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Abstract. A set of multivariate polynomials, over a field of zero or large
characteristic, can be tested for algebraic independence by the well-known Ja-
cobian criterion. For fields of other characteristic p > 0, there is no analogous
characterization known. In this paper we give the first such criterion. Essen-
tially, it boils down to a non-degeneracy condition on a lift of the Jacobian
polynomial over (an unramified extension of) the ring of p-adic integers.

Our proof builds on the de Rham-Witt complex, which was invented by Il-
lusie (1979) for crystalline cohomology computations, and we deduce a natural
generalization of the Jacobian. This new avatar we call the Witt-Jacobian. In
essence, we show how to faithfully differentiate polynomials over Fp (i.e. some-
how avoid ∂xp/∂x = 0) and thus capture algebraic independence.

We apply the new criterion to put the problem of testing algebraic inde-
pendence in the complexity class NP#P (previously best was PSPACE). Also,
we give a modest application to the problem of identity testing in algebraic
complexity theory.

1. Introduction

Polynomials f = {f1, . . . , fm} ⊂ k[x1, . . . , xn] are called algebraically indepen-
dent over a field k, if there is no nonzero F ∈ k[y1, . . . , ym] such that F (f) = 0.
Otherwise, they are algebraically dependent and F is an annihilating polynomial.
Algebraic independence is a fundamental concept in commutative algebra. It is
to polynomial rings what linear independence is to vector spaces. Our paper is
motivated by the computational aspects of this concept.

A priori it is not clear whether, for given explicit polynomials, one can test
algebraic independence effectively. But this is possible – by Gröbner bases, or, by
invoking Perron’s degree bound on the annihilating polynomial [Per27] and finding
a possible F . Now, can this be done efficiently (i.e. in polynomial time)? It can be
seen that both the above algorithmic techniques take exponential time, though the
latter gives a PSPACE algorithm. Hence, a different approach is needed for a faster
algorithm, and here enters Jacobi [Jac41]. The Jacobian of the polynomials f is
the matrix Jx(f ) := (∂xj

fi)m×n, where ∂xj
fi = ∂fi/∂xj is the partial derivative

of fi with respect to xj . It is easy to see that for m > n the f are dependent, so
we always assume m ≤ n. Now, the Jacobian criterion says: The matrix is of full
rank over the function field iff f are algebraically independent (assuming zero or
large characteristic, see [BMS11]). Since the rank of this matrix can be computed
by its randomized evaluations [Sch80, DGW09], we immediately get a randomized
polynomial time algorithm. The only question left is – What about the ‘other’
prime characteristic fields? In those situations nothing like the Jacobian criterion
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was known. Here we propose the first such criterion that works for all prime
characteristic. In this sense we make partial progress on the algebraic independence
question for ‘small fields’ [DGW09], but we do not yet know how to check this
criterion in polynomial time. We do, however, improve the complexity of algebraic
independence testing from PSPACE to NP#P.

The m × m minors of the Jacobian we call Jacobian polynomials. So the cri-
terion can be rephrased: One of the Jacobian polynomials is nonzero iff f are
algebraically independent (assuming zero or large characteristic). We believe that
finding a Jacobian-type polynomial that captures algebraic independence in any
characteristic p > 0 is a natural question in algebra and geometry. Further-
more, Jacobian has recently found several applications in complexity theory –
circuit lower bound proofs [Kal85, ASSS12], pseudo-random objects construction
[DGW09, Dvi09], identity testing [BMS11, ASSS12], cryptography [DGRV11], pro-
gram invariants [L’v84, Kay09], and control theory [For91, DF92]. Thus, a suitably
effective Jacobian-type criterion is desirable to make these applications work for
any field. The criterion presented here is not yet effective enough, nevertheless, it
is able to solve a modest case of identity testing that was left open in [BMS11].

In this paper, the new avatar of the Jacobian polynomial is called a Witt-
Jacobian. For polynomials f = {f1, . . . , fn} ⊂ Fp[x1, . . . , xn] we simply lift the

coefficients of f to the p-adic integers Ẑp, to get the lifted polynomials f̂ ⊂

Ẑp[x1, . . . , xn]. Now, for ℓ ≥ 1, the ℓ-th Witt-Jacobian polynomial is WJPℓ :=

(f̂1 · · · f̂n)
pℓ−1−1(x1 · · ·xn) · detJx(f̂ ). Hence, the Witt-Jacobian is just a suitably

‘scaled-up’ version of the Jacobian polynomial over the integral domain Ẑp. E.g.,

if n = 1, f1 = xp
1, then WJPℓ = (xp

1)
pℓ−1−1(x1) · (px

p−1
1 ) = pxpℓ

1 which is a nonzero
p-adic polynomial. Thus, Witt-Jacobian avoids mapping xp

1 to zero. However, the

flip side is that a lift of the polynomial f1 = 0, say, f̂1 = pxp
1 gets mapped to

WJPℓ = (pxp
1)

pℓ−1−1(x1) · (p
2xp−1

1 ) = p(p
ℓ−1+1)xpℓ

1 which is also a nonzero p-adic
polynomial. This shows that a Witt-Jacobian criterion cannot simply hinge on the
zeroness of WJPℓ but has to be much more subtle. Indeed, we show that the terms
in WJPℓ carry precise information about the algebraic independence of f . In par-
ticular, in the two examples above, our Witt-Jacobian criterion checks whether the

coefficient of the monomial xpℓ

1 in WJPℓ is divisible by pℓ (which is true in the sec-
ond example, but not in the first for ℓ ≥ 2). It is the magic of abstract differentials
that such a weird explicit property could be formulated at all, let alone proved.

1.1. Main results. We need some notation to properly state the results. Denote
Z≥0 by N. Let [n] := {1, . . . , n}, and the set of all r-subsets of [n] be denoted by
(

[n]
r

)

. If I ∈
(

[n]
r

)

, the bold-notation aI will be a short-hand for ai, i ∈ I, and we
write ai for a[i]. Let k/Fp be an algebraic field extension, and W(k) be the ring

of Witt vectors of k (W(k) is just a ‘nice’ extension of Ẑp). Define the Fp-algebra
A := k[xn] and the p-adic-algebra B := W(k)[xn]. For a nonzero α ∈ Nn denote
by vp(α) the maximal v ∈ N with pv|αi, i ∈ [n]. Set vp(0) := ∞.

[Degeneracy] We call f ∈ B degenerate if the coefficient of xα in f is divisible
by pvp(α)+1 for all α ∈ Nn. For ℓ ∈ N, f is called (ℓ+1)-degenerate if the coefficient
of xα in f is divisible by pmin{vp(α),ℓ}+1 for all α ∈ Nn.

We could show for polynomials fr ∈ A and their p-adic lifts gr ∈ B, that

if f r are algebraically dependent, then for any r variables xI , I ∈
(

[n]
r

)

, the p-adic
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polynomial
(
∏

j∈I xj

)

· detJxI
(gr) is degenerate. This would have been a rather

elegant criterion, if the converse did not fail (see Theorem 36). Thus, we need to
look at a more complicated polynomial (and use the graded version of degeneracy).

[Witt-Jacobian polynomial] Let ℓ ∈ N, gr ∈ B, and I ∈
(

[n]
r

)

. We call

WJPℓ+1,I(gr) := (g1 · · · gr)
pℓ−1

(
∏

j∈I xj

)

· detJxI
(gr) ∈ B

the (ℓ+ 1)-th Witt-Jacobian polynomial of gr w.r.t. I.

Theorem 1 (Witt-Jacobian criterion). Let fr ∈ A be of degree at most δ ≥ 1, and
fix ℓ ≥ ⌊r logp δ⌋. Choose gr ∈ B such that ∀i ∈ [r], fi ≡ gi (mod pB).

Then, f r are algebraically independent over k if and only if there exists I ∈
(

[n]
r

)

such that WJPℓ+1,I(gr) is not (ℓ + 1)-degenerate.

