turing machines using the same number of majority states, running in time nk, and using o(n)
bits of advice.

2. Hardness of Lhard if Permanent is easy. If Permanent has constant-depth no(1)-weakly-
uniform threshold circuits of polynomial size, then P also does, and in particular every language
in P can be computed by a threshold machine running in time nk and using advice no(1), for
some constant k > 1. Thus Lhard is hard for P computations that use no(1) bits of advice. Note
that Lhard is computable by a fixed-polynomial time threshold Turing machine and is hard for
P computations of any polynomial running time.

3. Collapse of counting hierarchy. Permanent is complete for the first level of the counting
hierarchy, and if Permanent is easy then threshold Turing machine computations can be
converted into deterministic computations. We show this holds also in the setting of a small
amount of advice, so that given the assumed weakly-uniform threshold circuits for Permanent,
we conclude that Lhard is contained within P with no(1) bits of advice – a contradiction.

Second Proof For the second proof, we begin with a different hard language. We let Lhard be a
language that is unconditionally known to require large non-uniform circuits. There exists such
a language in the second level of the counting hierarchy. Given the different hard language as a
starting point, the rest of the argument is somewhat different. The key steps are the following.

– Non-uniformly hard language. It is known that for any constant k, PPP contains a language
Lhard that does not have circuits of size nk.

– Threshold circuit for Lhard. By the PP-completeness of Permanent, if Permanent has no(1)-
weakly-uniform constant-depth threshold circuits of polynomial size, then Lhard does as well.

– Collapse of threshold circuit. Let Chard be the threshold circuit for Lhard at input length n from
the last step. By viewing the threshold gates within Chard as questions about Permanent, we
shrink the circuit as follows. The first level of threshold gates closest to the inputs in Chard can be
viewed as PP questions of size poly(log(n) + no(1)); using the assumed easiness of Permanent
a circuit C1 of size no(1) can be used in place of the threshold gates on the first level. A
similar argument shows that the second level of threshold gates reduce to PP questions of size

poly(|C1|), which can be replaced by a circuit of size poly(poly(|C1|)) using the assumed easiness
of Permanent. This process is repeated for each level of threshold gates in Chard. If Chard has
depth d, we obtain a circuit of size p(d)(no(1)) +O(n) for some polynomial p after iterating for
each level of threshold gates in Chard.

The conclusion is a contradiction – we have constructed a circuit of size O(n) for computing
Chard although it should require size nk.

The last parts of both proofs are the same. If Permanent is easy then the counting hierarchy
collapses, even in the presence of no(1) bits of advice. Equivalently, weakly-uniform circuits for
Permanent imply the collapse of weakly-uniform threshold circuits.

The same basic argument as those given above is used for each of Theorems 1, 2, and 3. In
fact, for our second proof we prove a single parameterized statement that implies the theorems as
corollaries.

We have phrased our first proof in terms of threshold Turing machines with advice, and our
second proof in terms of weakly-uniform threshold circuits. Due to the equivalence between the two
models, both proofs could be given in terms of either model. The Turing machine model is natural
for the first proof due to the reliance on a hierarchy theorem for Turing machines for Lhard. The
circuit model is natural for the second proof due to its use of a circuit lower bound for Lhard.

1.3 Relation to the previous work

A similar indirect-diagonalization strategy was used (explicitly or implicitly) in all previous papers
showing uniform or weakly-uniform circuit lower bounds for Permanent [AG94,All99,KP09,JS11].
Our proofs are most closely related to those of [All99,KP09]. The main difference is that we work in
the weakly-uniform setting, which means that we need to handle a certain amount of non-uniform
advice. To that end, we have adapted the method of indirect diagonalization, making it modular
(as outlined above) and sufficiently general to work also in the setting with advice. Due to this
generality of our proof argument, we are able to extend the aforementioned lower bounds from the
uniform setting to the weakly uniform setting.

The approach adopted by [JS11] goes via the well-known connection between derandomiza-
tion and circuit lower bounds (cf. [HS82,KI04,Agr05]). Since the authors of [JS11] work with the
algebraic problem of Polynomial Identity Testing (given an arithmetic circuit computing some
polynomial over integers, decide if the polynomial is identically zero), their final lower bounds are
also in the algebraic setting: for weakly-uniform arithmetic constant-depth circuits. By making the
diagonalization arguments in [JS11] more explicit (along the lines of [All99,KP09]), we are able to
get the lower bound for weakly-uniform Boolean (TC0) circuits, thereby both strengthening the
results and simplifying the proofs from [JS11].

Preliminary publications of this work Extended abstracts of the main results of this paper appeared
in two separate papers [Kin12,CK12]. The two earlier papers independently came to the same main
results. The present paper combines both of the earlier works.

The remainder of the paper. We give the necessary background in Section 2. Section 3 provides the
tools needed for our proofs. These tools are then used in Sections 4 and 5 to give the two proofs
of our main results (Theorems 1–3 above). We give other weakly-uniform circuit lower bounds in
Section 6. We give concluding remarks in Section 7.

2 Preliminaries

We refer to [AB09] for the basic complexity notions.

2.1 Circuits

Recall that a Boolean circuit Cn on n inputs x1, . . . , xn is a directed acyclic graph with one single
output gate (the node of out-degree 0), n nodes of in-degree 0 (input gates labeled x1, . . . , xn), and
internal nodes of in-degree 2 (for AND and OR gates) or 1 (for NOT gates). The size of the circuit
Cn is defined to be the number of gates, and is denoted by |Cn|. For a function s : N → N and a
circuit family {Cn}n>0, we say that the circuit family is in SIZE(s), if for all sufficiently large n we
have |Cn| 6 s(n).

The depth of a circuit Cn is defined as the length of a longest path from some input gate to
the output gate. We will be talking about constant-depth circuits, in which case we allow all gates
(other than the NOT gates) to have unbounded fan-in. In addition to AND and OR, we may have
other types of gates: MAJ (which is 1 iff more than half of its inputs are 1), or MODm gate for
some integer m > 0 (which is 1 iff the integer sum of the inputs is divisible by m).

AC0 circuits are constant-depth Boolean circuits with NOT gates and unbounded fan-in AND
and OR gates. ACC0 circuits are constant-depth Boolean circuits with unbounded fan-in AND, OR
and MODm gates for some positive integer m. Finally, TC0 circuits are constant-depth Boolean
circuits with unbounded fan-in AND, OR and MAJ (or threshold) gates. For a function s : N→ N
and a circuit type C ∈ {AC0,ACC0,TC0}, we denote by C(s) the class of families of s(n)-size n-input
circuits of type C. When s(n) is a polynomial in n, we may drop it and simply write C to denote the
class of polynomial-size C-circuits. Finally, we drop the superscript 0 in AC0,ACC0, and TC0, when
we want to talk about the corresponding type of circuits where the depth d(n) may be a function
of the input size n.

2.2 Weakly-uniform circuit families

Following [Ruz81,AG94], we define the direct connection language of a circuit family {Cn} as Ldc =
{(n, g, h) : g = h and g is a gate in Cn, or g 6= h and h is an input to g}, where n is in binary
representation, and g and h are binary strings encoding the gate types and names. The type of a
gate could be constant 0 or 1, Boolean logic gate NOT, AND, or OR, majority gate MAJ, modulo
gate MODm for some integer m, or input x1, x2, . . . , xn. For a circuit family of size s(n), we need
c0 log s(n) bits to encode (n, g, h), where c0 is a small constant at most 4.

A circuit family {Cn} is uniform [BIS90,AG94] if its direct connection language is decidable in
time polynomial in its input length |(n, g, h)|; this was referred to as POLYLOGTIME-uniformity
in [AG94].

We say a function f(n) is constructible if there is a deterministic TM that computes f(n) in
binary in time O(f(n)), when given n in binary as the input6.

Following [JS11], for a constructible function α : N → N, we say that a circuit family {Cn}
of size s(n) is α-succinct if its direct connection language Ldc is in SIZE(α); i.e., Ldc has (non-
uniform) Boolean circuits of size α(m), where m = c0 log s(n) is the input size for Ldc. Trivially, for

6 We note that f(n) is constructible in our sense if and only if 2f(n) is constructible according to Allender’s definition
in [All99].

