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Abstract

We address the following problem: how to execute any algorithm P , for an unbounded
number of executions, in the presence of an adversary who observes partial information on
the internal state of the computation during executions. The security guarantee is that the
adversary learns nothing, beyond P ’s input/output behavior.

This general problem is important for running cryptographic algorithms in the presence of
side-channel attacks, as well as for running non-cryptographic algorithms, such as a proprietary
search algorithm or a game, on a cloud server where parts of the execution’s internals might be
observed.

Our main result is a compiler, which takes as input an algorithm P and a security parameter
κ, and produces a functionally equivalent algorithm P ′. The running time of P ′ is a factor
of poly(κ) slower than P and is composed of a series of calls to poly(κ) time computable sub-
algorithms. During the executions of P ′, an adversary algorithm A which can choose the inputs
of P ′, can learn the results of adaptively chosen leakage functions– each of bounded output size
Ω̃(κ) – on the sub-algorithms of P ′ and the randomness they use.

We prove that for any computationally unboundedA observing the results of computationally
unbounded leakage functions, will learn no more from its observations than it could given black-
box access only to the input-output behavior of P . This result is unconditional and does not
rely on any secure hardware components.
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1 Introduction

This work addresses the question of how to compute any program P , for an unbounded number
of executions, so that an adversary who can obtain partial information on the internal states of
executions of P on inputs of its choice, learns nothing about P beyond its I/O behavior.

This question is interesting for cryptographic as well as non-cryptographic algorithms. In the
setting of cryptographic algorithms, the program P is usually viewed as a combination of a public
algorithm with a secret key, and the secret key should be protected from side channel attacks. Step-
ping out of the cryptographic context, P may be a proprietary search algorithm or a novel numeric
computation procedure which we want to protect, say while running on an insecure environment,
say a cloud server, where its internals can be partially observed. Looking ahead, our results will not
rely on any computational assumptions and thus will be applicable to non-cryptographic settings
without adding any new conditions. They will hold even if one-way functions (and cryptography
as we know it) do not exist.

The question of executing general computations for an unbounded (continual) number of exe-
cutions, viewed largely within the context of cryptographic algorithms, has been addressed in the
last few years with varying degrees of success in different adversarial settings. The crucial question
seems to be how to model the partial information or leakage that an adversary can obtain during
executions. The goal is to simultaneously capture real world attacks and achieve the right level of
theoretical abstraction.

Impossibility results on obfuscation [BGI+01] imply inherent limitations on the leakage that
can be tolerated in the continual attack model for general programs P . Even if only a single
bit of leakage is output in each execution, Impagliazzo [Imp10] observes that if this bit can be
computed as a function of the entire internal state of the execution, then there exist polynomial
time computable functions f , for which no execution can achieve leakage resilience. Thus, to rule
out this impossibility, we must put additional restriction on the leakage attack model.

1.1 Continual Leakage Attack Models and Prior Work

We discuss a few leakage attack model restrictions and corresponding results which have been
considered for the question of protecting general programs under continual leakage.

ISW-L. The pioneering work of Ishai, Sahai, and Wagner [ISW03] first considered the question
of converting general algorithms to equivalent leakage resistant algorithms. Their work views
algorithms as stateful circuits (e.g. a cryptographic algorithm, whose state is the secret-key of an
algorithm), and considers adversaries which can learn the value of a bounded number of wires in
each execution of the circuit, whereas the values of all other wires in this execution are perfectly
hidden and that all internal wire values are erased between executions. Let L be a global bound on
the number of wires that can leak. Then, they show how to convert any circuit C into a new circuit
C ′ of size O(|C| ·L2) which is unconditionally resilient to leakage of up to L individual wire values.
In fact, their method achieves more. The new circuit C ′ is composed of a sequence of sub-circuits,
each of size O(L2), of which the value of L arbitrary wires can leak.

CB-L. Faust, Rabin, Reyzin, Tromer and Vaikuntanathan [FRR+10] extended the leakage model
and result of [ISW03]. They still model an algorithm as a stateful circuit, but in every execution,
they let the adversary learn the result of any bounded length AC0 computable function f on the
values of all the wires. Let L be a global bound on the output length of function f . under the
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additional assumption that leak free hardware components exist, they show how to convert any
circuit C into a new circuit C ′ of size O(|C| · L2), which is resilient to leakage of the result of f
computed on the entire set of wire values. Similarly to [ISW03], their method achieves actually
more. The new circuit C ′ is composed of a sequence of sub-circuits, each of size O(L2), and is
resilient to L bits of AC0 leakage on each of these sub-circuits.

RAM-L. the RAM model of Goldreich and Ostrovsky [GO96] considers a CPU, which loads data
from fully protected memory, and runs its computations in a secure CPU. [GO96] allowed an adver-
sary to view the access pattern to memory (and showed how to make this access pattern oblivious),
but assumed that the CPU’s internals and the contents of the memory are perfectly hidden.1 This
was recently extended by Ajtai [Ajt11]. He divides the execution into sub-computations. Within
each sub-computation, the adversary is allowed to observe the contents of a constant fraction of the
addresses read from memory. These are called the compromised memory accesses (or times). The
contents of the un-compromised addresses, and the contents of the main memory not loaded into the
CPU, are assumed to be perfectly hidden. Taking L to be a security parameter, [Ajt11] shows how
to transform a program P on input size n, to a program P ′ which is divided into sub-computations
of size O(L), and is resilient to L compromised accesses in each sub-computation.

OC-L. the Micali-Reyzin [MR04] only-computation axiom assumes that there is no leakage in the
absence of computation, but computation always does leak. This axiom was used in the works
of Goldwasser and Rothblum [GR10] and by Juma and Vhalis [JV10], who both transform an
input algorithm P (expressed as a Turing Machine or a boolean circuit) into an algorithm P ′,
which is divided into subcomputations. An adversary can learn the the value of any (adaptively
chosen) polynomial time length bounded functions,2 computed on each sub-computation’s input
and randomness. To obtain results in this model, both [GR10] and [JV10] needed to assume
the existence of leak free hardware components that produce samples from a polynomial time
sampleable distribution. Namely, it is assumed that there is no data leakage from the randomness
generated and the computation performed inside of the device. Assuming the intractability of the
DDH problem, [GR10] transform P to P ′ which is composed of O(|P |) sub-computations, each of
size O(poly(L)), that is resilient to leakage of length L on each sub-computation. [JV10] assume the
existence of fully homomorphic encryption scheme, and get P ′ composed of O(1) sub-computations,
one of which has size O(|P |·poly(L)). P ′ is resilient to leakage of length L on each sub-computation,
assuming that the fully homomorphic encryption scheme cannot be broken in time 2O(L).

The assumptions on the existence of leak-free secure hardware components make it possible,
in the security proofs of [GR10] and [JV10], to argue that the view of the side channel attack in
the real protocol is indistinguishable from the view output by a polynomial time simulator, which
samples a very different, but computationally indistinguishable, distribution.

Finally, we mention that whereas our focus is on enabling any algorithm to run securely in
the presence of continual leakage, continual leakage on restricted computations (e.g. [DP08, Pie09,
FKPR10, BKKV10, DHLAW10, LRW11, LLW11]), and on storage ([DLWW11]), has been consid-
ered under various additional leakage models in a rich body of recent works. We elaborate on a
few pertinent results in Section 1.4.

1alternatively, they assume that the memory contents are encrypted, and their decryption in the CPU is perfectly
hidden.

2In contrast to the AC0 restriction on f in [FRR+10]
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1.2 The New Work

In this paper, we address the question of how to transform any algorithm P into a functionally
equivalent algorithm Eval which can be run for an unbounded number of executions, in the presence
of leakage attacks on the internal state of the executions. Before stating our exact results, let us
describe the power of our leakage-adversary, and the security guarantee to be provided

Leakage Adversary. The leakage attacks we address are in the “only computation leaks in-
formation” model of [MR04]. The algorithm Eval will be composed of a sequence of calls to
sub-computations. The leakage adversary Aλ, on input a security parameter 1κ, can (1) specify
a polynomial number of inputs to P and (2) per execution of Eval on input x, request for every
sub-computation of Eval, any λ bits of information of its choice, computed on the entire internal
state of the sub-computation, including any randomness the sub-computation may generate.

We stress that we did not put any restrictions on the complexity of the leakage Adversary Aλ,
and that the requested λ bits of leakage may be the result of computing a computationally un-
bounded function of the internal state of the sub-computation. This is in contrast to previous works
that only allow the adversary to obtain polynomial-time computable functions of the execution’s
internal state [GR10, JV10, BKKV10, DHLAW10, LRW11, LLW11, DLWW11].

Security Guarantee. Informally, the security guarantee that we provide will be that for any
leakage adversary Aλ, whatever Aλ can compute during the execution of Eval, it can compute
with black-box access to the algorithm P . Formally, this is proved by exhibiting a simulator which,
for every leakage-adversary Aλ, given black box access to the functionality P , simulates a view
which is statistically indistinguishable from the real view of Aλ during executions of Eval . The
simulated view will contains the results of I/O calls to P , as well as results of applying leakage
functions on the sub-computations as would be seen by Aλ. The running time of the simulator is
polynomial in the running time of Aλ and the running time of the leakage functions Aλ chooses.

Informal Main Theorem. We show a compiler that takes as input a program, in the form of a
circuit family {Cn}, a secret state y ∈ {0, 1}n, and a security parameter κ, and produces as output
a description of an uniform stateful algorithm Eval such that:

1. Eval(x) = C(y, x) for all inputs x.

2. The execution of Eval(x) for |x| = n, will consist of O(|Cn|) sub-computations, each of
complexity (time and space) O(poly(κ)).

3. There exists a simulator Sim, a leakage bound λ(κ) = Ω̃(κ), and a negligible distance bound
δ(κ), such that for every leakage-adversary Aλ(κ) and κ ∈ N:
SimC(1κ,A) is δ(κ)-statistically close to view(Aλ), where SimC(1κ,A) denotes the output
distribution of Sim, on input the description of A, and with black-box access to C. view(Aλ)
is the view of the leakage adversary during a polynomial number of executions of Eval on
inputs of its choice. The running time of Sim is polynomial in that of A and that of the
leakage functions chosen by A. The number of oracle calls made is always poly(κ).

Our result holds unconditionally, without the use of computational assumptions or leak-free
hardware. In Section 2 we give an overview of the construction, and highlight some of the new
technical ideas of our work.
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OC-L and the Leaky CPU Model. An alternative model to OC-L is that of a leaky CPU.
We proceed with an informal description of this model. Computations are run on a RAM with two
components:

1. A CPU which executes instructions from a fixed set of special universal instructions, each of
size poly(κ) for a security parameter κ.

2. A memory that stores the program, input, output, and intermediate results of the computa-
tion. The CPU fetches instructions and data and stores outputs in this memory.

The adversary model is as follows:

1. For each program instruction loaded and executed in the CPU, the adversary can learn the
value of an arbitrary and adaptively chosen leakage function of bounded output length (output
length Ω(κ) in our results). The leakage function is applied to the instruction executed in the
CPU – namely, it is a function of all inputs, outputs, randomness, and intermediate wires of
the CPU instruction being executed.

2. Contents of memory, when not loaded into the CPU, are hidden from the adversary.

Our result, stated in this model, provides a fixed set of CPU instructions, and a compiler which
can take any polynomial time computation (say given in the form of a boolean circuit), and compile
it into a program that can be run on this leaky CPU. A leakage adversary as above, who can specify
inputs to the compiled program and observe its outputs, learns nothing from the execution beyond
its input-out behavior.

Comparison to Prior Work. We now compare our main result to prior work on protecting
general programs under continual leakage. See Section 1.4 for other related work.

Comparing to the work of Ishai, Sahai and Wagner [ISW03] in the ISW-L leakage model, they
convert any circuit C into a new circuit C ′, which is composed of O(|C|) sub-circuits each of
size O(L2), and allow the leakage of L arbitrary wires from each sub-circuit. Our transformation
converts C into O(|C|) sub-circuits, each of size Õ(Lω), from which L arbitrary bits of information
can be leaked (here ω is the exponent in the best algorithm known for matrix multiplication).
These leaked bits can be the output of arbitrary computations on the wire values.

Comparing to the work of Faust et al. [FRR+10] in the CB-L model, the main differences are
(i) that construction used secure hardware, whereas we do not use secure hardware, and (ii) in
terms of the class of leakage tolerated, they can handle bounded-length AC0 leakage on the entire
computation of each execution. We, on the other hand, can handle arbitrary length bounded OC-L
leakage that operates separately (if adaptively) on each sub-computation.

Comparing to the work of Ajtai [Ajt11] in the RAM-L model, he divides the computation into
sub-computations of size O(L), and shows resilience to an adversary who see the full contents
of memory loaded into CPU for L memory accesses, whereas all the other memory accesses are
perfectly hidden. Translating our result to the RAM model, we divide the computation into sub-
computations of size Õ(Lω), and show resilience against an adversary that can receive L arbitrary
bits of information on the entire set of memory accesses and randomness. In particular, there are
no protected or hidden accesses.

Comparing to the work of Goldwasser and Rothblum [GR10] and of Juma and Vhalis [JV10] in
the OC-L model, the main qualitative difference is that both of those prior works use computational
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intractability assumptions and secure hardware. Our result, on the other hand, is unconditional
and uses no secure hardware components. In terms of quantitative bounds, for security parameter
κ, [JV10] transform a circuit of size C into a new circuit C ′ of size poly(κ) · |C|. The new circuit C ′

is composed of O(1) sub-circuits (one of the subcircuits is of size poly(κ) · |C|). Assuming a fully-
homomorphic encryption scheme that is secure against adversaries that run in time exp(O(L)), their
construction can withstand L bits of leakage on each sub-circuit. For example, if the FHE is secure
against poly(κ)-time adversaries, then the leakage bound is O(log κ). In our new construction, for
leakage parameter L, there are O(|C|) sub-computations (i.e. more sub-computations), each of size
Õ(Lω) (i.e. smaller), and each withstanding L bits of leakage (i.e. the amount of leakage we can
tolerate, relative to the sub-computation size, is larger). The quantitative parameters of [GR10]
are similar to the current work (up to polynomial factors).

Subsequent Related Work. The compiler provided in this work, and the new tools introduced
in its construction, have been used in several subsequent works.

Bitansky et al. [BCG+11] use the compiler to obfuscate programs using leaky secure hardware.
In a nutshell, they run each “sub-computation” on a separate leaky secure hardware component.
The new challenge in that setting is providing security even when the communication channels
between the components are observed and controlled by an adversary.

Boyle et al. [BGJK12] use the compiler to build secure MPC protocols that are resilient to cor-
ruptions of a constant fraction of the players and to leakage on each of the players (separately). The
MPC should output a function of the players’ inputs computed by some circuit C. Intuitively, one
can think of each player in the MPC as running one of the “sub-computations” in a compilation of
C using our OC-L compiler. The additional challenges here are both adversarial monitoring/control
of the communication channels and (more significantly) that the adversary may completely corrupt
many of the players/sub-computations.

Using the idea of ciphertext banks, a technical tool introduced in this work, [Rot12] gives a
compiler for AC0 leakage in the CB-L model. The new compiler removes the need for secure
hardware components that was present in the work of [FRR+10], but its security relies on an
unproven computational assumption about the power (or rather, the weakness) of AC0 circuits
with pre-processing.

1.3 Connections with Obfuscation

We remark that while protecting cryptographic algorithms from side channels is an immediate
application (and motivation) for this work, the question of protecting computations is interesting
for non-cryptographic computations, e.g. if one-way functions do not exist. In particular, our results
do not rely on cryptographic assumptions and so they would continue to hold. As a motivating
example, consider a proprietary algorithm running on a cloud server, where parts of its internals
might be observed.

This motivating example brings to light the fascinating connection between the problem of code
obfuscation and leakage resilience for general programs. In a nut-shell, one may think of obfuscation
of an algorithm as the ultimate “leakage resilient” transformation: If successful, it implies that the
resulting algorithm can be “fully leaked” to the adversary – it is under the adversary’s complete
control! Since we know that full and general obfuscation is impossible [BGI+01], we must relax
the requirements on what we may hope to achieve when obfuscating a circuit. Leakage resilient
versions of algorithms can be viewed as one such relaxation. In particular, one may view our
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result as showing that although we cannot protect general algorithms if we give the adversary
complete view of code which implements the algorithm (i.e obfuscation), nevertheless we can (for
any algorithm) allow an adversary to have a “partial view” of the execution and only learn its
black-box functionality. In our work, this “partial view” is as defined by the “only computation
leaks” leakage attack model.

The recent work of Bitansky et al. [BCG+11], mentioned above, makes the connection between
obfuscation and the OCL attack model even more explicit. They first strengthen the requirement
of OCL attack model to allow the adversary to control the order of the execution of the sub-
components (they call this DCL). They then show that any compiler that converts stateful circuits
into circuits that are secure in the DML model, implies the possibility of obfuscation of any program
given simple hardware components which themselves are subject to memory leakage attacks.

1.4 Other Related Work

Constructions in the OCL Leakage Model. Various constructions of particular cryptographic
primitives [DP08, Pie09, FKPR10], such as stream ciphers and digital signatures, have been pro-
posed in the OCL attack model and proved secure under various computational intractability as-
sumptions. The approach in these results was to consider leakage in design time and construct new
schemes which are leakage resilient, rather than a general transformation on non leakage-resilient
schemes

In the context of a bounded number of executions, we remark that the work of Goldwasser,
Kalai and Rothblum [GKR08] on one-time programs imply that any cryptographic functionality
can be executed once in the presence of OCL attack after the initial compilation is done. There any
data that is ever read or written can leak in its entirety (i.e tolerate the identity leakage function).
This holds under the assumption that one-way functions exist and requires no secure hardware.
The idea is that in the compilation stage, one transforms the cryptographic algorithm into a one-
time program with one crucial difference. Whereas one-time programs use special hardware based
memory to ensure that only certain portions of this memory cannot be read by the adversary
running the one-time program, in the context of leakage the party who runs the one-time program
is not an adversary but rather the honest user attempting to protect himself against OCL attacks.
In the compilation stage, the honest user, stores the entire content of the special hardware based
memory of [GKR08] in ordinary memory. At the execution stage, the user can be trusted to only
read those memory locations necessary to run the single execution. Since an OCL attack can only
view the contents of memory which are read, the execution is secure. We further observe that
the follow up work of Goyal et al. [GIS+10] on one-time programs, which removes the need for
the one-way function assumption, similarly implies that any cryptographic functionality can be
executed once in the presence of OCL attacks unconditionally.

Specific Cryptographic Primitives in the Continual Memory Leakage Model. The con-
tinual memory-leakage attack model for public key encryption and digital signatures was introduced
by Brakerski et al. [BKKV10] and Dodis et al. [DHLAW10]. They consider a model where an
adversary can periodically compute arbitrary polynomial time functions of bounded output length
L on the entire secret memory of the device. The device has an internal notion of time periods
and, at the end of each period, it updates its secret key, using some fresh local randomness, main-
taining the same public key throughout. As long as the rate at which the adversary can compute
its leakage functions is slower than the update rate, [BKKV10, DHLAW10, LRW11, LLW11] can
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construct leakage resilient public-key primitives which are still semantically secure under various
intractability assumptions on problems on bi-linear groups. The continual memory leakage model
is quite strong: it does not restrict the leakage functions, as in say ISW-L, to output individual
wire values, or as in CB-L, to AC0 bounded functions, nor does it restrict the leakage functions
to compute locally on sub-computations, as in RAM-L or OC-L. However, as pointed out by the
impossibility result discussed above, this model cannot offer the kind of generality or security that
we are after. In particular, the results in [BKKV10, DHLAW10, LRW11, LLW11] do not guarantee
that the view the attacker obtains during the execution of a decryption algorithm is “computa-
tionally equivalent” to an attacker viewing only the I/O behavior of the decryption algorithm. For
example, say an adversary’s goal in choosing its leakage requests is to compute a bit about the
plain-text underlying ciphertext c. In the [BKKV10, DHLAW10] model, it will simply compute a
leakage function that decrypts c, and output the requested bit. This could not be computed from
the view of the I/O of the decryption algorithms decrypting ciphertexts which are unrelated to c.

Continual Leakage on a Stored Secret. A recent independent work of Dodis, Lewko, Waters,
and Wichs [DLWW11], addresses the problem of how to store a value S secretly on devices that
continually leak information about their internal state to an external attacker. They design a
leakage resilient distributed storage method: essentially storing an encryption of S denoted Esk(S)
on one device and storing sk on another device, for a semantically secure encryption method
E which: (i) is leakage resilient under the linear assumption in prime order groups, and (ii) is
”refreshable” in that the secret key sk and Esk(S) can be updated periodically. Their attack model
is that an adversary can only leak on each device separately, and that the leakage will not ”keep
up” with the update of sk and Esk(S). One may view the assumption of leaking separately on each
device as essentially a weak version of the only computation leak axiom, where locality of leakage
is assumed per “device” rather than per “computation step”. We point out that storing a secret on
continually leaky devices is a special case of the general results described above [ISW03, FRR+10,
GR10, JV10] as they all must implicitly maintain the secret “state” of the input algorithm (or
circuit) throughout its continual execution. The beauty of [DLWW11] is that no interaction is
needed between the devices, and they can update themselves asynchronously.

We proceed to present an overview of our compiler and highlight some of our main technical
contributions in Section 2 below. The full definitions, tools, and specifications of the compiler are
in the subsequent sections. See the roadmap in Section 2.4.

2 Compiler Overview and Technical Contributions

The main contribution of this paper is a compiler which takes any algorithm in the form of a boolean
circuit and transforms it into a functionally equivalent probabilistic stateful algorithm. A user can
run this transformed secure algorithm for an unbounded (polynomial) number of executions. The
security guarantee is that any computationally unbounded adversary who launches a leakage attack
on the algorithm’s executions, learns nothing more than the input-output behavior.

In this section, we will give an overview of the compiler, its main components, and the technical
ideas introduced. The transformed secure algorithm is executed repeatedly, on a sequence of inputs
chosen by an adversary. Each execution of the transformed secure algorithm proceeds by a sequence
of sub-computations, and the adversary’s view of each execution is through the results of a sequence
of leakage functions (chosen adaptively and with bounded output length), applied to these sub-
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computations.
The first component in our construction is a leakage-resilient one-time pad cryptosystem (LROTP),

which we refer to as the subsidiary cryptosystem. See Section 2.1 for further details. We remark
that it is important to distinguish between the leakage resilience of the secure transformed algo-
rithm, and the leakage resilience of the subsidiary LROTP keys and ciphertexts. Whereas the
LROTP scheme retains security even after direct applications of bounded output length leakage on
the LROTP keys and ciphertexts (separately), the security guarantee for the transformed algorithm
is that, even under a leakage attack on its execution, there is will be no leakage at all on its internal
state or secrets. All that an adversary can learn is its input-output behavior.

Our compiler transforms a program by encrypting the bits of its description using the LROTP
cryptosystem. In Section 2.2, we show how to use these encryptions to compute the program’s
output on a single given input. This “one-time” safe evaluation is resilient to OC leakage attacks.
The main new component we use is a procedure for “safe homomorphic evaluation” of LROTP-
encrypted bits.