If p > δr, this theorem subsumes the Jacobian criterion (choose ℓ = 0). In
computational situations we are given f r ∈ A, say, explicitly. Of course, we can
efficiently lift them to gr ∈ B. But WJPℓ+1,I(gr) may have exponential sparsity
(number of nonzero monomials), even for ℓ = 1. This makes it difficult to test the
Witt-Jacobian polynomial efficiently for 2-degeneracy. While we improve the basic
upper bound of PSPACE for this problem, there is some evidence that the general
2-degeneracy problem is outside the polynomial hierarchy [Men12] (Theorem 40).

Theorem 2 (Upper bound). Given arithmetic circuits Cr computing in A, the

problem of testing algebraic independence of polynomials Cr is in the class NP#P.

We are in a better shape when WJPℓ+1,I(gr) is relatively sparse, which happens,
for instance, when f r have ‘sub-logarithmic’ sparsity. This case can be applied
to the question of blackbox identity testing : We are given an arithmetic circuit
C ∈ Fp[xn] via a blackbox, and we need to decide whether C = 0. Blackbox
access means that we can only evaluate C over field extensions of Fp. Hence,

blackbox identity testing boils down to efficiently constructing a hitting-set H ⊂ F
n

p

such that any nonzero C (in our circuit family) has an a ∈ H with C(a) 6= 0.
Designing efficient hitting-sets is an outstanding open problem in complexity theory,
see [SS95, Sax09, SY10, ASSS12] and the references therein. We apply the Witt-
Jacobian criterion to the following case of identity testing.

Theorem 3 (Hitting-set). Let fm ∈ A be s-sparse polynomials of degree ≤ δ,
transcendence degree ≤ r, and assume s, δ, r ≥ 1. Let C ∈ k[ym] such that the

degree of C(fm) is bounded by d. We can construct a (hitting-)set H ⊂ F
n

p in

poly
(

(nd)r, (δrs)r
2s
)

-time such that: If C(fm) 6= 0 then ∃a ∈ H,
(

C(fm)
)

(a) 6= 0.

An interesting parameter setting is r = O(1) and s = O(log d/r2 log(δr log d)).
In other words, we have an efficient hitting-set, when fm have constant transcen-
dence degree and sub-logarithmic sparsity. This is new, though, for zero and large
characteristic, a much better result is in [BMS11] (thanks to the classical Jacobian).

1.2. Our approach. Here we sketch the ideas for proving Theorem 1, without
going into the definitions and technicalities (those come later in plenty). The central
tool in the proof is the de Rham-Witt complex which was invented by Illusie, for
Fp-ringed topoi, in the seminal work [Ill79]. While it is fundamental for several
cohomology theories for schemes in characteristic p > 0 (see the beautiful survey
[Ill94]), we focus here on its algebraic strengths only. We will see that it is just



4 J. MITTMANN, N. SAXENA, AND P. SCHEIBLECHNER

the right machinery, though quite heavy, to churn a criterion. We lift a polynomial
f ∈ A to a more ‘geometric’ ring W(A), via the Teichmüller lift [f ]. This process is

the same functor that builds Ẑp from Fp [Ser79]. The formalization of differentiation
in this ring is by the W(A)-module of Kähler differentials Ω1

W(A) [Eis95]. Together

with its exterior powers it provides a fully-fledged linear algebra structure, the de
Rham complex Ω·

W(A). But this is all in zero characteristic and we have to do more

to correctly extract the properties of A – which has characteristic p.
The ring W(A) admits a natural filtration by ideals VℓW(A) ⊇ pℓ W(A), so we

have length-ℓ Witt vectorsWℓ(A) := W(A)/Vℓ W(A). This filtration is inherited by
Ω·

W(A), and a suitable quotient defines the de Rham-Witt complex WℓΩ
·
A of Wℓ(A)-

modules, and the de Rham-Witt pro-complex W• Ω
·
A. This is still an abstractly

defined object, but it can be explicitly realized as a subspace of the algebra B′ :=

∪i≥0 W(k)[xp−i

n ] (a perfection of B). Illusie defined a subalgebra E0 ⊂ B′ that is
‘almost’ isomorphic to W(A), and could then identify a differential graded algebra

E ⊂ Ω·
B′ such that a suitable quotient Eℓ := E /Filℓ E realizes Wℓ Ω

·
A.

To prove Theorem 1 we consider the Witt-Jacobian differential WJℓ := d[f1] ∧
· · · ∧ d[fr] ∈ Wℓ Ω

r
A. By studying the behavior of Wℓ Ω

r
A as we move from A to

an extension ring, we show that WJℓ vanishes iff fr are algebraically dependent.
The concept of étale extension is really useful here [Mil80]. In our situation, it
corresponds to a separable field extension. We try to ‘force’ separability, and here
Perron-like Theorem 4 helps to bound ℓ. Next, we realize WJℓ as an element of
Er
ℓ . It is here where the Witt-Jacobian polynomials WJPℓ,I appear and satisfy:

WJℓ = 0 iff its explicit version is in Filℓ Er iff WJPℓ,I is ℓ-degenerate for all I.
The idea in Theorem 2 is that, by the Witt-Jacobian criterion, the given poly-

nomials are algebraically independent iff some WJPℓ+1,I has some monomial xα

whose coefficient is not divisible by pmin{vp(α),ℓ}+1. An NP machine can ‘guess’ I
and α, while computing the coefficient is harder. We do the latter following an idea
of [KS11] by evaluating the exponentially large sum in an interpolation formula us-
ing a #P-oracle. In this part the isomorphism between Wℓ+1(Fpt) and the handier
Galois ring Gℓ+1,t [Rag69, Wan03] allows to evaluate WJPℓ+1,I .

The main idea in Theorem 3 is that non-ℓ-degeneracy of WJPℓ,I is preserved un-
der evaluation of the variables x[n]\I . This implies with [BMS11] that algebraically
independent fr can be made r-variate efficiently without affecting the zeroness of
C(fr). The existence of the claimed hitting-sets follows easily from [Sch80].

1.3. Organization. In §2 we introduce all necessary preliminaries about algebraic
independence and transcendence degree (§2.1), derivations, differentials and the de
Rham complex (§2.2), separability (§2.3), the ring of Witt vectors (§2.4) and the
de Rham-Witt complex (§2.5 and §2.6). To warm up the concept of differentials
we discuss the classical Jacobian criterion in a ‘modern’ language in §3.

Our main results are contained in §4. In §4.1 we define the Witt-Jacobian dif-
ferential and prove the abstract Witt-Jacobian criterion, and in §4.2 we derive its
explicit version Theorem 1. In §5 and §6 we prove Theorems 2 resp. 3. To save space
we have skipped several worthy references and moved some proofs to Appendix A.

2. Preliminaries

Unless stated otherwise, a ring in this paper is commutative with unity. For
integers r ≤ n, we write [r, n] := {r, r + 1, . . . , n}.
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2.1. Algebraic independence and transcendence degree. Let k be a field
and let A be a k-algebra. Elements ar ∈ A are called algebraically independent
over k if F (ar) 6= 0 for all nonzero polynomials F ∈ k[yr]. For a subset S ⊆ A,
the transcendence degree of S over k is defined as trdegk(S) := sup{#T | T ⊆
S finite and algebraically independent over k}. For an integral domain A we have
trdegk(A) = trdegk(Q(A)), where Q(A) denotes the quotient field of A.

Now let k[x] = k[xn] be a polynomial ring over k. We have the following
effective criterion for testing algebraic independence, which is stronger than the
classical Perron’s bound [Per27]. We prove it in §A.2 using [Kem96, Corollary 1.8].

Theorem 4 (Degree bound). Let k be a field, fn ∈ k[x] be algebraically indepen-
dent, and set δi := deg(fi) for i ∈ [n]. Then [k(xn) : k(fn)] ≤ δ1 · · · δn.

