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Abstract

Given a graph G, we consider the problem of finding the largest set of edge-disjoint triangles
contained in G. We show that even the simpler case of decomposing the edges of a sparse split
graph G into edge-disjoint triangles is NP-complete. We show next that the case of a general G
can be approximated within a factor of 3

5 in polynomial time, and is NP-hard to approximate
within some constant 1 − ǫ, 0 < ǫ < 1. We generalize this to the question of finding the largest
set of edge-disjoint copies of a fixed graph H in G, which we approximate within 2

|E(H)|+1 in

polynomial time, and show hard to approximate when H = Kr or H = Cr is a fixed clique or
cycle on at least three vertices. This relates to a problem solved by Kirkpatrick and Hell.

We finally determine optimal solutions for the case where G is a clique of any size by ex-
amining a family of dense split graphs. The motivation for the case of cliques is the theory of
block designs, in particular the case of Steiner triple systems, and a conjecture of Erdös, Faber,
and Lovasz which states that the union of n edge-disjoint cliques of size n has vertex chromatic
number n. The connection to this conjecture is obtained through a dualization argument.

1 Introduction

We begin with a known result from the theory of block designs, namely a characterization of the
existence of Steiner triple systems. This result was first shown by Kirkman (1847) (see e.g. [3], p.
113), and our proof will lead from the known Theorem 1 to the more general approximation result,
Theorem 2.

Theorem 1 A clique Kn with n ≥ 1 vertices can have its edges decomposed into edge-disjoint
triangles if and only if n = 6x + 1 or n = 6x + 3, x ≥ 0 integer.

We call numbers n valid if Kn can have its edges decomposed into edge-disjoint triangles. We
call numbers n good if n = 6x + 1 or n = 6x + 3, x ≥ 0 integer. Thus Theorem 1 says that n is
valid if and only if n is good.

The motivation for this result is a conjecture of Erdös, Faber, and Lovasz, that states that if a
graph G is the union of n edge-disjoint cliques Ki, 1 ≤ i ≤ n, where each Ki has at most n vertices,
then G has vertex chromatic number at most n.

We shall not study this conjecture, but just examine the structure of some the graphs involved
in the conjecture. In the conjecture, we may assume that each vertex in G belongs to at least two
Ki; otherwise remove vertices in G that belong to only one Ki, and if the vertices of the resulting
graph can be colored with n colors then the removed vertices can be colored as well, since each Ki

has at most n vertices. We may as well assume next that any two Ki,Kj share a vertex; otherwise
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add a new vertex vij shared by these two cliques, and the sizes of the cliques will never exceed
n − 1.

Consider now the dual clique graph H = Kn whose vertices correspond to cliques in G. If a
vertex v in G belongs to rv ≥ 2 cliques Ki, then v corresponds to a clique Kv of size rv in H. The
cliques Kv partition the edges of the clique H. Furthermore v,w are independent in G if and only
if Kv,Kw are vertex-disjoint in H. If rv = 2 for all v, then the conjecture is easy to prove (just
partition the dual clique graph H into at most n matchings, see the Walecki construction [1, 6],
see Lemma 1), so one can assume at least one rv ≥ 3.

We ask the following question. For which values of n is it possible that each v belongs to exactly
rv = 3 of the n cliques in G. This is equivalent to partitioning the edges of H = Kn into triangles
Kv. Theorem 1 answers this question by showing that the values of n are those for which n is
good, while Theorem 2 below implicitly characterizes which combinations of numbers of rv = 2 and
rv = 3 are possible, with no rv ≥ 4.

We consider next a class of graphs larger than that of cliques, namely the class of split graphs,
which is a special case of chordal graphs. A split graph is a graph G whose vertices can be partitioned
into two disjoint parts R and S, such that R induces an independent set in G and S induces a
clique in G. We say that a split graph G is sparse if each vertex in R has degree two in G, and we
say that a split graph G is dense if each vertex in R is adjacent to all of S.

We show that the problem of determining if a sparse split graph can have its edges partitioned
into edge-disjoint triangles is NP-complete, and attempt to characterize the values of r = |R|
and s = |S| for which the corresponding dense split graph can have its edges partitioned into
edge-disjoint triangles. This leads to the following result.

Theorem 2 The maximum number of edge-disjoint triangles contained in a clique Kn, n = 6x +
i, 0 ≤ i ≤ 5 is (

(

n
2

)

− k)/3, where the number k of edges of Kn not covered by the chosen triangles
is k = 0 for i = 1 and i = 3, k = 4 for i = 5, k = n

2 for i = 0 and i = 2, and k = n
2 + 1 for i = 4.