α(m) > 2m, every circuit family is α-succinct. The notion becomes nontrivial when α(m)� 2m/m.
We will use α(m) = 2o(m) (slightly succinct) and α(m) = mO(1) (highly succinct).

We stress that here we have parameterized the succinctness as a function of the logarithm of
the size of the circuit. As a function of the input length n, a circuit of size s(n) is slightly succinct
if the direct connection language is decided by a circuit of size so(1)(n), and is highly succinct if
the direct connection language is decided by a circuit of size poly − log(s(n)).

We recall the definition of Turing machines with advice from [KL82]. Given functions t : N×N→
N and α : N → N, we say that a language L is in DTIME(t)/α, if there is a deterministic Turing
machine M and a sequence of advice strings {an} of length α(n) such that, for any x ∈ {0, 1}n,
machine M on inputs (x, an) decides whether x ∈ L in time t(n, α(n)). If the function t(n,m) is
upper-bounded by a polynomial in n+m, we say that L ∈ P/α.

Definition 1. A circuit family {Cn} of size s(n) is α-weakly-uniform if its direct connection lan-
guage is decided in P/α; recall that the input size for the direct-connection language describing Cn
is m = c0 log s(n), and so the size of the advice string needed in this case is α(c0 log s(n)).

The two notions are closely related.

Lemma 1. In the notation above, α(m)-succinctness implies α(m) logα(m)-weak uniformity, and
conversely, α(m)-weak uniformity implies (α(m) +m)O(1)-succinctness.

Proof (sketch). A Boolean circuit of size s can be represented by a binary string of size O(s log s);
and a Turing machine running in time t can be simulated by a circuit family of size O(t log t). ut

The notion of weak uniformity (succinctness) interpolates between full uniformity on one end
and full non-uniformity on the other end. For example, 0-weak uniformity is the same as uniformity.
On the other hand, α-weak uniformity for α(m) > 2m is the same as non-uniformity. For that reason,
we will assume that the function α in “α-weakly-uniform” is such that 0 6 α(m) 6 2m.

Definition 2. We say a circuit family {Cn} is subexp-weakly-uniform if it is α-weakly-uniform
for α(m) ∈ 2o(m); similarly, we say {Cn} is poly-weakly-uniform if it is α-weakly-uniform for
α(m) ∈ mO(1).

2.3 Alternating Turing machines

Both the counting hierarchy and uniform threshold circuits can equivalently be defined using thresh-
old Turing machines, which are generalizations of alternating Turing machines. As we use this view
in some of our proofs, we recall the definitions – and state the equivalence in the next subsection.

Following [CKS81,PS86,AG94], an alternating Turing machine (ATM) is a nondeterministic
Turing machine with two kinds of states: universal states and existential states. In the usual defini-
tion of an ATM, each configuration has either zero or two successor configurations; configurations
with no successors, which are called leaves, are halting configurations; a configuration in universal
(existential) state is accepting iff all (at least one) of its successors are accepting. We also consider
the generalized ATMs where each configuration has an unbounded number of successors, obtained
by replacing a subtree of “bounded branching” configurations by a single configuration. We assume
an ATM has random access to the input.

A threshold Turing machine is an ATM with majority (MAJ) states; a configuration in a ma-
jority state may have an unbounded number of successors, and it is accepting iff more than half

of its successors are accepting. We denote by Thd(n)TIME(t(n)) the class of languages accepted by
threshold Turing machines having at most d(n) alternations and running in time O(t(n)). Note
that the class Thd(n)TIME(t(n)) is closed under complement, since the negation of majority is the
majority of negated inputs7.

Recall that a language A is in PP (C=P) if there is a nondeterministic polynomial-time Turing
machine M such that x ∈ A iff the number of accepting paths of M on input x is greater than
(equal to) the number of rejecting paths. The counting hierarchy [Wag86,Tor91] is defined as CH =
∪d>0CHd, where CH0 = P and CHd+1 = PPCHd . This definition is unchanged if we replace PP
with C=P. The counting hierarchy can be equivalently defined via threshold Turing machines:
CHd = ThdTIME(nO(1)).

Alternating Turing machines can be also equipped with modulo states MODm for some fixed
m; a MODm configuration is accepting iff the number of its accepting successors is 0 modulo m. We
denote by Modd(n)TIME(t(n)) the class of languages decided by ATMs with MODm states for some
fixed m > 0 dependent on the language, making at most d(n) alternations and running in time
O(t(n)). Following [GKRST95,All99], we denote by ModPH the class ∪d>0ModdTIME(nO(1)). It is
well-known that threshold states can be used to simulate MODm states, and thus also ModPH ⊆ CH.

In general, on different inputs, an ATM may follow computation paths with different sequences of
alternations; however, by introducing dummy states, it is always possible to transform the machine
into an equivalent machine such that all computation paths on inputs of the same size will follow
the same sequence of alternations, whereas the number of alternations and the running time will
change only by a constant factor; see [AG94] for details.

2.4 Weak uniformity vs. alternating Turing machines with advice

It is well-known that uniform AC0(2poly(n)) corresponds to the polynomial-time hierarchy PH [FSS84].
Similarly, the correspondence exists between uniform ACC0(2poly(n)) and ModPH [GKRST95,AG94],
as well as between uniform TC0(2poly(n)) and the counting hierarchy CH [PS86,BIS90,All99]; see
Table 1 below for the summary. More precisely, for constructible t(n) such that t(n) = Ω(log n), we
have ∪d>0ModdTIME(poly(t(n))) is precisely the class of languages decided by uniform ACC0(2poly(t(n))),
and ∪d>0ThdTIME(poly(t(n))) is precisely the class of languages decided by uniform TC0(2poly(t(n))).

Table 1. Correspondence between hierarchies and uniform circuit classes.

Alternation Hierarchy Circuits Reference

∃, ∀ PH uniform AC0 [FSS84]

∃, ∀,MOD2,MOD3, . . . ModPH uniform ACC0 [GKRST95,AG94]

∃, ∀,MAJ CH uniform TC0 [PS86,BIS90,All99]

The following lemma gives the correspondence between weakly-uniform threshold circuits and
threshold TMs with advice.

Lemma 2. Let L be any language decided by a family of α-weakly-uniform d(n)-depth threshold
circuits of size s(n). Then L is decidable by a threshold Turing machine with d′(n) = 3d(n) + 2

7 This is true for MAJ with an odd number of inputs, which is easily achieved by replacing MAJ(x1, x2, . . . , xk)
with MAJ(x1, x1, x2, x2, . . . , xk, xk, 0).

alternations, taking advice of length α(m) for m = c0 log s(n), and running in time t(n) = d′(n) ·
poly(m+ α(m)).

Proof. The proof follows directly from [AG94] where ACC0 circuits are considered. Let {Cn} be the
circuit family deciding L. Its direct connection language Ldc is accepted by some Turing machine
U , on input size m = c0 log s(n), taking advice am of size α(m) and running in time poly(m+α(m))
. We will construct a threshold Turing machine M which takes advice and decides L. For any input
x of length n, machine M takes advice bn ≡ am, and does the following:

– (∃) guess gate g of Cn, and check that U accepts (n, g, g), i.e., g is a gate in Cn;

– (∀) guess gate h and check that U rejects (n, h, g), i.e., g is the output;

– Call Eval(g), which is a recursive procedure defined below.

The procedure Eval(g) is as follows:

– (∃) If g is an OR gate, then guess its input h; if U rejects (n, g, h) then reject, otherwise call
Eval(h).

– (∀) If g is an AND gate, then guess its input h; if U rejects (n, g, h) then accept, otherwise call
Eval(h).

– (MAJ) If g is a MAJ gate, then guess its input h and a bit b ∈ {0, 1}; if U rejects (n, g, h), then
accept when b = 1 and reject when b = 0, otherwise call Eval(h).

– If g is a constant gate, then accept iff it is 1.