2.2. Differentials and the de Rham complex. Let R be a ring and let A be
an R-algebra. The module of Kähler differentials of A over R, denoted by Ω1

A/R, is

the A-module generated by the set of symbols {da | a ∈ A} subject to the relations

d(ra + sb) = r da+ s db (R-linearity), d(ab) = a db+ b da (Leibniz rule)

for all r, s ∈ R and a, b ∈ A. The map d : A → Ω1
A/R defined by a 7→ da is an

R-derivation called the universal R-derivation of A.
For r ≥ 0, let Ωr

A/R :=
∧r

Ω1
A/R be the r-th exterior power over A. The universal

derivation d : A = Ω0
A/R → Ω1

A/R extends to the exterior derivative dr : Ωr
A/R →

Ωr+1
A/R by dr(a da1∧· · · ∧dar) = da∧da1 ∧· · · ∧dar for a, a1, . . . , ar ∈ A. It satisfies

dr+1 ◦ dr = 0 and hence defines a complex of R-modules

Ω·
A/R : 0 → A

d
→ Ω1

A/R
d1

→ · · · → Ωr
A/R

dr

→ Ωr+1
A/R → · · ·

called the de Rham complex of A over R. This complex also has an R-algebra
structure with the exterior product. The Kähler differentials satisfy the following
properties, which make it convenient to study algebra extensions.

Lemma 5 (Base change). Let R be a ring, let A and R′ be R-algebras. Then
A′ := R′⊗RA is an R′-algebra and, for all r ≥ 0, there is an A′-module isomorphism
R′⊗RΩ

r
A/R → Ωr

A′/R′ given by r′⊗(da1∧· · ·∧dar) 7→ (r′⊗1) d(1⊗a1)∧· · ·∧d(1⊗ar).

Lemma 6 (Localization). Let R be a ring, let A be an R-algebra and let B = S−1A
for some multiplicatively closed set S ⊂ A. Then there is a B-module isomorphism
B⊗AΩr

A/R → Ωr
B/R given by b⊗ (da1∧· · ·∧dar) 7→ b da1∧· · ·∧dar. The universal

R-derivation d : B → Ω1
B/R satisfies d(s−1) = −s−2 ds for s ∈ S.

For r = 1 these lemmas are proved in [Eis95] as Propositions 16.4 and 16.9,
respectively, and for r ≥ 2 they follow from [Eis95, Proposition A2.2 b].

The Jacobian emerges quite naturally in this setting.

Definition 7. The Jacobian differential of ar ∈ A is defined as JA/R(ar) :=
da1 ∧ · · · ∧ dar ∈ Ωr

A/R.

Now consider the polynomial ring k[x]. Then Ω1
k[x]/k is a free k[x]-module of

rank n with basis dx1, . . . , dxn. It follows that Ωr
k[x]/k = 0 for r > n. For r ≤ n

and I = {j1 < · · · < jr} ∈
(

[n]
r

)

, we use the notation
∧

j∈I dxj := dxj1 ∧ · · · ∧ dxjr .

The k[x]-module Ωr
k[x]/k is free of rank

(

n
r

)

with basis
{
∧

j∈I dxj | I ∈
(

[n]
r

)}

. The

derivation d : k[x] → Ω1
k[x]/k is given by f 7→

∑n
i=1(∂xi

f)dxi.
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The Jacobian matrix of fm ∈ k[x] is Jx(fm) := (∂xj
fi)i,j ∈ k[x]m×n. For

an index set I = {j1 < · · · < jr} ∈
(

[n]
r

)

, we write xI := (xj1 , . . . , xjr ) and
JxI

(fm) := (∂xjk
fi)i,k ∈ k[x]m×r. A standard computation shows

df1 ∧ · · · ∧ dfr =
∑

I
detJxI

(f r) ·
∧

j∈I dxj ,

where the sum runs over all I ∈
(

[n]
r

)

, which implies the following relationship
between the Jacobian differential and the rank of the Jacobian matrix.

Lemma 8. For fr ∈ k[x] we have Jk[x]/k(f r) 6= 0 if and only if rkk(x) Jx(fr) = r.

2.3. Separability. A univariate polynomial f ∈ k[x] is called separable if it has no

multiple roots in k. If f is irreducible, then it is separable if and only if ∂xf 6= 0,
which is always the case in characteristic zero. If char(k) = p > 0, then f is
separable if and only if f /∈ k[xp]. Now let L/k be a field extension. An algebraic
element a ∈ L over k is called separable if its minimal polynomial in k[x] is separable.
The separable elements form a field k ⊆ ksep ⊆ L which is called the separable
closure of k in L. Now let L/k be an algebraic extension. Then [L : k]sep := [ksep : k]
resp. [L : k]insep := [L : ksep] are called separable resp. inseparable degree of L/k. If
L = ksep, then L/k is called separable. The extension L/ksep is purely inseparable,

i.e. ap
e

∈ ksep for some e ≥ 0, where p = char(k).
More generally, a finitely generated extension L/k is separable if it has a tran-

scendence basis B ⊂ L such that the finite extension L/k(B) is separable. In this
case, B is called a separating transcendence basis of L/k. If L/k is separable, then
every generating system of L over k contains a separating transcendence basis. If
k is perfect, then every finitely generated field extension of k is separable [Lan84,
§X.6].

Lemma 16.15 in [Eis95] implies that a separable field extension adds no new
linear relations in the differential module, and Proposition A2.2 b [loc.cit.] yields

Lemma 9 (Separable extension). Let L/k be a separable algebraic field extension
and let R be a subring of k. Then there is an L-vector space isomorphism L ⊗k

Ωr
k/R

∼= Ωr
L/R given by b⊗ (da1 ∧ · · · ∧ dar) 7→ b da1 ∧ · · · ∧ dar.

2.4. The ring of Witt vectors. The Witt ring was defined in [Wit36]. For its
precise definition and basic properties we also refer to [Lan84, Ser79, Haz78].

Fix a prime p and a ring A. As a set, the ring W(A) of (p-typical) Witt vectors
of A (or Witt ring for short) is defined as AN. An element a ∈ W(A) is written
(a0, a1, . . . ) and is called a Witt vector with coordinates ai ∈ A. The ring structure
of W(A) is given by universal polynomials Si, Pi ∈ Z[x0, . . . , xi, y0, . . . , yi] such that

a+ b = (S0(a0, b0), S1(a0, a1, b0, b1), . . . ), ab = (P0(a0, b0), P1(a0, a1, b0, b1), . . . )

for all a, b ∈ W(A). The first few terms are S0 = x0 + y0, P0 = x0y0,

S1 = x1 + y1 −
∑p−1

i=1 p−1
(

p
i

)

xi
0y

p−i
0 , P1 = xp

0y1 + x1y
p
0 + px1y1.

The additive and multiplicative identity elements of W(A) are (0, 0, 0, . . . ) and
(1, 0, 0, . . . ), respectively. The ring structure is uniquely determined by a universal
property, which we refrain from stating. If p is invertible in A, then W(A) is
isomorphic to AN with componentwise operations.

The projection Wℓ(A) of W(A) to the first ℓ ≥ 1 coordinates is a ring with the
same rules for addition and multiplication as for W(A), which is called the ring of
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Witt vectors of A of length ℓ. We have W1(A) = A. The ring epimorphisms

R: Wℓ+1(A) → Wℓ(A), (a0, . . . , aℓ) 7→ (a0, . . . , aℓ−1)

are called restriction and ((Wℓ(A))ℓ≥1,R: Wℓ+1(A) → Wℓ(A)) is a projective
(inverse) system of rings with limit W(A). The additive group homomorphism

V: W(A) → W(A), (a0, a1, . . . ) 7→ (0, a0, a1, . . . )

is called Verschiebung (shift). For ℓ, r ≥ 1, we have exact sequences

0 → W(A)
Vℓ

→ W(A) → Wℓ(A) → 0, 0 → Wr(A)
Vℓ

→ Wℓ+r(A)
Rr

→ Wℓ(A) → 0.