We also show that the NP-complete question of finding the largest set of edge-disjoint triangles
contained in a given graph G can be approximated in polynomial time within a factor of 1

3 by
a greedy algorithm, and within a factor of 1

2 by an augmentation algorithm. The approximation
factor with a more complex augmentation improves to 3

5 . We next show that this question is NP-
hard to approximate within some constant 1 − ǫ, 0 < ǫ < 1, even in the case where the edges of G
can be partitioned into edge-disjoint triangles.

We then generalize the problem to the question of finding the largest set of edge-disjoint copies
of a fixed graph H with e = |E(H)| edges contained in a given graph G. We approximate this
problem within 1

e
by a greedy algorithm, and within 2

e+1 by an augmenting algorithm, in polynomial
time. We finally show that this question is NP-hard to approximate within some constant 1 − ǫ,
0 < ǫ < 1, if H = Kr or H = Cr is a clique or cycle with r ≥ 3 vertices.

This relates to a problem shown NP-complete by Kirpatrick and Hell [5]. Given graphs G and H
with |V (G)| = q|V (H)|, can the vertices of G be partitioned into q disjoint sets Vi, 1 ≤ i ≤ q, such
that the subgraph of G induced by each Vi is isomorphic to H? This question remains NP-complete
for any fixed H that contains at least 3 vertices. The analogous problem in which the subgraphs
induced by Vi need only have the same number of vertices as H and contain a subgraph isomorphic
to H is also NP-complete for any fixed H that contains a connected component of three or more
vertices. Both problems can be solved in polynomial time (by matching) for any H not meeting
the stated restrictions.
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2 Proof of Theorem 1

The following is known as the Walecki construction [1, 6].

Lemma 1 The edges of a clique Kn can be decomposed into n − 1 edge-disjoint perfect matchings
if n = 2k is even, and can be decomposed into n edge disjoint matchings that each match all but
one vertex if n = 2k − 1 is odd.

Proof. Label the vertices 0, 1, . . . , 2k − 2 modulo 2k − 1, plus an additional vertex v if n is even.
The 2k − 1 matchings Mi, 0 ≤ i < 2k − 1, have edges (i + j, i− j) modulo 2k − 1 for 1 ≤ j ≤ k− 1,
plus an additional edge (i, v) if n is even.

We now proceed to the proof of Theorem 1.

Lemma 2 If n ≥ 1 is valid, then n is good.

Proof. Suppose n is valid. If n is even, then each vertex v of Kn has an odd number n − 1 edges
coming out of v. But these n − 1 edges are paired by triangles, so n − 1 is even, a contradiction.
So n is odd.

If n = 3k + 2, then the number
(

n
2

)

= n(n−1)
2 of edges in Kn is not divisible by 3, but the

partition of the edges of Kn into triangles implies that the number of edges in Kn is divisible by
3, a contradiction. So n = 3k or n = 3k + 1. Furthermore n = 3k is odd only if k = 2x + 1 is odd,
in which case n = 6x + 3, and n = 3k + 1 is odd only if k = 2x is even, in which case n = 6x + 1.
Therefore n must be good.

Lemma 3 If n = a is valid, then 2a + 1 is also valid.

Proof. Decompose the vertices of K2a+1 into a set S of size a and a set T of size a + 1. Since a is
good because it is valid, we have that a is odd and a + 1 is even. We first decompose the edges of
the clique induced by S into edge-disjoint triangles, since a = |S| is valid. We then decompose the
edges of the clique induced by T with a + 1 = |T | even into a perfect matchings Mi, 1 ≤ i ≤ a (see
the Walecki construction [1, 6], Lemma 1). We finally label the vertices of S by vi, 1 ≤ i ≤ a, and
join each vi with each edge of the corresponding Mi to form a+1

2 extra triangles for each vi.

Lemma 4 If n = b is valid, then 3b is also valid.

Proof. Decompose the vertices of K3b into three sets S, T, U of size |S| = |T | = |U | = b. The
cliques induced by S, T, U are first decomposed into edge-disjoint triangles, since b is valid. Next
label the vertices of S, T, U as si, ti, ui respectively for 0 ≤ i < b, and add triangles (si, tj, uk),
where k is i + j modulo b.

Lemma 5 If n = c is valid, then 3c − 2 is also valid.

Proof. Let c = b + 1, and decompose the vertices of K3c−2 = K3b+1 into three sets S, T, U of
size |S| = |T | = |U | = b plus a vertex v. The cliques induced by S ∪ {v}, T ∪ {v}, U ∪ {v} are
first decomposed into edge-disjoint triangles, since c = b + 1 is valid. Next label the vertices of
S, T, U as si, ti, ui respectively for 0 ≤ i < b, and add triangles (si, tj , uk, where k is i+j modulo b.
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Lemma 6 n = 13 is valid.

