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Abstract

We survey research that studies the connection between the computational complexity
of optimization problems on the one hand, and the duality gap between the primal and
dual optimization problems on the other. To our knowledge, this is the first survey that
connects the two very important areas. We further look at a similar phenomenon in finite
model theory relating to complexity and optimization.
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1 Introduction

In optimization problems, the duality gap is the difference between the optimal solution
values of the primal problem and the dual problem. The relationship between the duality gap
and the computational complexity of optimization problems has been implicitly studied for
the last few decades. The connection between the two phenomena has been subtly acknowl-
edged. The gap has been exploited to design good approximation algorithms for NP-hard
optimization problems [2, 13, 24]. However, we have been unable to locate a single piece of
literature that addresses this issue explicitly.

This report is an attempt to bring a great deal of evidence together and specifically address
this issue. Does the existence of polynomial time algorithms for the primal and the dual
problems mean that the duality gap is zero? Conversely, does the existence of a duality gap
imply that either the primal problem or the dual problem is (or both are) NP-hard? Is there
an inherent connection between computational complexity and strong duality (that is, zero
duality gap)?

Vecten and Fasbender (independently) were the first to discover the optimization duality [11].
They observed this phenomenon in the Fermat-Torricelli problem: Given a triangle T1, find
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the equilateral triangle circumscribed outside T1 with the maximum height. They showed
that this maximum height H is equal to the minimum sum of the distances from the vertices
to T1 to the Torricelli point1. Thus, this problem enjoys strong duality.

The apparent connection between the duality gap and computational complexity was con-
sidered more than thirty years ago. Linear Programming (LP) is a well known optimization
problem. In the mid 1970s, before Khachiyan published his ellipsoid algorithm, LP was
thought to be polynomially solvable, precisely because it obeys strong duality ; that is, the
duality gap is zero. For a good description of the ellipsoid algorithm, the reader is referred to
the good book by Fang and Puthenpura [10]. Strong duality also places the decision version
of Linear Programming in the class NP ∩ CoNP; see Lemma 12 below.

We should stress that this is not a survey on Lagrangian duality or any other form of opti-
mization duality. Rather, this is a survey on the connections and relationships between
the computational complexity of optimization problems and duality.

2 Definitions

A few definitions are provided in this section.

Definition 1. [15] A P-optimization problem Q is a tuple Q = {IQ, FQ, fQ, optQ}, where

(i) IQ is a set of instances to Q,

(ii) FQ(I) is the set of feasible solutions to instance I,

(iii) fQ(I, S) is the objective function value to a solution S ∈ FQ(I) of an instance I ∈ IQ.

It is a function f :
∪
I∈IQ

[{I} × FQ(I)] → R+
0 (non-negative reals)2, computable in time

polynomial in the size |A| of the domain A of I3,

(iv) For an instance I ∈ IQ, optQ(I) is either the minimum or maximum possible value that
can be obtained for the objective function, taken over all feasible solutions in FQ(I).

optQ(I) = max
S∈FQ(I)

fQ(I, S) (for P-maximization problems),

optQ(I) = min
S∈FQ(I)

fQ(I, S) (for P-minimization problems),

(v) The following decision problem is in the class P: Given an instance I and a non-
negative constant K, is there a feasible solution S ∈ FQ(I), such that fQ(I, S) ≥ K
(for a P-maximization problem), or fQ(I, S) ≤ K (in the case of a P-minimization
problem)?

And finally,

1The Torricelli point X is indeed the one with the least sum of the distances |AX|+ |BX|+ |CX| from the
vertices A, B and C of T1.

2Of course, when it comes to computer representation, rational numbers will be used.
3Strictly speaking, we should use |I| here, where |I| is the length of the representation of I. However, |I|

is polynomial in |A|, hence we can use |A|.
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(vi) An optimal solution Sopt(I) for a given instance I can be computed in time polynomial
in |I|, where optQ(I) = fQ(I, Sopt(I)).

The set of all such P-optimization problems is the Popt class.