The Verschiebung also induces additive maps V: Wℓ(A) → Wℓ+1(A).
The Teichmüller lift of a ∈ A is defined as [a] := (a, 0, 0, . . . ) ∈ W(A). The

image of [a] in Wℓ(A) is denoted by [a]≤ℓ. We have

[a] · w =
(

aw0, a
pw1, . . . , a

pi

wi, . . .
)

for all w ∈ W(A). In particular, the map A → W(A), a 7→ [a] is multiplicative, i. e.,
[ab] = [a][b] for all a, b ∈ A. Every a ∈ W(A) can be written as a =

∑∞
i=0 V

i[ai].
We are only interested in the case where A has characteristic p. The most basic

example is the prime field A = Fp, for which W(Fp) is the ring Ẑp of p-adic integers.

More generally, the Witt ring W(Fpt) of a finite field Fpt is the ring of integers Ẑ
(t)
p

in the unique unramified extension Q
(t)
p of Qp of degree t [Kob84].

Now let A be an Fp-algebra. Then the Frobenius endomorphism F: A → A,
a 7→ ap induces a ring endomorphism

(1) F: W(A) → W(A), (a0, a1, . . . ) 7→ (ap0, a
p
1, . . . ).

We have VF = FV = p and aV b = V(F a · b) for all a, b ∈ W(A). The Frobenius
further induces endomorphisms on Wℓ(A). An Fp-algebra A is called perfect, if F
is an automorphism. In this case, the induced endomorphism F on W(A) is an
automorphism as well.

Let vp : Q → Z ∪ {∞} denote the p-adic valuation of Q. For a nonzero q ∈ Q,
vp(q) is defined as the unique integer v ∈ Z such that q = pv a

b for a, b ∈ Z \ pZ. For
tuples α ∈ Qs, s ≥ 1, set vp(α) := min1≤i≤s vp(αi) ∈ Z ∪ {∞}.

Lemma 10 (Expanding Teichmüller). Let A = R[a] = R[an] be an R-algebra,
where R is an Fp-algebra, and let f =

∑s
i=1 cia

αi ∈ A, where ci ∈ R and αi ∈ Nn.

Then, in Wℓ+1(A), we have the sum over i ∈ Ns and
(

pℓ

i

)

=
(

pℓ

i1,...,is

)

:

(2) [f ] =
∑

|i|=pℓ

p−ℓ+vp(i)
(

pℓ

i

)

·Vℓ−vp(i) F−vp(i)
(

[c1a
α1 ]i1 · · · [csa

αs ]is
)

.

Proof. Note that the RHS w of (2) is a well-defined element of W(A), because

p−ℓ+vp(i) ·
(

pℓ

i

)

∈ N by Lemma 38, vp(i) ≤ ℓ and p−vp(i) · i ∈ Ns. We have

[f ] =
∑s

i=1[cia
αi ] in W1(A), so Lemma 37 implies

Fℓ[f ] = [f ]p
ℓ

=
(
∑s

i=1[cia
αi ]

)pℓ

=
∑

|i|=pℓ

(

pℓ

i

)

· [c1a
α1 ]i1 · · · [csa

αs ]is in Wℓ+1(A).

Since VF = FV = p, we see that this is equal to Fℓ w. The injectivity of F implies
[f ] = w in Wℓ+1(A). �
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2.5. The de Rham-Witt complex. For this section we refer to [Ill79]. Let R
be a ring. Recall that a differential graded R-algebra (R-dga for short) is a graded
R-algebra M =

⊕

r≥0M
r together with an R-linear differential d : M r → M r+1

such that M is graded skew-commutative, i.e., ab = (−1)rsba for a ∈ M r, b ∈ M s

(in fact, we also assume that a2 = 0 for a ∈ M2r+1), and d satisfies: d ◦ d = 0 and
the graded Leibniz rule d(ab) = b da + (−1)ra db for a ∈ M r, b ∈ M . A Z-dga
is simply called dga. An important example is the R-dga Ω·

A/R :=
⊕

r≥0 Ω
r
A/R

together with d :=
⊕

r≥0 d
r.

Definition 11. Fix a prime p. A de Rham V-pro-complex (VDR for short) is a
projective system M• = ((Mℓ)ℓ≥1,R: Mℓ+1 → Mℓ) of dga’s together with additive
homomorphisms (V: M r

ℓ → M r
ℓ+1)r≥0,ℓ≥1 such that RV = VR and we have

(a) M0
1 is an Fp-algebra and M0

ℓ = Wℓ(M
0
1 ) with the restriction and Verschiebung

maps of Witt rings R: M0
ℓ+1 → M0

ℓ and V: M0
ℓ → M0

ℓ+1,
(b) V(ω dη) = (Vω)dV η for all ω ∈ M r

ℓ , η ∈ M s
ℓ ,

(c) (Vw)d[a] = V([a]p−1w)dV[a] for all a ∈ M0
1 , w ∈ M0

ℓ .

[Ill79] constructs for any Fp-algebra A a functorial de Rham V-pro-complex
W• Ω

·
A with WℓΩ

0
A = Wℓ(A), which is called the de Rham-Witt pro-complex of A.

We have a surjection Ω·
Wℓ(A)/Wℓ(Fp)

։ WℓΩ
·
A, which restricts to the identity on

Wℓ(A) and, for ℓ = 1, is an isomorphism Ω·
W1(A)/Fp

= Ω·
A/Fp

∼
→ W1 Ω

·
A.

Like the Kähler differentials, W• Ω
·
A satisfy properties that make it convenient

to study algebra extensions.

Lemma 12 (Base change [Ill79, Proposition I.1.9.2]). Let k′/k be an extension of
perfect fields of characteristic p. Let A be a k-algebra and set A′ := k′ ⊗k A. Then
there is a natural Wℓ(k

′)-module isomorphism Wℓ(k
′)⊗Wℓ(k) Wℓ Ω

r
A
∼= Wℓ Ω

r
A′ for

all ℓ ≥ 1 and r ≥ 0.

Lemma 13 (Localization [Ill79, Proposition I.1.11]). Let A be an Fp-algebra and
let B = S−1A for some multiplicatively closed set S ⊂ A. Then there is a natural
Wℓ(B)-module isomorphism Wℓ(B) ⊗Wℓ(A) Wℓ Ω

r
A

∼= WℓΩ
r
B for all ℓ ≥ 1 and

r ≥ 0.

Lemma 14 (Separable extension). Let L/K be a finite separable field extension of
characteristic p. Then there is a natural Wℓ(L)-module isomorphism Wℓ(L)⊗Wℓ(K)

Wℓ Ω
r
K

∼= Wℓ Ω
r
L for all ℓ ≥ 1 and r ≥ 0.

Proof. Proposition I.1.14 of [Ill79] states this for an étale morphism K → L, which
means flat and unramified. A vector space over a field is immediately flat, and a
finite separable field extension is unramified by definition (see e.g. [Mil80]). �

Remark 15. The proofs in [Ill79] show that the isomorphisms of Lemmas 12 – 14
are in fact isomorphisms of VDR’s with appropriately defined VDR-structures.

According to [Ill79, Théorème I.2.17], the morphism of projective systems of rings
RF = FR: W•(A) → W•−1(A) uniquely extends to a morphism of projective sys-

tems of graded algebras F: W• Ω
·
A → W•−1 Ω

·
A such that F d[a]≤ℓ+1 = [a]p−1

≤ℓ d[a]≤ℓ

for all a ∈ A, and F dV = d in Wℓ Ω
1
A for all ℓ ≥ 1. Define the canonical filtration

as Filℓ Wm Ω·
A := ker

(

Rm−ℓ : WmΩ·
A → Wℓ Ω

·
A) for ℓ,m ≥ 0.

Now consider a function field L := k(xn) over a perfect field k. The following
fact, proven in §A.2, is quite useful for our differential calculations.
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Lemma 16 (Frobenius kernel). We have ker
(

Wℓ+iΩ
r
L

Fi

−→ Wℓ Ω
r
L

)

⊆ Filℓ Wℓ+iΩ
r
L.