Proof. Let the vertices of K13 be 0, i, i′, i′′ for 1 ≤ i ≤ 4. Then the triangles are (1) 11′1′′; 01′2′′, 01′′3′′, 014′′;
(2) 022′, 12′2′′, 1′′22′′; 033′, 1′3′3′′, 133′′; 044′, 1′′4′4′′, 1′44′′; (3) 1′23, 1′′34, 124; 1′′2′3′, 13′4′, 1′2′4′; 2′′3′′4′′;
(4) 23′4′′, 2′3′′4, 2′′34′; 23′′4′, 2′34′′, 2′′3′4.

Lemma 7 If n = d is valid, then 6d − 5 is also valid.

Proof. Let d = f + 1, and decompose the vertices of K6d−5 = K6f+1 into six sets Si, 1 ≤ i ≤ 6, of
size |Si| = f , plus a vertex v. The cliques induced by Si∪{v} are first decomposed into edge-disjoint
triangles, since d = f + 1 is valid. Next since d is good and odd, f is even, and we may decompose
each Si into two sets of size g = f/2. Collapsing each such set of size g to a single super-vertex,
we have that each Si consists of two super-vertices, plus v, for a total of 13 super-vertices. By
Lemma 6, we can decompose K13 into edge-disjoint triangles of super-vertices, including the trian-
gles joining v with the two super-vertices of each Si. The remaining triangles are of the form ABC
where each super vertex has size |A| = |B| = |C| = g. We expand these three super-vertices for
a triangle to sets of size g, and the super-triangle is replaced by g2 triangles with one vertex from
each of A,B,C as in Lemma 4.

Lemma 8 If n = e = 6x + 3 is valid, then 2e + 3 is also valid.

Proof. Decompose K2e+3 into a set S of size e and a set T of size e + 3. Decompose S into
f = e/3 = 2x + 1 triples Si, 1 ≤ i ≤ f , and Decompose T into f + 1 triples Tj, 0 ≤ i ≤ f .
The clique induced by S is first decomposed into edge-disjoint triangles, since e is valid. Next
each triangle Tj is chosen. Finally decompose the clique of size f + 1 even whose super-vertices
are the Tj into f perfect matchings (by the Walecki construction [1, 6], Lemma 1), and if the
ith such matching contains the super-edge Tj , Tk, choose the super-triangle Si, Tj , Tk. When each
such super-vertex is replaced by three vertices, the super-triangles Si, Tj , Tk can be replaced by 9
triangles as in Lemma 4.

Lemma 9 If n ≥ 1 is good, then n is valid.

Proof. We proceed by induction on n. The base case is n = 1, without edges.
Assume first n = 6x + 1. If x = 2r + 1 is odd, then a = 3x = 6r + 3 is valid and the result

for n = 2a + 1 follows from Lemma 3. If x = 2r is even, then n = 12r + 1. Then n = 3c − 2, for
c = 4r + 1. If r = 3s, then c = 12s + 1 is valid and the result follows for n = 3c− 2 from Lemma 5.
If r = 3s + 2 then c = 12s + 9 is valid and the result follows for n = 3c− 2 from Lemma 5. Finally
if r = 3s + 1 then n = 36s + 13 = 6d − 5 for d = 6s + 3 valid and the result follows for n = 6d − 5
from Lemma 7.

Assume next n = 6x + 3. If x = 2r is even, then a = 3x + 1 = 6r + 1 is valid and the result for
n = 2a+1 follows from Lemma 3 If x = 2r+1 is odd, then n = 12r+9. Then n = 3b, for b = 4r+3.
If r = 3s, then b = 12s + 3 is valid. and the result follows for n = 3b from Lemma 4. If r = 3s + 1
then b = 12s + 7 is good and the result follows for n = 3b from Lemma 4. Finally if r = 3s + 2
then n = 36s+33 = 2e+3 for e = 18s+15 valid and the result follows for n = 2e+3 from Lemma 8.

The two directions of Theorem 1 then follow from Lemma 2 and Lemma 9.
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3 Split Graphs

We say that a graph G is valid if G can have its edges partitioned into edge-disjoint triangles.

Lemma 10 The problem of deciding whether a graph G is valid is NP-complete.

Proof. The problem of deciding whether a cubic graph G is edge-3-colorable is NP-complete [4].
This question is equivalent to partitioning the edges of a cubic graph G into three perfect matchings.
Given such a graph G, let G′ be obtained from G by letting V (G′) = V (G)∪ {v1, v2, v3} where the
vi are three new vertices not in V (G), and letting E(G′) = E(G)∪{(uj , vi), uj ∈ V (G), 1 ≤ i ≤ 3}.
Then the triangles involving each of the three vertices vi must form a perfect matching in G, so G′

is valid if and only if G is edge-3-colorable.

Theorem 3 The question of whether a sparse split graph G is valid is NP-complete.