A similar definition, forNP -optimization problems, appeared in Panconesi and Ranjan (1993)
[20]:

Definition 2. An NP-optimization problem is defined as follows. Points (i)-(iv) in Def.
1 above apply to NP-optimization problems, whereas (vi) does not. Point (v) is modified as
follows:

(v) The following decision problem is in NP: Given an instance I and a non-negative constant
K, is there a feasible solution S ∈ FQ(I), such that fQ(I, S) ≥ K (for an NP-maximization
problem), or fQ(I, S) ≤ K (in the case of an NP-minimization problem) ?

The set of all such NP-optimization problems is the NPopt class, and Popt ⊆ NPopt.

In this paper, an optimization problem will refer to an NP-optimization problem. Further-
more, we only work with a particular class of optimization problems called mathematical
programming problems defined in Def. 3, where the set of feasible solutions FQ(I) to a given
instance I is defined by the set of constraints.

Definition 3. (Mathematical programming problem P)

Given:

Objective function: a function f(x), where x ∈ Rn is a vector of variables; (x is called a
solution to P);

Constraints:

1. An m1 (≥ 0) number of constraints g(x) = b, where b ∈ Rm1 is a vector of constants,
g is a set of functions {gi(x), 1 ≤ i ≤ m1}; and

2. an m2 (≥ 0) number of constraints h(x) ≥ c, where c ∈ Rm2 is another vector of
constants and h is a set of functions {hj(x), 1 ≤ j ≤ m2}.

The functions f , gi and hj are computable in time polynomial in the input size of x. As inputs
to Turing machines, f , gi and hj are encoded in bit strings in such as way that for a given
x, they are computable in time polynomial in the size of the encoding of x. The quantities n,
m1 and m2 are non-negative integers and part of the input.

To Do:

Determine a solution x∗ such that

f(x∗) = optx {f(x : g(x) = b and h(x) ≥ c}, where
opt = max (min), if P is a maximization (minimization) problem, respectively.

Such an x∗ (if it exists) is called an optimal solution to P.
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Definition 4. (D1(r): Decision problem corresponding to P in Def. 3)

Given. As in Def. 3. In addition, we are given a parameter r ∈ R.
To Do. Determine if the set F = ∅, where
F = {x : g(x) = b, h(x) ≥ c and f(x) ≥ r}, if P is a maximization problem, and

F = {x : g(x) = b, h(x) ≥ c and f(x) ≤ r}, if P is a minimization problem.

F is the set of feasible solutions to the decision problem.

Remark 5. A word of caution: For decision problems, the term “feasibility” includes the
constraint on the objective function; if the objective function constraint is violated, the problem
becomes infeasible.

Definition 6. [3] (Lagrangian Dual)
Suppose we are given a minimization problem P1 such as

Minimize f(x) : X → R (X ⊆ Rn),

subject to g(x) = b, h(x) ≥ c,

where x ∈ Rn, b ∈ Rm1 and c ∈ Rm2 .

(1)

We call this the primal problem, whose feasible region is X. Assume that b = [b1 b2 · · ·
bm1 ]

T and c = [c1 c2 · · · cm2 ]
T are column vectors. Let u ∈ Rm1 and v ∈ Rm2 be two vectors

of variables with v ≥ 0.

For a given primal problem as in P1, the Lagrangian dual problem P2 is defined as follows:

Maximize θ(u,v)

subject to v ≥ 0,where

θ(u,v) = inf
x∈Rn

{f(x) +
m1∑
i=1

ui(gi(x)− bi) +

m2∑
j=1

vj(hj(x)− ci)}.
(2)

The duality gap is defined as |f(x∗) − θ(u∗,v∗)|, where f(x∗) (θ(u∗,v∗)) is the optimal
solution value to the primal (dual) problem, respectively.

Note that gi(x)− bi = 0 [hj(x)− cj ≥ 0] is the ith equality [jth inequality] constraint.

3 Background: Duality and the classes NP and CoNP

We now turn our attention to the relationship between the duality of an optimization problem,
and membership in the complexity classes NP and CoNP of the corresponding set of decision
problems. Decision problems are those with yes/no answers, as opposed to optimization
problems that return an optimal solution (if a feasible solution exists).