2.6. The de Rham-Witt complex of a polynomial ring. Let k/Fp be an
algebraic extension and consider the polynomial ring A := k[x] = k[xn]. In [Ill79,
§I.2] there is an explicit description of W• Ω

·
A in the case k = Fp. We generalize

this construction by invoking Lemma 12 (note that k is perfect).
Denote by K := Q(W(k)) the quotient field of the Witt ring, and consider the

rings B := W(k)[x] and C :=
⋃

i≥0 K[xp−i

]. For r ≥ 0, we write Ωr
B := Ωr

B/W(k)

and Ωr
C := Ωr

C/K . Since the universal derivation d : C → Ω1
C satisfies

d
(

xp−i

j

)

= p−ixp−i

j dxj/xj for all i ≥ 0, j ∈ [n],

every differential form ω ∈ Ωr
C can be written uniquely as

(3) ω =
∑

I
cI ·

∧

j∈I d log xj ,

where the sum is over all I ∈
(

[n]
r

)

, the cI ∈ C are divisible by (
∏

j∈I xj)
p−s

for

some s ≥ 0, and d log xj := dxj/xj . The cI in (3) are called coordinates of ω. A
form ω is called integral if all its coordinates have coefficients in W(k). We define

Er := Er
A := {ω ∈ Ωr

C | both ω and dω are integral}.

Then, E :=
⊕

r≥0 E
r is a differential graded subalgebra of ΩC containing ΩB.

Let F: C → C be the unique Qp-algebra automorphism extending the Frobenius

of W(k) defined by (1) and sending xp−i

j to xp−i+1

j . The map F extends to an
automorphism F: Ωr

C → Ωr
C of dga’s by acting on the coordinates of the differential

forms (keeping d log xj fixed), and we define V: Ωr
C → Ωr

C by V := pF−1. We have
dF = pFd and V d = pdV, in particular, E is closed under F and V.

We define a filtration E = Fil0 E ⊃ Fil1 E ⊃ · · · of differential graded ideals by

Filℓ Er := Vℓ Er +dVℓ Er−1 for ℓ, r ≥ 0,

and hence obtain a projective system E• of dga’s

Eℓ := E /Filℓ E, R: Eℓ+1 ։ Eℓ .

Theorem 17 (Explicit forms). The system E• is a VDR, isomorphic to W• Ω
·
A.

Proof. The case k = Fp follows from [Ill79, Théorème I.2.5]. Lemma 12 yields
W• Ω

·
A

∼= W•(k) ⊗W(Fp) W• Ω
·
Fp[x]

as VDR’s. In particular, the Verschiebung

restricts to the Verschiebung of W•(A), so it coincides with the map V defined
above. �

Lemma 18 ([Ill79, Corollaire I.2.13]). Multiplication with p in E induces for all
ℓ ≥ 0 a well-defined injective map mp : Eℓ → Eℓ+1 with mp ◦ R = p.

3. The classical Jacobian criterion

Consider a polynomial ring k[x] = k[xn]. In this section we characterize the ze-
roness of the Jacobian differential which, combined with Lemma 8, gives a criterion
on the Jacobian matrix. The proofs for this section can be found in §A.3.

Theorem 19 (Jacobian criterion – abstract). Let fr ∈ k[x] be polynomials. As-
sume that k(x) is a separable extension of k(fr). Then, fr are algebraically inde-
pendent over k if and only if Jk[x]/k(fr) 6= 0.
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As a consequence of Theorem 4, the separability hypothesis of Theorem 19 is
satisfied in sufficiently large characteristic.

Lemma 20. Let fm ∈ k[x] have transcendence degree r and maximal degree δ, and
assume char(k) = 0 or char(k) > δr. Then the extension k(x)/k(fm) is separable.

4. The Witt-Jacobian criterion

This we prove in two steps. First, an abstract criterion (zeroness of a differential).
Second, an explicit criterion (degeneracy of a p-adic polynomial).

4.1. The Witt-Jacobian differential.

Definition 21. Let A be an Fp-algebra, ar ∈ A, and ℓ ≥ 1. We call WJℓ,A(ar) :=
d[a1]≤ℓ∧· · ·∧d[ar ]≤ℓ ∈ WℓΩ

r
A the (ℓ-th) Witt-Jacobian differential of ar in WℓΩ

r
A.

Let k be an algebraic extension field of Fp (thus, k ⊆ Fp).

Lemma 22. Let L/k be a finitely generated field extension and let ℓ ≥ 1. Then
Wℓ Ω

r
L = 0 if and only if r > trdegk(L).

Proof. Let s := trdegk(L). Since L is finitely generated over a perfect field, it has
a separating transcendence basis {a1, . . . , as} ⊂ L. This means that L is a finite
separable extension of K := k(as). Since A := k[as] is isomorphic to a polynomial
ring over k, we have WℓΩ

r
A = 0 iff r ≥ s + 1 by §2.6. Lemmas 13 and 14 imply

Wℓ Ω
r
A = 0 iff Wℓ Ω

r
K = 0 iff WℓΩ

r
L = 0. �

Corollary 23. For an affine k-domain A and ℓ ≥ 1, Wℓ Ω
r
A = 0 iff r > trdegk(A).

Proof. Apply Lemma 22 to the quotient field of A and use Lemma 13. �

Now let A := k[x] = k[xn] be a polynomial ring over k.

Lemma 24 (Zeroness). If fr ∈ A are algebraically dependent, then WJℓ,A(fr) = 0
for all ℓ ≥ 1.

Proof. Assume that fr are algebraically dependent and set R := k[fr]. Corol-
lary 23 implies WℓΩ

r
R = 0, thus WJℓ,R(fr) = 0. The inclusion R ⊆ A induces a

homomorphism WℓΩ
r
R → Wℓ Ω

r
A, hence WJℓ,A(f r) = 0. �

We extend the inseparable degree to finitely generated field extensions L/K
by [L : K]insep := min

{

[L : K(B)]insep | B ⊂ L is a transcendence basis of L/K
}

.
Note that [L : K]insep is a power of char(K), and equals 1 iff L/K is separable.

Lemma 25 (Non-zeroness). If fr ∈ A are algebraically independent, then we have
WJℓ,A(f r) 6= 0 for all ℓ > logp[k(x) : k(f r)]insep.

Proof. It suffices to consider the case ℓ = e + 1, where e := logp[k(x) : k(fr)]insep.
By definition of e, there exist f [r+1,n] ∈ k(x) such that L := k(x) is algebraic over

K = k(f) := k(fn) with [L : K]insep = pe. Let Ksep be the separable closure of
K in L, thus L/Ksep is purely inseparable. For i ∈ [0, n], define the fields Ki :=
Ksep[x1, . . . , xi], hence we have a tower K ⊆ Ksep = K0 ⊆ K1 ⊆ · · · ⊆ Kn = L.

For i ∈ [n], let ei ≥ 0 be minimal such that xpei

i ∈ Ki−1 (ei exists, since Ki/Ki−1

is purely inseparable). Set qi := pei . By the multiplicativity of field extension
degrees, we have e =

∑n
i=1 ei.
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Since WJ1,A(x) 6= 0, we have pe ·WJℓ,A(x) = me
p WJ1,A(x) 6= 0 by Lemma 18.

Lemma 13 implies pe ·WJℓ,L(x) 6= 0. We conclude

(4) WJℓ,L(x
q1
1 , . . . , xqn

n ) = pe · [x1]
q1−1 · · · [xn]

qn−1 ·WJℓ,L(x) 6= 0,

since [x1]
q1−1 · · · [xn]

qn−1 is a unit in Wℓ(L).
Now assume for the sake of contradiction that WJℓ,L(f ) = 0. We want to

show inductively for j = 0, . . . , n− 1 that the induced map Ψj : WℓΩ
n
Kj

→ Wℓ Ω
n
L

satisfies

Ψj

(

d[xq1
1 ] ∧ · · · ∧ d[x

qj
j ] ∧ d[aj+1] ∧ · · · ∧ d[an]

)

= 0 for all aj+1, . . . , an ∈ Kj .