Proof. Given an arbitrary graph G, let G′ be obtained from G by adding for each edge
e = (u, v) /∈ E(G′) a triangle (u, v,we), where each we is a new vertex of degree two in G′ for
each such e. Thus the we added form an independent set R with vertices of degree two in G′, while
the original set of vertices S = V (G) form a clique in G′, since all missing edges of such a clique
were added. Therefore G′ is a sparse split graph. Furthermore, the added triangles must be chosen
since each we has degree two, so G′ is valid if and only if G is valid, and the NP-completeness
follows from Lemma 10.

Consider now a dense split graph G = (R ∪ S,E) having R ∩ S = ∅ and r = |R| independent
vertices in R adjacent to all s = |S| vertices in the clique S. We say that r, s is good if r is odd,
s = r + 2t + 1 is even with t ≥ 0, and no additional conditions are imposed if t = 3u, u ≥ 0, while
if t = 3u + 1, u ≥ 0 then r = 6x + 3, x ≥ 0, and if t = 3u + 2, u ≥ 0 then r = 6x + 1, x ≥ 0.

Theorem 4 If r, s define a valid dense split graph then r, s is good.

Proof. The r vertices of R give r perfect matchings in S to form triangles, so s ≥ r + 1 and s is
even. Furthermore after removing these r perfect matchings, the vertices of S must each have even
degree s − 1 − r = 2t so that they can each belong to t triangles in S. Therefore s = r + 2t + 1
is even with t ≥ 0, and so r is odd. If t = 3u + 1 then s − 1 − r = 2t = 6u + 2 and the number
of edges remaining for S is ts, so to decompose S into triangles we must have s even divisible by
3, so 6u + 2 = s − 1 − r = 6v − 1 − r, and r = 6(v − u) − 3 = 6x + 3, x ≥ 0. If t = 3u + 2
then s − 1 − r = 2t = 6u + 4 and the number of edges remaining for S is ts, so to decompose
S into triangles we must have s even divisible by 3, so 6u + 4 = s − 1 − r = 6v − 1 − r, and
r = 6(v − u) − 5 = 6x + 1, x ≥ 0. Therefore r, s is good.

We prove a partial converse to Theorem 4.

Theorem 5 If r, s = r + 2t + 1 is good then the dense split graph G is valid, provided one of the
seven following cases holds: r = 1; r = 3; r = 5; t = 0; t = 1; t = 2; or t = 3 and r = 6x + 5.

Proof. If r = 1 then the graph G is a clique on s + 1 = 2t + 3 vertices, so either t = 3u and
s + 1 = 6u + 3 is valid, or t = 3u + 2 and s + 1 = 6u + 7 is valid.
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If r = 3 then the graph G is a clique on s + 3 = 2t + 7 vertices minus a triangle which may be
assumed chosen, so either t = 3u and s + 3 = 6u + 7 is valid, or t = 3u + 1 and s + 3 = 6u + 9 is
valid.

If t = 0 then s = r + 1, r + s = 2r + 1 and the result follows as in Lemma 3.
If t = 1 then s = r + 3, r + s = 2r + 3, r = 6x + 3 and the result follows as in Lemma 8.
If t = 2 then s = r + 5, r + s = 2r + 5, r = 6x + 1 and s = 6x + 6. We must then

decompose the edges of the clique with vertex set S into r perfect matchings (to form triangles
with the r vertices of R) plus triangles. Decompose the s = 6x + 6 vertices of S into 2y = 2x + 2
vertex disjoint triangles, which we shrink to obtain 2y super-vertices. Decompose the shrunk graph
into y − 1 perfect matchings on 2y super-vertices (by the Walecki construction [1, 6], Lemma 1).
When the 2y triangles are unshrunk, each of the 2y − 1 perfect super-matchings becomes three
perfect matchings. In particular, if two super-vertices S1 = {u1, v1, w1} and S2 = {u2, v2, w2} were
joined by a super-edge in one of super-matchings, then the three perfect matchings will have edges
u1u2, v1v2, w1w2 for M1, edges u1v2, v1w2, w1u2 for M2, and u1w2, v1u2, w1v2 for M3. This gives
3(2y − 1) perfect matchings. However, if for just one of the super-matchings, we include just M1

(and not M2,M3), then we only have 3(2y−1)−2 = 3(2x+1)−2 = 6x+1 = r perfect matchings as
desired, and the super-edge that joins S1 and S2 with the edges of M2 and M3 can be decomposed
into four triangles u1v2w1, v1w2u1, w1u2v1, u2v2w2.