In Section 2.3 we show how to extend the one-time safe evaluation to any polynomial number of
safe evaluations. This yields a compiler that is secure against continual OC leakage attacks. Here
we use a new technical tool of “ciphertext banks”, which allow us to repeatedly generate secure
ciphertexts even under leakage.

2.1 Leakage-Resilient One Time Pad

Our construction uses a leakage resilient one-time pad cryptoscheme (LROTP) as one of its main
components. This simple private-key encryption scheme uses a vector key ∈ {0, 1}κ as its secret key,
and each ciphertext is also a vector c⃗ ∈ {0, 1}κ. The plaintext underlying c⃗ (under key) is the inner
product: Decrypt(key , c⃗) = ⟨key , c⃗⟩. The scheme maintains the invariants that key [0] = 1, c⃗[1] = 1,
for any key and ciphertext c⃗. We generate each key to be uniformly random under this invariant.
To encrypt a bit b, we choose a uniformly random c⃗ s.t. c⃗[1] = 1 and Decrypt(key , c⃗) = b.

The LROTP scheme is remarkably well suited for our goal of transforming general computations
to resist leakage attacks. In particular, we highlight several properties of LROTP, specified below,
that are used in our construction. See Section 4 for further details.

• Semantic Security under Multi-Source Leakage. Semantic security of LROTP holds
against an adversary who launches leakage attacks on both a key and a ciphertext encrypted
under that key. This might seem impossible at first glance. The reason it is facilitated is
two-fold: first due to the nature of our attack model, where the adversary can never apply
a leakage function to the ciphertext and the secret-key simultaneously (otherwise it could
decrypt); second, the leakage from the ciphertext is of bounded length. This ensures that
the adversary cannot learn enough of the ciphertext to be useful for it at a later time, when
it could apply an adaptively chosen leakage function to the secret key (otherwise, again, it
could decrypt).

Translating this reasoning into a proof, we show that semantic security is retained under
concurrent attacks of bounded leakage O(κ) length on key and c⃗. As long as leakage is
of bounded length and operates separately on key and on c⃗, they remain (w.h.p.) high
entropy sources, and are independent up to their inner product equaling the underlying
plaintext. We call such sources independent up to orthogonality, see Definition 3.10. Since
the inner product function is a two-source extractor (see Lemma 3.7), the underlying plaintext
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is statistically close to uniformly random even given the leakage. Moreover, this is true even
for computationally unbounded adversaries and leakage functions.

To ensure that the leakage operates separately on key and c⃗, we take care in our construction
not to load ciphertexts and keys into working memory simultaneously. There will be one
exception to this rule (see below), where a key and ciphertext will be loaded into working
memory simultaneously, but this will be done only after ensuring that the ciphertext are
“blinded” and contain no sensitive information.

• Key and Ciphertext Refreshing. We give procedures for “refreshing” LROTP keys and
ciphertexts, injecting new entropy while maintaining the underlying plaintexts. We overview
here the case of key refresh, ciphertext refresh is similar. The key entropy generator outputs
a uniformly random σ ∈ {0, 1}κ s.t. σ[0] = 0. This σ is used to inject new entropy in the
key by updating key ′ ← (key ⊕ σ), so that key ′ is a uniformly random key, independent of
key . σ can also be used on its own and without knowledge of the key, to “correlate” c⃗ to a
new ciphertext c⃗′ s.t. Decrypt(key ′, c⃗′) = Decrypt(key , c⃗). The requirement that refreshing on
ciphertexts must not use the key, is due to the fact that we always want to avoid loading the
ciphertext and key into memory at once (otherwise a leakage attack can decrypt and learn
the plaintext). It follows that without any leakage, the new key or ciphertext is a uniformly
random one that maintains the underlying plaintext.

In this work, key and ciphertext refreshing is used to obtain security properties even in the
presence of leakage. One task that we will consider is permuting m key-ciphertext pairs that
all have the same underlying plaintext.3 We refresh all m pairs and then permute them using
a random permutation π. If there is no leakage on this refresh-and-permute procedure, then it
follows that even given the m input key-ciphertext pairs, and the m refreshed-and-permuted
pairs, the permutation used looks uniformly random. Furthermore, even if there is a bounded
amount of leakage on the refresh-and-permute procedure, the distribution of the permutation
used, given all input and output key-ciphertext pairs, will have high entropy.

The example above shows that a single application of key-ciphertext refresh can give security
guarantees even in the presence of OC leakage. In particular, it maintains security of the
underlying plaintext. It is natural to hope that a large number of composed applications of
refresh to a key-ciphertext pair also maintains security of the underlying plaintext. However,
after a large enough number of composed application, an OC leakage adversary can success-
fully reconstruct the underlying plaintext. This attack is described in Section 4.2. Intuitively,
it “kicks in” once the length of the accumulated leakage is a large constant fraction of the
key and ciphertext length. Our construction uses composed applications of refresh, but we
take care that the accumulated leakage is never a large enough fraction of the key-ciphertext
length. We show that the security properties we use are maintained under a bounded number
of composed applications of refresh.

• Homomorphic Addition. For key and two ciphertexts c⃗1, c⃗2, we can homomorphically add
by computing c⃗′ ← (c⃗1 ⊕ c⃗2). By linearity, the plaintext underlying c⃗′ is the XOR of the
plaintexts underlying c⃗1 and c⃗2.

3To be precise, we will consider a related task or independently permuting m sets, each comprising 4 key-ciphertext
pairs, and the ciphertexts in each set will not all have the same underlying plaintexts. We find the simplified question
of permuting m pairs with the same underlying plaintext, as considered here, to be illuminating.
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We note that the construction in [GR10] relied on several similar properties of a computationally
secure public-key leakage resilient scheme: the BHHO/Naor-Segev scheme [BHHO08, NS09]. Here
we achieve these properties with information theoretic security and without relying on intractability
assumptions such as Decisional Diffie Hellman.

2.2 Leakage-Resilient Compiler Overview: One-Time Secure Evaluation

Here we describe the high-level structure of the compilation and evaluation algorithm for a single
secure execution. In Section 2.3 we will show how to extend this framework to support any poly-
nomial number of secure executions. We note that the high-level structure of the compilation and
evaluation algorithm builds on the construction of [GR10]. The building blocks, however, are very
different, as the subsidiary cryptosystem is now LROTP, and we now longer use secure hardware.

The input to the compiler is a secret input y ∈ {0, 1}n, and a public circuit C of size poly(n) that
is known the adversary. The circuit takes as inputs the secret y, and also public input x ∈ {0, 1}n
(which may be chosen by the adversary), and produces a single bit output.4 One can think of C
as a universal circuit, where y describes a particular algorithm that is to be protected. Or, C can
be a public cryptographic algorithm (say for producing digital signatures), and y is a secret key.

The output of the compiler on C and y is a probabilistic stateful evaluation algorithm Eval
(with a state which will be updated during each run of Eval), such that for all x ∈ {0, 1}n,
C(y, x) = Eval(y, x). The compiler is run exactly once at the beginning of time and is not subject
to leakage. See Section 3.4 for a formal definition of utility and security under leakage. In this
section, we describe an initialization of Eval that suffices for a single secure execution on any
adversarially chosen input.

Without loss of generality, the circuit C is composed of NAND gates with fan-in 2 and fan-out
1, and duplication gates with fan-in 1 and fan-out 2. We assume a lexicographic ordering on the
circuit wires, s.t. if wire k is the output wire of gate g then for any input wire i of the same gate,
i < k. The Eval algorithm keeps track of the value vi ∈ {0, 1} on each wire i of the original input
circuit C(y, x) in a secret-shared form: vi = ai ⊕ bi, where ai, bi ∈ {0, 1}. The invariant for every
wire is that the ai shares are public and known to all, including the leakage adversary, whereas bi
are private: they are kept encrypted by a LROTP ciphertext(s) encrypted under key i. There is one
key for each circuit wire i. For each input wire i, there is a single ciphertext c⃗ini . For the output
wire output , there is a single ciphertext c⃗outoutput . For each internal wire i, an output wire for gate g
and an input wire for gate h, there are two ciphertexts c⃗outi and c⃗ini (both with the same underlying
plaintext bi and the same key key i). Intuitively, c⃗outi is used in a computation corresponding to
gate g (for which i is an output wire), and c⃗ini is used in a computation corresponding to gate h
(for which i is an input wire).

We emphasize that the adversary does not actually ever see any key or ciphertext – let alone the
underlying plaintext – in their entirely. Rather, the adversary only sees the result of bounded-length
leakage functions that operate separately on these keys and ciphertexts.

Initialization for One-Time Evaluation. To initialize Eval for a single secure execution, we
generate keys and ciphertexts for the output wires, the internal wires, and the y-input wires (ini-
tialization is performed without leakage). This is done as follows. For each bit y[j] of the y-input
that is carried on a wire i, we generate a key-ciphertext pair (key i, c⃗

in
i ) with underlying plaintext

4We restrict our attention to single bit output, the case of multi-bit outputs also follows using the same ideas.
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y[j]. The input wire’s bit value vi is thus encoded by ai = 0 and bi = y[j]. For each internal wire
i, we choose bi uniformly at random, and we generate a key key i and two ciphertexts c⃗outi and c⃗ini
that both have underlying plaintext bi (under the key key i). The internal wire’s bit value vi will be
encoded by bi ∈R {0, 1} and ai = bi ⊕ vi (which we have not yet computed). For the output wire
output , we generate (keyoutput , c⃗

out
output) with underlying plaintext 0. The output bit will be encoded

by boutput = 0, and aoutput , the public share, that will equal the output value C(y, x). The output
wire’s public share aoutput will be computed during evaluation once the input x is specified.

This initialization suffices for a single execution (see below). Looking ahead, the main challenge
for multiple execution will be securely generating the keys ciphertexts for each wire even in the
presence of OC leakage. See Section 2.3.

Eval on input x. When a (non secret) input x is selected for Eval , we generate ciphertexts for
the x-input wires. This determines the private shares (independently of the input x), and sets
the stage for computing the public shares—culminating with the computation of the output wire’s
public share, which equals the circuit’s output.

We proceed as follows. Each bit x[j] of the x-input that is carried on wire i, is encoded by
ai = x[j] and bi = 0, where bi is the underlying plaintext for randomly chosen (key i, c⃗

in
i ). Given

these keys and ciphertexts for the x input, and those generated in the initialization, we now have,
for each circuit wire i, a key and (one or two) ciphertexts whose underlying plaintext(s) equal bi.
We also have, for each circuit input wire i, a public share ai.

Eval proceeds to compute the public shares of the internal and output wires one by one, using a
safe homomorphic computation procedure discussed below. The output is the public share aoutoutput =
C(y, x). Throughout the computation, all the private bi shares are protected from the leakage
adversary. Each internal bi looks “uniformly random” to the adversary, even under leakage. Thus,
the public shares ai of the internal wires reveal nothing about the actual values vi on those wires.
All the adversary “sees” are the input x and the output ao = C(y, x). The main remaining challenge
is evaluating the public shares without exposing the private shares.

Challenge I: Leakage-Resilient “Safe NAND” Computation. We seek a procedure that, for
a NAND gate takes as input the public shares for the gates’s input wires, and the encrypted private
shares for the gate’s input wires and output wire. The output should be the correct public share
of the gate’s output wire. For security, we require that even under leakage, this procedure exposes
nothing about the private shares of the gate’s input wires and output wire (beyond the value of the
output wire’s public share). We also need a similar procedure for aforementioned duplication gates,
but we focus here on the more challenging case of NAND. We give an overview of this procedure,
which we call SafeNAND , in Section 2.2.1.

2.2.1 Leakage Resilient SafeNAND

For a NAND gate with input wires i, j and output wire k, the input to SafeNAND is public shares
ai, aj ∈ {0, 1}, and ciphertext-key pairs (key i, c⃗

in
i , keyj , c⃗

in
j , keyk, c⃗

out
k ). We use bi, bj , bk ∈ {0, 1} to

denote (respectively) the plaintext bits underlying these key-ciphertext pairs. The goal is to output

ak = ((ai ⊕ bi) NAND (aj ⊕ bj))⊕ bk

moreover, we want to do this using a procedure that, even under leakage, exposes nothing about
(bi, bj , bk) beyond the output ak. We proceed with an overview, see Section 6 for details.
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As a starting point, we first choose a fresh new key ← KeyGen(1κ), and compute c′i, c
′
j , c
′
k whose

underlying plaintexts under this new key remain bi, bj , bk. This uses the key refresh property of
the LROTP scheme. Once the ciphertexts are all encrypted under the same key , we can use the
homomorphic addition properties of LROTP. Starting with an idea of Sanders Young and Yung
[SYY99], we can compute NAND by first computing a 4-tuple of encryptions:

C ← (c⃗′k, ((ai, 0, . . . , 0)⊕ c⃗′i ⊕ c⃗′k), ((aj , 0, . . . , 0)⊕ c⃗′j ⊕ c⃗′k), ((1⊕ ai ⊕ aj , 0, . . . , 0)⊕ c⃗′i ⊕ c⃗′j ⊕ c⃗′k))

Note the plaintexts underlying the 4 ciphertexts in C are:

(bk, (ai ⊕ bi ⊕ bk), (aj ⊕ bj ⊕ bk), (1⊕ ai ⊕ bi ⊕ aj ⊕ bj ⊕ bk))

and that if ak = 0, then 3 of these plaintexts will be 1, and one will be 0, whereas if ak = 1, then
3 of the plaintexts will be 0 and one will be 1.

The first idea may be to simply decrypt C (using key), and compute ak based on the number
of 0’s and 1’s plaintext underlying C. We cannot do this, however, since the locations of 0’s and 1’s
might reveal (via the adversary’s leakage) information about (bi, bj , bk) beyond just the value of ak.
A natural idea, then, is to permute the ciphertexts before decrypting. This, indeed, is what was
suggested by [SYY99]. Our problem, however, is that any permutation we use might leak. What
we seek, then, is a method for randomly permuting the ciphertexts even under leakage.

Permute: Securely Permuting under Leakage. The leakage-resilient permutation procedure
Permute that takes as input key and a 4-tuple C, consisting of 4 ciphertexts. Permute makes 4
copies of key , and then proceeds in iterations. The input to each iteration is two 4-tuples of keys
and ciphertexts. The output from each iteration is a 4-tuple of keys and corresponding ciphertexts,
whose underlying plaintexts are some permutation of those in that iteration’s input. The key
property is that the permutation chosen in each iteration will look “fairly random” even to a
leakage adversary. As a result, the composition of these permutations over many iterations will
look (statistically close to) uniformly random. The “fairly random” property of each iteration is
achieved by a “duplicate and permute” step:

1. creating many copies of the input key and ciphertext 4-tuples

2. refreshing each tuple-copy using key-ciphertext refresh as in Section 2.1 (each refresh uses
independent randomness)

3. permutating each tuple-copy using an independently chosen uniformly random permutation

Given (length-bounded) leakage from the above “duplicate-and-permute” step of each iteration,
most of the permutations chosen will look “fairly uniform”. Finally, after the leakage from each
iteration’s duplicate-and-permute step has occurred, one of the tuple-copies is chosen. We will show
that the permutation used for this tuple-copy will (w.h.p.) look “fairly random”, even given the
leakage. The tuple-copy chosen in each iteration is then fed as input to the next iteration.

The Permute procedure does this for ℓ iterations. We show that the composition of all permu-
tations used is exp(−Ω(ℓ))-statistically close to uniformly random, even given the leakage from all
ℓ iterations of Permute. This is the high-level intuition for the security of Permute and SafeNAND
(omitting many non-trivial details).
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2.3 Leakage-Resilient Compiler Overview: Multiple Secure Evaluations

In this section we modify the Init and Eval procedures described in Section 2.2 to support any
polynomial number of secure evaluations. The main challenge is generating secure key-ciphertext
pairs for the output and the y-input wires.

Challenge II: Ciphertext Generation under Continual Leakage. We seek a procedure for
repeatedly producing (key i, c⃗i) pairs. For each y-input wire i corresponding to the j-th bit of y, the
underlying plaintext should be y[j]. For the output wire output , the underlying plaintext should
0. We also seek a procedure for repeatedly producing key i and a pair of ciphertexts (c⃗outi , c⃗ini ) that
both have the same independently random underlying plaintext bi ∈R {0, 1}. For security, the
underlying plaintexts of the keys and ciphertexts produced should be completely protected even
under (repeated) leakage in all the generations.

In previous works such as [FRR+10, JV10, GR10], similar challenges were (roughly speaking)
overcome using secure hardware to generate “fresh” encodings of leakage-resilient plaintexts from
scratch in each execution.

We generate key-ciphertext pairs using ciphertext banks. We begin by describing this new tool
and how it is for repeated secure generations with a fixed underlying plaintext bit. This is what
is needed for the y-input and the output wire. We then describe how a ciphertext bank is used to
generate a sequence of keys and pairs of ciphertexts (with uniformly random underlying plaintexts)
for the internal wires.

A ciphertext bank is initialized once using a BankInit(b) procedure, where b is either 0 or 1 (there
is no leakage during initialization). It can then be used, via a BankGen procedure, to repeatedly
generate key-ciphertext pairs with underlying plaintext bit b, for an unbounded polynomial number
of generations. A BankUpdate procedure is used between generations to inject entropy into the
ciphertext bank. The intuition behind the ciphertext bank security requirement is that, even
under leakage from the repeated generations, the plaintext underlying each key-ciphertext pair
is protected. In particular, there are efficient simulation procedures that have arbitrary control
over the plaintexts underlying the key-ciphertext pairs that the bank produces/ Leakage from the
simulated calls is statistically close to leakage from the “real” ciphertext bank calls. We outline
these procedures in Section 2.3.1 below. See Section 5 for details.

Using ciphertext banks, we modify the initialization and evaluation outlined in Section 2.2.
In initialization, for each y-input bit y[j], carried on wire i, we initialize a ciphertext bank for
repeatedly generating key-ciphertext pairs with underlying plaintext y[j]. For the output wire we
initialize a ciphertext bank for repeatedly generating key-ciphertext pairs with underlying plaintext
0. In Eval , we add an initial step where the ciphertext banks of each y-input wire and of the output
wire are used to securely generate a key-ciphertext pair for that wire. After this first step, given
an input x, Eval proceeds as outlined in Section 2.2.

Finally, to generate a sequence of keys and pairs of ciphertexts for the internal wires, we also
provide a BankRedraw procedure. This procedure re-draws a new, uniformly and independently
random plaintext bit, that will underly the key-ciphertext pairs produced by the bank. To generate
a key and a pair of ciphertext with the same underlying plaintext we simply call BankGen twice:
the key produced in both calls will be the same, but the ciphertexts produced will be different
(albeit with the same underlying plaintext). After this pair of generations, we call BankRedraw to
re-draw the underlying plaintext bit and then BankUpdate to inject new entropy. We note that it
is the call to BankUpdate that changes the key that will be produced in future BankGen calls. For
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security, we provide efficient simulation procedures that have arbitrary control over the plaintext
bits underlying the key-ciphertext pairs that are produced. As above, leakage from simulated calls
is statistically close to leakage form the “real” calls. See the overview below in Section 2.3.1, and
Section 5 for further details.

We now can now repeatedly generate keys and ciphertext-pairs for internal wires even under
leakage. For this, we further modify the initialization and evaluation outlined in Section 2.2. In
initialization, we initialize a (single) additional ciphertext bank for the internal wires. This bank
is initialized to generated key-ciphertext pairs with a uniformly random underlying plaintext bit.
In Eval , for each internal wire we use two BankGen calls to this bank to generate a key and
two ciphertexts. After each two such calls we use BankRedraw and BankUpdate to re-draw the
underlying plaintext bit for the next wire and to inject new entropy.

This completes the high-level description of our Init and Eval procedures, the full procedures
are in Section 7.

2.3.1 Ciphertext Banks for Secure Generation

The ciphertext bank state consists of an LROTP key , and a collection C of 2κ ciphertexts. We
view C as a κ×2κ matrix, whose columns are the ciphertexts. In the BankInit procedure, on input
b, key is drawn uniformly at random, and the columns of C are drawn uniformly at random s.t
the plaintext underlying each column equals b. This invariant will be maintained throughout the
ciphertext bank’s operation, and we call b the bank’s underlying plaintext bit.

The BankGen procedure outputs key and a linear combination of C’s columns. The linear
combination is chosen uniformly at random s.t. it has parity 1. This guarantees that it will yield
a ciphertext whose underlying plaintext is b.

The BankUpdate procedure injects new entropy into key and into C: we refresh the key using
the LROTP key refresh property, and we refresh C by multiplying it with a random 2κ×2κ matrix
whose columns all have parity 1. These refresh operations are performed under leakage.

The BankRedraw procedure chooses a uniformly random ciphertext v⃗ ∈ {0, 1}κ, and adds it to
all the columns of C. If the inner product of key and v⃗ is 0 (happens w.p. 1/2), then the bank’s
underlying plaintext bit is unchanged. If the inner product is 1 (also w.p. 1/2), then the bank’s
underlying plaintext bit is flipped.

For security, we provide a simulation procedure SimBankGen that can arbitrarily control the
value of the plaintext bit underlying the key-ciphertext pair it generates. Here we maintain a
simulated ciphertext bank, consisting of a key and a matrix, similarly to the real ciphertext bank.
These are initialized, without leakage, using a SimBankInit procedure that draws key and the
columns of C uniformly at random from {0, 1}κ. Note that here, unlike in the real ciphertext bank,
the plaintexts underlying C’s columns are uniformly random bits (rather than a single plaintext
bit b). The operation of SimBankGen is similar to BankGen, except that it uses a biased linear
combination of C’s columns to control the underlying plaintext it produces.

The main technical challenge and contribution here is showing that leakage from the real and
simulated calls is statistically close. Note that, even for a single generation, this is non-obvious. As
an (important) example, consider the rank of the matrix C: in the real view (say for b = 0), C’s
columns are all orthogonal to key , and the rank is at most κ− 1. In the simulated view, however,
the rank will be κ (w.h.p). If the matrix C was loaded into memory in its entirety, then the real and
simulated views would be distinguishable! Observe, however, that if only “sketches” (or “pieces”)
of C are loaded into memory at any one time, where each “sketch” (or “piece”) is a collection of
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(c · κ) linear combinations of C’s columns (for a small 0 < c < 1), then it is no longer clear how
a leakage adversary can compute C’s rank or distinguish a real and simulated generation (even if
the adversary knows the coefficients of the linear combinations of C’s columns).

We show that: (i) sketches of random matrices are leakage resilient, and in particular leak-
age from sketches of C is statistically close in the real and simulated distributions, and (ii) how
to implement BankGen and SimBankGen using subcomputations, where each sub-computation
only loads a single “sketch” of C into memory. This implies security for a single generation (or
a bounded number). We then extend our leakage-resilience results to show security for an un-
bounded (polynomial) number of generations. We view these roofs as our most important technical
contribution.

2.4 Organization and Roadmap

Definitions, notation and preliminaries are in Section 3. This includes the definitions of secure
compilers against leakage and of independence up to orthogonality, a central notion in many of our
technical proofs. That section also includes lemmas about entropy, multi-source extractors, and
leakage-resilience that will be used in the subsequent sections.

We then proceed with a full description of our construction. In Section 4 we specify the leakage-
resilient one time pad scheme and its properties. We present the ciphertext bank procedures, used
for secure generation of secure ciphertexts under leakage, in Section 5. The SafeNAND procedure
for securely computing NAND gates on encrypted inputs is in Section 6. These ingredients are put
together in Section 7, where we present the main construction and a proof (sketch) of its security.