To prove this claim for j = 0, we first show that, for R := k[f ], the induced map
Ψ: Wℓ Ω

n
R → Wℓ Ω

n
L is zero. By Lemma 10, every element ω ∈ Wℓ Ω

n
R is a Z-

linear combination of products of elements of the form Vi[cfα] and dVi[cfα] for

some i ∈ [0, ℓ − 1], c ∈ k, and α ∈ Nn. Wlog., let ω = Vi0 [c0f
α0 ] · dVi1 [c1f

α1 ] ∧

· · · ∧ dVin [cnf
αn ]. Let ω ∈ Wm Ωn

R be a lift of ω for m sufficiently large (say

m = 2ℓ). Using F dV = d and F d[w] = [w]p−1d[w] for w ∈ R, we deduce Fℓ ω =
g · d[c1f

α1 ] ∧ · · · ∧ d[cnf
αn ] for some g ∈ Wm−ℓ(R). By the Leibniz rule, we

can simplify to Fℓ ω = g′ · d[f1] ∧ · · · ∧ d[fn] for some g′ ∈ Wm−ℓ(R). Since

WJℓ,L(f) = 0 by assumption, we obtain Fℓ Ψ(ω) = Ψ(Fℓ ω) ∈ Filℓ Wm−ℓ Ω
n
L, hence

Ψ(ω) ∈ Filℓ Wm Ωn
L by Lemma 16. This shows Ψ(ω) = 0, so Ψ is zero. Lemmas 13

and 14 imply that the map Ψ0 is zero, proving the claim for j = 0.
Now let j ≥ 1 and let ω = d[xq1

1 ] ∧ · · · ∧ d[x
qj
j ] ∧ d[aj+1] ∧ · · · ∧ d[an] ∈ WℓΩ

n
Kj

with aj+1, . . . , an ∈ Kj. Since Kj = Kj−1[xj ], we may assume by Lemma 10 that

ω = d[xq1
1 ]∧ · · · ∧ d[x

qj
j ]∧ dVij+1 [cj+1x

αj+1

j ]∧ · · · ∧ dVin [cnx
αn

j ] with ij+1, . . . , in ∈

[0, ℓ− 1], cj+1, . . . , cn ∈ Kj−1, and αj+1, . . . , αn ≥ 0. Let ω ∈ Wm Ωn
Kj

be a lift of

ω for m sufficiently large (say m = 2ℓ). As above, we deduce Fℓ ω = g ·d[xq1
1 ]∧· · ·∧

d[x
qj
j ] ∧ d[cj+1x

αj+1

j ] ∧ · · · ∧ d[cnx
αn

j ] for some g ∈ Wm−ℓ(Kj), and by the Leibniz

rule, we can write Fℓ ω = g′ · d[xq1
1 ] ∧ · · · ∧ d[x

qj
j ] ∧ d[cj+1] ∧ · · · ∧ d[cn] for some

g′ ∈ Wm−ℓ(Kj). Since xq1
1 , . . . , x

qj
j , cj+1, . . . , cn ∈ Kj−1, we obtain Fℓ Ψj(ω) =

Ψj(F
ℓ ω) ∈ Filℓ Wm−ℓ Ω

n
L by induction, hence Ψj(ω) ∈ Filℓ Wm Ωn

L by Lemma 16.
This shows Ψj(ω) = 0, finishing the proof of the claim.

For j = n − 1 and an = xqn
n ∈ Kn−1 the claim implies WJℓ,L(x

q1
1 , . . . , xqn

n ) = 0
which is contradicting (4). Therefore, WJℓ,L(fn) 6= 0, hence WJℓ,L(fr) 6= 0.
Lemma 13 implies WJℓ,A(f r) 6= 0. �

Remark 26. Lemma 25 is tight in the case fi := xpei

i for i ∈ [r].

Theorem 27 (Witt-Jacobian criterion – abstract). Let fr ∈ A be of degree at most
δ ≥ 1 and fix ℓ > ⌊r logp δ⌋. Then, f r are algebraically independent over k if and
only if WJℓ,A(f r) 6= 0.

Proof. Let f [r+1,n] ⊆ x be a transcendence basis of k(x)/k(f r). Then [k(x) :

k(fr)]insep ≤ [k(x) : k(fn)]insep ≤ [k(x) : k(fn)] ≤ δr by Theorem 4. The assertion
follows from Lemmas 24 and 25. �

4.2. The Witt-Jacobian polynomial. We adopt the notations and assump-
tions of §2.6. In particular, k/Fp is an algebraic extension, A = k[x] = k[xn],

B = W(k)[x], K = Q(W(k)), and C =
⋃

r≥0 K[xp−r

]. Recall that E = EA is a

subalgebra of Ω·
C containing Ω·

B , in particular, B ⊆ E0. Since k is perfect, we have
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W(k)/pW(k) ∼= W1(k) = k and hence B/pB ∼= A. In the following, we will use
these identifications.

Lemma 28 (Realizing Teichmüller). Let f ∈ A and let g ∈ B such that f ≡ g

(mod pB). Let ℓ ≥ 0 and let τ : Wℓ+1(A) → E0
ℓ+1 = E0 /Filℓ+1 E0 be the W(k)-

algebra isomorphism from Theorem 17. Then we have τ([f ]≤ℓ+1) = (F−ℓ g)p
ℓ

.

Proof. Write g =
∑s

i=1 cix
αi , where ci ∈ W(k) and αi ∈ Nn. By assumption, we

have [f ] =
∑s

i=1 ci[x
αi ] in W1(A). By Lemma 37, we obtain

Fℓ[f ] = [f ]p
ℓ

=
(
∑s

i=1 ci[x
αi ]

)pℓ

=
∑

|i|=pℓ

(

pℓ

i

)

· ci[xα1 ]i1 · · · [xαs ]is in Wℓ+1(A).

As in the proof of Lemma 10, this implies

[f ] =
∑

|i|=pℓ

p−ℓ+vp(i)
(

pℓ

i

)

· Vℓ−vp(i) F−vp(i)
(

ci11 [xα1 ]i1 · · · ciss [x
αs ]is

)

in Wℓ+1(A).

Since k is perfect, F is an automorphism of W(k), so this is well-defined. Denoting
mi := cix

αi ∈ B, and using τ V = V τ and τ([xi]) = xi, we conclude

τ([f ]) =
∑

|i|=pℓ

p−ℓ+vp(i)
(

pℓ

i

)

Vℓ−vp(i) F−vp(i)(mi1
1 · · ·mis

s )

=
∑

|i|=pℓ

(

pℓ

i

)

F−ℓ(mi1
1 · · ·mis

s ) =
(
∑s

i=1 F
−ℓmi

)pℓ

=
(

F−ℓ g
)pℓ

in E0
ℓ+1.

Note that the intermediate expression F−ℓ g ∈ C need not be an element of E0. �

The algebra C is graded in a natural way by G := N[p−1]n. The homogeneous
elements of C of degree β ∈ G are of the form cxβ for some c ∈ K. This grading
extends to ΩC by defining ω ∈ Ωr

C to be homogeneous of degree β ∈ G if its
coordinates in (3) are. We denote the homogeneous part of ω of degree β by (ω)β .

Lemma 29 (Explicit filtration [Ill79, Proposition I.2.12]). Let ℓ ≥ 0 and let β ∈
G. Define ν(ℓ + 1, β) := min

{

max{0, ℓ + 1 + vp(β)}, ℓ + 1
}

∈ [0, ℓ + 1]. Then

(Filℓ+1 E)β = pν(ℓ+1,β)(E)β.

The following lemma shows how degeneracy is naturally related to ν. A proof is
given in §A.4.

Lemma 30. Let ℓ ≥ 0 and let f ∈ B ⊂ E0. Then f is (ℓ + 1)-degenerate if and

only if the coefficient of xβ in F−ℓ f is divisible by pν(ℓ+1,β) for all β ∈ G.

Lemma 31 (Zeroness vs. degeneracy). Let ℓ ≥ 0, let gr ∈ B ⊂ E0 be polynomials,

and define ω := d(F−ℓ g1)
pℓ

∧ · · · ∧ d(F−ℓ gr)
pℓ

∈ Er. Then ω ∈ Filℓ+1 Er if and

only if WJPℓ+1,I(gr) is (ℓ + 1)-degenerate for all I ∈
(

[n]
r

)

.