If t = 3 and r = 6x+ 5, then s = r + 7 = 6x+ 12. Decompose the s = 6x+ 12 vertices of S into
2y = 2x + 4 vertex disjoint triangles, which we shrink to obtain 2y super-vertices. Decompose the
shrunk graph into y − 1 perfect matchings on 2y super-vertices (by the Walecki construction [1, 6],
Lemma 1). When the 2y triangles are unshrunk, each of the 2y−1 perfect super-matchings becomes
three perfect matchings. In particular, if two super-vertices S1 = {u1, v1, w1} and S2 = {u2, v2, w2}
were joined by a super-edge in one of super-matchings, then the three perfect matchings will have
edges u1u2, v1v2, w1w2 for M1, edges u1v2, v1w2, w1u2 for M2, and u1w2, v1u2, w1v2 for M2. This
gives 3(2y − 1) perfect matchings. However, if for just two of the super-matchings, we include just
M1 (and not M2,M3), then we only have 3(2y − 1) − 4 = 3(2x + 3) − 4 = 6x + 5 = r perfect
matchings as desired. The two super-matchings that were treated differently decompose into even
cycles S1, S2, . . . , S2k, S1, k ≥ 2. The super-edge that joins S1 and S2 with the edges of M2 and M3

can be decomposed into three triangles u1v2w1, v1w2u1, w1u2v1. The super-edges joining Si and
Si+1, or S2k and S1 are treated similarly, so each vertex will participate in exactly three triangles
(two as for S1 and one as for S2 along the cycle of length 2k).

If r = 5, then 2t + 1 = 6u + 1 for u = 3t, and s = 5 + 2t + 1 = 6u + 6 = 6x. We must thus
decompose the edges of the clique S with s = |S| = 6x into triangles plus five perfect matchings to
be joined with the five vertices of R respectively, to form triangles involving R. We write x = 6z + i
for 0 ≤ i ≤ 5.

If i = 1 or i = 3, then we partition the s = 6x vertices of S into x sets of size six Sj, 1 ≤ j ≤ x,
and then shrink each set Sj to a super-vertex so that S becomes a clique of size x = 6z + i that can
be decomposed into triangles by Theorem 1. After unshrinking the sets Sj, each triangle Sj, Sk, Sℓ

can be replaced by 36 triangles as in Lemma 4. The edges within each Sj decompose into five
perfect matchings (by the Walecki construction [1, 6], Lemma 1) to be joined with the five vertices
of R respectively, to form triangles involving R.

If i = 0 or i = 2, then we again partition the s = 6x vertices of S into x sets of size six
Sj, 1 ≤ j ≤ x, and then shrink each set Sj to a super-vertex so that S becomes a clique of size
x = 6z + i that can be decomposed into triangles plus a perfect matching (since a clique of size
x + 1 = 6z + i + 1 can be decomposed into triangles by Theorem 1). After unshrinking the sets
Sj, each triangle Sj, Sk, Sℓ can be replaced by 36 triangles as in Lemma 4. We are left with sets
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of 12 vertices in S, namely pairs Sj, Sk that are matched. The edges of these sets of 12 vertices
decompose into five perfect matchings plus triangles by the case t = 3 and r = 5 above, since
r + 2t + 1 = 12.

If i = 4, then we partition the s = 6x vertices of S into 2x sets of size three Sj, 1 ≤ j ≤ 2x, and
then shrink each set Sj to a super-vertex so that S becomes a clique of size 2x = 2(6z+ i) = 12z+8
that can be decomposed into triangles plus a perfect matching (since a clique of size 2x+1 = 6z+9
can be decomposed into triangles by Theorem 1). After unshrinking the sets Sj , each triangle
Sj, Sk, Sℓ can be replaced by 9 triangles as in Lemma 4. We are left with sets of 6 vertices in S,
namely pairs Sj, Sk that are matched. The edges of these sets of 6 vertices decompose into five
perfect matchings plus triangles by the Walecki construction [1, 6], Lemma 1.

Finally if i = 5, then we partition the s = 6x vertices of S into 2x sets of size three Sj ,
1 ≤ j ≤ 2x, and then shrink each set Sj to a super-vertex so that S becomes a clique of size
2x = 2(6z + i) = 12z + 10 that can be decomposed into triangles plus three perfect matchings
(since a clique of size 2x + 3 = 6z + 13 can be decomposed into triangles by Theorem 1). After
unshrinking the sets Sj, each triangle Sj, Sk, Sℓ can be replaced by 9 triangles as in Lemma 4. We
are left with three perfect matchings M1,M2,M3 of the sets Sj. The matching M3 gives three
perfect matchings joining pairs Sj , Sk when these sets are unshrunk, so it remains to find two
more perfect matchings. The union of M1 and M2 decomposes into a union of even length cycles
S1, S2, . . . , S2k, S1. We may choose one of the three matchings joining pairs Sj, Sk for M1 and for
M2, completing the five matchings. The remaining edges in the cycles described above decompose
into triangles, say if Si = {u1, v1, w1} and Si+1 = {u2, v2, w2} then the chosen matching from M1

or M2 is u1u2, v1v2, w1w2, and the chosen triangles are u1v2w1, v1w2u1, w1u2v1. We thus obtain
five perfect matchings of S plus triangles to cover all the edges of S.