3 Definitions and Preliminaries

In this section we define leakage and multi-source leakage attacks (Section 3.1) and give a brief ex-
position about entropy, multi-source extractors, and facts about them that will be used throughout
this work (Section 3.2). We then define and discuss the notion of independence up to orthogonality
(Section 3.3).

Preliminaries. For a string x ∈ Σ∗ (where Σ is some finite alphabet) we denote by |x| the length
of the string, and by xi or x[i] the i’th symbol in the string. For a finite set S we denote by y ∈R S
that y drawn uniformly at random from S. We use ∆(D,F ) to denote the statistical (L1) distance
between distributions D and F . For a distribution D over a finite set, we use x ∼ D to denote the
experiment of sampling x by D, and we use D[x] to denote the probability of item x by distribution
D. For random variables X and Y , we use (X|Y = y) or (X|y) to denote the distribution of X,
conditioned on Y taking value y.

3.1 Leakage Model

We follow the model and notation used in [GR10].

Leakage Attack. A leakage attack is launched on an algorithm or on a data string. In the case of
a data string x, an adversary can request to see any function ℓ(x) whose output length is bounded
by λ bits. In the case of an algorithm, the algorithm is divided into ordered sub-computations. The
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adversary can request to see a bounded-length (λ bit) function of each sub-computation’s input
and randomness. The leakage functions are computed separately on each sub-computation, in the
order in which the sub-computations occur, and can be chosen adaptively by the adversary.

Remark 3.1. Throughout this work we focus on computationally unbounded adversaries. In par-
ticular, we do not restrict the computational complexity of the leakage functions. Moreover, without
loss of generality, we consider only deterministic adversaries and leakage functions.

Definition 3.2 (Leakage Attack Aλ(x)[s]). Let s be a source: either a data string or a computation.
We model a λ-bit leakage attack of adversary A with input x on the source s as follows.

If s is a computation (viewed as a boolean circuit with a fixed input), it is divided into m
disjoint and ordered sub-computations sub1, . . . , subm, where the input to sub-computation subi
should depend only on the output of earlier sub-computations. A λ-bit Leakage Attack on s is
one in which A can adaptively choose functions ℓ1, . . . ℓm, where ℓi takes as input the input to
sub-computation i and any randomness used in that sub-computation. Each ℓi has output length
at most λ bits. For each ℓi (in order), the adversary receives the output of ℓi on sub-computation
subi’s input and randomness, and then chooses ℓi+1. The view of the adversary in the attack
consists of the outputs to all the leakage functions.

In the case that s is a data string, we treat it as a single subcomputation.

Multi-Source Leakage Attacks. A multi-source leakage attack is one in which the adversary
gets to launch concurrent leakage attacks on several sources. Each source is an algorithm or a
data string. We consider both ordered sources, where an order is imposed on the adversary’s access
to the sources, and concurrent sources, where the leakage the leakages from each source can be
interleaved arbitrarily. In both case, each leakage is computed as a function of a single source only.

Ordered Multi-Source Leakage. An ordered multi-source leakage attack is one in which the
adversary gets to launch a leakage attack on multiple sources, where again each source is an
algorithm or a data string. The attacks must occur in a specified order.

Definition 3.3 (Ordered Multi-Source Leakage Attack A(x){sλ1
1 , . . . , sλk

k }). Let s1, . . . , sk be leak-
age sources (algorithms or data strings, as in Definition 3.2). We model an ordered multi-source
leakage attack on {s1, . . . , sk} as follows. The adversary A with input x runs k separate leakage
attacks, one attack on each source. When attacking source si, the adversary can request λi bits of
leakage. The attacks on sources s1, . . . , sk are run sequentially and in order, i.e. once the adversary
requests leakage from sj , it cannot get any more leakage from si for i < j.

For convenience, we drop the superscript when the source is exposed in its entirety (i.e. λi =
|si|). So A(x){sλ1

1 , s2} is an attack where the adversary can request λ1 bits of leakage on s1, and
then sees s2 in its entirety. Finally, when the leakage bound on all k sources is identical we use a
“global” leakage bound λ and denote this by Aλ(x){s1, . . . , sk}.

Concurrent Multi-Source Leakage. A concurrent leakage attack on multiple sources is one in
which the adversary can interleave the leakages from each of the sources arbitrarily. Each leakage is
still a function of a single source though. We allow additional flexibility by considering concurrent
sources and ordered sources as above. Leakage from the ordered sources must obey the ordering,
and the leakage from the concurrent sources can be arbitrarily interleaved with the leakage from
the ordered sources.
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Definition 3.4 (Multi-Source Leakage Attack A(x)[sλ1
1 , . . . , sλk

k ]{rλ
′
1

1 , . . . , r
λ′
m

m }). Let s1, . . . , sk and
r1, . . . , rm be k + m leakage sources (algorithms or data strings, as in Definition 3.2). We model
a concurrent multi-source leakage attack on [s1, . . . , sk]{r1, . . . , rm} as follows. The adversary runs
k +m leakage attacks, one on each source. The attacks on each source, si or rj , for a λi or λ

′
j-bit

leakage attack as in Definition 3.2. We emphasize that each λ-bit attack on a single source consists
of λ adaptive choices of 1-bit leakage functions. Between different sources, the leakages can be
interleaved arbitrarily and adaptively, except for each j and j′ such that j < j′, no leakage from rj
can occur after any leakage from rj′ . There are no restrictions on the interleaving of leakages from
si sources.

It is important that each leakage function is computed as a function of a single sub-computation
in a single source (i.e. the leakages are never a function of the internal state of multiple sources). It
is also important that the attacks launched by the adversary are concurrent and adaptive, and their
interleaving is controlled by the adversary. For example, A can request a leakage function from
a sub-computation of source si before deciding which source to attack next, then after attacking
several other sources, it can go back to source i and request a new adaptively chosen leakage attack
on its next sub-computation.

As in Definition 3.3, we drop the superscript if a source s exposed in its entirety.5 When the
leakage from all sources is of the same length λ, we append the superscript to the adversary and
drop it from the sources. If there are no ordered sources then we drop the curly braces.

3.2 Extractors, Entropy, and Leakage-Resilient Subspaces

In this section we define notions of min-entropy and two-source extractors that will be used in
this work. We will then present the inner-product two-source extractor. Finally, we will state two
lemmas that will be used in our proof of security: a lemma of [DRS04] about the connection between
leakage and min-entropy, and a lemma of Brakerski et al. regarding leakage-resilient subspaces.

Definition 3.5 (Min-Entropy). For a distribution D over a domain X, its min-entropy is:

H∞(D) , min
x∈X

log Pr
y∼D

[y = x]

Definition 3.6 ((n,m, k, ε)-two source strong extractor). A function Ext : {0, 1}n × {0, 1}n →
{0, 1}m is a (n,m, k, ε)-2-source extractor is for every two distributions X and Y over {0, 1}n such
that H∞(X),H∞(X) ≥ k it is the case that:

Pr
y∼Y

[∆(Ext(X, y), Um) > ε] < ε

Pr
x∼X

[∆(Ext(x, Y ), Um) > ε] < ε

Chor and Goldreich [CG88] showed that the inner-product function over any field is a two-
source extractor. See also the excellent exposition of Rao [Rao07]. The claims made in those works
imply the lemma below (they make more general statements).

5we use this only for the ordered sources, concurrent sources exposed in their entirety are w.l.o.g. given to the
adversary as part of its input.
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Lemma 3.7 (Inner-Product Extractor [CG88]). For κ ∈ N and x⃗, y⃗ ∈ GF[2]κ define

Ext(x⃗, y⃗) = ⟨x⃗, y⃗⟩

For any κ ∈ N, the function Ext(x, y) is a (κ, 1, 0.51κ, 2−Ω(κ))-two source strong extractor.

Finally, we will use the fact that bounded-length multi-source (or rather two-source) leakage
attacks on high-entropy sources X and Y , leave an adversary with a view that is statistically close
to one in which each of the sources comes from a high-entropy distribution. This follows from a
result of Dodis et al. [DRS04].

Lemma 3.8 (Residual Entropy after Leakage [DRS04]). Let X and Y be two sources with min-
entropy at least k. Then for any leakage adversary A, taking w = Aλ[X,Y ], consider the conditional
distributions X ′ = (X|w) and Y ′ = (Y |w), which are just X and Y conditioned on leakage w. For
any δ > 0, with probability at least 1− δ over the choice of w, H∞(X ′),H∞(Y ′) ≥ k−λ− log(1/δ).

3.3 Independence up to Orthogonality

Definition 3.9 (Independent up to Orthogonality (IuO) Distribution on Vectors). Let D be a
distribution over pairs (x⃗, y⃗) ∈ {0, 1}κ × {0, 1}κ. We say that D is IuO w.r.t. v⃗ ∈ {0, 1}κ and
b ∈ {0, 1}, if there exist distributions X and Y, both over {0, 1}κ, s.t. D is obtained by sampling
x⃗ ∼ X and then sampling y⃗ ∼ Y, conditioned on ⟨x⃗ + v⃗, y⃗⟩ = b. We call X and Y the underlying
distributions of D, and denote this by D = X ⊥(v⃗,b) Y.

When v⃗ = 0⃗ we will sometimes simply say that D is IuO with orthogonality b, and denote this
by D = X ⊥b Y.

We also consider the independently drawn variant of D which is obtained by independently
sampling x⃗ ∼ X and y⃗ ∼ Y . We denote the independently drawn variant by D× or X × Y.

Definition 3.10 (Independent up to Orthogonality (IuO) Distribution on Matrices). Generalizing
Definition 3.10, for an integer m ≥ 1, let D be a distribution over pairs (X,Y ) ∈ {0, 1}m×κ ×
{0, 1}m×κ. We say that D is IuO w.r.t. V ∈ {0, 1}m×κ and b⃗ ∈ {0, 1}m if there exist distributions
X and Y, both over {0, 1}m×κ, s.t. D is obtained by sampling X ∼ X and then (independently)
sampling Y ∼ Y conditioned on ∀i ∈ [m], ⟨X[i] + V [i], Y [i]⟩ = b⃗[i]. As in Definition 3.10, we call X
and Y the underlying distributions of D, and denote this by D = X ⊥

(V,⃗b)
Y.

When V is the all-zeros matrix, we will sometimes simply say that D is IuO with orthogonality
b⃗, and denote this by D = X ⊥

b⃗
Y.

We also consider the independently drawn variant of D which is obtained by independently
sampling X ∼ X and Y ∼ Y . We denote the independently drawn variant by D× or X × Y.

Finally, for a distribution D over pairs (x⃗, Y ) ∈ {0, 1}κ × {0, 1}mκ, we say that D is IuO (with
parameters as above), if D′, in which we replace x⃗ with a matrix X whose columns are m (identical)
copies of x⃗ is IuO (as above). We emphasize that the copies of x⃗ are all identical and completely
dependant.

One important property of IuO distributions, which we will use repeatedly, is that they are
indistinguishable from their independently drawn variant under multi-source leakage (as long as
they have sufficient entropy).
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Lemma 3.11. Let D be an IuO distribution over pairs (X,Y ) ∈ SX × SY , with underlying dis-
tributions X and Y. Suppose that SX = {0, 1}mX ·κ and SY = {0, 1}mY ·κ for mX and mY s.t.
1 ≤ mX ≤ mY ≤ 10. Suppose also that H∞(D) ≥ (mX + mY − 0.3) · κ. Then for any (compu-
tationally unbounded) multi-source leakage adversary A, and leakage bound λ ≤ 0.1κ, taking the
following two distributions:

Real =
(
Aλ[X,Y ]

)
(X,Y )∼D

Simulated =
(
Aλ[X,Y ]

)
(X,Y )∼D×

it is the case that ∆(Real ,Simulated) = exp(−Ω(κ)).
Moreover, for any w in the support of Real: (i) we can derive from X a conditional underlying

distribution X (w), and from Y a conditional underlying distribution Y(w). In particular, note that
D is not needed for computing these conditional underlying distributions. Taking D(w) = (D|w) to
be the conditional distribution of D, given leakage w, then D(w) is IuO, with underlying distributions
X (w) and Y(w).

Before proving the lemma, we consider a simple application to multi-source leakage from two
strings. In Real the strings are uniformly random with inner product 0, and in Simulated they
are independently uniformly random. By Lemma 3.11, the leakage in both cases is statistically
close. The distribution of the strings in Real , given the leakage, is IuO, and each of its underlying
distributions can be computed (separately) given the leakage (and that the original underlying
distribution were uniformly random).

Proof of Lemma 3.11. Take w = Aλ[X,Y ]. Since the leakage operates separately on X and on Y ,
there exist two sets SX(w) ⊆ SX and SY (w) ⊆ SY , s.t.:

w = Aλ[X,Y ]⇔ (X,Y ) ∈ SX(w)× SY (w)

We take X (w) to be X conditioned onX ∈ SX(w), and Y(w) to be Y conditioned on Y ∈ SY (w).
Let D(w) = (D|w) be the distribution D conditioned on leakage w. By the above, D(w) is D
conditioned on (X,Y ) ∈ SX(w) × SY (w). Thus, D(w) is also IuO, with underlying distributions
X (w) and Y(w) and the same orthogonality as D.

Finally, to show that Real and Simulated are statistically close, let β(w) denote the distance of
the inner product ⟨X + V, Y ⟩X∼X (w),Y∼Y(w) from uniform.

Claim 3.12. For any w ∈ Support(Real):

1−O(β(w)) ≤ Simulated [w]

Real [w]
≤ 1 +O(β(w))

Proof. Observe that:

Simulated [w] = Pr
X∼X ,Y∼Y

[(X,Y ) ∈ SX(w)× SY (w)]

Real [w] = Pr
(X,Y )∼D

[(X,Y ) ∈ SX(w)× SY (w)]

= Pr
X∼X ,Y∼Y ′(X)

[(X,Y ) ∈ SX(w)× SY (w)]
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where Y ′(X) is Y conditioned on ⟨X + V, Y ⟩ = b⃗.
The claim follows because:

1−O(β(w) · 2mY ) ≤
PrX∼X ,Y∼Y [⟨X + V, Y ⟩ = b⃗]

PrX∼X ,Y∼Y [⟨X + V, Y ⟩ = b⃗|(X,Y ) ∈ SX(w)× SY (w)]
≤ 1 +O(β(w) · 2mY )

Claim 3.13. With all but exp(−Ω(κ)) probability over w ∼ Real, β(w) = exp(−Ω(κ)).

Proof. By Lemma 3.8, with all but δ probability over w ∼ Real , we have that H∞(X (w)) +
H∞(Y(w)) ≥ (mX + mY − 0.45) · κ. When this is the case, by Lemma 3.7 we have β(w) =
exp(−Ω(κ)).

By Claim 3.12 and 3.13 we conclude that ∆(Real ,Simulated) = exp(−Ω(κ)).

3.4 Secure Compiler: Definitions

We now present formal definitions for a secure compiler against continuous and computationally
unbounded leakage. We view the input to the compiler as a circuit C that is known to all parties
and takes inputs x and y. The input y is fixed, whereas the input x is chosen by the user. The user
can adaptively choose inputs x1, x2, . . . and the functionality requirement is that on each input xi
the user receives C(y, xi). The secrecy requirement is that even for a computationally unbounded
adversary who chooses the inputs (say polynomially many inputs in the security parameter), even
giving the adversary access(repeatedly) to a leakage attack on the secure transformed computation,
the adversary learns nothing more than the circuit’s outputs. In particular, the adversary should
not learn y.6

We divide a compiler into parts: the first part, the initialization occurs only once at the begin-
ning of time. This procedure depends only on the circuit C being compiled and the private input
y. We assume that during this phase there is no leakage. The second part is the evaluation. This
occurs whenever the user wants to evaluate the circuit C(y, ·) on an input x. In this part the user
specifies an input x, the corresponding output C(y, x) is computed under leakage.

Definition 3.14 ((λ(·), δ(κ)) Continuous Leakage Secure Compiler). We say that a compiler
(Init ,Eval) for a circuit family {Cn(y, x)}n∈N, where Cn operates on two n-bit inputs, is (λ(·), δ(κ))-
secure under continuous leakage, if for every integer n, κ ∈ N, and every y ∈ {0, 1}n, the following
hold:

• Initialization: Init(1κ, Cn, y) runs in time poly(κ, n) and outputs an initial state state0

• Evaluation: for every integer t ≤ poly(κ), the evaluation procedure is run on the previous
state statet−1 and an input xt ∈ {0, 1}n. We require that for every xt ∈ {0, 1}n, when we run:

(out t, statet)← Eval(statet−1, xt)

with all but negligible probability over the coins of Init and the t invocations of Eval , out t =
Cn(y, xt).

6Unless, of course, y can be computed from the outputs of the circuit on the inputs the adversary chose.
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• (λ(κ), δ(κ))-Continuous Leakage Security: There exists a simulator Sim, s.t. for every (com-
putationally unbounded) leakage adversary A, the view RealA of A when adaptively choosing
T = poly(κ) inputs (x1, x2, . . . xT ) while running a continuous leakage attack on the sequence
(Eval(state0, x1), . . . ,Eval(stateT−1, xT )), with adaptively and adversarially chosen xt’s, is
(δ(κ))-statistically close to the view SimulatedA generated by Sim, which only gets the de-
scription of the adversary and the input-output pairs ((x1, C(y, x1)), . . . , (xT , C(y, xT ))).

Formally, the adversary repeatedly and adaptively, in iterations t ← 1, . . . , T , chooses an
input xt and launches a λ(κ)-bit leakage attack on Eval(statet−1, xt) (see Definition 3.2).
RealA,t is the view of the adversary in iteration t, including the input xt, the output ot, and
the (aggregated) leakage wt from the t-th iteration. The complete view of the adversary is

RealA = (RealA,1, . . . ,RealA,T )

a random variable over the coins of the adversary, of Init and of Eval (in all of its iterations).

The simulator’s view is generated by running the adversary with simulated leakage attacks.
The simulator includes SimInit and SimEval procedures. The initial state is generated using
SimInit . Then, in each iteration t the simulator gets the input xt chosen by the adversary
and the circuit output C(y, xt). It generates simulated leakage wt. It is important that the
simulator sees nothing of the internal workings of the evaluation procedure. We compute:

state0 ← SimInit(1κ, Cn)

xt ← A(SimulatedA,1, . . . ,SimulatedA,t−1)

(statet,SimulatedA,t)← SimEval(statet−1, xt, , C(y, xt),A,SimulatedA,1, . . . ,SimulatedA,t−1)

where SimA,t is a random variable over the coins of the adversary when choosing the next
input and of the simulator. The complete view of the simulator is

SimulatedA = (SimulatedA,1, . . . ,SimulatedA,T )

We require that the two views RealA and SimulatedA are (exp(−Ω(κ)))-statistically close.

We note that modeling the leakage attacks requires dividing the Eval procedure into sub-
computations. In our constructions, the size of these sub-computations will always be O(κω),
where ω is the exponent in the running time of an algorithm for matrix multiplication.

4 Leakage-Resilient One-Time Pad (LROTP)

In this section we present the leakage resilient one-time pad cryptoscheme, a main component of
our construction. See the overview in Section 2.1. Here we specify the scheme and its properties
that will be used in the main construction.
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Leakage-Resilient One-Time Pad (LROTP) Cryptosystem (KeyGen,Encrypt ,Decrypt)

• KeyGen(1κ): output a uniformly random key ∈ {0, 1}κ s.t. key [0] = 1

• CipherGen(1κ): output a uniformly random c⃗ ∈ {0, 1}κ s.t. c⃗[1] = 1.

• Encrypt(key , b ∈ {0, 1}): output a uniformly random c⃗ ∈ {0, 1}κ s.t. c⃗[1] = 1 and ⟨key , c⃗⟩ = b

• Decrypt(key , c⃗): output ⟨key , c⃗⟩

Figure 1: Leakage-Resilient One-Time Pad (LROTP) Cryptosystem

4.1 Semantic Security under Multi-Source Leakage

Definition 4.1 (Semantic Security Under λ(·)-Multi-Source Leakage). An encryption scheme
(KeyGen,Encrypt ,Decrypt) is semantically secure under computationally unbounded multi-source
leakage attacks if for every (unbounded) adversary A, when we run the game below, the adversary’s
advantage in winning (over 1/2) is exp(−Ω(κ)):

1. The game chooses key key ← KeyGen(1κ), chooses uniformly at random a bit b ∈R {0, 1},
and generates a ciphertext c⃗← Encrypt(key , b).

2. The adversary launches a leakage attack on key and c⃗, and outputs a “guess” b′:

b′ ← Aλ(κ)(1κ)[key , c⃗]

the adversary wins if b′ = b.

Lemma 4.2. The LROTP cryptosystem, as defined in Figure 1, is semantically secure in the
presence of multi-source leakage with leakage bound λ(κ) = κ/3.

Proof. The proof follows directly from Lemma3.11.

4.2 Key and Ciphertext Refreshing

As discussed in the introduction, the LROTP scheme supports procedures for injecting new entropy
into a key or a ciphertext. This is done using entropy generators KeyEntGen and CipherEntGen.
The values these procedures produce can be used to refresh a key or ciphertext using KeyRefresh
or CipherRefresh (respectively). Key entropy σ can also be used, without knowledge of key , to
correlate a ciphertext c⃗ so that the plaintext underlying the correlated ciphertext c⃗′ under key ′ ←
KeyRefresh(key , σ), is equal to the plaintext underlying c⃗ under key . This is done using the
CipherCorrelate procedure.A similar KeyCorrelate procedure for correlating keys using ciphertext
entropy. These procedures are all in Figure 2 below.

We proceed with a discussion of the security properties of the refreshing procedures, and their
limitation. For a key-ciphertext pair (key , c⃗), a refresh operation on the pair injects new entropy
into the key and the ciphertext, while maintaining the underlying plaintext, as follows:

1. σ ← KeyEntGen(1κ)

2. key ′ ← KeyRefresh(key , σ)
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LROTP key and ciphertext refresh

• KeyEntGen(1κ) : output a uniformly random σ ∈ {0, 1}κ s.t. σ[0] = 0

• KeyRefresh(key , σ) : output key ⊕ σ

• CipherCorrelate(c⃗, σ) : modify c⃗[0]← c⃗[0]⊕ ⟨c⃗, σ⟩, and then output c⃗

• CipherEntGen(1κ) : output a uniformly random τ ∈ {0, 1}κ s.t. τ [1] = 0

• CipherRefresh(c⃗, τ) : output c⃗⊕ τ

• KeyCorrelate(key , τ) : modify key [1]← key [1]⊕ ⟨key , τ⟩, and then output key

Figure 2: LROTP key and ciphertext refresh Cryptosystem

3. c⃗′ ← CipherCorrelate(c⃗, σ)

4. π ← CipherEntGen(1κ)

5. c⃗′′ ← CipherRefresh(c⃗′, π)

6. key ′′ ← KeyCorrelate(key ′, π)

The output of the refresh operation is (key ′′, c⃗′′). We treat each step of the key-refresh as a
sub-computation, and so the leakage operates separately on the keys and on the ciphertexts.