Corresponding to P1 defined above in (1), there is a set D1 of decision problems, defined as
D1 = {D1(r) | r ∈ R}. The definition of D1(r) was provided in Def. 4.

Let us now define the computational classes NP, CoNP and P. For more details, the interested
reader is referred to either [2] or [21]. We begin with the following well known definition:
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Definition 7. NP (respectively P) is the class of decision problems for which there exist non-
deterministic (respectively deterministic) Turing machines which provide Yes/No answers in
time that is polynomial in the size of the input instance. In particular, for problems in P
and NP, if the answer is yes, the Turing machine (TM) is able to provide an “evidence” (in
technical terms called a certificate), such as a feasible solution to a given instance.

The class CoNP of decision problems is similar to NP, except for one key difference: the
TM is able to provide a certificate only for no answers.

From the above, it follows that for an instance of a problem in NP ∩ CoNP, the corresponding
Turing machine can provide a certificate for both yes and no instances.

For example, if D1(r) in Def. 4 above is in NP, the certificate will be a feasible solution; that
is, an x ∈ Rn which obeys the constraints

g(x) = b, h(x) ≤ c and f(x) ≥ r. (3)

On the other hand, if D1(r) ∈ CoNP, the certificate will be an x ∈ Rn that violates at least
one of the m1 +m2 + 1 constraints in (3).

Remark 8. For problems in NP, for Yes instances, extracting a solution from the certificate
is not always an efficient (polynomial time) task. Similarly, in the case of CoNP, pinpointing
a violation from a Turing machine certificate 4 is not guaranteed to be efficient either.

Remark 9. P ⊆ NP, because any computation that can be carried out by a deterministic
TM can also be carried out by a non-deterministic TM. The problems in P are decidable
deterministically in polynomial time.

The class P is the same as its complement Co-P. That is, P is closed under complementation.

Furthermore, Co-P (≡ P) is a subset of CoNP. We know that P is a subset of NP. Hence
P ⊆ NP ∩ CoNP. Thus for an instance of a problem in P, the corresponding Turing machine
can provide a certificate for both yes and no instances.

We are now ready to define what is meant by a tight dual, and how it relates to the intersection
class of problems, NP ∩ CoNP. Note that for two problems to be tight duals, it is sufficient
if they are tight with respect to just one type of duality (such as Lagrangian duality, for
example). However in this paper, we have only considered Lagrangian duality, and hence we
restrict our attention to this type.

Definition 10. Tight duals and the class TD.
Consider two optimization problems Pa and Pb, as defined in Def. 3. Given a primal problem,
let its dual be defined as in Def. 6. Then Pa and Pb are dual to each other if the dual of
one problem is the other.

Suppose Pa and Pb are dual to each other, with zero duality gap; then we say that Pa and Pb

are tight duals. For any r ∈ R, let Da(r) and Db(r) be the decision versions of Pa and Pb

respectively.

Let TD be the class of all decision problems whose optimization versions have tight duals.
That is, TD is the set of all problems Da(r) and Db(r) for any r ∈ R.

4We thank WenXun Xing and PingKe Li of Tsinghua University (Beijing) for ponting out the above.
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Remark 11. A word of caution. Tight duality is not the same as strong duality. For strong
duality, it is sufficient if there exist feasible solutions to the primal and the dual such that the
duality gap is zero. For tight duality to hold, we also require that the primal problem Pa and
the dual problem Pb be dual to one another.

One way in which duality gaps are related to the classes NP and CoNP is as follows:

Lemma 12. [21] TD ⊆ NP ∩ CoNP.

From Remark 9 and Lemma 12, we know that both TD and P are subsets of NP ∩ CoNP. But
is there a containment relationship between TD and P? That is, is either TD ⊆ P or P ⊆
TD? This is the subject of further study in this paper, with particular reference to Lagrangian
duality.

Remark 13. We should mention that in several cases, given a primal problem P , even if we
are able to find a dual problem D such that the dual of P is D, it does not necessarily follow
that the dual of D is P . That is,the dual of the dual need not be the primal. P and D are
not necessarily duals of each other. We do not include such (P,D) pairs in TD. Among
primal-dual pairs of problems, TD is a restricted class. Convex problems satisfying Slater’s
condition and their dual belong to the class TD.