– If g is an input, then accept iff the corresponding input bit is 1.

It is easy to verify that M with advice bn accepts x iff Cn(x) = 1. The number of alternations
that M takes on any computation path is at most d(n)+2. However, each path may follow a different
sequence of states. To resolve this, we replace each state on each path by a sequence of three states
(∃, ∀,MAJ), where two of them are dummy. This gives a machine with each computation path
following the same alternations, and the total number of alternations is at most 3d(n) + 2. The
access to inputs is only at the last step of each computation path (corresponding to the bottom
level of the circuit).

At each alternation, the machine simulates U and runs in time poly(m+ α(m)). Therefore, the
total running time is bounded by d′(n) · poly(m+ α(m)). ut

Similar to Lemma 2, we have the following correspondence between weakly-uniform ACC circuits
and alternating Turing machines with modulo states.

Lemma 3. Let L be any language decided by a family of α-weakly-uniform d(n)-depth ACC circuits
of size s(n) with MODr gates, for some integer r > 0. Then L is decidable by an alternating Turing
machine with MODr states and d′(n) = O(d(n)) alternations, taking advice of length α(m) where
m = c0 log s(n), and running in time d′(n) · poly(m+ α(m)).

2.5 Permanent

The main property of Permanent needed for our results is PP-hardness. [Zan91], building on
[Val79], implies that any language in PP reduces to the 0-1 permanent with a quasi-linear size
uniform AC0 reduction, where quasi-linear means n · polylog(n).

3 Indirect diagonalization

Here we establish the components needed for our indirect diagonalization, as outlined in Section 1.2.
First, in Section 3.1, we give the ingredients needed for our first proof. One result is a diag-

onalization argument against alternating Turing machines with advice, getting a language in the
counting hierarchy CH that is “hard” against weakly-uniform TC0 circuits of certain size. Another
result shows that using the assumption that a canonical P-complete problem has small weakly-
uniform TC0 circuits, we conclude that the “hard” language given by our diagonalization step is
actually hard for a stronger class of algorithms: weakly-uniform Boolean circuits of some size s′

without any depth restriction.
Section 3.2 contains the tools needed for the second proof of our main results. In particular

we state and prove the circuit lower bound that is used in the second proof: that EPP contains a
language that requires non-uniform circuits of size 2Θ(n).

Finally, in Section 3.3, we state and prove the key lemma that is used in both proofs. Namely,
using the assumption that Permanent has small weakly-uniform TC0 circuits, we show that CH
collapses, and our assumed hard languages are in fact decidable by weakly-uniform s′-size Boolean
circuits, which is a contradiction. Our actual argument is more general: we consider threshold
circuits of not necessarily constant depth d(n), and non-constant levels of the counting hierarchy.

3.1 Ingredients for First Proof

Diagonalization against ATMs with advice

Lemma 4. For any constructible functions α, d, t, T : N→ N such that α(n) ∈ o(n) and t(n) log t(n) =
o(T (n)), there is a language D ∈ Thd(n)TIME(T (n)) which is not decided by threshold Turing ma-
chines with d(n) alternations running in time t(n) and taking advice of length α(n).

Proof. The proof is by diagonalization. Define the language D consisting of those inputs x of length
n that have the form x = (M,y) (using some pairing function) such that the threshold TM M with
advice y, where |y| = α(n), rejects input (M,y) in time t(n) using at most d(n) alternations.
Language D is decided in Thd(n)TIME(T (n)) by simulating M and flipping the result8.

For contradiction, suppose that D is decided by some threshold Turing machine M0 with d(n)
alternations taking advice {an} of size α(n). Consider the input (M0, an) with |M0| = n − α(n);
we assume that each TM has infinitely many equivalent descriptions (by padding), and so for large
enough n, there must exist such a description of size n − α(n). By the definition of D, we have
(M0, an) is in D iff M0 with advice an rejects it; but this contradicts the assumption that M0 with
advice {an} decides D. ut

The following diagonalization result, combing with Lemma 3, says that the hierarchy ModPH
contains languages that are “hard” against weakly-uniform ACC circuits of certain size.

Lemma 5. For any constructible functions α, d, t, T : N→ N such that α(n) ∈ o(n) and t(n) log t(n) =
o(T (n)), and for any integer m > 1, there is a language D ∈ Modd(n)+1TIME(T (n)) which is not

8 Thd(n)TIME(T (n)) is closed under complement since the negation of MAJ is MAJ of negated inputs
when MAJ has an odd number of inputs; the latter is easy to achieve by replacing MAJ(x1, . . . , xk) with
MAJ(x1, x1, . . . , xk, xk, 0). Allender [All99] uses a lazy diagonalization argument [Zak83] for nondeterministic
TMs. However, that argument seems incapable of handling the amount of advice we need. Fortunately, the basic
diagonalization argument we use here is sufficient for our purposes.

decided by alternating Turing machines with MODm states and d(n) alternation running in time
t(n) and taking advice of length α(n).

Proof (sketch). The proof is similar to the proof of Lemma 4, except that when flipping the result,
the negation can be simulated by a MODm state, using the identity ¬x = MODm(x). ut

If P is easy Let L0 be a P-complete language under uniform projections (functions computable
by uniform Boolean circuits with NOT gates only). For example, the standard P-complete set
{(M,x, 1t) : M accepts x in time t} works.

Lemma 6. Suppose L0 is decided by a family of α-weakly-uniform d(n)-depth threshold circuits
of size s(n). Then, for any constructible function t(n) > n and 0 6 β(m) 6 2m, every language
L in β-weakly-uniform SIZE(t(n)) is decided by µ(n)-weakly-uniform d(poly(t(n)))-depth threshold
circuits of size s′(n) = s(poly(t(n))) on n inputs, where µ(n) = α(c0 log s′(n)) + β(c0 log t(n)).

Proof. Let U be an advice-taking algorithm deciding the direct-connection language for the t(n)-
size circuits for L. For any string y of length β(m) for m = c0 log t(n), we can run U with the advice
y to construct some circuit Cy of size t(n) on n inputs. We can construct the circuit Cy in time at
most poly(t(n)), and then evaluate it in time poly(t(n)) on any given input of size n.

Consider the language L′ = {(x, y, 1t(n)) | |x| = n, |y| = β(m), Cy(x) = 1}. By the above,
we have L′ ∈ P. Hence, by assumption, L′ is decided by an α-weakly-uniform d(l)-depth threshold
circuits of size s(l), where l = |(x, y, 1t(n))| 6 poly(t(n)). To get a circuit for L, we simply use as y the
advice of size β(m) needed for the direct-connection language of the t(n)-size circuits for L. Overall,
we need α(c0 log s(l)) + β(m) amount of advice to decide L by weakly-uniform d(poly(t(n)))-depth
threshold circuits of size s(poly(t(n))). ut

3.2 Ingredients for Second Proof

The second proof uses the following to obtain a hard language in the indirect diagonalization. For
completeness, we provide a proof.

Theorem 4 ([Aar06]). Let c > 0 be a constant such that there are at most 2(h(n))
c

circuits of
size h(n) at input length n. Let h(n) be a time-constructible function such that for all n, n 6 h(n),
(h(n))c < 2n, and h(n) is less than the maximum circuit complexity. There is a language Lhard in
TIMEPP(poly(h(n))) that does not have circuits of size h(n).

Proof. Let x1, ..., x(h(n))c+1 be the (h(n))c+1 lexicographically smallest inputs of length n. The PP
language we use as oracle is

O = {(1n, j, b1, ..., b(h(n))c+1)| C(xj) = bj for at most 1/2

of the circuits C of size h(n) that satisfy C(xi) = bi for all 1 6 i < j.}

O can be decided in PP by a machine as follows. The machine guesses a circuit of size h(n); if the
circuit does not agree with one of the bi between 1 and j − 1 then the PP machine splits into two
nondeterministic paths with one accepting and one rejecting; otherwise the PP machine accepts iff
C(xj) 6= bj . Then there are at least half accepting paths iff at least half of the circuits in question

disagree with bj on xj . As we can evaluate a circuit of size h(n) in poly(h(n)) time, the running
time for O is poly(h(n)), which is polynomial in the input length, so O ∈ PP.