Security Properties. The security properties of the refreshing procedures are, first, that a key-
ciphertext pair can be refreshed without ever loading the key and ciphertext into memory at the
same time, i.e. while operating separately on the key and on the ciphertext. We will use this to
argue that an OC leakage adversary learns nothing about the plaintext bit underlying a pair that
is being refreshed (as long as the total amount of leakage is bounded). The second property we use
is that without any leakage, a the refreshed pair is a uniformly random key-ciphertext pair with the
same underlying plaintext bit.

We use these properties to prove security of the Permute procedure which is used in SafeNAND
(see Sections 2.2.1 and 6.2). Permute proceeds in iterations. In each iteration, we refresh a tuple
of key-ciphertext pairs and then permute them using a random permutation. The property of the
refresh procedure that we will use is that without any leakage, even given both the input and the
output of a single iteration of Permute, nothing is leaked about the permutation chosen (beyond
what can be gleaned from the underlying plaintexts). This will then be used to argue that, even
under a bounded amount of leakage from each iteration, the permutation chosen in each iteration
of Permute has (w.h.p.) high entropy. This is later used to prove the security of SafeNAND .

Refresh Forever? It is natural to ask whether key-ciphertext refreshing maintains security of the
underlying plaintext under OC leakage for an unbounded polynomial number of refreshings. If so,
we could hope to do away with the (significantly more complicated) ciphertext banks, replacing the
ciphertexts generated by each bank with a sequence of ciphertexts generated using repeated refresh
calls. Unfortunately, there is an OC attack that exposes the plaintext underlying a key-ciphertext
pair that is refreshed too many times. The attack is outlined below.
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We consider a sequence of refresh operations, where the output of the i-th refresh is used as
input for the (i+ 1)-th refresh. During the first refresh, an OC adversary leaks the inner product
(i.e. the product) of the first bit of the output key and the first bit of the output ciphertext. This
requires only one bit of leakage from each. In the second refresh, the adversary will learn the inner
product of the first two bits of the output key and the output ciphertext. To do so, let (key1, c⃗1) be
the inputs to the second refresh. The adversary leaks the second bits of key2 during KeyRefresh,
and of c⃗2 during CipherRefresh. It also keeps track of the change in inner product of the first bit
of key ′1 = (key1 + σ) and of c⃗′1 = CipherCorrelate(c⃗1, σ) using a single bit of leakage: The change
(w.r.t. the inner product of key1 and c⃗1) is just a function of σ and c⃗1, which are loaded into
memory during CipherCorrelate. Similarly, the adversary can keep track of the subsequent change
to the inner product of the first bits of key2 = KeyCorrelate(key ′1, π) and c⃗2 = c⃗′1 ⊕ π, using a
single bit of leakage from KeyCorrelate. Putting these pieces together, the adversary learns the
inner product of the first two bits of key2 and c⃗2. More generally, after the i-th refresh call, the
key point is that if the adversary knows the inner product of the first i bits of the input key and
ciphertext, it can track the change in this inner product for the output key and cipher. Tracking
the change requires only two bits of OC leakage. The adversary uses two additional bits of OC
leakage to expand its knowledge to the inner product of the first (i+ 1) bits.

Continuing the above attack for κ refresh calls, the adversary learns the inner product of the
key and ciphertext obtained, i.e. the underlying plaintext is exposed. Note that this used only
O(1) bits of leakage from each sub-computation. If ℓ bits of leakage from each sub-computation
were allowed, then the underlying plaintext would be exposed after O(κ/ℓ) refresh calls. When
using refresh, we will take care that the total leakage accumulated from a sequence of refresh calls
to a key-ciphertext pair will be well under κ bits. Since refresh operates separately on keys and
ciphertexts, the semantic security of LROTP in the presence of multi-source leakage will guarantee
that the underlying plaintext is hidden.

4.3 “Safe” Homomorphic Computations

The LROTP cryptoscheme supports homomorphic computation on ciphertexts as follows:

Homomorphic Addition. For key and two ciphertexts c⃗1, c⃗2, we can homomorphically add by
computing c⃗′ ← (c⃗1 ⊕ c⃗2). By linearity, the plaintext underlying c⃗′ is the XOR of the plaintexts
underlying c⃗1 and c⃗2.

Homomorphic NAND. LROTP supports safe computation of a masked NAND functionality.
This functionality takes three input key-ciphertext pairs, and outputs the NAND of the first two
underlying plaintexts, XORed with the third underlying plaintext. Moreover, this can be performed
via the SafeNAND procedure, which guarantees that even an OC leakage attacker who gets leakage
on the computation, learns nothing about the input plaintexts beyond the procedure’s output. See
Sections 2.2.1 and 6 for details.

We note that this can be extended to “standard” homomorphic computation of NAND, where
the input is two key-ciphertext pairs, and the output is a “blinded” key-ciphertext pair whose
underlying plaintext is the NAND of the plaintexts underlying the inputs. The details are omitted
(this second property follows from the security of SafeNAND , but is not used in our construction).
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5 Ciphertext Banks

In this section we present the procedures for maintaining, utilizing, and simulating banks of secure
ciphertexts. We use these to create fresh secure ciphertexts under leakage attacks. The security
property we want is that, even though the generation of new ciphertexts is done under leakage, a
simulator can create an indistinguishable simulated view with complete and arbitrary control over
these ciphertexts’ underlying plaintexts. See Section 2.3.1 for an overview.

This section is organized as follows. In Section 5.1 we describe the ciphertext bank procedures,
and those of the simulator, and state the security properties that will be used in the main construc-
tion (the profs follow in subsequent sections). These procedures make use of secure procedures for
piecemeal matrix multiplication and for refreshing collections of ciphertexts, which are in section
Section 5.2. In Section 5.3 we define piecemeal attacks on matrices and prove that random matrices
are resilient to piecemeal leakage. In Section 5.4 we state and prove security properties of piece-
meal matrix multiplication. Finally, we use these claims to prove the ciphertext bank’s security.
We conclude with proofs of the ciphertext bank’s security in Section 5.5.

5.1 Ciphertext Bank: Interface and Security

We present a full description of the ciphertext bank procedures and simulator. Recall that (as in
Section 4), keys and ciphertexts are vectors in {0, 1}κ, and the decryption of ciphertext c⃗ under
key is the inner product b = ⟨key , c⃗⟩. We call b the plaintext underlying ciphertext c⃗.

Ciphertext Bank Procedures. The ciphertext bank is used to generate fresh ciphertext-key
pairs. The bank is initialized (without leakage) using a BankInit procedure that takes as input a
bit b ∈ {0, 1}. It can then be accessed (repeatedly) using a BankGen procedure, which produces a
key-ciphertext pair whose underlying plaintext is b. Between generations, the bank’s internal state
is updated using a BankUpdate Procedure. Leakage from a sequence of BankGen and BankUpdate
calls can be simulated. The simulator has arbitrary control over the plaintext bits underlying the
generated ciphertexts. Simulated leakage is statistically close to leakage from the real calls.

In addition, we provide a BankRedraw procedure.The BankRedraw procedure re-draws a uni-
formly random plaintext bit that will underly ciphertexts produced by the bank. The redrawn
plaintext bit looks uniformly random even in the presence of leakage on the BankRedraw procedure
(and on all ciphertext generations).

These functionalities are implemented as follows. The ciphertext bank consists of key and a
collection C of 2κ ciphertexts. We view C as a κ× 2κ matrix, whose columns are the ciphertexts.

In the BankInit procedure, on input b, the keys is drawn uniformly at random, and the columns
of C are drawn uniformly at random s.t their inner product with key is b. This invariant will be
maintained throughout the ciphertext bank’s operation. We sometimes refer to b as the ciphertext
bank’s underlying plaintext bit.

The BankGen procedure outputs a linear combination of C’s columns. The linear combination
is chosen uniformly at random s.t. it has parity 1. This guarantees that it will yield a ciphertext
whose underlying plaintext is b. The linear combination is taken using a secure “piecemeal” matrix-
vector multiplication procedure PiecemealMM .

The BankUpdate procedure injects new entropy into key and into C. We refresh the key using
a (“piecemeal”) key refresh procedure PiecemealRefresh. We refresh C by multiplying it with a
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random matrix whose columns all have parity 1. Matrix multiplication is again performed securely
using PiecemealMM .

The BankRedraw procedure adds a uniformly random vector in {0, 1}κ to each column of C
(here key is left unchanged). With probability 1/2, the vector has inner product 1 with key , and the
underlying plaintext bit is flipped. Otherwise, the underlying plaintext bit is unchanged. Adding
the vector to each column of the matrix is performed using a secure PiecemealAdd procedure.

The full ciphertext bank procedures are in Figure 3. The piecemeal matrix multiplication,
addition, and key refresh procedures are below in Section 5.2.

BankInit(1κ, b): initializes a ciphertext bank; No leakage

1. pick key ← KeyGen(1κ)

2. for i← 1, . . . 2κ: C[i]← Encrypt(key , b)

3. output Bank ← (key , C)

BankGen(Bank): generates a new ciphertext; Under leakage

1. pick r⃗ ∈R {0, 1}2κ with parity 1

2. c⃗← PiecemealMM (C, r⃗)

3. output (key , c⃗)

BankUpdate(Bank): updates the bank between generations; Under leakage

1. refresh the key:

(key ′, D)← PiecemealRefresh(key , C)

2. refresh the ciphertexts:

pick R ∈R {0, 1}2κ×2κ s.t. its columns all have parity 1,

C ′ ← PiecemealMM (D,R)

3. Bank ← (key ′, C ′)

BankRedraw(Bank): re-draws the bank’s underlying plaintext bit; Under leakage

1. pick v⃗ ∈R {0, 1}κ, compute C ′ ← PiecemealAdd(C, v⃗)

2. Bank ← (key , C ′)

Figure 3: Ciphertext Bank

Simulated Ciphertext Bank. Next, we provide a simulator for simulating the ciphertext bank
procedure, while arbitrarily controlling the plaintext bits underlying the ciphertexts that are pro-
duced. Towards this end, we maintain a simulated ciphertext bank, consisting of a key and a matrix,
similarly to the real ciphertext bank. These are initialized, without leakage, in a SimBankInit pro-
cedure that draws key and the columns of C uniformly at random from {0, 1}κ. Note that here,
unlike in the real ciphertext bank, the plaintexts underlying C’s columns are independent and uni-
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formly random bits (rather than all 0 or all 1). The simulator also keeps track of the plaintexts
bits underlying the columns of C, storing them in a vector x⃗ ∈ {0, 1}2κ.

Calls to BankGen are simulated using SimBankGen. This procedure operates similarly to
BankGen, except that it uses a biased linear combination of C’s columns to control the plaintext
underlying its output ciphertext. We also provide SimBankUpdate and SimBankRedraw procedures.
These operate similarly to BankUpdate and BankRedraw , except that they keep track of changes
to the vector x⃗ of plaintext bits underlying C. The simulation procedures are in Figure 4.

SimBankInit(1κ); No leakage

1. pick key ← KeyGen(1κ), x⃗ ∈R {0, 1}2κ

2. for i← 1, . . .m: C[i]← Encrypt(key , x⃗[i])

3. output Bank ← (key , C); Save also x⃗

SimBankGen(Bank , b)

1. pick r⃗ ∈R {0, 1}2κ with parity 1, and s.t. ⟨x⃗, r⃗⟩ = b

2. run exactly as in BankGen, except in Step 1 use the above “biased” r⃗

leakage is (only) on this operation of BankGen (with the biased r⃗)

SimBankUpdate(Bank)

1. run exactly as in BankUpdate

leakage is (only) on this operation of BankUpdate

2. update x⃗ to contain the new bits underlying the updated C

SimBankRedraw(Bank)

1. run exactly as in BankRedraw

leakage is (only) on this operation of BankRedraw

2. update x⃗ to contain the new bits underlying the updated C

Figure 4: Simulated Ciphertext Bank

Ciphertext Bank Security. We show several security properties of the ciphertext bank. In all
of these security properties, we consider sequences of ciphertext bank generations, real or simulated.
A sequence of real generations starts with a call to BankInit to initialize the ciphertext bank. This
is followed by a sequence of ciphertext generations, each performed via a call to BankGen, and
followed by an update call to BankUpdate. A sequence of simulated generations is similar, except
that initialization is performed using SimBankInit , each generation is performed by specifying
an underlying plaintext bit b and then calling SimBankGen, and each update is performed using
SimBankUpdate.

We also consider sequences of random generations of ciphertext-pairs. A sequence of real ran-
dom generations begins with an initialization call to BankInit with a uniformly random bit value.
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This is followed by a sequence of generations as follows. For each item in the sequence, we be-
gin by generating a key and two ciphertexts, c⃗α and c⃗β (both with the same underlying plaintext
bit). Next, we call BankRedraw to redraw the bank’s underlying plaintext bit. Lastly, we up-
date the bank using BankUpdate. This is done repeatedly, yielding a sequence of keys and pairs
of ciphertexts, where the plaintext bit underlying each ciphertext pair is independent and uni-
formly random. A sequence of simulated random generations is performed similarly, except that
BankInit ,BankRedraw ,BankUpdate are replaced by SimBankInit ,SimBankRedraw ,SimBankUpdate,
and each pair of calls to BankGen is replaced by a pair of calls to SimBankGen with some specified
plaintext bit b (we will always use the same plaintext bit b in both generations).

We now describe several security properties for sequences of real and simulated generations
and random generations of pairs. Intuitive description are listed below, and the formal lemma
statements follow.

Real and simulated sequences, identical underlying plaintexts. Consider an OC leakage
attacker’s “real” view, given leakage from a real sequence of generations using a bank initialized
with bit b. Consider also a “simulated” view for the same attacker, given leakage from a simulated
sequence of calls, where all calls to SimBankGen specify the same underlying plaintext bit b. I.e., the
plaintexts underlying the ciphertexts generated in these real and simulated views are all identical.
We show that the distributions of the leakage obtained in these two views, in conjunction with the
explicit list of key-ciphertext pairs produced, are statistically close.

This is stated formally in Lemma 5.1 below. The proof is in Section 5.5.

Two simulated sequences, different underlying plaintexts. Consider an OC leakage at-
tacker’s view, given two simulated sequences of generations. The two sequences each produce the
same number of ciphertexts, but differ in the underlying plaintext bits that are specified.

We show that the distributions of leakage obtained in these two views are statistically close. Note
that, unlike the previous property, here statistical closeness does not hold in conjunction with the
explicit keys and ciphertexts produced (since the underlying plaintexts differ). We note also that,
combining this with the previous property, we conclude statistical closeness of leakage distributions
produced by an OC attack on a real sequence and on a simulated sequence with different underlying
plaintexts (leakage only - without the explicit plaintext and ciphertext produced).

This is stated formally in Lemma 5.2 below. The proof is in Section 5.5.

Single simulated sequence, independence up to orthogonality. Consider an OC leakage
attack on a (single) sequence of simulated generations. We show that, given the leakage in the
attack, the (joint) distribution of keys and ciphertexts produced, is independent up to orthogonality
(see Definition 3.10). Moreover, the underlying distributions on keys and ciphertexts depend only
on the leakage (and the adversary), but not on the sequence of bits given as input to the simulated
generations. Finally, these underlying (conditional) distributions have high entropy on each key
and each ciphertext produced.

Intuitively, this means that the keys and ciphertexts produced will be resilient to subsequent
multi-source leakage. I.e., bounded leakage that operates separately on keys and on ciphertexts will
not be able to distinguish the underlying plaintexts. We note that independence up to orthogonality
holds even given the list of ciphertexts in the bank in all generations and all randomness used by
the ciphertext except the randomness for generating the “target” key and ciphertext.
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This is stated formally in Lemma 5.3 below. The proof is in Section 5.5.

Real and simulated sequences of random generations. Consider an OC leakage attacker’s
“real” view, given leakage from a real sequence of random generations of ciphertext pairs. Consider
also a “simulated” view for the same attacker, given leakage from a simulated sequence of calls,
where each pair of calls to SimBankGen specify a uniformly random bit (independent of all other
pairs). In particular, the plaintexts underlying the ciphertexts generated in these real and simulated
views are identically distributed (uniformly random for each pair independently). We show that
the distributions of the leakage obtained in these two views, in conjunction with the explicit list of
keys and ciphertext pairs produced, are statistically close.

This is stated formally in Lemma 5.4 below. This is similar to the guarantee of Lemma 5.1 and
we omit the proof.

Single simulated sequence of random generations, independence up to orthogonality.
Consider an OC leakage attack on a (single) sequence of simulated random generations of pairs of
ciphertexts. We show that, given the leakage in the attack, the (joint) distribution of keys and
ciphertexts produced, is independent up to orthogonality (see Definition 3.10). Moreover, the under-
lying distributions on keys and ciphertexts depend only on the leakage (and the adversary), but not
on the sequence of underlying plaintext bits. Finally, these underlying (conditional) distributions
have high entropy on each key and each ciphertext produced.

Intuitively, this means that the keys and ciphertexts produced will be resilient to subsequent
multi-source leakage. I.e., bounded leakage that operates separately on keys and on ciphertexts
will not be able to distinguish the underlying plaintexts. Moreover, within each pair of ciphertexts,
independence up to orthogonality for the key and each ciphertext separately continues to hold
even if the other ciphertext in the pair is released in its entirety. We note that, as was the case
above, independence up to orthogonality holds even given the list of ciphertexts in the bank in all
generations and all randomness used by the ciphertext except the randomness for generating the
“target” key and ciphertext.

This is stated formally in Lemma 5.5 below. The guarantee is quite similar to that of Lemma
5.3 and we omit the proof.

Lemma 5.1. There exists a leakage bound λ(κ) = Ω(κ), and a distance bound δ(κ) = exp(−Ω(κ)),
s.t. for any bit b ∈ {0, 1}, security parameter κ ∈ N, execution bound T = poly(κ), and (computa-
tionally unbounded) leakage adversary A:

Let Real and Simulated be as follows, where in Real we begin by running Bank0 ← BankInit(b),
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and in Simulated we begin by running Bank0 ← SimBankInit (both without leakage):

Real = A
{
((key0, c⃗0)← BankGen(Bank0))

λ(κ),

(Bank1 ← BankUpdate(Bank0))
λ(κ), key0, c⃗0,

((key1, c⃗1)← BankGen(Bank1))
λ(κ),

(Bank2 ← BankUpdate(Bank1))
λ(κ), key1, c⃗1,

. . .

((keyT−1, c⃗T−1)← BankGen(BankT−1))
λ(κ),

(BankT ← BankUpdate(BankT−1))
λ(κ), keyT−1, c⃗T−1

}
Simulated = A

{
((key0, c⃗0)← SimBankGen(Bank0, b))

λ(κ),

(Bank1 ← SimBankUpdate(Bank0))
λ(κ), key0, c⃗0,

((key1, c⃗1)← SimBankGen(Bank1, b))
λ(κ),

(Bank2 ← SimBankUpdate(Bank1))
λ(κ), key1, c⃗1,

. . .

((keyT−1, c⃗T−1)← SimBankGen(BankT−1, b))
λ(κ),

(BankT ← SimBankUpdate(BankT−1))
λ(κ), keyT−1, c⃗T−1

}
then ∆(Real ,Simulated) = δ(κ).

Lemma 5.2. There exists a leakage bound λ(κ) = Ω(κ), and a distance bound δ(κ) = exp(−Ω(κ)),
s.t. for any security parameter κ ∈ N, any execution bound T = poly(κ), any vectors b⃗′, b⃗′′ ∈ {0, 1}T ,
and any (computationally unbounded) leakage adversary A:

Let Simulated ′ and Simulated ′′ be the following two distributions, where in both distributions we
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begin by running Bank0 ← SimBankInit (without leakage):

Simulated ′ = Aλ(κ)
{
[(key0, c⃗0)← SimBankGen(Bank0, b⃗

′[0])],

[Bank1 ← SimBankUpdate(Bank0)],

[(key1, c⃗1)← SimBankGen(Bank1, b⃗
′[1])],

[Bank2 ← SimBankUpdate(Bank1)],

. . .

[(keyT−1, c⃗T−1)← SimBankGen(BankT−1, b⃗
′[T − 1])]

[BankT ← SimBankUpdate(BankT−1)]
}

Simulated ′′ = Aλ(κ)
{
[(key0, c⃗0,Bank1)← SimBankGen(Bank0, b⃗

′′[0])],

[Bank1 ← SimBankUpdate(Bank0)],

[(key1, c⃗1,Bank2)← SimBankGen(Bank1, b⃗
′′[1])],

[Bank2 ← SimBankUpdate(Bank1)],

. . .

[(keyT−1, c⃗T−1,BankT )← SimBankGen(BankT−1, b⃗
′′[T − 1])]

[BankT ← SimBankUpdate(BankT−1)]
}

then ∆(Simulated ′,Simulated ′′) = δ(κ).

Lemma 5.3. There exists a leakage bound λ(κ) = Ω(κ), and a probability bound δ(κ) = exp(−Ω(κ)),
s.t. for any κ ∈ N, any execution bound T = poly(κ), any vector b⃗ ∈ {0, 1}T , and any (computa-
tionally unbounded) leakage adversary A, the following holds:

Let Simulated be the following distribution, where we begin by running Bank0 ← SimBankInit
(without leakage):

Simulated = Aλ(κ)
{
[(key0, c⃗0)← SimBankGen(Bank0, b⃗[0])],

[Bank1 ← SimBankUpdate(Bank0)],

[(key1, c⃗1)← SimBankGen(Bank1, b⃗[1])],

[Bank2 ← SimBankUpdate(Bank1)],

. . . ,

[(keyT−1, c⃗T−1)← SimBankGen(BankT−1, b⃗[T − 1])]

[BankT ← SimBankUpdate(BankT−1)]
}

For any w in the support of Simulated, and for any i ∈ [T ], fixing all ciphertexts except the
i-th pair produced, let Di(w) be the joint distribution of (key i, c⃗i) given w and the remaining T − 1
ciphertexts. There exist distributions Ki(w) and Ci(w) s.t. the following holds:7

The distribution Di(w) is IuO with orthogonality b⃗[i] and underlying distributions Ki(w) and
Ci(w). With all but δ(κ) probability over the choice (by Simulated) of w and of all ciphertexts except
the i-th, the min-entropy of Ki(w) and of Ci(w) is at least κ−O(λ(κ)).

7Note that these distributions do not depend on b⃗i (they depend only on w, on A and on the T − 1 remaining
ciphertexts).
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Lemma 5.4. There exists a leakage bound λ(κ) = Ω(κ), and a distance bound δ(κ) = exp(−Ω(κ)),
s.t. for any security parameter κ ∈ N, execution bound T = poly(κ), and (computationally un-
bounded) leakage adversary A:

Let Real and Simulated be as follows. Choose b⃗ ∈R {0, 1}T . In Real, we begin by running
Bank0 ← BankInit (⃗b[0]). In Simulated we begin by running Bank0 ← SimBankInit:

Real = A
{
((key0, c⃗

α
0 )← BankGen(Bank0))

λ(κ), (key0, c⃗
β
0 ← BankGen(Bank0))

λ(κ),

(Bank ′0 ← BankRedraw(Bank0))
λ(κ), (Bank1 ← BankUpdate(Bank ′0))

λ(κ),

key0, c⃗
α
0 , c⃗

β
0 ,

((key1, c⃗
α
1 )← BankGen(Bank1))

λ(κ), ((key1, c⃗
β
1 )← BankGen(Bank1))

λ(κ)

(Bank ′1 ← BankRedraw(Bank1))
λ(κ), (λ(κ)Bank2 ← BankUpdate(Bank ′1))

λ(κ),

key1, c⃗
α
1 , c⃗

β
1 ,

. . .