4 Lack of Strong Duality results in NP hardness

In this section, we will review results from the literature, which show that the lack of strong
duality imply that the optimization problem in question is NP-hard, assuming that the primal
problem obeys the constraint qualification assumption as stated below in Def. 17. Here we
work with Lagrangian duality. Results for other types of duality such as Fenchel, geometric
and canonical dualities require further investigation.

Let us define what we mean by weak duality (as opposed to tight duality and strong duality):

Definition 14. Given a primal problem P1 and a dual problem P2, as defined in Def. 6, the
pair (P1, P2) is said to obey weak duality if θ(u,v) ≤ f(x), for every feasible solution x to
the primal and every feasible solution (u, v) to the dual.

Definition 15. If, in addition to the assumptions from Def. (14), there exist a primal feasible
solution x̄ and a dual feasible solution (ū, v̄) such that equality holds, that is: f(x̄) = θ(ū, v̄),
then the pair (P1, P2) is said to be obey strong duality.

The following theorem from [3] guarantees that the feasible solutions to Lagrangian dual
problems (1) and (2) indeed obey weak duality :

Theorem 16. If x is a feasible solution to the primal problem in (1) and (u, v) is a feasible
solution to the dual problem in (2), then f(x) ≥ θ(u,v).

We shall now define a special type of convex program, called a convex program with constraint
qualification, which is one with an assumption about the existence of a feasible solution in
the interior of the domain.
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Definition 17. Convex program (convex optimization problem).
Given. A convex set X ⊂ Rn, two convex functions f(x) : Rn → R and g(x) : Rn → Rm1,
as well as an affine function h(x) : Rn → Rm2.

To do. Minimize f(x), subject to g(x) ≤ 0, h(x) = 0 and x ∈ X.

Definition 18. Convex program with constraint qualification.
Same as the optimization problem in Def. 17, except that we include the following constraint
qualification assumption (known as Slater’s condition): There is an x0 ∈ X such that g(x0) < 0
and h(x0) = 0.

(Note: Of course, the functions above can be written in the same form as in Def. 1 and 2. In
such a case, we can define (g(x)− b) to be a convex function and (h(x)− c) to be an affine
function, where b ∈ Rm1 and c ∈ Rm2 .)

Definition 19. In Def. 17, if any of the (m+ 1) functions f(x) : Rn → R and g(x) : Rn →
Rm1 is not convex, then the optimization problem is said to non-convex.

For the remainder of this section, we will assume primal constraint qualification; that is,
we assume that constraint qualification is applied to the primal optimization problem. The
following theorem provides sufficient conditions under which strong duality can occur:

Theorem 20. Strong Duality [3]. If (i) the primal problem is given as in Def. 17, and
(ii) the primal and dual problems have feasible solutions, then the primal and dual optimal
solution values are equal (that is, the duality gap is zero):

inf{f(x) : x ∈ X, g(x) ≤ 0, h(x) = 0} = sup{θ(u,v) : v ≥ 0},

θ(u,v) = inf
x∈X

{f(x) +
m1∑
i=1

uigi(x) +

m2∑
j=1

vjhj(x)},
(4)

where θ(u,v) is the dual objective function.

Using the contrapositive statement of Theorem 20, we get the following result:

Corollary 21. (to Theorem 20) If there exists a duality gap using Lagrangian duals, then
either the primal or the dual is not a convex optimization problem. (Remember, we are
assuming constraint qualification.)

The Subset Sum problem is defined as follows: Given a set S of positive integers {d1, d2, · · · , dk}
and another positive integer d0, is there a subset P of S, such that the sum of the integers in
P equals d0?

Using a polynomial time reduction from the Subset Sum problem to a non-convex optimization
problem (see Def. 19), Murty and Kabadi (1987) showed the following:

Theorem 22. [18] If an optimization problem is non-convex, it is NP-hard.