4 Proof of Theorem 2

We now prove Theorem 2.
If i = 1 or i = 3, then all edges joining the n = 6x+ i vertices of Kn can be covered by triangles,

so k = 0 is optimum.
If i = 5, then we decompose n = 6x + 5 into r = 5 and s = 6x, and apply the case r = 5 of

Theorem 5. The only edges not covered are the 10 edges of R, which can be decomposed into two
triangles and one four-cycle. We select the two triangles, and the four-cycle gives k = 4. To show
that k = 4 is optimum, note that k = 0 is not possible by Theorem 1, and since each vertex of Kn

has even degree 6x+4, the number of edges not covered by triangles incident to each vertex is also
even. A graph with at least one edge and all vertices of even degree must contain a cycle, and this
cycle cannot be a triangle else the triangle would have been chosen, so it must be a cycle of length
at least four, so k = 4 is indeed optimum.

If i = 0 or i = 2, then we may add one vertex to obtain Kn+1 decomposable into triangles by
Theorem 1. Removing the added vertex leaves a matching in Kn not covered by triangles, giving
k = n

2 . To show that this is optimum, note that n = 6x + i is even and so the vertices of Kn have
odd degree and thus at least one edge not covered by triangles per vertex, which requires at least
k = n

2 such edges in total.
Finally if i = 4, then we may add one vertex to obtain Kn+1 decomposable into triangles plus

an uncovered K5 as in i = 5. When we remove one of the vertices of this K5, we are left with
an unchosen K4 plus an unchosen matching of the remaining n − 4 vertices. We then choose one
triangle from the K4, leaving 3 edges unchosen in the K4 and n

2 −2 unchosen edges in the remaining
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matching, for a total of k = n
2 + 1 unchosen edges. To show that this is optimum, note again that

n = 6x + 4 is even and so the vertices of Kn have odd degree and thus at least one edge not
covered by triangles per vertex, which requires at least k ≥ n

2 such edges in total. If this total were
achievable, then it would be achieved with an uncovered matching of Kn, which could be chosen
to form triangles with an additional vertex in Kn+1. But n + 1 = 6x + 5, so Kn+1 cannot be so
decomposed into triangles by Theorem 1, a contradiction. So k = n

2 + 1 is optimum.

5 Approximation Results

The optimization problem can be approximated in polynomial time within a constant factor.

Theorem 6 The NP-complete question of finding the largest set of edge-disjoint triangles con-
tained in a given graph G can be approximated within a factor of 1

3 in polynomial time by a greedy
algorithm.

Proof. The NP-completeness of this question was shown in Theorem 10. The greedy polynomial
time approximation algorithm repeatedly selects triangles that are edge-disjoint from previously
chosen triangles until no more such triangles can be found. Each triangle chosen by the algorithm
can share edges with at most three triangles of an optimal solution O. Therefore at least one more
triangle of O will be edge-disjoint from the triangles chosen until the optimal solution O has at
most three times the number of triangles found greedily. This shows that the greedy algorithm
finds at least 1

3 |O| triangles.

Theorem 7 The NP-complete question of finding the largest set of edge-disjoint triangles contained
in a given graph G can be approximated within a factor of 1

2 in polynomial time by an augmenting
algorithm.

Proof. The algorithm begins as before by greedily selecting a maximal set T of edge-disjoint
triangles. Then the algorithm repeatedly performs the following augmenting step: Determine for
each t0 ∈ T if after removing t0 from T to obtain T ′ with |T ′| = |T | − 1, we can add to T ′ two
triangles t1, t2 that are edge-disjoint from each other and from the triangles in T ′, to obtain T ′′

with |T ′′| = |T ′| + 2 = |T | + 1, and then proceed to add a further edge-disjoint triangle t3 to T ′′ if
possible. The algorithm terminates when such an augmentation is not possible.

Notice that t1, t2, and possibly t3 must each share an edge with the removed triangle t0. Let O
be an optimum solution, that is, O is a largest set of edge-disjoint triangles. For each t ∈ T and
each o ∈ O such that t, o share at least one edge, let wto be the number of triangles in T that share
an edge with o. Then

|O| =
∑

o∈O

(
∑

t

1

wto

)

=
∑

t∈T

(
∑

o

1

wto

)

≤
∑

t∈T

2 = 2|T |,

proving |T | ≥ 1
2 |O| as desired. The reason is that

∑

o
1

wto
> 2 only if there are three such o sharing

an edge with t, and at least two of them, say o1, o2 have wto = 1. But then we could perform
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an augmenting step removing t and adding t1 = o1, t2 = o2, contrary to the assumption that the
algorithm had ended. The bound |T | ≥ 1

2 |O| gives the desired 1
2 approximation.