Lhard is defined as follows. Lhard(x1) = O(1n, 1, 0, 0, ..., 0), and already Lhard differs from at
least half of the circuits of size h(n). Lhard(x2) = O(1n, Lhard(x1), 1, 0, ..., 0). So now Lhard differs
from at least 3/4 of the circuits of size h(n). And so on. As there are at most 2(h(n))

c
circuits of

size h(n), we will have differed from all in at most (h(n))c + 1 steps. For inputs not in the set
{x1, ..., xh(n)+1} we can define Lhard arbitrarily (e.g., set it to 0). Notice that Lhard can be decided
in poly(h(n)) time with access to the PP oracle O.

ut

Since separations for high resources imply separations for low resources, it will be optimal to
set h(n) large. Because there exist languages that require circuits of size 2Θ(n) [Sha49] we have the
following corollary, which we use in the second proof of our main results.

Corollary 1. There exists a constant c > 0 such that there is a language Lhard in DTIMEPP(2O(n))
that does not have circuits of size 2n/c.

3.3 Key lemma for both proofs – collapse of CH if Permanent is easy

Since Permanent is hard for the first level of the counting hierarchy CH, assuming that Perma-
nent is “easy” implies the collapse of CH (see, e.g., [All99]). It was observed in [KP09] that it is also
possible to collapse super-constant levels of CH, under the same assumption. Below we argue the
collapse of super-constant levels of CH by assuming that Permanent has “small” weakly-uniform
circuits.

We use the notation f ◦ g to denote the composition of the functions f and g, and the notation
f (i) is used to denote the composition of f with itself for i times; we use the convention that f (0)

is the identity function.

Lemma 7. Suppose that Permanent is in γ-weakly-uniform SIZE(s(n)), for some γ(m) 6 2o(m).
For every d(n) 6 no(1), every language A in Thd(n)TIME(poly) is also in (2d(n) · γ)-weakly-uniform

SIZE((s ◦ q)(d(n)+1)(n)), for some polynomial q dependent on A.

Proof. The language A is computable by a uniform threshold circuit family {Cn} of depth d(n)
and size poly(n). Let M be a polynomial-time TM deciding the direct-connection language of {Cn}.
More precisely, we identify the gates of the circuit with the configurations of the given threshold
TM for A; the output gate is the initial configuration; leaf (input) gates are halting configurations;
deciding if one gate is an input to the other gate is deciding if one configuration follows from the
other according to our threshold TM, and so can be done in polynomial time (dependent on A);
finally, given a halting configuration, we can decide if it is accepting or rejecting also in polynomial
time (dependent on A).

Consider an arbitrary n. Let d = d(n). For a gate g of C, we denote by Cg the subcircuit of C
that determines the value of the gate g. We say that g is at depth i, for 1 6 i 6 d, if the circuit Cg
is of depth i. Note that each gate at depth i > 1 is a majority gate.

For every 0 6 i 6 d, let Bi be a circuit that, given x ∈ {0, 1}n and a gate g at depth i, outputs
the value Cg(x).

Claim. There are polynomials q and q′ dependent on A such that, for each 0 6 i 6 d, there are
2iγ-weakly-uniform circuits Bi of size (s ◦ q)(i) ◦ q′.

Proof. We argue by induction on i. For i = 0, to compute B0(x, g), we need to decide if the halting
configuration g of our threshold TM for A on input x is accepting or not; by definition, this can be
done by the TM M in deterministic polynomial time. Hence, B0 can be decided by a completely
uniform circuit of size at most q′(n) for some polynomial q′ dependent on the running time of M .

Assume we have the claim for i. Let s′ be the size of the γ′-weakly-uniform circuit Bi, where
s′ 6 (s ◦ q)(i) ◦ q′ and γ′ 6 2iγ. Consider the following TM N :

“On input z = (x, g, U, y, 1s
′/2), where |x| = n, g is a gate of C, |U | = γ(c0 log s′),

|y| = γ′(c0 log s′), interpret U as a Turing machine that takes advice y to decide the direct-
connection language of some circuit D of size s′ on inputs of length |(x, g)|. Construct the
circuit D using U and y, where to evaluate U on a given input we simulate U for at most s′

steps. Enter the MAJ state. Nondeterministically guess a gate h of C and a bit b ∈ {0, 1}.
If h is not an input gate for g, then accept if b = 1 and reject if b = 0; otherwise, accept if
D(x, h) = 1 and reject if D(x, h) = 0.”

We will be interested in the case where U is a polynomial-time TM. For any such U , the running
time on any input is bounded by poly(c0 log s′+γ′(c0 log s′)), which is less than s′ by our assumptions
that γ(m) 6 2o(m) and d 6 (s′)o(1). Thus, to evaluate U on a particular input, it suffices to simulate
U for at most s′ steps, which is independent of what the actual polynomial time bound of U is. It
follows that we can construct the circuit D (given U and y) in time p(s′), where p is a polynomial
that does not depend on U . Also, to decide if h is an input gate to g, we use the polynomial-time
TM M . We conclude that N is a PP machine which runs in some polynomial time (dependent on
A). Since Permanent is PP-hard [Val79,Zan91], we have a uniform reduction mapping z (an input
to N) to an instance of Permanent of size q(|z|), for some polynomial q (dependent on A).

By our assumption on the easiness of Permanent, we get that the language of N is decided
by γ-weakly-uniform circuits CN of size at most s′′ = s(q(s′)). If we plug in for U and y the
actual TM description and the advice needed to decide the direct-connection language of Bi, we
get from CN the circuit Bi+1. Note that the direct-connection language of this circuit Bi+1 is
decided in polynomial time (using the algorithm for direct-connection language of CN) given the
advice needed for CN plus the advice needed to describe U and y. The total advice size is at most
γ(c0 log s′′) + γ(c0 log s′′) + γ′(c0 log s′) 6 2(i+ 1)γ(c0 log s′′). ut

Finally, we take the circuit Bd and use it to evaluate A(x) by computing the value Bd(x, g)
where g is the output gate of C, which can be efficiently constructed (since this is just the initial
configuration of our threshold TM for A on input x). By fixing g to be the output gate of C, we get
the circuit for A which is 2dγ-weakly-uniform of size at most (s ◦ q)(d)(r(n)), where the polynomial
r depends on the language A. Upper-bounding r by (s ◦ q) yields the result. ut

4 First proof of main results

Here we use the technical tools from the previous section in order to give the first proof of our main
results, as outlined in Section 1.2. Recall that L0 is the P-complete language defined earlier.

4.1 Proof of Theorem 1

First, assuming L0 is easy, we construct a hard language in CH.

Lemma 8. Suppose L0 is in subexp-weakly-uniform TC0 of depth d. Then, for a constant d′ de-
pendent on d, there is a language Ldiag ∈ CHd′ which is not in subexp-weakly-uniform SIZE(poly).

Proof. Let α(m) ∈ 2o(m) be such that L0 is in α-weakly-uniform TC0 of depth d. Consider an arbi-
trary language L in β-weakly-uniform SIZE(poly), for an arbitrary β(m) ∈ 2o(m). By Lemma 6,
L has µ(n)-weakly uniform threshold circuits of depth d and polynomial size, where µ(n) =
α(O(log n)) + β(O(log n)) 6 no(1). By Lemma 2, we have that L is decided by a threshold Turing
machine with d′ = O(d) alternations, taking advice of length µ(n) 6 no(1) 6 n/ log2 n, and run-
ning in time d′ · poly(O(log n) + no(1)) 6 no(1) 6 n/ log2 n. We conclude that every language in
subexp-weakly-uniform SIZE(poly) is also decided by some threshold TM in time n/ log2 n, using d′

alternations and advice of size n/ log2 n.