((keyT−1, c⃗
α
T−1)← BankGen(BankT−1))

λ(κ), ((keyT−1, c⃗
β
T−1)← BankGen(BankT−1))

λ(κ),

(Bank ′T−1 ← BankRedraw(BankT−1))
λ(κ), (BankT ← BankUpdate(Bank ′T−1))

λ(κ),

keyT−1, c⃗
α
T−1, c⃗

β
T−1

}
Simulated = A

{
((key0, c⃗

α
0 )← SimBankGen(Bank0, b⃗[0]))

λ(κ), (key0, c⃗
β
0 ← SimBankGen(Bank0, b⃗[0]))

λ(κ),

(Bank ′0 ← SimBankRedraw(Bank0))
λ(κ), (Bank1 ← SimBankUpdate(Bank ′0))

λ(κ),

key0, c⃗
α
0 , c⃗

β
0 ,

((key1, c⃗
α
1 )← SimBankGen(Bank1, b⃗[1]))

λ(κ), ((key1, c⃗
β
1 )← SimBankGen(Bank1), b⃗[1])

λ(κ)

(Bank ′1 ← SimBankRedraw(Bank1))
λ(κ), (Bank2 ← SimBankUpdate(Bank ′1))

λ(κ),

key1, c⃗
α
1 , c⃗

β
1 ,

. . .

((keyT−1, c⃗
α
T−1)← SimBankGen(BankT−1, b⃗[T − 1]))λ(κ),

((keyT−1, c⃗
β
T−1)← SimBankGen(BankT−1, b⃗[T − 1]))λ(κ),

(Bank ′T−1 ← SimBankRedraw(BankT−1))
λ(κ), (BankT ← SimBankUpdate(Bank ′T−1))

λ(κ),

keyT−1, c⃗
α
T−1, c⃗

β
T−1

}
then ∆(Real ,Simulated) = δ(κ).

Lemma 5.5. There exists a leakage bound λ(κ) = Ω(κ), and a probability bound δ(κ) = exp(−Ω(κ)),
s.t. for any κ ∈ N, any execution bound T = poly(κ), any vector b⃗ ∈ {0, 1}T , and any (computa-
tionally unbounded) leakage adversary A, the following holds:
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Let Simulated be the following distribution, where we begin by running Bank0 ← SimBankInit:

Simulated = A
{
((key0, c⃗

α
0 )← SimBankGen(Bank0, b⃗[0]))

λ(κ), (key0, c⃗
β
0 ← SimBankGen(Bank0, b⃗[0]))

λ(κ),

(Bank ′0 ← SimBankRedraw(Bank0))
λ(κ), (Bank1 ← SimBankUpdate(Bank ′0))

λ(κ),

key0, c⃗
α
0 , c⃗

β
0 ,

((key1, c⃗
α
1 )← SimBankGen(Bank1, b⃗[1]))

λ(κ), ((key1, c⃗
β
1 )← SimBankGen(Bank1), b⃗[1])

λ(κ)

(Bank ′1 ← SimBankRedraw(Bank1))
λ(κ), (Bank2 ← SimBankUpdate(Bank ′1))

λ(κ),

key1, c⃗
α
1 , c⃗

β
1 ,

. . .

((keyT−1, c⃗
α
T−1)← SimBankGen(BankT−1, b⃗[T − 1]))λ(κ),

((keyT−1, c⃗
β
T−1)← SimBankGen(BankT−1, b⃗[T − 1]))λ(κ),

(Bank ′T−1 ← SimBankRedraw(BankT−1))
λ(κ), (BankT ← SimBankUpdate(Bank ′T−1))

λ(κ),

keyT−1, c⃗
α
T−1, c⃗

β
T−1

}
For any w in the support of Simulated, and for any i ∈ [T ], fixing all ciphertexts except the

i-th pair, let Dα
i (w) and Dβ

i (w) be the joint distribution of (key i, c⃗
α
i ) and (key i, c⃗

β
i ) (respectively)

given: w, the remaining T − 1 keys and ciphertext pairs, and (respectively) c⃗βi and ⟨key i, c⃗
β
i ⟩, or c⃗αi

and ⟨key i, c⃗αi ⟩. Then there exist distributions Kα
i (w), Cαi (w) and Kβ

i (w), C
β
i (w) s.t. the following

holds:8

The distributions Dα
i (w) and D

β
i (w) are both IuO with orthogonality b⃗[i] and underlying distri-

butions Kα
i (w) and Cαi (w) or Kβ

i (w) and Cβi (w) (respectively). With all but δ(κ) probability over
the choice (by Simulated) of the fixed values, the min-entropies of all these underlying distributions
are at least κ−O(λ(κ)).

5.2 Piecemeal Matrix Computations

Recall that we treat collections of ciphertexts as matrices, where each column of the matrix is
a ciphertext. We refer to the procedures in this section as “piecemeal”, because they access the
matrices by dividing them into “pieces” or “sketches”, and loading each piece (or sketch) into
memory separately. Each piece/sketch is a collection of linear combinations of the matrix’s columns.
We refer to these as pieces (rather than sketches) throughout this section.

We present piecemeal procedures for matrix multiplication, for refreshing the key under which
the ciphertexts in a matrix’s columns are encrypted, and for adding a vector to the columns of a
matrix (we refer to this as matrix-vector addition). We show that these procedures have several
security properties under leakage attacks. In all these procedures, no matrix is ever loaded into
memory in its entirety. Rather, the matrices are only accessed in a piecemeal manner.

As an (important) example for why this facilitates security, consider the rank of a matrix on
which we are computing. If this matrix is loaded into memory in its entirety, then a leakage
adversary can compute its rank. If, however, only “pieces” of the matrix are loaded into memory

8Note that these distributions do not depend on b⃗i (they depend only on w, on A, on the T − 1 remaining
key-ciphertext pairs, and on the additional i-th ciphertext (c⃗βi or c⃗αi respectively).
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at any once time, then it is no longer clear how a leakage adversary can compute the rank. In fact,
we will show that (under the appropriate matrix distribution), as long as the matrix is accessed in
a piecemeal fashion, its rank is completely hidden, even from a computationally unbounded leakage
adversary. This fact will be used extensively in our security proofs. See the subsequent sections for
security properties and proofs.

PiecemealMM (A,B): multiplies matrices A ∈ {0, 1}κ×m and B ∈ {0, 1}m×n; Under leakage

Parse: A = [A1, . . . , Aa], where each Ai is a κ× ℓ matrix, and BT = [BT
1 , . . . , B

T
b ], where each Bj

is an m× ℓ matrix. Further parse each BT
i = [BT

i,1, . . . , B
T
i,a], where each Bi,j is an ℓ× ℓ matrix.

1. For i← 1, . . . , b:

(a) Set D0 = 0̄

(b) For j ← 1, . . . , a: Dj ← Dj−1 + (Aj × Bi,j); leakage on each tuple (Dj−1, Aj , Bi,j)
separately

(c) Ci ← Da

2. Output the product matrix C = [C1, . . . , Cb]

Figure 5: Piecemeal Matrix Multiplication for κ, ℓ ∈ N

PiecemealRefresh(key , A): refreshes the key for matrix A ∈ {0, 1}κ×m

Parse: A = [A1, . . . , Aa], where each Ai is a κ× ℓ matrix.

1. σ ← KeyEntGen(1κ)

2. for i← 1 . . . a: A′
i ← CipherCorrelate(Ai, σ); leakage on (Ai, σ) for each i separately

3. key ′ ← KeyRefresh(key , σ); leakage on (key , σ)

4. Output key and the refreshed matrix A′ = [A′
1, . . . , A

′
a]

Figure 6: Piecemeal Matrix Refresh for κ, ℓ ∈ N

PiecemealAdd(A, v⃗): adds v⃗ ∈ {0, 1}κ to each column of A ∈ {0, 1}κ×m

Parse: A = [A1, . . . , Aa], where each Ai is a κ× ℓ matrix.

1. for i← 1 . . . a, j ← 1 . . . ℓ: A′
i[ℓ]← Ai[ℓ] + v⃗; leakage on (Ai, v⃗) for each i separately

2. A′ = [A′
1, . . . , A

′
a]

Figure 7: Piecemeal Matrix Addition for κ, ℓ ∈ N

5.3 Piecemeal Leakage Attacks on Matrices and Vectors

In this section, we define “piecemeal leakage attacks” on matrices. In particular, these attacks
capture the leakage that can be computed via a leakage attack on the piecemeal matrix procedures
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(multiplication, refresh, and matrix-vector addition). We prove then that random matrices are
resilient to several flavors of such piecemeal attacks.

Attack on a Matrix. A piecemeal leakage attack on a matrix, is a multi-source leakage attack,
where the sources are key and (one or many) “pieces” of the matrix. Recall that each “piece” here
is a collection of linear combinations of the matrix columns. See Definition 5.6 below. We focus
here on the case where the matrix is either independent of key , or has columns orthogonal to key
(as is the case for a ciphertext bank corresponding to underlying plaintext bit 0). The case where
the columns have inner product 1 with key is handled similarly.

We will show that a random matrix M is resilient to piecemeal leakage: the leakage computed
in such an attack is statistically close when (i) the columns of M are all in the kernel of key , (ii) M
is a uniformly random matrix, and (iii) M is a uniformly random matrix of rank κ−1 (independent
of key). Moreover, this statistical closeness holds even if key is later exposed in it’s entirety. We
begin in Section 5.3.1 with a warmup for the case of an attack on a single piece (Lemma 5.8). We
then show security for large number of pieces in Section 5.3.2 (Lemma 5.10).

Definition 5.6 (Piecemeal Leakage Attack on (key ,M)). Take a, κ, λ, ℓ,m ∈ N. Let L⃗in =
(Lin1, . . . ,Lina) be a sequence of (one or more) matrices, where for each Lini, its columns each
specify the coefficients of a linear combination of the rows of M . Thus, for M ∈ {0, 1}κ×m and
Lini ∈ {0, 1}m×ℓ, the matrix piece M×Lini is a collection of ℓ linear combinations of M ’s columns.

Let A be a leakage adversary, operating separately on key ∈ {0, 1}κ and on several matrices in
{0, 1}κ×ℓ (each matrix is M × Lini for some i). We denote A’s output by:

Aλ
κ,ℓ,m,L⃗in

(key ,M) , Aλ(1κ)[key]{(M × Lin1), . . . , (M × Lina)}

we refer to A as a “piecemeal adversary” operating on (key ,M). We omit κ, λ, ℓ,m and L⃗in when
they are clear from the context.

Attack on a Matrix and Vector. We extend these results further, considering piecemeal leak-
age that operates separately on key , and on pieces of a matrix M (as before), each piece jointly
with a vector v⃗. See Definition 5.7 below.

We show that, for a matrix M with columns in the kernel of key , the leakage computed in such
an attack is statistically close when (i) the vector v⃗ is in the kernel of key , and (ii) the vector v⃗ is
not in the kernel of key . Moreover, this statistical closeness holds even if key is later exposed in its
entirety (as above) and also M is later exposed in its entirety. See Section 5.3.3 and Lemma 5.15.

Definition 5.7 (Piecemeal Leakage Attack on (key , (M, v⃗))). Take a, κ, λ, ℓ,m ∈ N. Let L⃗in =
(Lin1, . . . ,Lina) be a sequence of matrices, where for each Lini, its columns each specify the
coefficients of a linear combination of the rows of M as in Definition 5.6.

Let A be a leakage adversary, operating separately on key ∈ {0, 1}κ and on several matrices
in {0, 1}κ×ℓ (as in Definition 5.6), each matrix jointly with a vector v⃗ ∈ {0, 1}κ. We denote A’s
output by:

Aλ
κ,ℓ,m,L⃗in

(key , (M, v⃗)) , Aλ(1κ)[key]{((M × Lin1) ◦ v⃗), . . . , ((M × Lina) ◦ v⃗)}

we refer to A as a “piecemeal adversary” operating on (key , (M, v⃗)). We omit κ, λ, ℓ,m and L⃗in
when they are clear from the context.
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5.3.1 Piecemeal Leakage Resilience: One Piece

We begin by showing that, for a uniformly random key ∈ {0, 1}κ, and a matrix M , given separate
leakage from key and from a single piece of the matrix, the following two cases induce statistically
close distributions. In the first case, the matrix M is uniformly random with columns in the kernel
of key . In the second case, M is a uniformly random matrix of rank κ − 1 (independent of key).
By a “single piece” of M we mean any (adversarially chosen) collection of ℓ linear combinations of
vectors from M , where here we take ℓ = 0.1κ. This result, stated in Lemma 5.8, is a warm-up for
the results in later sections.

Lemma 5.8 (Matrices are Resilient to Piecemeal Leakage with One Piece). Take κ,m ∈ N where
m ≥ κ. Fix ℓ = 0.1κ and λ = 0.05κ. Let Lin ∈ {0, 1}m×ℓ be any collection of coefficients for ℓ
linear combinations, and A be any piecemeal leakage adversary. Take Real and Simulated to be the
following two distributions:

Real =
(
key ,Aλ

κ,ℓ,m,Lin(key ,M)
)
key∈R{0,1}κ,M∈R{0,1}κ×m:∀i,M [i]∈kernel(key)

Simulated =
(
key ,Aλ

κ,ℓ,m,Lin(key ,M)
)
key∈R{0,1}κ,M∈R{0,1}κ×m:rank(M)=κ−1

then ∆(Real ,Simulated) ≤ 2m · 2−0.2κ.

Remark 5.9. We note that, without any leakage access to key (i.e. given only leakage from the
chosen piece of M), a qualitatively similar result to Lemma 5.8 can be derived from a Lemma
of Brakerski et al. [BKKV10] on the leakage resilience of random linear subspaces. Their work
focused on the more challenging setting where the leakage operates on vectors that are drawn from
a low-dimensional subspace (e.g. constant dimension). .

Proof of Lemma 5.8. The proof is by a hybrid argument over the matrix columns. For i ∈ {0, . . . ,m},
let Hi be the i-th hybrid, where the view is as above but using a matrix M drawn s.t. the first i
columns of Mi are uniformly random in the kernel of key , and the last m− i columns are uniformly
random s.t. rank(M) = κ− 1. We show that for all i, ∆(Hi,Hi+1) ≤ 2 · 2−0.2κ. The lemma follows
because H0 = Simulated and Hm = Real .

We show that the hybrids are close by giving a reduction from the task of predicting the inner
product of two vectors under multi-source leakage, to the task of distinguishing Hi and Hi+1. Since
the inner product cannot be predicted under multi-source leakage (by Lemma 3.7), we conclude
that the hybrids are statistically close.

To set up the reduction, first fix i. Draw a uniformly random matrix M ∈ {0, 1}κ×m of rank
κ−1. Let v⃗ be the (i+1)-th column of M .Let M−(i+1) be the matrix M with the (i+1)-th column
set to 0. Now draw key ∈ {0, 1}κ s.t key is orthogonal to the first i columns in M−(i+1).

We show a reduction from predicting the inner product ⟨key , v⃗⟩ given multi-source leakage and
(M−(i+1) × Lin), to distinguishing Hi and Hi+1. This is done by running A(key ,M) on key and
on the matrix M drawn above. The reduction computes A’s (multi-source) leakage on key using
multi-source leakage from key . A’s (multi-source) leakage from M ×Lin is computed using leakage
from v⃗ (since Lin and M−(i+1)×Lin are “public”). Note now that the joint distribution of (key ,M)
is exactly as in Hi. If, however, we condition on the inner product of key and v⃗ being 0, we get that
the joint distribution of (key ,M) is exactly as in Hi+1. Thus, if A has advantage δ in distinguishing
Hi and Hi+1, then the reduction has advantage δ in distinguishing the case that the inner product
of key and v⃗ is 0 from the case that there is no restriction on the inner product.

36



Now observe that, given (M−(i+1)×Lin), the vector key is a random variable with min-entropy
at least κ− ℓ ≥ 0.9κ. This is because key is uniformly random under the restriction that it is in the
kernel of the first i columns of M . The matrix piece (M−(i+1)×Lin) contains only ℓ = 0.1κ vectors,
and so it cannot give more than ℓ bits of information on key . Note also that, given (M−(i+1)×Lin),
the (i+ 1)-th column v⃗ is independent of key , and also v⃗ has min entropy at least (κ− 1) (in fact
v⃗ has high min entropy even given all of M−(i+1).

The reduction uses λ = 0.05κ bits of multi-source leakage, and so by lemma 3.8 with all but
2−0.2κ probability, even given the leakage key and v⃗ are still independent random sources, both
with min entropy at least 0.7κ. When this is the case, by lemma 3.7 we know that, even given key ,
the inner product of key and v⃗ is 2−0.2κ-close to uniform. We conclude that δ ≤ 2 · 2−0.2κ. The
lemma follows.

5.3.2 Piecemeal Leakage Resilience: Many Pieces

In this section, we show our main technical result regarding piecemeal matrix leakage. We show
that random matrices are resilient to piecemeal leakage on multiple pieces of the matrix (operating
separately on each piece). In particular, the leakage is statistically close in the case where the
matrix is one whose columns are all orthogonal to key and in the case where the matrix is uniformly
random. Moreover, this remains true even if key is later exposed in its entirety.

Lemma 5.10 (Matrices are Resilient to Piecemeal Leakage with Many Pieces). Take a, κ,m ∈ N,
where m ≥ κ. Fix ℓ = 0.1κ, and λ = 0.05κ/a. Let L⃗in = (Lin1, . . . ,Lina) be any sequence of
collections of coefficients for linear combinations, where for each i, Lini ∈ {0, 1}m×ℓ has full rank
ℓ. Let A be any piecemeal leakage adversary. Take Real and Simulated to be the following two
distributions:

Real =
(
key ,Aλ

κ,ℓ,m,L⃗in
(key ,M)

)
key∈R{0,1}κ,M∈R{0,1}κ×m:∀i,M [i]∈kernel(key)

Simulated =
(
key ,Aλ

κ,ℓ,m,L⃗in
(key ,M)

)
key∈R{0,1}κ,M∈R{0,1}κ×m:rank(M)=κ−1

then ∆(Real ,Simulated) ≤ 5a2 · 2−0.04κ/a.

Proof. For i ∈ {0, . . . , a}, we denote Pi = M ×Lini the matrix “piece” being leaked on/attacked in
the i-th part of the attack. We use wi to denote the leakage accumulated by A up to and including
the i-th attack. We will consider Vi, the conditional distribution on (key,M), drawn as in Real ,
given the leakage wi. Namely, in V0 we have key drawn uniformly at random and M is random
with columns in kernel(key). Note that the random variables key and M , when drawn by Vi, are
not independent. In particular, key and the columns of M are orthogonal. Let Ki andMi be the
marginal distributions of Vi on key and on M .

Hybrids. We will prove Lemma 5.10 using a hybrid argument. For i ∈ {0, . . . , a}, we define
a hybrid distribution Hi. Each hybrid’s output domain will be key ∈ {0, 1}κ and leakage values
computed by A(key ,M).

For each i, we define Hi by drawing (key ,M) ∼ V0, and simulating the piecemeal leakage attack
A(key ,M). We always use key for computing the key leakage in the attack. For leakage on the
j-th matrix piece, however, we use Pj ’s drawn differently for each Hi:
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• For j ∈ {1, . . . , i}, we define Pj = (M× Linj).

• For j ∈ {i + 1, . . . a}, re-draw Mj ∼ Mj−1. I.e., we re-draw the matrix from the current
marginal distribution of Vj−1 on M , independently of key . Define Pj = (Mj × Linj).

Clearly, Ha = Real , because in Ha we never compute leakage on a re-drawn matrix Mj . We will
show that H0 = Simulated , see Claim 5.11. Note that this is non-trivial because in H0 the matrix
M is continually re-drawn from Mj (independently of key), whereas in Simulated the matrix M is
never redrawn. Nonetheless, Claim 5.11 below shows that, because the leakage operates separately
on key and on M , these two distributions are identical.

Claim 5.11. H0 = Simulated

Proof of Claim 5.11. Fix leakage wj for the first j attacks on pieces of M . In the distribution H0,
for the (j + 1)-th matrix piece, we use Pj+1 = Mj+1 × Linj+1, where Mj+1 is re-drawn from the
marginal distributionMj .

In the distribution Simulated , on the other hand, we use Pj+1 = M×Linj+1, where M is drawn
fromM′j , the distribution of uniformly random M ’s of rank κ− 1 (independent of key), given that
the multi-source leakage so far was wj .

Other than this difference, the distributions are identical. Thus, it suffices to show that, for
every j and every fixed leakage wj in the first j attacks, we have thatMj =M′j .

The leakage in the first j attacks operates separately on key and on M . Thus, we know that
conditioning the joint distribution V0 on wj , is equivalent to conditioning V0 on (key ,M) falling in
a product set. Let Skey ⊆ {0, 1}κ and SM ⊆ {0, 1}κ×2κ be the sets s.t. for all (key ,M) ∈ Skey×SM ,
the leakage on the first j pieces in a piecemeal attack on (key ,M) equals wj . Now we know that
Mj is exactly equal toM0, conditioned on M falling in the set SM .

Similarly, in Simulated the distributionM′j is the uniform distribution on rank κ− 1 matrices,
conditioned on the leakage wj , i.e. on M falling in the set SM . SinceM0 is uniform on rank κ− 1
matrices, for any wj we get thatMj =M′j . The claim follows.

To complete the proof of Lemma 5.10, we will show that ∆(Hi,Hi+1) ≤ 4m · 2−0.04κ/a. The
lemma follows by a hybrid argument. For this, consider the joint distribution of key , and of
the leakage wi+1 computed on the first (i + 1) pieces. We will show that the joint distribution is
statistically close in both hybrids. This suffices to show that the hybrids themselves are statistically
close, because, for both hybrids, the leakage on pieces ((i + 2), . . . , a), and the remaining leakage
on key , can be computed as a function of (key , wi+1) (the same function for both hybrids).

In both Hi,Hi+1, leakage on the first i pieces is computed in exactly the same way. The
difference is in leakage on the (i+1)-th piece. Fixing the leakage wi on the first i pieces, in Hi+1 we
have Pi+1 computed using dependent (key ,M) ∼ Vi. In Hi we use independent key ∼ Ki,M ∼Mi.
These two different distributions yield different leakage w on the (i+ 1)-th piece.

Piecemeal Leakage from IuO Distributions. key and M drawn (jointly) by Vi are not inde-
pendent. In general, for a dependant distribution Vi on key and M with marginal distributions Ki

andMi, leakage on (key ,M) ∼ Vi could looks very different from leakage on (key ∼ Ki,M ∼Mi).
We will show, however, that piecemeal leakage resilience does hold in a special case where the joint
distribution Vi is independent up to orthogonality (IuO, see Definition 3.10). We will also show it
holds when Vi is statistically close to IuO, as defined below.
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Definition 5.12 (Key-Matrix α-Independence up to Orthogonality). Let V be a distribution on
pairs (key ,M), where key ∈ {0, 1}κ,M ∈ {0, 1}κ×2κ and M is always of rank κ − 1. We say that
V is α-independent up to orthogonality, if there exists distribution V ′ that is independent up to
orthogonality and ∆(V,V ′) ≤ α.