In certain cases, non-convex problems have an equivalent convex formulation, for example,
through strong duality. Such a dual transformation, where a convex problem B is a dual
of a non-convex problem A such that the duality gap between them is zero, is called hidden
convexity [4, 5]. In such cases, the reformulated convex problem is also NP-hard; otherwise
the primal non-convex problem can be solved efficiently, thus violating Theorem 22.
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Definition 23. Standard Quadratic Program (SQP) [6]. Minimize the function xTQx, where
x ∈ ∆ (the standard simplex in Rn

+). The n vertices of ∆ are at a unit distance (in the
positive direction) along each of the n axes of Rn. Q is a given symmetric matrix in Rn×n.

The converse of Theorem 22 is not true. A convex optimization problem in general is NP-hard,
SQP being an example. SQP is non-convex; however in [6], Bomze and de Clerk prove that
it has an exact convex reformulation as a copositive programming problem. SQP is known to
be NP-hard, since its decision version contains the max-clique problem in graphs as a special
case. From this, it follows that copositive programming is also NP-hard; see [8] for more on
this topic.

From Corollary 21 and Theorem 22, it follows that

Theorem 24. Assuming constraint qualification, if there exists a duality gap using La-
grangian duals, then either the primal or the dual is NP-hard.

These results are true for Lagrangian duality. For other types of duality such as Fenchel,
geometric and canonical dualities, this requires further investigation.

5 Does Strong Duality Imply Polynomial Time Solvability?

At this time, such a proof (of whether a duality gap of zero implies polynomial time solvability
of the primal and the dual problems) appears possible only for very simple problems, since
estimating the duality gap appears extremely challenging for many problems.

It is not known whether strong duality results in polynomial time solvability in general. The
only class of problems that we know where strong duality and polynomial time solvability
(using interior point methods) occur together is Linear Programming. See Nesterov and
Nemirovski [19] for more on the theory of interior point methods.

There are primal-dual problem pairs where both problems are convex and NP-hard, even
though they enjoy strong duality under certain weak conditions such as Slater’s condition [7].

More investigation is needed to answer the question Does Strong Duality Imply Polynomial
Time Solvability? in a general setting. We conjecture the following:

Conjecture 25. (Strong duality is a necessary but not sufficient condition.)
If two optimization problems Pa and Pb are polynomially solvable and one of them is the dual
of the other, then they exhibit strong duality. However, the converse of this need not be true;
that is, strong duality need not imply polynomial solvability.

Consider quadratic programming 5 problems with a single quadratic constraint (QCQP) [25].
The primal problem P0 is given by:

Minimize P (x) =
1

2
xTAx− fTx

subject to
1

2
xTBx ≤ µ,

(5)

5Thanks to Shu-Cherng Fang (NCSU, USA) for his input here.
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where A and B are non-zero n× n symmetric matrices, f ∈ Rn, and µ ∈ R. (A, B, f and µ
are given.)

Strong duality for a variation of QCQP was established by Moré and Sorensen in 1983 [17]
(as described in [1]); they call theirs as the Trust Region Problem (TRP). The problem is to
minimize a quadratic function q0, subject to a norm constraint xTx ≤ δ2. This is an example
of a non-convex problem where strong duality holds. Rendl and Wolkowicz [23] show that
the TRP can be reformulated as an unconstrained concave maximization problem,

The observations above are for quadratic programming problems with a single quadratic
constraint. It would be interesting to see what happens for quadratic programming problems
with two constraints

Semidefinite Programming (SDP). Ramana [22] exhibited strong duality for the SDP problem.
However, the complexity of SDP is unknown; it was shown in [22] that the decision version
of SDP is NP-complete if and only if NP = CoNP.

[Note: The existence of algorithms polynomial in the number of iterations (see [19]) seems to
be often assumed to mean that SDP, or indeed convex problems in general, are polynomial
time solvable. This is NOT correct, as the above result in [22] shows.]