Using Lemma 4, define Ldiag to be the language in Thd′TIME(n) which is not decidable by any
threshold Turing machine in time n/ log2 n, using d′ alternations and advice of size n/ log2 n. It
follows that Ldiag is different from every language in subexp-weakly-uniform SIZE(poly). ut

Next, assuming Permanent is easy, we have that every language in CH is easy. The proof is
immediate by Lemma 7.

Lemma 9. If Permanent is in subexp-weakly-uniform SIZE(poly), then every language in CH is
in subexp-weakly-uniform SIZE(poly).

We now show that L0 and Permanent cannot both be easy. The proof is immediate by Lem-
mas 8 and 9.

Theorem 5. At least one of the following must be false:

1. L0 is in subexp-weakly-uniform TC0;

2. Permanent is in subexp-weakly-uniform SIZE(poly).

To unify the two items in Theorem 5, we use the next lemma and its corollary.

Lemma 10 ([Val79,AG94]). For every language L ∈ P, there are uniform AC0-computable func-
tion M (mapping a binary string to a poly-size Boolean matrix) and Boolean function f such that,
for every x, we have x ∈ L iff f(Permanent(M(x)) = 1.

This lemma immediately yields the following.

Corollary 2. If Permanent has α-weakly-uniform d(n)-depth threshold circuits of size s(n), then
L0 has α-weakly-uniform (d(nO(1)) +O(1))-depth threshold circuits of size s(nO(1)).

Now we prove Theorem 1, which we re-state below.

Theorem 6. Permanent is not in subexp-weakly-uniform TC0.

Proof. Otherwise by Corollary 2, both claims in Theorem 5 would hold, which is impossible. ut

4.2 Proof of Theorem 2

Recall that a function r(n) is sub-subexponential if, for every constant k > 0, r(k)(n) 6 2n
o(1)

. Also
recall that subsubexp denotes the class of all sub-subexponential functions r(n). Below, we will use
the simple fact that, for every constant k > 0, the composition of k sub-subexponential functions
is also sub-subexponential.

Lemma 11. Suppose that L0 is in poly-weakly-uniform TC0(subsubexp) of depth d. Then, for
a constant d′ = O(d), there is a language Ldiag ∈ CHd′ which is not in poly-weakly-uniform
SIZE(subsubexp).

Proof. The proof is similar to that of Lemma 8. Let α(m) ∈ poly(m) and s(n) ∈ subsubexp be such
that L0 is in α-weakly-uniform d-depth TC0(s(n)).

Consider an arbitrary language L in β-weakly-uniform SIZE(t(n)), for arbitrary β(m) ∈ poly(m)
and t(n) ∈ subsubexp. By Lemma 6, L is in µ(n)-weakly uniform d-depth TC0(s′(n)), where
s′(n) = s(poly(t(n))) and µ(n) = α(c0 log s′(n)) + β(c0 log t(n)) 6 no(1) (since s′ and t are sub-
subexponential). By Lemma 2, we have that L is decided by a threshold Turing machine with
d′ = O(d) alternations, taking advice of length µ(n) 6 no(1) 6 n/ log2 n, and running in time
d′ · poly(c0 log s′(n) + α(c0 log s′(n))) 6 no(1) 6 n/ log2 n. We conclude that every language in
poly-weakly-uniform SIZE(subsubexp) is also decided by some threshold Turing machine in time
n/ log2 n, using d′ alternations and advice of size n/ log2 n.

Using Lemma 4, define Ldiag to be the language in Thd′TIME(n) which is not decidable by any
threshold Turing machine in time n/ log2 n, using d′ alternations and advice of size n/ log2 n. It
follows that Ldiag is different from every language in poly-weakly-uniform SIZE(subsubexp). ut

Now we are ready to prove Theorem 2, which we re-state below.

Theorem 7 (Theorem 2 restated). Permanent is not in poly-weakly-uniform TC0(subsubexp).

Proof. Suppose that, for some α(m) ∈ poly(m) and s(n) ∈ subsubexp, Permanent is in α-weakly-
uniform TC0(s(n)); this also implies that Permanent is in α-weakly-uniform SIZE(poly(s(n)). By
Corollary 2, L0 is in α-weakly-uniform TC0(poly(s(n))), and so, by Lemma 11, there is a language
Ldiag ∈ CH which is not in poly-weakly-uniform SIZE(subsubexp). But, by Lemma 7, every language
L in CH is in poly-weakly-uniform SIZE(subsubexp). A contradiction. ut

4.3 Proof of Theorem 3

Lemma 12. Suppose L0 is computable by poly-weakly-uniform poly-size threshold circuits of depth
o(log log n). Then there is a language Ldiag ∈ Thlog lognTIME(n) which is not computable by poly-
weakly-uniform SIZE(npoly(logn)).

Proof. Let α(m) ∈ poly(m), s(n) ∈ poly(n), and d(n) ∈ o(log log n) be such that L0 is computable
by α-weakly-uniform d(n)-depth threshold circuits of size s(n).

Consider an arbitrary language L in β-weakly-uniform SIZE(t(n)), for arbitrary β(m) ∈ poly(m)
and t(n) ∈ npoly(logn). By Lemma 6, L is in µ(n)-weakly uniform d′(n)-depth threshold circuits of
size s′(n), where d′(n) = d(poly(t(n))) 6 o(log log n), s′(n) = s(poly(t(n))) 6 npoly(logn), and
µ(n) = α(c0 log s′(n)) + β(c0 log t(n)) 6 poly(log n).

By Lemma 2, we have that L is decided by a threshold Turing machine with at most O(d′(n)) <
log logn alternations, taking advice of length µ(n) 6 no(1) 6 n/ log2 n, and running in time
O(d′(n)) · poly(c0 log s′(n) + α(c0 log s′(n))) 6 no(1) 6 n/ log2 n. We conclude that every language
in poly-weakly-uniform SIZE(npoly(logn)) is also decided by some threshold TM in time n/ log2 n,
using log log n alternations and advice of size n/ log2 n.

Using Lemma 4, define Ldiag to be the language in Thlog lognTIME(n) which is not decidable
by any threshold TM in time n/ log2 n, using log log n alternations and advice of size n/ log2 n. It
follows that Ldiag is the required language. ut

Now we prove Theorem 3, restated below.

Theorem 8 (Theorem 3 restated). Permanent is not computable by poly-weakly-uniform
poly-size threshold circuits of depth o(log log n).

Proof. Assume otherwise. Then Permanent is also in poly-weakly-uniform SIZE(poly), and so, by
Lemma 7, every language in Thlog lognTIME(n) is in poly-weakly-uniform SIZE(npoly(logn)). On the
other hand, by Corollary 2, L0 is computable by poly-weakly-uniform threshold circuits of poly-size
and depth o(log log n), and so, by Lemma 12, there is a language Ldiag ∈ Thlog lognTIME(n) such
that Ldiag is not in poly-weakly-uniform SIZE(npoly(logn)). A contradiction. ut

5 Second proof of main result

In this section we give a second proof of our main results. Both proofs use the same key ingredient
– the collapse of the counting hierarchy under the assumed easiness of Permanent (Lemma 7).
The proofs differ in how this collapse is used to derive a contradiction to a known lower bound.

5.1 Parameterized statement and proof

Our second proof yields the following parameterized result. This result is proved using the strategy
outlined in Section 1.2, but letting the circuit size, depth, and amount of advice be parameters. Let
L0 be the P-complete language used earlier.

Theorem 9. Let s(n) be time-constructible, and let m = O(log s(n)) be the input length for a
uniformity Turing machine for a circuit of size s(n). Let s(n) > n, α(m), and d(n) be non-decreasing
functions such that α(m) and d(n) 6 s(n) for all n. Assume also that α(m) 6 2o(m) and d(n) 6
(log s(n))o(1).

Let N = poly(s(O(2n))), M = O(log s(N)) and

s′ = (s ◦ q)O(d(N))(log(s(N)) + α(M))

where each big-O constant is an absolute constant independent of the other parameters. If s′ < 2n/c

then either

– Permanent does not have α(m)-weakly-uniform SIZE(s(n)) circuits,

– Or L0 does not have α(m)-weakly-uniform threshold circuits of size s(n) and depth d(n).