We will show that piecemeal leakage on an IuO distribution is statistically close to piecemeal
leakage when key and M are sampled from the independently drawn variant, see Claim 5.13 below.
We also show that Vi is (w.h.p over wi) an IoU distribution, see Claim 5.14. Statistical closeness
of the hybrids Hi and Hi+1 follows.

Claim 5.13. Take a, κ,m, ℓ, λ as in Lemma 5.10. Let V be any distribution over pairs (key ,M),
where key ∈ {0, 1}κ,M ∈ {0, 1}κ×m and M has rank κ− 1. Suppose that V is IuO, with underlying
distributions K andM. Suppose further that V has min-entropy at least (κ+ (κ− 1) · 2κ− 0.15κ).

Let Lin ∈ {0, 1}m×ℓ be a collection of coefficients for linear combinations, specified by a matrix
of rank ℓ. Let A be any piecemeal leakage adversary. Take D and F to be the following distributions:

D = (key , w)(key,M)∼V,w←A(key,M)

F = (key , w)key∼K,M∼M,w←A(key,M)

Take δ = (4ℓ · 2−0.05κ). Then ∆(D,F ) ≤ 2δ. Moreover, with all but δ probability over w ∼ D, we
have that ∆((D|A(key ,M) = w), (F |A(key ,M) = w)) ≤ δ.

The proof of Claim 5.13 is below.

Claim 5.14. Take a, κ, ℓ, λ,V, L,A as in Claim 5.13. Suppose here that V: (i) has min-entropy
at least (κ + (κ − 1) · 2κ − 0.15κ) (as in Claim 5.13), and (ii) is α-close to independence up to
orthogonality (see Definition 5.12). Define the distribution:

V(w) = (key ,M)(key,M)∼V:A(key,M)=w

and take δ = (4ℓ · 2−0.05κ). For any 0 < β < 1, with all but (β + δ) probability over w ←
A(key ,M)(key,M)∼V it is the case that V(w) is ((α/β)+δ)-close to independence up to orthogonality.

The proof of Claim 5.14 is below. We now complete the proof of Lemma 5.10:

1. With all but 2−0.05κ probability over wi, for all j ≤ i simultaneously, the min-entropy of Vj
is at least κ + (κ − 1) · 2κ − 0.15κ. This is by Lemma 3.8, because the min-entropy of V0 is
κ+ (κ− 1) · 2κ, and the amount of leakage in the first i ≤ a attacks (leakage from both key
and M) is less than 0.1κ.

2. Take δ = (4ℓ · 2−0.05κ), β = 2−0.04κ/a. We show the following by induction for j ≤ i:

with all but (2−0.05κ + j · (δ + β)) probability over wi, we have that Vj is (2δ/βj)-close to
independence up to orthogonality (and also the min entropy bound of Item 1 holds). The
induction basis follows because V0 is perfectly independent up to orthogonality. The induction
step follows from Claim 5.14 (and the min-entropy bound in Item 1).

Finally, we use Claim 5.13 to conclude that with all but (2−0.05κ + i · (δ + β)) probability over
wi, the hybrids Hi and Hi+1 are (2δ/βi + 2δ)-statistically close. In particular, this implies that

∆(Hi,Hi+1) ≤ (2−0.05κ + i · (δ + β)) + (2δ/βi) + 2δ) ≤ 5a · 2−0.04κ/a

where the second inequality assumes i · β is the largest term in the sum (and using i ≤ a).
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Proof of Claim 5.13. The proof is by a hybrid argument. We denote P = M × L. For i ∈ [a+ 1],
take the i-th hybrid Hi to be:

Hi = (key , w)M∼M,P←M×L,key∼(K|P [1],...,P [i]),w←A(key,P )

i.e. the key is drawn from a conditional distribution on K, conditioning on the first i columns of P .
We get thatH0 = F , because key is drawn without conditioning on any columns (i.e. independently
of M). Also Hℓ = D, because key is re-drawn conditioned on all of P , which is the same as just
drawing (key ,M) ∼ V and taking P = M × L.

For each pair of hybrids, we bound ∆(Hi,Hi+1). To do so, consider the following experiment:
draw (P [1], . . . , P [i]) ∼M (as in both Hi and Hi+1). Fixing these draws, in Hi the distribution of
P [i + 1] is an random sample from Pi = (P [i + 1]M∼M|P [1],...,P [i]). Similarly, in Hi we have that
key is a random sample from Ki = (K|P [1], . . . , P [i]). In particular, note that key is independent
of P [i+ 1].

We now examine H+
i , obtained from Hi by including also the inner product of key and P [i+1].

We can also consider HR
i , obtained from Hi by adding a uniformly random bit:

H+
i = (key , ⟨key , P [i+ 1]⟩, w)key∼Ki,P [i+1]∼Pi,(P [i+2],...,P [ℓ])∼(M|P [1],...,P [i+1])),w←A(key,P )

HR
i = (key , r , w)key∼Ki,P [i+1]∼Pi,(P [i+2],...,P [ℓ])∼(M|P [1],...,P [i+1])),w←A(key,P ),r∈R{0,1}

We will show that ∆(Hi,Hi+1) ≤ 2∆(H+
i ,HR

i ). To show this, consider now Hi+1. Again,
P [i+1] is an independent sample from Pi (as in Hi). Here, however, we have that key depends on
P [i+ 1] and is a sample from Ki+1 = (K|w,P [1], . . . , P [i],P[i+ 1]). Since V is independent up to
orthogonality, we have:

Ki+1 = (key , P [1], . . . , P [i], P [i+ 1])(key,M)∼V,P←M×L

= (key , P [1], . . . , P [i], ⟨key ,P[i+ 1]⟩ = 0)(key,M)∼V,P←M×L

given (key , P [1], . . . , P [i + 1]), the marginal distributions of (P [i + 2], . . . , P [ℓ]) and of w in Hi+1

are identical to Hi. Thus, the only difference between Hi and Hi+1 is that in Hi+1 we add an extra
condition on key to be in the kernel of P [i+ 1].

Re-examining H+
i , by definition Hi is the marginal distribution of H+

i on (key , w). We now
conclude also that Hi+1 is the marginal distribution on (key , w) in H+

i conditioned on ⟨key , P [i+
1]⟩ = 0. Thus ∆(Hi,Hi+1) ≤ 2∆(H+

i ,HR
i ).

It remains to bound ∆(H+
i ,HR

i ). We know that in both these distributions, given (P [1], . . . , P [i])
(without w), we have that key and P [i+ 1] are drawn independently and the joint distribution of
(key , P [i+1]) has entropy at least (1.85κ− i) ≥ 1.75κ. This is simply by the min-entropy of V. By
Lemma 3.8, with all but 2−0.05κ probability over the choice of w, the min-entropy of (key , P [i+1])
given also w (of length at most 0.1κ) is at least 1.6κ.

We conclude, by Lemma 3.7, that with all but 2−0.05κ probability over w ∼ Hi, it is the case
that with all but 2−0.05κ probability over key conditioned on w, the inner product of key and
P [i + 1] (given (key , w)) is 2−0.05κ-close to uniform. In particular, when this is the case, with all
but 2 · 2−0.05κ probability over (key , w) ∼ Hi, we have that the probabilities of (key , w) by Hi and
by Hi+1 differ by at most a exp(1.5 · 2−0.05κ) multiplicative factor. The claim follows.
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Proof of Claim 5.14. V is α-close to IuO. Let V ′ be an IuO distribution s.t. ∆(V,V ′) ≤ α. Let K′
andM′ be the marginal distributions of V ′ on key and M (respectively). Now take:

Z ′ , (key ,M,w)(key,M)∼V′, w←A(key,M),

= (key ,M, w)(key,M′)∼V ′, w←A(key,M ′),M∼(M′|key,A(key,M)=w)

Z ′′ , (key ,M, w)key∼K′,M′∼M′,w←A(key,M ′),M∼(M′|key,A(key,M)=w)

Let Z ′(w) and Z ′′(w) be the marginal distributions of Z ′ and Z ′′ (respectively) on (key ,M),
conditioned on A(key ,M) = w. Note that Z ′(w) is also the conditional distribution of V ′ (condi-
tioned on w). By Claim 5.13, we know that with all but δ probability over w ∼ Z ′ we have that
∆(Z ′(w),Z ′′(w)) ≤ δ. Claim 5.13 shows this is true for the marginal distributions on (key , w), but
in Z ′ and Z ′′, the matrix M is just a probabilistic function of (key , w), and so the bound on the
statistical distance holds also when M is added to the output.

We claim that (for any w), the distribution Z ′′(w) is (perfectly) independent up to orthogonality.
This is because in Z ′′, the leakage w is computed as multi-source leakage on independently drawn
key and M . Thus, conditioning Z ′′ on w is conditioning Z ′′ on (key ,M) falling in a product set
Skey × SM . We know that Z ′′ is (perfectly) independent up to orthogonality, and so conditioning
Z ′′ on a product set Skey×SM will also yield a distribution that is independent up to orthogonality.

We conclude that, with all but δ probability over w ∼ Z ′, we have that ∆(Z ′(w),Z ′′(w)) ≤
δ and Z ′′(w) is independent up to orthogonality. Let Wbad be the set of “bad” w’s for which
∆(Z ′(w),Z ′′(w)) > δ. Since ∆(V,V ′) ≤ α, we know that:

Prw∼V [w ∈Wbad ] ≤ α+ δ

Prw∼V [∆(V(w),V ′(w)) ≥ (α/β)] ≤ β

where the second equation follows by Markov’s inequality. We conclude (by a union bound, and
since V ′(w) = Z ′(w)), that with all but (α + β + δ) probability over w ∼ V, we have that V(w) is
((α/β) + δ)-close to Z ′′(w) and to independence up to orthogonality.

5.3.3 Piecemeal Leakage Resilience: Jointly with a Vector

In this section, we show further security properties of random matrices under piecemeal leakage.
We focus on piecemeal leakage that operates jointly on (each piece of) a matrix and a vector (and
separately on key). The matrix will always have columns that are (random) in the kernel of key .
We show that the leakage is statistically close in the cases where the vector is and is not in the
kernel. Moreover, this statistical closeness is strong and holds even if the matrix is later released in
its entirety. The proof is based on Lemma 5.10 (piecemeal leakage resilience of random matrices)
and on a “pairwise independence” property under piecemeal leakage, stated separately in Claim
5.16 below.

Lemma 5.15 (Strong Resilience to Matrix-Vector Piecemeal Leakage). Take a, κ,m ∈ N, where
m ≥ κ. Fix ℓ = 0.1κ, and λ = 0.01κ/a2. Let L⃗in = (Lin1, . . . ,Lina) be any sequence of collections
of coefficients for linear combinations, where for each i, Lini ∈ {0, 1}m×ℓ has full rank ℓ. Let A be
any piecemeal leakage adversary. Take Real and Simulated to be the following two distributions:

Real =
(
key ,M,Aλ

κ,ℓ,m,L⃗in
(key , (M, v⃗))

)
key∈R{0,1}κ,M∈R{0,1}κ×m:∀i,M [i]∈kernel(key),v⃗∈Rkernel(key)

Simulated =
(
key ,M,Aλ

κ,ℓ,m,L⃗in
(key , (M, v⃗))

)
key∈R{0,1}κ,M∈R{0,1}κ×m:∀i,M [i]∈kernel(key),v⃗∈Rkernel(key)
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then ∆(Real ,Simulated) ≤ 3a · 2−0.01κ/a.

Proof. We define the “midpoint” distribution:

D = 1/2 · Real + 1/2 · Simulated = (key ,M,w = A(key , (M, v⃗)))key,M,v⃗∈R{0,1}κ

For fixed (key ,M,w), we consider their bias:

bias(key ,M,w) , Real [key ,M,w]− Simulated [key ,M,w]

D[key ,M,w]

And note that (by definition):

∆(Real ,Simulated) = E(key,M,w)∼D[|bias(key ,M,w)|]/2 (1)

Thus we focus on bounding E(M,w)∼H [|bias(key ,M,w)|]. We will use a “pairwise independence”
property of matrices under piecemeal leakage.

Claim 5.16 (Pairwise Independence under Piecemeal Leakage). Take a, κ,m, ℓ, λ, L⃗in,A as in
Lemma 5.16. Let F and F ′ be the following distributions. In both F and F ′, take key ∈R {0, 1}κ,
a matrix M ∈R {0, 1}κ×m s.t. all of M ’s columns are in the kernel of key. Choose v⃗1, v⃗2 ∈r {0, 1}κ
s.t. A(key , (M, v⃗1) = A(key , (M, v⃗2)).

F = (v⃗1, v⃗2, b1, b2,A(key , (M, v⃗1)))key,M,v⃗1,v⃗2,b1=⟨key,ṽ1⟩,b2=⟨key,ṽ2⟩

F ′ = (v⃗1, v⃗2, b1, b2,A(key , (M, v⃗1)))key,M,v⃗1,v⃗2,b1,b2∈R{0,1}

then ∆(F ,F ′) ≤ δ = 5a2 · 2−0.03κ/a.

The proof of Claim 5.16 is below.
We will show that if E(M,w)∼H [|bias(key ,M,w)|] is too high, then we can predict the inner

products of v⃗1, v⃗2 as above with key and distinguish F and F ′ (a contradiction to Claim 5.16).
We do this by considering a distinguisher DIS that gets (v⃗1, v⃗2, b1, b2, w) (where (v⃗1, v⃗2, w) are
distributed as in both F and F ′), and attempts to distinguish whether b1, b2 ∈ {0, 1} are uniformly
random (distribution F ′), or are the inner products of v⃗1, v⃗2 with key (distribution F). The
distinguisher DIS outputs 1 if b1 = b2 and outputs 0 otherwise. By Claim 5.16, the advantage of
(any distinguisher, and in particular also of) DIS is bounded by δ = 6a2 · 2−0.03κ.

For distribution F ′, the bits b1, b2 are independent uniform bits, and so the probability that
DIS outputs 1 is exactly 1/2. In distribution F , however, if E(M,w)∼D[|bias(key ,M,w)|] is high
then DIS will output 1 with significantly higher probability (this gives a bound on the expected
magnitude of the bias).

To see this, fix (key ,M). For a possible leakage value w ∈ {0, 1}a·λ, denote by pkey,M,w the
probability of leakage w given key and M (for (key ,M, v⃗) ∼ D). Conditioning D on (key ,M),
the probability of identical leakage from uniformly random v⃗1 and v⃗2 is the “collision probability”
cp(key ,M) ,

∑
w∈{0,1}a·λ p

2
key,M,w. Conditioning D on (key ,M) and identical leakage from v⃗1

and v⃗2, the probability that the leakage is some specific value w is exactly p2key,M,w/cp(key ,M).
Conditioning D on (key ,M) and identical leakage w from v⃗1, v⃗2, the probability that the inner
products of v⃗1 and v⃗2 with key are equal and DIS outputs 1 is exactly 1/2 + 2|bias(key ,M,w)|2
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(notice that the advantage over 1/2 is always “in the same direction”). Since (by Claim 5.16) the
advantage of DIS is at most δ, we get that:

δ ≥ Ekey,M [DIS’s advantage in outputting 1 given (key ,M)]

= Ekey,M

 ∑
w∈{0,1}a·λ

(p2key,M,w/cp(key ,M)) · 2|bias(key ,M,w)|2


Now because cp(key ,M) ≥ 2−a·λ, we get that:

Ekey,M

 ∑
w∈{0,1}a·λ

p2key,M,w · 2|bias(key ,M,w)|2
 ≤ 2a·λ · δ (2)

We also have that:

2∆(Real ,Simulated) = E(key,M,w)∼H [|bias(key ,M,w)|]

= Ekey,M

 ∑
w∈{0,1}a·λ

pkey,M,w · |bias(key ,M,w)|


≤

√√√√√2a·λ · Ekey,M

 ∑
w∈{0,1}a·λ

p2key,M,w · |bias(key ,M,w)|2


where the last inequality is by Cauchy-Schwartz. Putting this together with Equation 2, we get:

∆(Real ,Simulated) ≤ 2a·λ ·
√
δ < 3a · 2−0.01κ/a

which completes the proof.

Proof of Claim 5.16. Consider the following distribution E , where key is uniformly random, M is
a uniformly random matrix with columns in key ’s kernel, and v⃗1, v⃗2 are uniformly random pair s.t.
A(key , (M, v⃗1)) = A(key , (M, v⃗2)):

E = (key , v⃗1, v⃗2,A(key , (M, v⃗1)))key,M∈R{0,1}κ×m:∀i,M [i]∈kernel(key),v⃗1,v⃗2

Consider also the distribution H that uses a uniformly random matrix M of rank κ− 1:

H = (key , v⃗1, v⃗2,A(key , (M, v⃗1)))key,M∈R{0,1}κ×m:rank(M)=κ−1,v⃗1,v⃗2

We will show that:

1. ∆(E ,H) < 5a2 · 2−0.03κ/a, this will follow by piecemeal leakage resilience (Lemma 5.10).

2. In H, the advantage in distinguishing (⟨key , v⃗1⟩, ⟨key , v⃗2⟩) from uniformly random unbiased
bits is bounded by 2−0.1κ+3. I.e., in H the inner products of v⃗1 and v⃗2 with key are (close to)
pairwise independent.

The claim will follow from the two items above (we assume 2−0.1κ+3 ≤ a2 · 2−0.03κ/a).
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Item 1, E and H are close. Let A be an adversary for which we get ε = ∆(E ,H). Given A, we
show a piecemeal leakage attack A′ on (key ,M) a la Lemma 5.10. We show that if A has advantage
ε in distinguishing E andH, then A′ has advantage ε′ (where ε′ ≥ ε·2−a·λ) in distinguishing whether
M is in key ’s kernel or M is independent of key . By Lemma 5.10, we conclude a bound on ε′ and
(through it) on ε.

The piecemeal leakage attack A′ proceeds as follows. The adversary chooses two uniformly
random vectors v⃗1, v⃗2 ∈R {0, 1}κ. It then computes piecemeal leakage A(key , (M, v⃗1)), and also
computes whetherA(key , (M, v⃗1)) = A(key , (M, v⃗2)) (for the randomly chosen v⃗1, v⃗2). This requires
(λ+ 1) bits of piecemeal leakage from key and (each piece of) M (it takes λ bits to determine the
leakage from each piece v⃗1 and an extra bit to tell whether the leakage on v⃗2 is identical). If the
leakage from v⃗1 and v⃗2 is identical, we output

A′(key ,M) = (v⃗1, v⃗2,A(key , (M, v⃗1))

Otherwise, we output A′(key ,M) =⊥. Observe now that, conditioning on A(key , (M, v⃗1)) =
A(key , (M, v⃗2)), we have that the output of A′ on M with columns in key ’s kernel (together with
key) is exactly the distribution E . The output of A′ on M that is independent of key (conditioned
on identical leakage from v⃗1, v⃗2, and together with key) is distributed exactly as H. In both cases,
when the leakage from v⃗1, v⃗2 is not identical, the output is simply ⊥. We conclude that the statis-
tical distance ε′ between the output of A′ in both cases (M in the kernel and independent M) is
at least ε multiplied by the probability that the leakage on v⃗1 and v⃗2 is identical (say w.l.o.g. we
refer to the “leakage collision” probability for M in the kernel).

For any fixed (key ,M), the probability that we get identical leakage on v⃗1 and v⃗2 chosen
uniformly at random is at least the inverse of the total amount of possible leakage values. I.e. at
least 2−a·λ. This gives a lower bound on ε′ as a function of ε. By Lemma 5.10 we also have an
upper bound on ε′. Putting these together:

ε · 2−a·λ ≤ ε′ ≤ 5a2 · 2−0.04κ

we conclude that:
∆(E ,H) ≤ 5a2 · 2−0.04κ · 2a·λ = 5a2 · 2−0.03κ

Item 2, H is pairwise independent. Consider the piecemeal leakage in H as a multi-source
leakage attack on key and on (v⃗1, v⃗2) (chosen conditioned on v⃗1 and v⃗2 yielding the same leakage).
For any fixed M , the amount of leakage from key in the attack is bounded by 0.01κ/a. In particular,
by Lemma 3.8 we have that, given the leakage, with all but 2−0.1κ probability, key is an independent
sample in a source with min-entropy at least 0.85κ.

We now consider (v⃗1, v⃗2). We claim that (for any fixed (key ,M)) with all but 2−0.1κ probability
over the choice of v⃗1, v⃗2 yielding the same leakage, the set of vectors yielding the same leakage as
v⃗1 and v⃗2 is of size at least 20.85κ. To see this, for a vector v⃗, let S(v⃗) be the set of vectors that
give the same leakage as v⃗. Let Sbad be the set of all vectors v⃗ for which S(v⃗) is of size less than
2−0.85κ. By Lemma 3.8 we get that:

α = Pr
v⃗∈R{0,1}κ

[v⃗ ∈ Sbad ] ≤ 2−0.1κ

The probability that v⃗1, v⃗2 drawn s.t. their leakage is identical both land in Sbad is at most
α2 divided by the total probability that the leakage from uniformly random v⃗1, v⃗2 is identical (the

44



“collision probability”). The total leakage is of bounded length a · λ, so the collision probability is
at least 2−a·λ. We conclude that:

Pr
v⃗1,v⃗2∈R{0,1}κ:A(key,(M,v⃗1))=A(key,(M,v⃗2))

[v⃗1, v⃗2 ∈ Sbad ] ≤ α2 · 2a·λ < 2−0.1κ

We conclude that with all but 2 · 2−0.1κ probability, given the leakage, the random variables
key , v⃗1, v⃗2 are independent and each of min entropy at least 0.85κ. By Lemma 3.7, we conclude
that the joint distribution of inner products of v⃗1 and v⃗2 with key is at statical distance 2−0.1κ+3

from uniformly random (or pairwise independent).

5.4 Piecemeal Matrix Multiplication: Security

In this section we use security of random matrices under piecemeal leakage to prove several security
properties for piecemeal matrix multiplication. These will serve as building blocks for proving the
security of the ciphertext bank as a whole (see the lemmas in Section 5.1). The proofs follow from
the lemmas above, and are omitted.

Lemma 5.17. Take κ,m, n ∈ N s.t. m,n ≥ κ. Set ℓ = 0.1κ and leakage bound λ = 0.01κ · (ℓ/m)2.
Let A be any piecemeal adversary and A′ any leakage adversary. Let D and F be the following two
distributions, where in both cases we draw key ∈R {0, 1}κ, x⃗ ∈R {0, 1}m and B ∈R {0, 1}m×n s.t.
the columns of B are all in the kernel of x⃗ and with parity 1.