Proof. From the formula dF = pF d [Ill79, (I.2.2.1)] we infer

Fℓ d(F−ℓ gi)
pℓ

= Fℓ dF−ℓ(gp
ℓ

i ) = p−ℓdgp
ℓ

i = gp
ℓ−1

i dgi,

hence Fℓ ω = (g1 · · · gr)
pℓ−1 dg1 ∧ · · · ∧ dgr. A standard computation shows

dg1 ∧ · · · ∧ dgr =
∑

I

(
∏

j∈I xj

)

· detJxI
(gr) ·

∧

j∈I d log xj ,
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where the sum runs over all I ∈
(

[n]
r

)

. This yields the unique representation

ω =
∑

I
F−ℓWJPℓ+1,I(gr) ·

∧

j∈I d log xj .

By Lemma 29, we have Filℓ+1 Er =
⊕

β∈G

(

Filℓ+1 Er
)

β
=

⊕

β∈G pν(ℓ+1,β)
(

Er
)

β
,

and we conclude

ω ∈ Filℓ+1 Er ⇐⇒ ∀β ∈ G : (ω)β ∈ pν(ℓ+1,β)
(

Er
)

β

⇐⇒ ∀β ∈ G, I ∈
(

[n]
r

)

: (F−ℓ WJPℓ+1,I(gr))β ∈ pν(ℓ+1,β) F−ℓ B

⇐⇒ ∀I ∈
(

[n]
r

)

: WJPℓ+1,I(gr) is (ℓ+ 1)-degenerate,

where we used Lemma 30. �

Proof of Theorem 1. Using Lemmas 28 and 31, this follows from Theorem 27. �

5. Independence testing: Proving Theorem 2

In this section, let A = k[x] be a polynomial ring over an algebraic extension k
of Fp. For the computational problem of algebraic independence testing, we consider
k as part of the input, so we may assume that k = Fpe is a finite field. The algorithm
works with the truncated Witt ring Wℓ+1(Fpt) of a small extension Fpt/k. For
computational purposes, we will use the fact that Wℓ+1(Fpt) is isomorphic to the

Galois ring Gℓ+1,t of characteristic p
ℓ+1 and size p(ℓ+1)t (see [Rag69, (3.5)]).

This ring can be realized as follows. There exists a monic polynomial h ∈

Z/(pℓ+1)[x] of degree t dividing xpt−1− 1 in Z/(pℓ+1)[x], such that h := h (mod p)
is irreducible in Fp[x], and ξ := x + (h) is a primitive (pt − 1)-th root of unity in

Fp[x]/(h). Then we may identify Gℓ+1,t = Z/(pℓ+1)[x]/(h) and Fpt = Fp[x]/(h),
and ξ := x + (h) is a primitive (pt − 1)-th root of unity in Gℓ+1,t (see the proof
of [Wan03, Theorem 14.8]). The ring Gℓ+1,t has a unique maximal ideal (p)
and Gℓ+1,t/(p) ∼= Fpt . Furthermore, Gℓ+1,t is a free Z/(pℓ+1)-module with ba-
sis 1, ξ, . . . , ξt−1, so that any a ∈ Fpt can be lifted coordinate-wise to a ∈ Gℓ+1,t

satisfying a ≡ a (mod p). To map elements of k to Fpt efficiently, we use [Len91].
For detailed proofs of the following two lemmas see §A.5.

Lemma 32 (Interpolation). Let f ∈ Gℓ+1,t[z] be a polynomial of degree D < pt−1
and let ξ ∈ Gℓ+1,t be a primitive (pt − 1)-th root of unity. Then

coeff(zd, f) = (pt − 1)−1 ·
∑pt−2

j=0 ξ−jdf(ξj) for all d ∈ [0, D].

This exponentially large sum can be evaluated using a #P-oracle [Val79].

Lemma 33 (#P-oracle). Given Gℓ+1,t, a primitive (pt − 1)-th root of unity ξ ∈
Gℓ+1,t, an arithmetic circuit C over Gℓ+1,t[z] of degree D < pt − 1 and d ∈ [0, D].

The coeff(zd, C) can be computed in FP#P (with a single #P-oracle query).

Proof of Theorem 2. We set up some notation. Let s := size(Cr) be the size of the

input circuits. Then δ := 2s
2

is an upper bound for their degrees. Set ℓ := ⌊r logp δ⌋

and D := rδr+1 + 1. The constants of Cr lie in k = Fpe , which is also given as
input. Let t ≥ 1 be a multiple of e satisfying pt − 1 ≥ Dn. Theorem 1 implies that
the following procedure decides the algebraic independence of Cr.

(1) Using non-determinism, guess I ∈
(

[n]
r

)

and α ∈ [0, D − 1]n.
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(2) Determine Gℓ+1,t and ξ as follows. Using non-determinism, guess a monic

degree-t polynomial h ∈ Z/(pℓ+1)[x]. Check that h divides xpt−1 − 1, h := h
(mod p) is irreducible and ξ := x + (h) has order pt − 1 (for the last test, also
guess a prime factorization of pt − 1), otherwise reject. Set ξ := x+ (f).

(3) By lifting the constants of Cr from k to Gℓ+1,t, compute circuits C ′
r over

Gℓ+1,t[x] such that C ′
i ≡ Ci (mod p). Furthermore, compute a circuit C for

WJPℓ+1,I(C
′
r) over Gℓ+1,t[x].

(4) Compute the univariate circuit C′ := C(z, zD, . . . , zD
n−1

) over Gℓ+1,t[z]. The
term xα is mapped to zd, where d :=

∑n
i=1 αiD

i−1.

(5) Compute c := coeff(zd, C′) ∈ Gℓ+1,t. If c is divisible by pmin{vp(α),ℓ}+1, then
reject, otherwise accept.

In step (2), the irreducibility of h can be tested efficiently by checking whether

gcd(h, xpi

− x) = 1 for i ≤ ⌊t/2⌋ (see [Wan03, Theorem 10.1]). For the order test

verify ξ
j
6= 1 for all maximal divisors j of pt − 1 (using its prime factorization).

The lifting in step (3) can be done as described in the beginning of the section.
To obtain C in polynomial time, we use [BS83] and [Ber84] for computing partial
derivatives and the determinant, and repeated squaring for the high power.

We have deg(C) ≤ rδ(pℓ − 1) + r + r(δ − 1) ≤ rδr+1 < D, so the Kronecker
substitution in step (4) preserves terms. Since degz(C

′) < Dn ≤ pt − 1, step (5) is

in FP#P by Lemma 33. Altogether we get an NP#P-algorithm. �

6. Identity testing: Proving Theorem 3

The aim of this section is to construct an efficiently computable hitting-set for
poly-degree circuits involving input polynomials of constant transcendence degree
and small sparsity, which works in any characteristic. It will involve sparse PIT
techniques and our Witt-Jacobian criterion. We use some lemmas from §A.6.

As before, we consider a polynomial ring A = k[x] over an algebraic extension k
of Fp. Furthermore, we set R := W(k) and B := R[x]. For a prime q and an
integer a we denote by ⌊a⌋q the unique integer 0 ≤ b < q such that a ≡ b (mod q).
Finally, for a polynomial f we denote by sp(f) its sparsity.

Lemma 34 (Variable reduction). Let fr ∈ A be polynomials of sparsity at most s ≥
1 and degree at most δ ≥ 1. Assume that f r, x[r+1,n] are algebraically independent.

Let D := rδr+1 + 1 and let S ⊆ k be of size |S| = n2(2δrs)4r
2s⌈log2 D⌉2D.

Then there exist c ∈ S and a prime 2 ≤ q ≤ n2(2δrs)4r
2s⌈log2 D⌉2 such that

f1(xr, c), . . . , fr(xr, c) ∈ k[xr] are algebraically independent over k, where c =
(

c⌊D
0⌋q , c⌊D

1⌋q , . . . , c⌊D
n−r−1⌋q

)

∈ kn−r.