Since L0 reduces to Permanent, a corollary is that unconditionally Permanent does not have
weakly-uniform threshold circuits with the given parameters. Each of Theorems 1, 2, and 3 can be
obtained by setting the parameters in Theorem 9 appropriately.

To prove Theorem 9, we combine the hard language Lhard resulting from Corollary 1 (which is
in EPP and requires circuits of size 2Θ(n)) with the following two claims.

Claim 1 Let s(n) be time-constructible, and let m = O(log s(n)) be the input length for a unifor-
mity Turing machine for a circuit of size s(n). Let s(n) > n, α(m), and d(n) be non-decreasing
functions such that α(m) and d(n) 6 s(n) for all n.

Suppose Permanent is in α(m)-weakly-uniform SIZE(s(n)), and L0 has α(m)-weakly-uniform
threshold circuits of size s(n) and depth d(n). Then Lhard has O(α(M))-weakly uniform threshold
circuits of depth O(d(N)) and size O(s(N)), for N = poly(s(O(2n))) and M = O(log s(N)).

Claim 1 is proved by plugging in the assumed computations for Permanent and L0 into the
EPP computation of Lhard.

Proof. Consider the EPP computation of Lhard of Corollary 1, which asks at most 2n queries of its
PP oracle on any given input. From the proof of Theorem 4, the PP oracle O from the definition
of Lhard is computable in polynomial PPTIME, and the instances of O needed to solve Lhard are
of size O(2n). These can be reduced to instances of Permanent that are also of some length
nO = O(2n) 9. Given the assumed easiness of Permanent, the oracle queries can be decided by a
weakly-uniform circuit CO of size poly(s(O(2n))) with advice α(O(log s(O(2n)))).

Deciding membership in Lhard amounts to querying the oracle O on at most 2n inputs. This
gives an oracle circuit that makes exponentially many adaptive queries to O. In this circuit we
replace each oracle gate with the circuit CO, obtaining a single circuit deciding Lhard that is of
size poly(2n · s(O(2n))) that uses α(O(log s(O(2n)))) bits of advice. This circuit can be viewed as
a circuit value problem of size poly(2n · s(O(2n))). By the P-completeness of L0, this computation
can be reduced to an instance of L0 of size N = poly(2n · s(O(2n))). Let M = O(log s(N)).

By using a uniform AC0 reduction to L0 and using the assumed weakly-uniform threshold cir-
cuits for L0, Lhard can be computed by a weakly-uniform threshold circuit of depth O(d(N))
and size O(s(N)) that uses α(O(log s(O(2n)))) advice for the creation of the circuit CO and
α(O(log s(N))) advice from the application of the easiness assumption for L0. The total advice
is O(α(O(log s(N)))). N can be simplified to N = poly(s(O(2n))) since s(n) > n. ut

Claim 2 Let s(n) be time-constructible, and let m = O(log s(n)) be the input length for a unifor-
mity Turing machine for a circuit of size s(n). Let s(n) > n, α(m), and d(n) be non-decreasing
functions such that α(m) and d(n) 6 s(n) for all n. Assume also that α(m) 6 2o(m) and d(n) 6
(log s(n))o(1).

Suppose Permanent is in α(m)-weakly-uniform SIZE(s(n)), and L0 has α(m)-weakly-uniform
threshold circuits of size s(n) and depth d(n).

Then Lhard is contained in

SIZE(s ◦ q)O(d(N))(log s(N) + α(M))

for some polynomial q, for N = poly(s(O(2n))) and M = O(log s(N)).

9 We can assume all queries are the same size because there are paddable PP-complete languages, including Per-
manent. A language is paddable if queries of smaller length can efficiently, e.g. by a uniform AC0 reduction, be
made longer to match the longest query.

To prove Claim 2, we use the threshold circuit from Claim 1 and use the assumed easiness of
Permanent to “collapse” the threshold circuit. For the latter we apply Lemma 7 – the same key
step in both proofs of the main result.

Proof. Under the assumptions of the claim, we have a threshold circuit for Lhard due to Claim 1.
We would like to apply Lemma 7. To do so, we need the computation for Lhard to be contained
in Thd′(n)TIME(poly(n′)) for some d′ and n′ such that d′(n′) 6 n′o(1). Due to the equivalence of
weakly-uniform threshold circuits and threshold Turing machines with advice, we have that Lhard
is in ThO(d(N))TIME(d(N) · poly(log s(N) + α(M))) using O(α(M)) advice, with N and M from
Claim 1. We set

n′ = d(N) + log(s(N)) + α(M).

Then the running time for the threshold computation of Lhard is poly(n′) with depth O(d(N)).
Assuming d(N) 6 (log s(N))o(1), we have that the depth is n′o(1). We have also assumed that the
amount of advice α(m) in the weakly-uniform circuit for Permanent is 6 2o(m), which is required
to apply Lemma 7.

The only remaining issue before applying Lemma 7 is that the lemma does not allow for the
initial threshold computation for Lhard to use advice. An examination of the proof of Lemma 7
shows that a linear amount of advice does not change the parameters – the advice is passed through
the argument and is added onto the amount of advice needed by the final circuit. In the current
application, the threshold computation for Lhard uses O(α(M)) advice, which is indeed O(n′).

By our assumption that d(N) 6 (log s(N))o(1) we have that n′ = O(log s(N) +α(M). Plugging
into Lemma 7 we obtain a circuit for Lhard that is of size (s◦q)(O(d(N))(n′) = (s◦q)O(d(N))(log s(N)+
α(M)) for some polynomial q. ut

If the size of the circuit for Lhard in Claim 2 is less than the hardness proved for Lhard in
Corollary 1, 2n/c, we conclude that one of the assumptions in the claim must be false. ut

5.2 Corollary to the second proof

In this section we observe that Theorem 9 can be strengthened by examining the proof more
carefully, proving the following.

Corollary 3. Let s(n) be time-constructible, and let m = O(log s(n)) be the input length for a
uniformity Turing machine for a circuit of size s(n). Let s(n) > n, α(m), and d(n) be non-decreasing
functions such that α(m) and d(n) 6 s(n) for all n. Assume also that α(m) 6 2o(m) and d(n) 6
(log s(n))o(1).

Let N = poly(s(s(O(2n)))), M = O(log s(N)) and

s′ = (s ◦ q)O(d(N))(log s(N) + α(M))

where each big-O constant is an absolute constant independent of the other parameters. If s′ < 2n/c

then either

– Permanent does not have non-uniform circuits of size s(n),
– Or SAT does not have α(m)-weakly-uniform threshold circuits of size s(n) and depth d(n).

The easiness of Permanent is used in the proof of Theorem 9 for two key purposes.

(i) Corollary 1 and Claim 1 show that if Permanent has weakly-uniform circuits and L0 has small-
depth weakly-uniform threshold circuits, Lhard has large weakly-uniform small-depth threshold
circuits.

(ii) Claim 2 shows that if Permanent has small circuits, the circuit from (i) can be iteratively
made smaller by appealing to Lemma 7.

For step (i), we can replace the combination of Permanent and L0 by any language that,
if assumed to have small-depth threshold circuits, implies a small-depth threshold circuit for a
language with high circuit complexity. For example, we can use an NP-complete language and the
following fact.

Theorem 10 ([Kan82,MVW99]). There exists a constant c > 0 such that there is a language

Lhard in TIMEΣ
p
2 (2O(n)) that does not have circuits of size 2n/c.

Using an NP-complete language such as SAT, Claim 1 becomes instead the following.

Claim 3 Let s(n) be time-constructible, and let m = O(log s(n)) be the input length for a unifor-
mity Turing machine for a circuit of size s(n). Let s(n) > n, α(m), and d(n) be non-decreasing
functions such that α(m) and d(n) 6 s(n) for all n.

Suppose SAT has α(m)-weakly-uniform threshold circuits of size s(n) and depth d(n).

Then Lhard has O(α(M))-weakly uniform threshold circuits of depth O(d(N)) and size O(s(N)),
for N = poly(s(s(O(2n)))) and M = O(log s(N)).