Theorem 8 The NP-complete question of finding the largest set of edge-disjoint triangles contained
in a given graph G can be approximated within a factor of 3

5 in polynomial time by an augmenting
algorithm.

Proof. Let T be a set of edge-disjoint triangles in G. Initially T is empty. A k-augmentation
replaces T with T ′ = T \ Tk−1 and then replaces T ′ with T ′′ = T ′ ∪ Tk. Here Tk−1 is a set of
k − 1 = |Tk−1| triangles in T and Tk is a set of k = |Tk| triangles that are edge-disjoint from one
another and from the triangles in T ′.

The algorithm performs a series of k-augmentations with possible values k = 1, 2, 3, 4, until no
such augmentation is possible. Note that the 1

3 approximation algorithm above is the case where
k = 1, and the 1

2 approximation algorithm above is the case where k = 1, 2.
When the algorithm ends, we will have as in Theorem 7

|O| =
∑

t∈T

(
∑

o

1

wto

)

with wt =
∑

o
1

wto

≤ 2, since we cannot have wto1
= wto2

= 1 (otherwise we could perform a
2-augmentation as before).

We split T into three sets T1, T2, T3. Let T1 be the triangles with wto1
= 1, wto2

= wto3
= 1

2 ,
Let T2 be the triangles not in T1 with wto1

= 1, wto2
= 1

2 . Let T3 be the triangles not in T1 or T2.
Note that wt ≤

11
6 for t ∈ T2 and wt ≤

5
3 for t ∈ T3.

If t ∈ T1 ∪ T2 with wto1
= 1, wto2

= 1
2 , we say that t attributes to t′ ∈ T via o2 if t′ is the

other triangle with wto2
= 1

2 . Note that if t′ is so attributed, then we cannot have wt′o3
= 1,

otherwise we would have a 3-augmentation removing t, t′ and adding o1, o2, o3. So an attributed t′

must be in T3 and must have wt′ ≤
3
2 . Note that t′ cannot be attributed by another t, say t′′ with

wt′′o′
1

= 1, wt′′o′
2

= 1
2 , wt′o′

2
= 1

2 , otherwise we would have a 4-augmentation removing t, t′, t′′ and
adding o1, o2, o

′
1, o

′
2. Similarly, for t ∈ T1, we cannot have that t attributes to t′ via both o2, o3,

otherwise we would have a 3-augmentation removing t, t′ and adding o1, o2, o3.
Therefore each t′ ∈ T3 is attributed at most once, each t ∈ T1 attributes to two t′ ∈ T3 (call T4

the set of such attributed t′), each t ∈ T2 attributes to one t′ ∈ T3 (call T5 the set of such attributed
t′, and let T6 = T3 \ (T4 ∪ T5)). Therefore |T4| = 2|T1| and |T5| = |T2|. Then

∑

t∈T1∪T4

wt ≤ 2|T1| +
3

2
|T4|

= 5|T1| =
5

3
(|T1| + |T4|),

and
∑

t∈T2∪T5

wt ≤
11

6
|T2| +

3

2
|T5|

=
10

3
|T2| =

5

3
(|T2| + |T5|).

Therefore
|O| =

∑

t∈T

wt
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=
∑

t∈T1∪T4

wt +
∑

t∈T2∪T5

wt +
∑

t∈T6

wt

≤
5

3
(|T1| + |T4| + |T2| + |T5| + T6|) =

5

3
|T |.

This gives |T | ≥ 3
5 |O|, proving the 3

5 approximation bound.

We prove a hardness of approximation counterpart to these approximation algorithms. Let S
be the collection of 3SAT instances with some upper bound c on the number of occurrences per
variable. It is known that there exists a constant 0 < γ < 1 such that it is NP-hard to distinguish
instances in S that are satisfiable from instances in S that cannot have a fraction 1 − γ of the
clauses satisfied [2, 7]. We refer to this approximation problem as MAX-3SAT(c).

Theorem 9 Let U be the collection of cubic graphs without triangles. There exists a constant
0 < δ < 1 such that it is NP-hard to distinguish instances in U whose edges can be covered by
three matchings from instances in U that cannot have a fraction 1− δ of the edges covered by three
matchings.

Proof. We reduce 3SAT instances S with c occurrences per variable to instances U of edge-3-
colorability (partition the edges into three perfect matchings) by the reduction in [4]. The reduction
has a constant M such that each clause is represented by a gadget with at most M edges, and c
occurrences of each variable are represented by a gadget with at most M edges. If we fail to assign
one of the three matchings to a fraction only δ of the edges, we fail to assign a variable properly
or a clause properly to a fraction only δM of variables plus clauses, therefore fail a fraction only
δcM < γ of the clauses by choosing δ < γ

cM
.