5.1 Solving optimization problems using a decision Turing machine

In a recent paper [16], we have demonstrated an additional computational benefit arising
from strong duality. Primal-dual problem pairs that are in the class NP and obey strong
duality can be solved by a single call to a decision Turing machine, that is, a Turing machine
that provides a Yes/No answer (if the answer is yes, then it can provide a feasible solution
which supports the Yes answer). Previously, it was only known that optimization problems
require multiple calls to a decision Turing machine (for example, doing a binary search on the
solution value to obtain an optimal solution). For more details, the reader is referred to [16].

6 Descriptive Complexity and Fixed Points

On a final note, we would like to briefly describe a similar phenomenon which occurs in the field
of Descriptive Complexity, which is the application of Finite Model theory to computational
complexity. In particular, we would like to mention least fixed point (LFP) computation. A
full description would be beyond the scope of this paper. However, we would like to briefly
mention a few related concepts and phenomena.

For a good description of least fixed points (LFP) in existential second order (ESO) logic, the
reader is referred to [12] (chapters 2 and 3) and [9]. If the input structures are ordered, then
expressions in LFP logic can describe polynomial time (PTIME) computation [12].

The input instance to an LFP computation consists of a structure A, which includes a domain
set A and a set of (first order) relations Ri, each with arity ri, 1 ≤ i ≤ J . The LFP
computation works by a stagewise addition of tuples from A, to a new relation P (of some arity
k). If Pi represents the relation (set of tuples) after stage i, then Pi ⊆ Pi+1. The transition
from Pi to Pi+1 is through an operator Φ, such that Pi+1 = Φ(Pi). At the beginning, P is
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empty, that is, P0 = ∅. For some value of i, say when i = f , if Pf = Pf+1, a fixed point has
been reached.

Without going into details, let us just say that such a fixed point, reached as above, is also
a least fixed point (LFP) if the operator Φ can be chosen in a particular manner. The
interested reader is referred to [12] (chapter 2) for details.

Note that the number of elements in P can be at most |A|k (where |A| is the number of
elements in A), which is polynomial in the size of the domain. Hence f ≤ |A|k, so an LFP is
achieved within a polynomial number of stages.

Similar to LFP, we can also define a greatest fixed point (GFP). This is obtained by doing
the reverse; we start with the entire set Ak of k-ary tuples from the universe A, and then
removing tuples from P in stages. At the beginning, P0 = Ak. In further stages, Pi ⊃ Pi+1.
The GFP is reached at stage g if Pg = Pg+1.

The logic that includes LFP and GFP expressions is known as LFP logic. It expresses
decision problems (those with a Yes/No answer), such as those in Def. 4 and 7. To be feasible,
a solution should also obey the objective function constraint (f(x) ≥ K or f(x) ≤ K).

The LFP computation expresses decision problems based on maximization. Before the fixed
point is reached, the solution is infeasible; that is, the number of tuples in the fixed point
relation P is insufficient. However, once the fixed point is reached, the solution becomes
feasible. Similarly, the GFP computation expresses decision problems based on minimization.

Problem. An interesting problem arising in LFP logic is this: For what type of primal-dual
optimization problem pairs will the LFP and GFP computation meet at the same fixed point?
Does this mean that such a pair is polynomially solvable?

7 Conclusion and Further Study

Let us again stress that this is not a survey on Lagrangian duality or any other form of
optimization duality. Rather, this is a survey on the connections and relationships between
the computational complexity of optimization problems and duality.

In this paper, we have touched the tip of the iceberg on a very interesting problem, that of
connecting the computational hardness of an optimization problem with its duality charac-
teristics. A lot more study is required in this area.

Another issue is that of saddle point for Lagrangian duals. This is a decidable problem; we
can do brute force and find the primal and dual optimal solutions; this will tell us if there is
a duality gap. If the gap is zero, then there is a saddle point.

(Jeroslow [14] showed that the integer programming problem with quadratic constraints is
undecidable if the number of variables is unbounded, which is an extreme condition. However,
if each variable has a finite upper and lower bound, then the number of solutions is finite and
thus it is possible to determine the best solution in finite time.)

However, this problem would be NP-complete, unless we can tell whether it has a saddle point
by looking at the structure of the problem or by running a polynomial time algorithm.

We hope that this paper will motivate further research in this very interesting topic.
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