The change in the value of N is due to working in the third level of the exponential alternating
hierarchy, whereas in Claim 1 the hard language was in the second level of the exponential counting
hierarchy.

For step (ii), the proof only requires that Permanent has small general circuits – the small-
depth and uniformity are not used in the argument.

Combining these two observations, we have a result stating that if both (1) SAT has small
weakly-uniform small-depth threshold circuits, and (2) Permanent has small general circuits,
then Lhard has small circuits. Specifically, we have the following claim in place of Claim 2.

Claim 4 Let s(n) be time-constructible, and let m = O(log s(n)) be the input length for a unifor-
mity Turing machine for a circuit of size s(n). Let s(n) > n, α(m), and d(n) be non-decreasing
functions such that α(m) and d(n) 6 s(n) for all n. Assume also that α(m) 6 2o(m) and
d(n) 6 (log s(n))o(1).

Suppose Permanent is in non-uniform SIZE(s(n)), and SAT has α(m)-weakly-uniform thresh-
old circuits of size s(n) and depth d(n).

Then Lhard is contained in

SIZE(s ◦ q)O(d(N))(log s(N) + α(M))

for some polynomial q, for N = poly(s(s((O(2n))))) and M = O(log s(N)).

If the resulting circuit is of size less than 2n/c, then the assumed circuits for either SAT or
Permanent must not exist.

6 Other lower bounds

Here we use diagonalization against advice classes to prove exponential lower bounds for weakly-
uniform circuits, of both constant and unbounded depth.

6.1 Lower bounds for ACC0 and AC0

The following result generalizes the result in [AG94] on uniform ACC0 circuits.

Theorem 11. Permanent is not in poly-weakly-uniform ACC0(2n
o(1)

).

Proof. It is shown in [BT94,AG94] that every language L in uniform ACC0(2n
o(1)

) is also decidable

by uniform depth-two circuits of related size s′(n) ∈ 2n
o(1)

where (i) the bottom level consists of
AND gates of fan-in (log s′(n))O(1), and (ii) the top level is a symmetric gate (whose value depends
only on the number of inputs that evaluate to one). Using this fact as well as the #P-completeness
of Permanent [Val79], Allender and Gore [AG94] argue that L is in DTIME(n9)Permanent[1] (with
a single oracle query to Permanent). This result can be easily generalized to the case when L has

weakly-uniform circuits. That is, for α(m) = mO(1), any language in α-weakly-uniform ACC0(2n
o(1)

)
is also in DTIME(n9)Permanent[1]/γ(n) for some γ(n) = no(1).

For the sake of contradiction, suppose that Permanent is in α-weakly-uniform ACC0(2n
o(1)

).
Consider a language L ∈ DTIME(n10)Permanent[1] which is not in DTIME(n9)Permanent[1]/no(1); the
existence of such an L is easy to argue by diagonalization (similarly to the proof of Lemma 4). Let
M be the corresponding oracle machine deciding L. Consider the following languages:

L′ = {(x, y) : M uses y as the answer of the oracle query and accepts x},

L′′ = {(x, i) : the ith bit of the oracle query made by M on input x is 1}.

Clearly, both L′ and L′′ are in P. Since P is reducible to Permanent via uniform AC0 reduction,
we get that both L′ and L′′ are in α-weakly-uniform ACC0(2n

o(1)
). To construct circuits for L, on

any input x, we use the circuit for L′′ to construct the oracle query, use the circuit for Perma-
nent to answer the query, and then use the circuit for L′ to decide whether x ∈ L. Since L′, L′′

and Permanent all have α-weakly-uniform ACC0(2n
o(1)

) circuits, the resulting circuit is also in

α-weakly-uniform ACC0(2n
o(1)

). This implies that L is in DTIME(n9)Permanent[1]/no(1). A contra-
diction. ut

We note that one can also show a lower bound for NP against weakly-uniform AC0 circuits.

Theorem 12. NP is not in poly-weakly-uniform AC0(subsubexp).

Proof (sketch). The proof is analogous to that of Theorem 2, by replacing Permanent with Sat,
CH with PH, and threshold circuits with Boolean circuits. ut

Note, however, that this lower bound is weaker than the well-known result that Parity requires
exponential-size non-uniform AC0 circuits [Has86].

6.2 Lower bounds for general circuits

We use the following diagonalization result.

Lemma 13 ([HM95,Pol06]). For any constants c and d, EXP 6⊆ DTIME(2n
d
)/nc, and PSPACE 6⊆

DSPACE(nd)/nc.

The proof of Lemma 13 follows a very similar pattern as the proof that EPP has a language that
requires circuits of size 2Θ(n), which was proved in Section 3.

Theorem 13. EXP is not in poly-weakly-uniform SIZE(2n
o(1)

).

Proof. Let L be an arbitrary language in poly-weakly-uniform SIZE(2n
o(1)

). For any input length

n, given advice of length poly(log 2n
o(1)

) 6 no(1), we can construct a circuit for L of size 2n
o(1)

in time at most 2n
o(1)

, and evaluate it on any given input of size n in time at most 2n
o(1)

. Thus,
L ∈ DTIME(2n

o(1)
)/no(1).

Using Lemma 13, construct Ldiag ∈ EXP which is not in DTIME(2n)/n. By the above, this Ldiag

is not in poly-weakly-uniform SIZE(2n
o(1)

). ut

Recall that a Boolean circuit is called a formula if the underlying DAG is a tree (i.e., the fan-out
of each gate is at most 1). We denote by FSIZE(s(n)) the class of families of Boolean formulas of
size s(n). We use a modified definition of the the direct-connection language for bounded fan-in
formulas with AND, OR, and NOT gates: we assume that, for any given gate in the formula, we
can determine in polynomial time who its parent gate is, and who its left and right input gates are.

Lynch [Lyn77] gave a log-space algorithm for the Boolean formula evaluation problem, which
can be adapted to work also in the case of input formulas given by the direct connection language
(instead of the usual infix notation).

Lemma 14 (implicit in [Lyn77]). Let {Fn} be a uniform family of Boolean formulas of size
s(n). There is a poly(log s(n))-space algorithm that, on input x of length n, computes Fn(x).

Proof (sketch). The input formula can be viewed as a tree, where each node has at most two
children, and the evaluation algorithm will traverse the tree following specific rules. We assume
that the formula is well-formed, which can be verified in poly(log s(n))-space.

The traversal starts from the left-most leaf, which can be identified in space poly(log s(n)).
Then, we traverse the tree such that, for each node A, (i) when we arrive at A from its left child,
we either go to its parent (if the value of the left child fixes the value of A), or go to its right child
and continue traversing the tree; (ii) when we arrive at A from its right child, we go directly to A’s
parent (the value of A is now determined by the value of the right child, as we know the left child
has already been visited). The final node in this traversal is the root, which has no parent.

The traversal is in poly(log s(n))-space since we only need to remember the current node of
the tree (and the direct-connection language is decided in time, and hence also in space, at most
poly(log s(n))) . ut

We have the following.

Theorem 14. PSPACE is not in poly-weakly-uniform FSIZE(2n
o(1)

).

Proof. Let L be an arbitrary language decided by a family {Fn} of poly-weakly-uniform Boolean

formulas of size 2n
o(1)

; its direct connection language is decided in deterministic time no(1) with
advice of size no(1). Using Lemma 14 (generalized in the straightforward way to handle weakly-
uniform formulas), we get that L can be decided in DSPACE(no(1))/no(1). Appealing to Lemma 13
completes the proof. ut

7 Conclusion

We have shown how to use indirect diagonalization to prove lower bounds against weakly-uniform
circuit classes. In particular, we have proved that Permanent cannot be computed by polynomial-
size TC0 circuits that are only slightly uniform (whose direct-connection language can be efficiently
computed using sublinear amount of advice). We have also extended to the weakly-uniform setting
other circuit lower bounds that were previously known for the uniform case.