Theorem 10 There exists a constant 0 < ǫ < 1 such that it is NP-hard to distinguish graphs whose
edges can be covered by edge-disjoint triangles from graphs that cannot have a fraction 1 − ǫ of the
edges covered by edge-disjoint triangles. Furthermore, we may take ǫ = δ from Theorem 9.

Proof. It suffices to represent a cubic graph without triangles G from Theorem 9 by constructing
G′, adding three independent vertices to G that are set adjacent to all of G. As in Theorem 10, the
chosen triangles in G′ will involve the three added vertices (since G alone has no triangles), and the
triangles chosen for each of the three added vertices will give the corresponding three matchings in
G. If a fraction ǫ of the edges is not covered by edge-disjoint triangles in G′, then a fraction δ = ǫ
of the edges is not covered by the three matchings in G. The reason is that if n = |V (G)|, then
|E(G)| = 3

2n and |E(G′)| = |E(G)|+ 3n = 3|E(G)|; and if the three matchings select k edges of G,

then the k triangles chosen for G′ have 3k edges, so 1 − δ = k
|E(G)| = 3k

|E(G′)| = 1 − ǫ.

6 The Case of General H

We now generalize the problem form triangles to arbitrary fixed graphs H.

Theorem 11 Let H be a fixed graph with e = |E(H)| ≥ 1 edges. The question of finding the
largest number of edge-disjoint copies of H (induced, or not necessarily induced) that can be found
in a given graph G can be approximated within 1

e
by a greedy algorithm in polynomial time.
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Proof. As in Theorem 6, we repeatedly select copies of H in G, until no more can be found.
Clearly each H found will overlap in some edge with at most e copies of H in an optimal solution,
and the optimal solution cannot have any more copies of H. Therefore the opitmal solution has at
most e times the number of copies of H in the solution found, proving the 1

e
approximation bound.

Theorem 12 Let H be a fixed graph with e = |E(H)| ≥ 1 edges. The question of finding the largest
number of edge-disjoint copies of H (induced, or not necessarily induced) that can be found in a
given graph G can be approximated within 2

e+1 by an augmenting algorithm in polynomial time.

Proof. As in Theorem 7, we first select copies of H greedily, and then continue by attempting
to remove one H from the solution found and add two copies of H that overlap the removed H
instead, adding extra copies of H if more appear after the removal as well.

If T is the solution found, and O is the optimal solution, then for each t ∈ T and o ∈ O that
overlap in some edge e, we let wtoe be the number of edges of o that appear in some element of T .
As before,

|O| =
∑

o∈O

(
∑

t,e

1

wtoe
)

=
∑

t∈T

(
∑

o,e

1

wtoe
)

≤
∑

t∈T

e + 1

2
=

e + 1

2
|T |,

proving |T | ≥ 2
e+1 |O| as desired. The reason is that

∑

o,e
1

wtoe
> e+1

2 only if there are at least
two o sharing an edge e, with t, say o1, e1 and o2, e2, with wtoe = 1. But then we could perform
an augmenting step removing t and adding t1 = o1, t2 = o2, contrary to the assumption that the
algorithm had ended. The bound |T | ≥ 2

e+1 |O| gives the desired 2
e+1 approximation.

The approximation ratio can again be improved to slightly above e
2 as in Theorem 8, but we

omit this result. We prove a partial hardness of approximation result for this problem.

Theorem 13 Let H = Kr or H = Cr be a fixed clique or cycle with r ≥ 3 vertices. The question
of finding the largest number of edge-disjoint copies of H (induced, or not necessarily induced) that
can be found in a given graph G is NP-hard to approximate within some constant 1− ǫ, 0 < ǫ < 1,
which can be taken as the constant of Theorem 10 except in the case of C4. In the case of H = Cr,
the hardness is with regards to a solution that covers all the edges in G.

Proof. Suppose first H = Kr, r ≥ 3. The cubic graphs in Theorem 9 were triangle-free, so the
graphs in Theorem 10 are K4-free. Given G as in Theorem 10, for each triangle t in G, we add
r − 3 vertices G to form a clique of size r containing t in G′. Clearly the cliques of size r in G′

are precisely those constructed for triangles t in G, so the hardness of approximation follow from
Theorem 10.

Suppose next H = Cr, r ≥ 3. Write r = 2a + b for b = a, a + 1, a + 2, and in the construction
of Theorem 10, replace the edges of the cubic graph by paths of length b, and replace the edges
joining to the three additional independent vertices by paths of length a. Clearly all the edges will
be covered in a solution of cycles C2a+b if and only if all paths of length b from the original cubic
graph are joined by two paths of length a to an added vertex to form C2a+b, while otherwise no
cycles not going through the path of length b will be found unless r = 4.
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