D = (key , C, w ← Aλ
κ,ℓ,m,Lin(key ,A),

A′λ(w, x⃗, B)[key , C ← PiecemealMM (A, B)])A∈R{0,1}κ×m:∀i,⟨key,A[i]⟩=0

F = (key , C, w ← Aλ
κ,ℓ,m,Lin(key ,A),

A′λ(w, x⃗, B)[key , C ← PiecemealMM (A, B)])A∈R{0,1}κ×n:∀i,⟨key,A[i]⟩=x⃗[i]

then ∆(D,F) = exp(−Ω(κ)).
Lemma 5.18. Take κ,m, n ∈ N s.t. m,n ≥ κ. Set ℓ = 0.1κ and leakage bound λ = 0.01κ · (ℓ/m)2.
Let A be any (computationally unbounded) leakage adversary. Let D and F be the following two
distributions, where in both distributions key ∈r {0, 1}κ, x⃗ ∈R {0, 1}2κ, A ∈R {0, 1}κ×m s.t. the
i-th column of A has inner product x⃗[i] with key:

D = (key , A, w ← Aλ
κ,ℓ,m,Lin(key , A),

A′λ(w)[key , c⃗← PiecemealMM (A, r⃗)])r⃗∈R{0,1}m×1:(⊕ir⃗[i])=1,⟨x⃗,r⃗⟩=0

F = (key , A, w ← Aλ
κ,ℓ,m,Lin(key , A),

A′λ(w)[key , c⃗← PiecemealMM (A, r⃗)])r⃗∈R{0,1}m×1:(⊕ir⃗[i])=1,⟨x⃗,r⃗⟩=1

then ∆(D,F) = exp(−Ω(κ)).
Lemma 5.19. Take κ,m, n ∈ N s.t. m,n ≥ κ. Set ℓ = 0.1κ and leakage bound λ = 0.01κ · (ℓ/m)2.
Let A be any (computationally unbounded) leakage adversary. Let D and F be the following two
distributions, where in both distributions key ∈r {0, 1}κ and A ∈R {0, 1}κ×m:9

D = (key , C,Aλ(key , A)[key , C ← PiecemealMM (A,B)])B∈R{0,1}m×n:∀i,⊕BT [i]=1

F = (key , C,Aλ(key , A)[key , C ← PiecemealMM (A,B)])B∈R{0,1}m×n:rank(B)=m−1,∀i,⊕BT [i]=1

9In both distributions, we give A complete and explicit access to key and A. The piecemeal leakage attack here
is on B, which has different distributions in the two cases.
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then ∆(D,F) = exp(−Ω(κ)).

5.5 Ciphertext Bank Security Proofs

We now prove Lemmas 5.1, 5.2, 5.3 , 5.4 and 5.5 from Section 5.1 (Lemma 5.1 is the most technically
involved). These Lemmas consider leakage produced in an attack on a real or simulated sequence
of T ciphertext generations. In proving statistical closeness of the leakage, we will use both the
simulated views and additional hybrid views. We compute these views by running the T generations,
under the leakage attack of A, using biased random coins.

Internal Variables. We will use several internal variables as we run these T generations. For the
t-th generation (where i goes from 0 to T−1): (key i, Ci) denote the bank before the i-th generation,
with underlying plaintexts x⃗i. The randomness used to generate the i-th output ciphertext is r⃗i,
the matrix used to refresh the bank is Ri, and the key refresh value is σi. We use Di to denote the
intermediate ciphertext in the i-th generation after key refresh, but before multiplication with Ri.
The output ciphertext of the i-th generation is c⃗i (the output key is key i).

Proof of Lemma 5.1. We prove here the case that b = 0, the case b = 1 is similar. Recall that Real is
the view of A given “real” generations of ciphertexts, using a bank of ciphertexts whose underlying
plaintexts are 0, and generating ciphertexts whose underlying plaintexts are 0. Simulated is a
view generated using a bank of ciphertexts whose underlying plaintexts are uniformly random, but
choosing plaintexts using biased randomness so that their underlying plaintexts are always 0. The
proof of statistical closeness uses a hybrid argument as follows.

We define hybrid views {Ht} for t ∈ {0, . . . , T + 1}. The output of each hybrid is T tuples,
one for each ciphertext generation, each consisting of a key, a ciphertexts, and a leakage value.
We compute the hybrids views by running the T generations, under the leakage attack of A, using
biased random coins. We specify the distribution of each of the internal variables described above,
and these specify the hybrid view on the outputs and leakage from the T generations.

When generating Ht, for t > 0 we initialize (key0, C0) as in Simulated . In H0 we initialize
(key0, C0) as in Real . We then run T ciphertext generations under A’s leakage attack. The key
refresh value σi is always uniformly random. For the i-th generation, where i ≤ t, we choose r⃗i
uniformly at random s.t. it has odd parity and is in kernel(x⃗i). For i ≥ t, we choose r⃗i to be
uniformly random with odd parity (and no further restrictions). For i ̸= (t−1), we use a uniformly
random Ri whose columns have odd parity. For i = (t− 1), we use a uniformly random Ri whose
columns have odd parity and are in kernel(x⃗i). This completes the hybrids’ specification.

By construction, we get that H0 = Real and HT+2 = Simulated . It remains to show that, for all
t, ∆(Ht,Ht+1) = exp(−Ω(κ)). We show this here for 2 < t < T (the borderline cases are handled
similarly). We use an intermediate distribution H′t, which operates as Ht, except that it chooses
a x⃗t vector uniformly at random (recall that in Ht the columns of Ct are all in kernel(key)). It
then chooses r⃗t and the columns of Rt to be uniformly random with odd parity and in kernel(x⃗t)
(whereas in Ht these were uniformly random with odd parity and no further restriction).

Claim 5.20. ∆(H′t,Ht+1) = exp(−Ω(κ))

Proof. The differences between H′t and Ht+1 are: (i) the distribution of r⃗t−1 and the columns of
Rt−1: they are uniform (with odd parity) in Ht+1, but in H′t they are all in kernel(x⃗t−1), (ii) in
H′t we have that the columns of Ct are orthogonal to key t, whereas in Ht+1 they are uniformly
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random, and (iii) the distribution of r⃗t and the columns of Rt: they have odd parity in both Ht+1

and H′t, but in Ht+1 they are orthogonal to x⃗t that has the plaintext bits encrypted in Ct, whereas
in H′t they are orthogonal to a uniformly random x⃗t that is independent of (key t, Ct).

We reduce the security game of Lemma 5.17 to distinguishing these two cases. There, a vector x⃗
is chosen uniformly at random. A matrix A either has columns orthogonal to key , or has uniformly
random columns whose inner products with key equal the bits in x⃗. This A is multiplied by B with
columns in the kernel of x⃗. To reduce the game of Lemma 5.17 to distinguishing H′t and Ht+1, we
put key as key t, A as Ct, x⃗ as x⃗t, and B as Rt.

We begin by showing that leakage from the t-th generation on, together with all keys and
ciphertexts created in all generations, is statistically close in both hybrids. The leakage from the
t-th generation takes as input the keys and ciphertexts produced in prior iterations, and so for
each i ∈ {0, . . . , t− 1}, we pick (key i, c⃗i) uniformly at random (independent of (key t, Ct)) s.t. they
have inner product 0. We also choose a uniformly random correlation value σt. Note that the
distribution of these key-ciphertext pairs, in conjunction with (key t, Ct) set as above, is exactly as
in H′t and Ht+1 (respectively, depending on the distribution of key and A for the security game of
Lemma 5.17).

Using the above reduction, we conclude from Lemma 5.17 that the leakage from the t-th genera-
tion, together with (key t, c⃗t, σt, Ct+1) (and the list of key-ciphertext pairs from earlier generations),
is statistically close when the random variables are drawn as in H′t and Ht+1. We can then use
these to generate the leakage and key-ciphertext pairs for generations (t+1) and up (these are just
a function of (key t, σt, Ct+1)).

We need, however, to also generate the leakage for the ciphertext generations that precede the
t-th. Recall that the (key i, c⃗i) key-ciphertext pairs for all iterations i < t were already chosen and
fixed above. We compute the leakage from these iterations using piecemeal leakage from (key t, Ct).
In fact, for i ∈ {0, . . . , t − 3} the leakage is independent of (key t, Ct): we simply choose all of the
randomness for these generations independently of (key t, Ct). For generations {0, . . . , t − 2}, each
Ci is sampled uniformly at random. The σi values are specified by key i ⊕ σi = key i+1, and these
in turn (together with the Ci’s) specify the Di key-refreshed banks. The Ri matrices are uniformly
random s.t. their columns have odd parity and multiplying Di by Ri yields Ci+1. r⃗i’s are uniformly
random s.t. they have odd parity and Ci × r⃗i = c⃗i. This completely specifies the randomness for
all iterations i ∈ {0, . . . (t− 3)}, and we can compute the leakage from those iterations using these
values, independently of (key t, Ct). Note that the randomness for iterations t − 2 and t − 1 will
depend on (key t, Ct), and so leakage from those iterations is not independent, and will be computed
as follows using piecemeal leakage from (key t, Ct).

For the (t − 1)-th generation, we choose Dt−1 uniformly at random. The variable σt−1 is a
function of key t (can be accessed via leakage) and of key t−1 (which is fixed and public). The
ciphertext bank Ct−1 is a function of Dt−1 and of σt−1. I.e. of public information and of (leakage
from) key t. The variable r⃗t−1 is a function of Ct−1 and c⃗t−1, i.e. of public information and (leakage
from) key t. The only remaining variable which is not specified for iteration t− 1 is Rt−1. We will
show below how to compute the needed (piecemeal) leakage from Rt−1 using Dt−1 and piecemeal
leakage only from Ct. Given this (see below), we conclude that leakage from each sub-computation
in the (t− 1)-th generation can be computed via piecemeal leakage from (key t, Ct).

To compute each piece of Rt−1 used in the piecemeal matrix multiplication, we observe that
it suffices to use explicit access to all of Dt−1 (a “public” uniformly random matrix), together
with piecemeal leakage from Ct. We use here the fact that the pieces of Rt−1 that are needed for
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simulating matrix multiplication are all disjoint. Note that, in particular, the distributions of Rt−1
that we will get in the scenarios of Lemma 5.17 are quite different (as they should be).

Finally, we also need to compute leakage from the (t−2)-th generation. Here we need to specify
σt−2, which is a function of key t−2 and key t−1: i.e., we can access is via leakage from key t. This
also specifies Dt−2. Finally, for Rt−2 we use Dt−2 and Ct−1, which can both be accessed via leakage
from key t.

In conclusion, we used a piecemeal attack on (key t, Ct) to generate the key-ciphertext pairs and
leakage up to the t-th generation, and an attack as in Lemma 5.17 to generate the leakage from the
t-th generation on. This yielded the views H′t and Ht+1. By Lemma 5.17 we conclude that these
views must be statistically close.

Claim 5.21. ∆(Ht,H′t) = exp(−Ω(κ))

Proof. The only difference between the hybrids is in the distribution of Rt (in the t-th generation).
We reduce the attack game of Lemma 5.19 to distinguishing the two cases. To do so, we generate
(key i, c⃗i, Ci, wi)i<t identically as in both views. We put key t+1 = key , Dt = A, and Rt = B.

Now consider the t-th matrix update in Ht or H′t, performed via piecemeal multiplication of Dt

with Rt. In Ht we have a uniformly random Rt whose columns have odd parity, and in H′t we place
the additional restriction that the columns are all orthogonal to kernel(x⃗t): i.e. they are all in a
(random) subspace of dimension (2κ − 1). By Lemma 5.19, the leakage obtained, together with
(key t+1, Ct+1), is statistically close in both cases. In both views, we can create the leakage from
later rounds as a function of (key t+1, Ct+1) (the same function in both cases). We can also create
the leakage in the earlier rounds as a function of Ct, key t as in Claim 5.20 (here this is even easier,
because we have explicit access to both).

Proof of Lemma 5.2. We prove here the case that b = 0, the case b = 1 is similar. Recall that
Simulated ′ and Simulated ′′ are two simulated views of A on a sequence of T simulated generations,
both using a bank of ciphertexts whose underlying plaintexts are all uniformly random. The views
differ only in that the plaintexts underlying the ciphertexts that are generated, b⃗′ and b⃗′′, might be
different. The proof of statistical closeness uses a hybrid argument and follows below.

We define hybrid views {Ht} for t ∈ {0, . . . , T}. The output of each hybrid is T leakage values,
one for each ciphertext generation. We compute the hybrids views by running the T generations,
under the leakage attack of A, using biased random coins. We will use the internal variables
described above as we run these T generations. When generating Ht, we initialize (key0, C0) using
SimBankInit (so the ciphertexts in the bank are uniformly random). In Ht, for all i, in the i-th call
to SimBankInit , we use uniformly random σi and Ri whose columns have parity 1. For i < t, we
choose r⃗i uniformly at random s.t. its parity is 1 and the c⃗i produced has inner product b⃗′[i] with
key i. For i ≥ t, we choose r⃗i similarly, except its inner product with key i is b⃗′′[i]. This completes
the specification of the hybrids.

By construction, we get that H0 = Simulated ′′ and HT = Simulated ′. It remains to show that,
for all t, ∆(Ht,Ht+1) = exp(−Ω(κ)). This follows from Lemma 5.18. The Lemma shows that the
leakage obtained in the t-th generation, together with (key t+1, Ct+1), is statistically close in Ht and
Ht+1. In both views, we can create the leakage from later rounds as a function of (key t+1, Ct+1)
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(the same function in both cases). We can also create the leakage in the earlier rounds using a
piecemeal leakage attack on (key t, Ct), as done in Claim 5.20 above.

Proof of Lemma 5.3. The distribution D of ((key0, . . . , keyT−1), (c⃗0, . . . , c⃗T−1)) in Simulated (with-

out any leakage) is IuO, with orthogonality b⃗ and underlying distributions K and C on keys and
ciphertexts: each key and ciphertext in the underlying distributions is uniformly and independently
random. Now, observe that the ciphertext banks in Simulated are uniformly random, independent
of the keys and ciphertexts. Thus, we can compute the leakage from all T generations as a (ran-
domized) multi-source function operating on the ciphertext banks and separately on the keys and
separately on each ciphertext. We conclude by Lemma 3.11 that for each i the distribution Di(w)
is indeed IuO, with orthogonality b⃗[i] and with underlying distributions Ki(w) and Ci(w) that do
not depend on b⃗[i]. The entropy bounds on each key and ciphertext (given w) follow by Lemma
3.8.

We note that independence up to orthogonality and high entropy hold even given the explicit
lists of ciphertexts in the bank (in all calls), as these are just uniformly random matrices, and even
given the random coins used to compute leakage from the target generations (given the ciphertext
bank and the target ciphertext).

6 Safe Computations

In this section we present the SafeNAND procedure, see Section 2.2 for an overview. The (simpler)
treatment of duplications gates is omitted.

This section is organized as follows: the SafeNAND procedure and its security properties are
in Section 6.1. This procedure uses a leakage-resilient permutation procedure, Permute, which
is presented and proved secure in Section 6.2. We then use Permute’s security in the proof of
SafeNAND ’s security, which follows in Section 6.3.

6.1 Safe Computations: Interface and Security

In this section we present the procedure for safely computing NAND gates. The full procedure is
in Figure 8. Correctness follows from the description (see the introduction). For security, we show
that a view of the NAND computation can be simulated, given only the output (and the underlying
distributions of the input keys and the input ciphertexts). This is formalized in Lemma 6.1. See
the subsequent sections for details of the Permute procedure and the proof of Lemma 6.1.

Security of SafeNAND. We provide a simulator for producing the leakage on the SafeNAND
procedure, when the inputs to SafeNAND are chosen from an IuO distribution. The simulator
is given ak, and the underlying distributions for the which the SafeNAND inputs were drawn.
It outputs a complete view of the leakage from SafeNAND . This includes the leakage from the
Decrypt operation (which loads keys and ciphertexts into memory simultaneously). The security
claim is below in Lemma 6.1. We note that the SafeNAND simulator is not efficient, its running
time might be exponential in that of the leakage adversary. The descriptions of the underlying
input distributions themselves might already be of exponential size. This does not pose a problem,
because the security of our main construction is statistical, and we never use the SafeNAND

49



SafeNAND(ai, key i, c⃗i, aj , keyj , c⃗j , keyk, c⃗k): Safe NAND computation

1. Correlate the ciphertexts to a new key. Pick a new key key ← KeyGen(1κ)

σi ← key i ⊕ key , σj ← keyj ⊕ key , σk ← keyk ⊕ key

c′i ← CipherCorrelate(ci, σi), c
′
j ← CipherCorrelate(cj , σj), c

′
k ← CipherCorrelate(ck, σk)

leakage on [(key i, σi), (keyj , σj), (keyk, σk), (c⃗i, σi), (c⃗j , σj), (c⃗k, σk)]

2. c′′i ← c′i ⊕ (ai, 0, . . . , 0), c
′′
j ← c′j ⊕ (aj , 0, . . . , 0)

C ← (c⃗′k, c⃗
′
k ⊕ c⃗′′i , c⃗

′
k ⊕ c⃗′′j , c⃗

′
k ⊕ c⃗′′i ⊕ c⃗′′j ⊕ (1, 0, . . . , 0))

leakage on ciphertexts

3. (K ′, C ′)← Permute(key , C)

leakage from Permute (see below)

4. Decrypt the four ciphertexts in C ′ using the four keys in K ′. If there is one 0 plaintext in
the results, then output ak ← 0. Otherwise, output ak ← 1

leakage on C ′ and K ′ (jointly)

Figure 8: SafeNAND procedure. The Permute procedure is in Figure 9.

simulator for the (efficient) SimEval simulation procedure, only for creating hybrid distributions in
the security proof.

Lemma 6.1. There exist: an exponential time simulator SimNAND, a leakage bound λ(κ) = Ω̃(κ),
and a distance bound δ(κ) = negl(κ) s.t. for every κ ∈ N and leakage adversary A:

Let D be a distribution on two 3-tuples: a key-tuple (key i, keyj , keyk) ∈ {0, 1}3×κ, and a
ciphertext-tuple (c⃗i, c⃗j , c⃗k) ∈ {0, 1}3×κ. Suppose that D is IuO with orthogonality (bi, bj , bk) ∈
{0, 1}3. Let D’s underlying distributions on the key-tuple and on the ciphertext-tuple be K and C.
I.e. D = K ⊥(bi,bj ,bk) C. Suppose further that H∞(K),H∞(C) ≥ 3κ−O(λ(κ)).

For any (ai, aj) ∈ {0, 1}2, take:

Real =
(
Aλ(κ)[ak ← SafeNAND(ai, key i, c⃗i, aj , keyj , c⃗j , keyk, c⃗k)]

)
((keyi,keyj ,keyk),(c⃗i ,⃗cj ,⃗ck))∼D

Simulated = (SimNAND(ai, aj , ak,K, C))ak←(((ai⊕bi) NAND (aj⊕bj))⊕bk)

then ∆(Real ,Simulated) ≤ δ(κ).

6.2 Leakage-Resilient Permutation

The Permute procedure receives as input a key and a 4-tuple of ciphertexts. It outputs a “fresh”
pair of 4-tuples of keys and ciphertexts. The correctness property of the permute procedure is that
the plaintexts underlying the output ciphertexts (under the respective output keys) are a (random)
permutation of the plaintexts underlying the input ciphertexts. The intuitive security guarantee
is that, even to a computationally unbounded leakage adversary, the permutation looks uniformly
random. The procedure is below in Figure 9. Correctness is immediate. Security is formalized by
the existence of a simulator that generates a complete view of the leakage and the output keys and
ciphertexts. The simulator only gets: (i) descriptions of the marginal distribution from which key
and the input ciphertext are drawn, and (ii) a random permutation of the plaintexts underlying the
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input ciphertexts. We show that, under the appropriate conditions on the distribution from which
the key and ciphertexts are drawn, the real and simulated joint distributions of leakage and output
from Permute will be statistically close. In particular, on an intuitive level, the joint distribution
of the leakage and the outputs is independent of the permutation that was used. This security
property is stated in Lemma 6.2 below. We note that the simulator is not efficient, and may run
in exponential time (as was the case for the SimNAND simulator, it is only used in the security
proof of our main construction).

Permute(key , C): leakage-resilient permutation for key and a 4-tuple C of ciphertexts

Take K0 ← (key , key , key , key), C0 ← C, and ℓ = polylog(κ)

For i ∈ [ℓ], repeat:

1. for j ∈ [κ], k ∈ [4]: σi[j][k]← KeyEntGen(1κ), Li[j][k]← KeyRefresh(Ki[k], σi[j][k]) leakage
on (Ki, σi)

2. for j ∈ [κ], k ∈ [4]: Di[j][k]← CipherCorrelate(Ci[k], σi[j][k])

leakage on (Ci, σi)

3. for j ∈ [κ], k ∈ [4]: τi[j][k]← CipherEntGen(1κ), D′
i[j][k]← CipherRefresh(Di[j][k], τi[j][k])

leakage on (Di, τi)

4. for j ∈ [κ], k ∈ [4]: L′
i[j][k]← KeyCorrelate(Li[j][k], τi[j][k])

leakage on (Li, τi)

5. pick πi ∈R Sκ
4 , for j ∈ [κ]: L′′

i [j]← πi[j](L
′
i[j]), D

′′
i [j]← πi[j](D

′
i[j])

leakage on [(L′
i, πi), (D

′
i, πi)]

6. pick j∗i ∈R [κ]. Save Ki+1 ← L′′
i [j

∗
i ], and Ci+1 ← D′′

i [j
∗
i ]

leakage on [(L′′
i [j

∗
i ], j

∗
i ), (K

′′
i [j

∗
i ], j

∗
i )]

Output (Kℓ, Cℓ)

Figure 9: Leakage-Resilient Ciphertext Permutation for κ ∈ N

Lemma 6.2. There exists an exponential-time simulator SimPermute, a leakage bound λ(κ) =
Ω̃(κ), and a distance bound δ(κ) = negl(κ), s.t for any κ ∈ N and leakage adversary A:

Let D be a distribution on key ∈ {0, 1}κ and a ciphertext 4-tuple C ∈ {0, 1}4×κ. Suppose that
D is IuO with orthogonality b⃗ ∈ {0, 1}4. Let K and C be D’s underlying distributions on key and
on C. Suppose further that H∞(K) ≥ κ−O(λ(κ)) and H∞(C) ≥ 3κ−O(λ(κ)).

Take Real and Simulated to be the following views:

Real =
(
K ′, C ′,Aλ(κ)[(K ′, C ′)← Permute(key , C)]

)
(key,C)∼D

Simulated =
(
SimPermute (⃗b′,K, C)

)
µ∈RS4 ,⃗b′←µ(⃗b)

then ∆(Real ,Simulated) ≤ δ(κ).

Proof. We begin by describing the SimPermute Simulator. The proof that Real and Simulated are
statistically close follows.
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SimPermute. The simulator samples key ∼ K and C ∼ C, conditioned on the inner product of
key with C being 0⃗ (rather than b⃗[i], as in D). The simulator then runs Permute on (key , C), under
A’s leakage attack, to compute the leakage w. To compute the output (K ′, C ′), the simulator first
samples an input key and randomness r⃗ for Permute, from the conditional underlying distribution of
key and the randomness given leakage w. Note that, as in Lemma 3.11, this conditional distribution
depends only on K (and not on C). Using key and r⃗, the simulator can compute theK ′ that Permute
would output. Similarly, the simulator computes the conditional distribution of C ′, given w and r⃗.
Again, as in Lemma 3.11, this depends only on C (and not on K). The simulator samples C ′ from
this conditional distribution, under the additional condition that the inner products of C ′ with K ′

equal b⃗′. The output is (K ′, C ′, w).

Statistical Closeness of Real and Simulated . We first observe that w is A’s output in a leakage
attack that operates separately on key and on C. Moreover, the leakage on key and on C is of
bounded total length O(ℓ · λ(κ)) << κ. Since the “real” distribution D of (key , C) is IuO, by
Lemma 3.11 the distributions of w in Real and in Simulated are δ(κ)-statistically close.