One obvious open problem is to improve the TC0 circuit lower bound for Permanent to be
exponential, which is not known even for the uniform case. Another problem is to get super-
polynomial uniform TC0 lower bounds for a language from a complexity class below #P (e.g.,
PH). Strongly exponential lower bounds even against uniform AC0 would be very interesting. One
natural problem is to prove a better lower bound against uniform AC0 (say for Permanent) than
the known non-uniform AC0 lower bound for Parity.

A natural question is if our techniques allow the no(1) amount of non-uniformity in our results
to be pushed any higher. It seems progress in this direction will need new ideas and/or a new
framework. The framework used in this and previous papers all encounter a roughly inverse rela-
tionship between the size of circuits in the lower bound and the amount of non-uniformity that
can be handled. In Theorem 9 hardness holds if the inequality stated in the theorem holds. The
inequality requires that the amount of advice be an inverse of s(d(n)). This arises in the proof due
to the nature in which the assumed easiness of Permanent is used repeatedly in Lemma 7, and a
similar issue arises in earlier work in this area [All99,KP09,JS11].

Furthermore, the proofs of our main results relativize, but it is known that proving results with
larger non-uniformity, say > n bits, requires non-relativizing techniques. Thus to make progress we
ought to look at utilizing techniques such as the interactive proofs for the Permanent, random
self-reducibility, and combinatorial properties of threshold circuits.

Acknowledgments

While conducting this research, the first and second author were supported by NSERC Discovery
Grant; the third author was partially supported by Indiana State University, University Research
Council grants #11-07 and #12-18. The third author thanks Matt Anderson, Dieter van Melke-
beek, and Dalibor Zelený for discussions that began this project, continued discussions since, and
comments on early drafts of this work; and in particular thanks Matt Anderson for observations
that refined the statement of Corollary 3.

We also thank the reviewers for comments and suggestions that improved the exposition of the
paper.

References

Aar06. Scott Aaronson. Oracles are subtle but not malicious. In Proceedings of the IEEE Conference on Computa-
tional Complexity (CCC), p 340–354, 2006.

Agr05. M. Agrawal. Proving lower bounds via pseudo-random generators. In Proc. of the 25th Conf. on Foun. of
Software Tech. and Theoretical Comp. Sci., p 92–105, 2005.

All99. E. Allender. The permanent requires large uniform threshold circuits. Chicago Journal of Theoretical Computer
Science, 1999.

AG94. E. Allender and V. Gore. A uniform circuit lower bound for the permanent. SIAM Journal on Computing,
23(5):1026–1049, 1994.

AB09. S. Arora and B. Barak. Complexity theory: a modern approach. CUP, NY, 2009.
BIS90. D.A.M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. JCSS, 41:274–306, 1990.
BT94. R. Beigel and J. Tarui. On ACC. Computational Complexity, 4:350–366, 1994.
BFT98. H. Buhrman, L. Fortnow, and T. Thierauf. Nonrelativizing separations. In Proceedings of the IEEE Con-

ference on Computational Complexity (CCC), pages 8–12, 1998.
CK12. R. Chen and V. Kabanets. Lower bounds against weakly uniform circuits. In Joachim Gudmundsson,

Julián Mestre, and Taso Viglas, editors, Computing and Combinatorics - 18th Annual International Conference,
COCOON 2012, Sydney, Australia, August 20-22, 2012. Proceedings, volume 7434 of Lecture Notes in Computer
Science, p 408–419, 2012.

CKS81. A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. JACM, 28(1):114, 1981.
FSS84. M. Furst, J.B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy. Mathematical Systems

Theory, 17(1):13–27, April 1984.
GKRST95. F. Green, J. Köbler, K.W. Regan, T. Schwentick, and J. Toran. The power of the middle bit of a #P

function. JCSS, 50:456–467, 1995.
Has86. J. H̊astad. Almost optimal lower bounds for small depth circuits. In STOC, 1986.
HS82. J. Heintz and C.-P. Schnorr. Testing polynomials which are easy to compute. L’Enseignement Mathématique,

30:237–254, 1982.
HM95. S. Homer and S. Mocas. Nonuniform lower bounds for exponential time classes. In Proc. of the 20th Inte.

Symp. on MFCS, p 159–168. 1995.
IM02. K. Iwama and H. Morizumi. An explicit lower bound of 5n − o(n) for boolean circuits. In Proc. of the 27th

Inte. Symp. on MFCS, p 353–364. 2002.
JS11. M. Jansen and R. Santhanam. Permanent does not have succinct polynomial size arithmetic circuits of constant

depth. In Proc. 38th ICALP, I, p 724–735, 2011.
JS12. Maurice Jansen and Rahul Santhanam. Marginal hitting sets imply super-polynomial lower bounds for per-

manent. In Innovations in Theoretical Computer Science, 2012.
KI04. V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving circuit lower bounds.

Computational Complexity, 13(1–2):1–46, 2004.
Kan82. R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and Control, 55:40–56,

1982.
KL82. R.M. Karp and R.J. Lipton. Turing machines that take advice. L’Enseignement Mathématique, 28(3-4):191–

209, 1982.
Kin12. J. Kinne. On TC0 lower bounds for the permanent. In Joachim Gudmundsson, Julián Mestre, and Taso

Viglas, editors, Computing and Combinatorics - 18th Annual International Conference, COCOON 2012, Sydney,
Australia, August 20-22, 2012. Proceedings, volume 7434 of Lecture Notes in Computer Science, p 420–432, 2012.

KP09. P. Koiran and S. Perifel. A superpolynomial lower bound on the size of uniform non-constant-depth threshold
circuits for the permanent. In CCC, 2009.

LR01. O. Lachish and R. Raz. Explicit lower bound of 4.5n− o(n) for boolean circuits. In Proc. of the Thirty-Third
ACM Symp. on Theory of Computing, p 399–408, 2001.

Lup58. O.B. Lupanov. On the synthesis of switching circuits. Doklady Akademii Nauk SSSR, 119(1):23–26, 1958.
English translation in Soviet Mathematics Doklady.

Lyn77. N.A. Lynch. Log space recognition and translation of parenthesis languages. JACM, 24:583–590, 1977.
MVW99. P.B. Miltersen, N.V. Vinodchandran, and O. Watanabe. Super-polynomial versus half-exponential circuit

size in the exponential hierarchy. In Proceedings of the Annual International Computing and Combinatorics
Conference (COCOON), p 210–220, 1999.

PS86. I. Parberry and G. Schnitger. Parallel computation with threshold functions. In Proc. of the First IEEE Conf.
on Structure in Complexity Theory, p 272–290, 1986.

Pol06. C. Pollett. Languages to diagonalize against advice classes. Computational Complexity, 14:341–361, 2006.
Raz87. A.A. Razborov. Lower bounds on the size of bounded depth circuits over a complete basis with logical

addition. Mathematical Notes, 41:333–338, 1987.
RR97. A.A. Razborov and S. Rudich. Natural proofs. JCSS, 55:24–35, 1997.

Ruz81. W.L. Ruzzo. On uniform circuit complexity. JCSS, 22(3):365–383, 1981.
Sha49. C.E. Shannon. The synthesis of two-terminal switching circuits. Bell System Technical Journal, 28(1):59–98,

1949.
Smo87. R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity. In Proc. of

the Nineteenth ACM STOC, p 77–82, 1987.
Tod91. Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing, 20(5):865–877,

1991.
Tor91. J. Torán. Complexity classes defined by counting quantifiers. JACM, 38:752, 1991.
Val79. L. Valiant. The complexity of computing the permanent. TCS, 8:189–201, 1979.
Wag86. K.W. Wagner. The complexity of combinatorial problems with succinct input representation. Acta Infor-

matica, 23:325–356, 1986.
Wil11. R. Williams. Non-uniform ACC circuit lower bounds. In CCC, 2011.
Yao85. A.C. Yao. Separating the polynomial-time hierarchy by oracles. In FOCS, 1985.
Zak83. S. Zak. A Turing machine hierarchy. TCS, 26:327-333, 1983.
Zan91. V. Zanko. #P-Completeness via Many-One Reductions. IJFCS, 1:77, 1991.

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