The more difficult part of the proof is arguing that (w.h.p. over w), the distributions of (K ′, C ′),
conditioned on w, in Real and in Simulated are statistically close. For this, we consider a hybrid
distribution Real ′. To generate Real ′, we compute w as in Simulated , by running A’s leakage
attack on Permute, activated on key and C chosen s.t. their inner products equal 0⃗. Let π be
the composition of the permutations chosen in the ℓ iterations of Permute. In Real ′ we generate
(K ′, C ′) as in Simulated , but conditioning the underlying output distributions on the inner products
of K ′ and C ′ equalling b⃗′ = π(⃗b), rather than b⃗′ which is a uniformly random permutation of b⃗ in
Simulated . We show that Real ′ is statistically close to both Real and Simulated .

Proposition 6.3. ∆(Real ,Real ′) = O(δ(κ))

Proof. We re-cast Real by considering the following procedure for generating it. This alternate
generation operates as Real , except that when drawing the input (key , C) from the underlying
distributions, we condition on the inner products equalling b⃗ (rather than 0⃗). These (key , C) are
used to compute w, and then (K ′, C ′) are drawn (as in Real ′) from their conditional distributions,
conditioned on inner products π(⃗b) (where π is the composition of the permutations used in all ℓ
iterations of Permute). Since the input distribution D used in Real is IuO, this procedure generates
exactly the view Real .

We now show that Real and Real ′ are statistically close. These two distributions differ only in
the joint distribution of (w, π); given w and π, the distributions of (K ′, C ′) derived in Real and
Real ′ are identical. (w, π) are generated via a multi-source leakage attack, operating separately on
key and on C, with a total of O(ℓ · λ(κ)) << κ bits of leakage. Moreover, the distributions of key
and C in Real and Real ′ are both IuO (by construction), and differ only in their orthogonalities (⃗b
or 0⃗ respectively). By Lemma 3.11, we get that the distributions of (w, π) in Real and Real ′ are
δ(κ)-statistically close, and thus so are Real and Real ′ themselves.

Proposition 6.4. ∆(Real ′,Simulated) = negl(κ)

Proof. Recall that the distributions of w in Real ′ and Simulated are identical. The underlying
distributions on K ′ and on C ′ (given w) are also identical. The difference is in the distribution
(given w) of the permutation used to compute b⃗′ from the given vector b⃗ (⃗b′ is then used to jointly
sample (K ′, C ′)). In Real ′ we have b⃗′ = π(⃗b), where π is the composition of permutations chosen
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by Permute in its ℓ iterations. In Simulated we have b⃗′ = µ(⃗b), where µ is a uniformly random
permutation in S4, independent of w. We will show that, for any input (key , C), the distribution
of π in Real ′ (conditioned on w), is negl(κ)-close to uniformly random (w.h.p over the leakage w).
It follows that Real ′ and Simulated are negl(κ)-statistically close.

The intuition, loosely speaking, is that for each i ∈ [ℓ], the permutation π∗i = πi[j
∗
i ] chosen

in Permute’s i-th iteration, looks “fairly random” even given w. Moreover, these ℓ permutations
are drawn independently from their “fairly random” distributions. The composition, over all ℓ
iterations of Permute, of the permutations chosen in each iteration, is thus statistically close to
uniformly random. We formalize this intuition below, starting with the notion of “well-mixing”
distributions over in S4.

Definition 6.5 (Well-Mixing Distribution on Permutations). A distribution P over S4 is said to
be well-mixing if:

H∞(P ) ≥ 0.99 log |S4|

Next, we observe that the composition of a sequence of permutations drawn from well-mixing
distributions is itself very close to uniform.

Claim 6.6. For any sequence P0, . . . , Pℓ−1 of well-mixing distributions, let P be:

P , (π0 ◦ . . . ◦ πℓ−1)π0∼P1,...,πℓ−1∼Pℓ−1

then P is exp(−Ω(ℓ))-close to uniform over S4.

For Permute’s i-th iteration, let wi be the leakage in that iteration. We define Pi to be the
distribution of the permutation π∗i = πi[j

∗
i ] chosen in the i-th iteration, conditioned on (w0, . . . , wi)

and also on the keys and ciphertexts (Ki, Ci,Ki+1, Ci+1). We show that in Real ′, with overwhelming
probability over the random coins up to (but not including) the choice of j∗i , with probability at
least 1/2 over Permute’s choice of j∗i , the distribution Pi is well-mixing.

Claim 6.7. For the view Real ′, for any i ∈ [ℓ], and for any (Ki, Ci, (w0, . . . , wi−1)), with all but
O(δ(κ)) probability over Permute’s random choices in iteration i up to Step 6, with probability at
least 1/2 over Permute’s choice of j∗i in Step 6, the distribution Pi is well-mixing.

Proof. Examine the distribution of the vector πi of permutations used in iteration i, conditioned on
(Ki, Ci, (w0, . . . , wi−1)), and conditioned also on (L′′i , D

′′
i ) (but without conditioning on the leakage

wi in the i-th iteration or on j∗i ). Here the randomness is over (σi, τi, πi). We observe that in
this conditional distribution,the marginal distribution on (πi[0], . . . , πi[κ− 1]) is uniformly random
over Sκ

4 . This is because for each j ∈ [κ], the pair (σi[j], τi[j]) are uniformly random (under the

condition that they maintain the underlying 0 plaintext bits in b⃗i). Thus, σi[j], τi[j] completely
“mask” the permutation πi[j] that was used: all permutations are equally likely. Note that here we
use the fact that the plaintext bits b⃗i underlying (Ki, Ci) in Real ′ are all identical (they all equal
0). Otherwise, since Permute preserves the set of underlying plaintexts (if not their order), there
would be information about each πi[j] in the plaintexts underlying (L′′i [j], D

′′
i [j]).

By Lemma 3.8, since the leakage wi on (σi, τi, πi) is of length at most O(λ(κ)) bits, with all
but δ(κ) probability, the min-entropy of the vector πi given (Ki, Ci, L

′′
i , D

′′
i , (w0, . . . , wi−1, wi))

is at least 0.995 · κ · log |S4|. By an averaging argument, with probability at least 1/2 over
Permute’s (uniformly random) choice of j∗i , we get that the min entropy of π∗i = πi[j

∗
i ], given

(Ki, Ci, L
′′
i , D

′′
i , (w0, . . . , wi−1, wi)), is at least 0.99 log |S4|. The claim about Pi follows (in Pi we
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condition π∗i on the same information as above, except we replace (L′′i , D
′′
i ) with just (Ki+1, Ci+1) =

(L′′i [j
∗
i ], D

′′
i [j
∗
i ])).

To complete the proof of Proposition 6.4, we examine the composed distribution (π = (π∗0◦, . . .◦
π∗ℓ−1)|w). Each π∗i is drawn from Pi, and these draws are all independent of each other. By Claim
6.7, we get that with all but exp(−Ω(ℓ)) probability over the random coins, fixing the sequence
((K0, C0), . . . , (Kℓ−1, Cℓ−1)) and the leakage w, at least 1/3 of the distributions Pi are well-mixing.
When this happens, by Claim 6.6, the distribution of (π|w) is exp(−Ω(ℓ))-close to uniform, where
ℓ = polylog(κ).

6.3 Proof of SimNAND Security (Lemma 6.1)

Remark 6.8. We will assume throughout this section that the leakage w from SafeNAND includes
Permute’s output in its entirety. This is a strengthening of the leakage adversary (it gets more
leakage “for free”), and so it strengthens our security claim for SafeNAND.

Proof of Lemma 6.1. We begin by describing the SimNAND simulator, and then proceed with a
proof of statistical closeness of Real and Simulated .

SimNAND. Let D× be the independently drawn variant of D (as in Definition 3.10, i.e. with inde-
pendent draws from K and from C). SimNAND samples ((key i, keyj , keyk), (c⃗i, c⃗j , c⃗k)) ∼ D×, and
key ← KeyGen(1κ). It runs Steps 1 and 2 of the SafeNAND procedure, on the keys and ciphertexts
it drew, under A’s leakage attack. Let w1,2 be the leakage generated in this partial execution, and
let σ⃗ = (σi, σj , σk) be the correlation values computed by SafeNAND in this simulated execution.

Next, SimNAND computes KSimPermute and CSimPermute , the conditional distributions of key and
of C in Step 3, given w1,2 and σ⃗. SimNAND proceeds to simulate Step 3 by calling the Permute

simulator, SimPermute (see Lemma 6.2), on input (⃗bSimPermute ,KSimPermute , CSimPermute), where
b⃗SimPermute is a uniformly random permutation of the vector (ak, ak⊕1, ak⊕1, ak⊕1). SimPermute’s
output includes the leakage w3 from Step 3 and an output (K ′, C ′) from Permute. SimNAND
completes the simulation by running Step 4 on (K ′, C ′) under A’s leakage attack, producing leakage
w4. The leakage that SimNAND outputs is the accumulated leakage w = (w1,2 ◦w3 ◦ (K ′, C ′) ◦w4)
from all the simulated steps of SafeNAND (recall from Remark 6.8 that we include (K ′, C ′) in the
leakage).

Statistical closeness of Real and Simulated . We examine the distributions of the leakage w1,2

in Steps 1 and 2 in both views. In both Real and Simulated we have (key i, keyj , keyk) ∼ K and
key ← KeyGen(1κ). These determine the correlation values σ⃗ = (σi, σj , σk) computed in Step
1 of SafeNAND . Note that the correlation values are a function of the keys only (and not the
ciphertexts), and thus they are identically distributed in both Real and Simulated . The difference
is in the conditional distribution of (c⃗i, c⃗j , c⃗k) given (key , σ⃗).

We focus on the joint conditional distribution of (key , (c⃗i, c⃗j , c⃗k)), conditioned on σ⃗. We will
show that this joint distribution, conditioned on σ⃗, is: (i) IuO in Real , and (ii) its independently
drawn variant in Simulated . Given σ⃗, the leakage is a multi-source function of key and of the
ciphertexts. We will conclude, using Lemma 3.11, that: (i) the leakage in Real and in Simulated
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is statistically close, and (ii) for a fixed leakage value w1,2 that can occur in Real , the condi-
tional distribution of (key , (c⃗i, c⃗j , c⃗k)) in Real , given (σ⃗, w1,2), will remain IuO. The distribution of
(key , (c⃗i, c⃗j , c⃗k)) in Simulated , given (σ⃗, w1,2), will be the independently drawn variant of the same
distribution in Real . Note that C is a (linear) function of (c⃗i, c⃗j , c⃗k) (and ai, aj), and so we get the
same guarantees for the distributions of (key , C) in Real and Simulated .

It remains to show that the requirements of Lemma 3.11 hold. Namely, that (key , (c⃗i, c⃗j , c⃗k))
in Real , conditioned on σ⃗, is IuO, and that the same distribution in Simulated is its independently
drawn variant. For this, observe first that in Simulated , the distribution of (key , (c⃗i, c⃗j , c⃗k)) given σ⃗
is the product distribution of key given σ⃗, and of C (without any conditioning). The fixed values of
σ⃗ do not effect the marginal distribution on ciphertexts, because (in Simulated) the ciphertexts are
drawn independently of the keys. In Real , on the other hand, the keys and ciphertexts are no longer
drawn independently. However, even in Real , D is IuO. In particular, D’s marginal conditional
distribution on (c⃗i, c⃗j , c⃗k), given key and σ⃗, is equal to C, conditioned on ⟨key ⊕ σi, c⃗i⟩ = bi, on
⟨key ⊕ σj , c⃗j⟩ = bj , and on ⟨key ⊕ σk, c⃗k⟩ = bk. We conclude that in Real , the distribution of
(key , (c⃗i, c⃗j , c⃗k)), conditioned on σ⃗, is also IuO. Moreover, by Lemma 3.8, with all but O(δ(κ))
probability over σ⃗, the min-entropy of (key , (c⃗i, c⃗j , c⃗k)) given σ⃗ is at least 4κ−O(λ(κ)).

By Lemma 3.11, we conclude that the distributions ((key , C)|(σ⃗, w1,2)) in Real and in Simulated

satisfy all the conditions of Lemma 6.2 (security of Permute). By construction, the vector b⃗SimPermute

of plaintext values given as input to the SimPermute simulator in Simulated , is a uniformly random
permutation of the plaintexts underlying (key , C), the input to Permute in Real . By Lemma 6.2,
we conclude that the distributions of (w1,2 ◦ w3 ◦ (K ′, C ′)), in conjunction with σ⃗, are statistically
close in Real and Simulated . Statistical closeness of Real and Simulated follows, because the leakage
w4 from Step 4 is a function of (K ′, C ′).

7 Putting it Together: The Full Construction

In this section we show how to compile any circuit into a secure transformed one that resists OC
side-channel attacks, as per Definition 3.14 in Section 3.4. See Section 2 for an overview of the
construction.

The full initialization and evaluation procedures are presented below in Figures 10 and 11. The
evaluation procedure is separated into sub-computations (which may themselves be separated into
sub-computations of the cryptographic algorithms). Ciphertext bank procedures are in Section 5.
The procedures for safely computing NAND and duplication are in Section 6. Theorem 7.1 states
the security of the compiler.

Theorem 7.1. There exist a leakage bound λ(κ) = Ω̃(κ) and a distance bound δ(κ) = negl(κ),
s.t. for every κ ∈ N, the (Init ,Eval) compiler specified in Figures 10 and 11 is a (λ, δ)-continuous
leakage secure compiler, as per Definition 3.14.

Proof Sketch. We first specify the simulator and then provide a sketch of statistical security.

Simulator. Let A be a (continuous) leakage adversary. The simulator, using SimInit and
SimEval , creates a view of repeated executions of Eval , on different inputs, under a (continu-
ous) leakage attack by A. It mimics the operation of the “real” Eval procedure. The SimInit
procedure starts by initializing all ciphertext banks using SimBankInit . Within the t-th execution,
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Initialization Init(1κ, C, y)

1. for every y-input wire i, corresponding to y[j]:

Bank i ← BankInit(1κ, y[j])

2. for the output wire output :

Bankoutput ← BankInit(1κ, 0)

3. for the internal wires:

Bank internal ← BankInit(1κ, b), where b ∈R {0, 1}

4. output: state0 ← (Bank internal ,Bankoutput , {Bank i}i is a y-input wire)

Figure 10: Init procedure, to be run in an offline stage on circuit C and secret y.

with input xt and output C(y, xt), the simulator picks all of the (ai, bi) shares for each wire i in
advance. To do so, the simulator first evaluates C (⃗0, xt) and takes v′i to be the bit value on wire
i in this evaluation. For y-input wires, the simulator sets ai = bi = 0. For internal wires, the ai
shares are uniformly random, and each bi is set so that ai ⊕ bi = v′i. For the output wire out , the
simulator sets aout = C(y, xt), and bout = v′out ⊕ aout .

Once the (ai, bi) values are picked, the simulator generates the ciphertexts c⃗i so that the plaintext
underlying c⃗i is indeed bi. This is done using the SimBankGen simulation procedures, which gives
the simulator control over the plaintext underlying the ciphertext that it generates. The rest of
the simulator’s operation follows the Eval procedure on the generated ciphertexts, and the leakage
is generated as it would be from an execution of Eval . The SimInit and SimEval procedures are
specified below in Figures 12 and 13.

Statistical Security (Sketch). The intuition for security is that the “public” ai shares in the
simulated execution are distributed exactly as they are in the real execution. The “private” bi
shares differ between the real and simulated execution, but these shares are in protected LROTP
encrypted form (key i, c⃗i), where the key and ciphertext are never loaded into memory together.

The full proof that Real and Simulated are statistically close uses several hybrids:

Real to HybridReal : replacing real generations with simulated ones. The first hybrid
is HybridReal . It is obtained from Real by replacing each “real” generation with a “simulated”
generation that produces a key-ciphertext pair with the same underlying plaintext. In particular,
we replace each BankInit(bi) call for an output or y-input wire i, with a SimBankInit call, and we
replace the BankInit call for Bank internal with a SimBankInit call. We then replace each BankGen
call for an output or y-input wire i with a call to SimBankGen(bi), where bi is the appropriate
private share for wire i. We replace each pair of BankGen calls to Bank internal with a pair of calls
to SimBankGen(b), where b is independent and uniformly random in {0, 1}. Finally, we replace
each call to BankUpdate and BankRedraw with a call to SimBankUpdate and SimBankRedraw
(respectively). Other than these changes to the ciphertext bank calls, we run exactly as in Real .
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Evaluation Eval(statet−1, xt)

statet−1 = (Bank internal ,Bankoutput , {Bank i}i is a y-input wire)

1. Generate keys and ciphertexts for all circuit wires:

(a) y input wire i:

(key i, c⃗
in
i )← BankGen(Bank i)

Bank i ← BankUpdate(Bank i)

(b) output wire output :

(keyoutput , c⃗
out
output)← BankGen(Bankoutput)

Bankoutput ← BankUpdate(Bankoutput)

(c) each internal wire i (in sequence):

(key i, c⃗
in
i )← BankGen(Bank internal)

(key i, c⃗
out
i )← BankGen(Bank internal)

Bank internal ← BankRedraw(Bank internal)

Bank internal ← BankUpdate(Bank internal)

(d) xt-input wire i: key i ← KeyGen(1κ), c⃗ini ← Encrypt(key i, 0)

2. Compute the public shares on all wires.

For the input wires: for each y-input wire i, ai ← 0. For each x-input wire i corresponding
to xt[j], ai ← xt[j].

Proceed layer by layer (from input to output) to compute the remaining public shares:

(a) for each NAND gate with input wires i, j and output wire k, compute:

ak ← SafeNAND(ai, key i, c⃗
in
i , aj , keyj , c⃗

in
j , keyk, c⃗

out
k )

(b) for each duplication gate with input wire i and output wires j, k, compute:

aj ← SafeDup(ai, key i, c⃗
in
i , keyj , c⃗

out
j )

ak ← SafeDup(ai, key i, c⃗
in
i , keyk, c⃗

out
k )

(c) output aoutput

3. the new state is: statet ← (Bank internal ,Bankoutput , {Bank i}i is a y-input wire)

Figure 11: Eval procedure performed on input xt, under OC leakage. See Section 5.1 for ciphertext
bank procedures, Section 6.1 for SafeNAND ,SafeDup.

The two views Real and HybridReal differ only in that in Real we have calls to BankInit ,
BankGen, BankUpdate, BankRedraw , whereas in HybridReal we have calls to the corresponding
simulated procedures. Note that the bi values given as input to SimBankGen in HybridReal are
distributed identically to the plaintexts underlying the ciphertexts generated in the corresponding
calls to BankGen in Real : for y-input wire i, corresponding to the j-th bit of y, bi is equal to y[j]
in both views. For each internal wire i, bi is an independently uniformly random bit in both views.
For the output wire output , boutput equals 0 in both views. By Lemmas 5.1 and 5.4, we get that the
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Simulator Initialization SimInit(1κ, C)

1. for every y-input wire i, corresponding to y[j]:

Bank i ← SimBankInit(1κ)

2. for the output wire output :

Bankoutput ← SimBankInit(1κ)

3. for the internal wires:
Bank internal ← SimBankInit(1κ)

4. output: state0 ← (Bank internal ,Bankoutput , {Bank i}i is a y-input wire)

Figure 12: Simulator Initialization SimInit

Simulator SimEval(statet−1, xt, C(y, xt))

The simulator first computes v′i values for each wire i in the circuit by evaluating C (⃗0, xt).
For each circuit wire i, choose shares (ai, bi) for each wire:

xt input wire corresponding to xt[j]: ai ← xt[j], bi ← 0
y-input wire: ai, bi ← 0
internal wire: ai ←R {0, 1}, bi ← v′i ⊕ ai
output wire: aoutput ← C(y, xt), boutput ← v′output ⊕ aoutput

After the ai, bi shares have been computed for each wire, simulate Eval as follows:

• in Step 1, for each wire i, replace each call to BankGen for wire i with a call to SimBankGen
with bi. Replace each call to BankUpdate and BankRedraw with a call to SimBankUpdate
or SimBankRedraw (respectively).

• in Step 2, for each NAND gate with input wires i, j and output wire k, compute:

ak ← SafeNAND(ai, key i, c⃗
in
i , aj , keyj , c⃗

in
j , keyk, c⃗

out
k )

for each duplication gate with input wire i and output wires j, k, compute:

aj ← SafeDup(ai, key i, c⃗
in
i , keyj , c⃗

out
j )

ak ← SafeDup(ai, key i, c⃗
in
i , keyk, c⃗

out
k )

• as in Eval , the new state is statet ← (Bank internal ,Bankoutput , {Bank i}i is a y-input wire)

Figure 13: Sim procedure performed on input xt and circuit output C(y, xt)

joint distributions of the leakage in all of these calls, together with all keys and ciphertexts produced,
are statistically close in Real and in HybridReal . We can complete the generation of the view in
both cases (the leakage from SafeNAND and SafeDup) as a function of the keys and ciphertexts
produced, and we conclude that the two views are statistically close.
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HybridReal to HybridReal ′ and Simulated to Simulated ′: replacing safe computations with
simulated leakage. Next, we obtain HybridReal ′ from HybridReal by replacing the SafeNAND
calls, in each execution and for each internal and output wire i, with calls to the SimNAND
simulator from Lemma 6.1, using HybridReal ’s ak public shares and the underlying distributions
on keys and ciphertexts (the underlying distributions are a function of the leakage values in prior
computations).

Similarly, we obtain a hybrid Simulated ′ from Simulated by replacing the SafeNAND calls with
calls to the SimNAND simulator, using SimEval ’s ai public shares and its underlying distributions
on keys and ciphertexts.

Note that, in particular, HybridReal ′ and Simulated ′ can no longer be generated efficiently
(because the SafeNAND simulator is not efficient). By Lemmas 5.3 and 5.5, the conditions of
Lemma 6.1 all hold for each replacement of SafeNAND by SimNAND in both views (given the
leakage in prior computations). In particular, the keys and ciphertexts involved in each SafeNAND
come from IuO distributions whose underlying distributions have high entropy (w.h.p.). This is
where we use the fact that, for each internal wire i, even given the leakage, the i-th wire’s ciphertexts
c⃗outi and c⃗ini are independent up to having the same orthogonality w.r.t. key . We conclude that
HybridReal and HybridReal ′ are statistically close, as are Simulated and Simulated ′.

Closeness of HybridReal ′ and Simulated ′. HybridReal ′ and Simulated ′ are both obtained as a
function of leakage from a sequence of SimBankGen calls: the leakage from these generations is
then used to compute the leakage for SimNAND calls (the leakage from the generations specifies
the underlying distributions used by SimNAND). In particular, the actual keys and ciphertexts
generated are never again accessed after their generation. The same post-processing is performed on
the leakage from the generations in both cases: namely, calls to SimNAND on the same underlying
distributions, and with identically distributed ai values. The two sequences of generations differ
only in the orthogonalities of the underlying plaintexts that are generated in the SimBankGen calls
for the output and the y-input wires (the plaintexts for internal wires are identically distributed).
By Lemma 5.2, we conclude that the leakage from the generations is statistically close in both
cases, and so HybridReal ′ and Simulated ′ are also statistically close.
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