Proof. Let gi ∈ B be obtained from fi by lifting each coefficient, so that gi is
s-sparse and fi ≡ gi (mod pB). Theorem 1 implies that with ℓ := ⌊r logp δ⌋ the
polynomial g := WJPℓ+1,[n](gr,x[r+1,n]) ∈ B is not (ℓ+ 1)-degenerate. We have

g = (g1 · · · gr · xr+1 · · ·xn)
pℓ−1(x1 · · ·xn) · detJx(gr,x[r+1,n])

= (xr+1 · · ·xn)
pℓ

· (g1 · · · gr)
pℓ−1(x1 · · ·xr) · detJxr

(gr),

since the Jacobian matrix Jx(gr,x[r+1,n]) is block-triangular with the lower right
block being the (n− r)× (n− r) identity matrix. Define

g′ := (g1 · · · gr)
pℓ−1(x1 · · ·xr) · detJxr

(gr) ∈ B.
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Then g = (xr+1 · · ·xn)
pℓ

g′, and g′ is not (ℓ+1)-degenerate by Lemma 44. Further-
more, we have deg(g′) ≤ rδ(pℓ − 1) + r + r(δ − 1) ≤ rδr+1 < D and

sp(g′) ≤

(

s+ (pℓ − 1)− 1

s− 1

)r

· r!sr ≤
(

s+ δr
)rs

· (rs)r ≤ (2δrs)2r
2s.

By Lemma 42, there exist c ∈ S and a prime q ≤ n2(2δrs)4r
2s⌈log2 D⌉2 such that

h := g′(xr, c
′) ∈ R[xr] is not (ℓ + 1)-degenerate, where

c :=
(

c⌊D
0⌋q , c⌊D

1⌋q , . . . , c⌊D
n−r−1⌋q

)

∈ kn−r,

and c′ ∈ Rn−r is the componentwise lift of c to R. Since h = WJPℓ+1,[r]

(

g1(xr, c
′),

. . . , gr(xr, c
′)
)

and fi(xr, c) ≡ gi(xr, c
′) (mod pB) for all i ∈ [r], Theorem 1 implies

that f1(xr, c), . . . , fr(xr, c) are algebraically independent over k. �

For an index set I = {i1 < · · · < ir} ∈
(

[n]
r

)

denote its complement by [n] \ I =
{ir+1 < · · · < in}. Define the map πI : k

n → kn, (a1, . . . , an) 7→ (ai1 , . . . , ain). We
now restate, in more detail, and prove Theorem 3.

Theorem 35 (Hitting-set). Let fm ∈ A be s-sparse, of degree at most δ, having
transcendence degree at most r, and assume s, δ, r ≥ 1. Let C ∈ k[ym] such that
the degree of C(fm) is bounded by d. Define the subset

H :=
{

πI

(

b, c⌊D
0⌋q , c⌊D

1⌋q , . . . , c⌊D
n−r−1⌋q

) ∣

∣ I ∈
(

[n]
r

)

, b ∈ Sr
1 , c ∈ S2, q ∈ [N ]

}

of kn, where S1, S2 ⊆ k are arbitrary subsets of size d+ 1 and n2(2δrs)9r
2s respec-

tively, D := rδr+1 + 1, and N := n2(2δrs)7r
2s.

If C(fm) 6= 0 then there exists a ∈ H such that
(

C(fm)
)

(a) 6= 0. The set H

can be constructed in poly
(

(nd)r, (δrs)r
2s
)

-time.

Proof. We may assume that fr are algebraically independent over k There exists
I = {i1 < · · · < ir} ⊆ [n] with complement [n] \ I = {ir+1 < · · · < in} such
that fr, x[n]\I are algebraically independent. By the definition of H, we may
assume that I = [r]. By Lemma 34, there exist c ∈ S2 and a prime q ∈ [N ]
such that f1(xr, c), . . . , fr(xr, c) ∈ k[xr] are algebraically independent, where c =
(

c⌊D
0⌋q , c⌊D

1⌋q , . . . , c⌊D
n−r−1⌋q

)

∈ kn−r. If C(fm) 6= 0, then Lemma 45 implies that
(

C(fm)
)

(xr, c) 6= 0. From Lemma 46 we obtain b ∈ S1 such that
(

C(fm)
)

(b, c) 6=
0. Thus, a := (b, c) ∈ H satisfies the first assertion. The last one is clear by
construction. �

7. Discussion

In this paper we generalized the Jacobian criterion for algebraic independence
to any characteristic. The new criterion raises several questions. The most impor-
tant one from the computational point of view: Can the degeneracy condition in
Theorem 1 be efficiently tested? The hardness result for the general degeneracy
problem shows that an affirmative answer to that question must exploit the special
structure of WJP. Anyhow, for constant or logarithmic p an efficient algorithm for
this problem is conceivable.

In §6, we used the explicit Witt-Jacobian criterion to construct faithful homomor-
phisms which are useful for testing polynomial identities. However, the complexity
of this method is exponential in the sparsity of the given polynomials. Can we
exploit the special form of the WJP to improve the complexity bound? Or, can
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we prove a criterion involving only the Jacobian polynomial (which in this case is
sparse)? (See an attempt in Theorem 36.)
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Appendix A. Missing theorems, lemmas and proofs

In this appendix we present statements and proofs that did not fit in the main
part due to space constraints.

A.1. Degeneracy of the p-adic Jacobian.

Theorem 36 (Necessity). Let f r ∈ A and gr ∈ B such that ∀i ∈ [r], fi ≡ gi
(mod pB). If f r are algebraically dependent, then for any r variables xI , I ∈
(

[n]
r

)

, the p-adic polynomial ĴxI
(gr) :=

(
∏

j∈I xj

)

· detJxI
(gr) is degenerate. The

converse does not hold.

Proof. Fix ℓ ∈ N such that pℓ is at least the degree of ĴxI
(gr). Consider the

differential form γ := dVℓ[f1]≤ℓ+1 ∧ · · · ∧ dVℓ[fr]≤ℓ+1 ∈ Wℓ+1 Ω
r
A.

Assume that f1, . . . , fr are algebraically dependent and set R := k[f1, . . . , fr].
Corollary 23 implies Wℓ+1Ω

r
R = 0, thus γ vanishes in Wℓ+1 Ω

r
R. The inclusion R ⊆

A induces a homomorphism Wℓ+1 Ω
r
R → Wℓ+1 Ω

r
A, hence γ vanishes in Wℓ+1Ω

r
A

itself.
As in the proof of Lemma 28, we first make Vℓ[f ]≤ℓ+1 explicit. Let g ∈ B

such that f ≡ g (mod pB), and write g =
∑s

i=1 cix
αi , where ci ∈ W(k) and
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αi ∈ Nn for i ∈ [s]. Note that Fℓ(Vℓ[f ]≤ℓ+1) = pℓ[f ]≤ℓ+1. Also, for w :=

Vℓ(
∑s

i=1 ci[x
αi ]) ∈ Wℓ+1(A) we have Fℓ(w) = pℓ

∑s
i=1 ci[x

αi ]. Since by assump-

tion ([f ] −
∑s

i=1 ci[x
αi ]) ∈ VW(A), we get pℓ([f ] −

∑s
i=1 ci[x

αi ]) ∈ Vℓ+1 W(A).

This proves Fℓ(Vℓ[f ]≤ℓ+1) = Fℓ(w). The injectivity of Fℓ implies Vℓ[f ]≤ℓ+1 = w.

Finally, we can apply τ : Wℓ+1(A) → E0
ℓ+1 to get: τ(Vℓ[f ]≤ℓ+1) = τ(w) = Vℓ(g).

Thus, we have the explicit condition γ′ := τ(γ) = dVℓ(g1) ∧ · · · ∧ dVℓ(gr) ∈

Filℓ+1 Er. Now we continue to calculate γ′ much like in Lemma 31. The formula
dF = pF d (see [Ill79, (I.2.2.1)]) implies d = F dpF−1 = F dV, hence d = Fℓ dVℓ.

We infer Fℓ d(V ℓgi) = dgi, hence Fℓ γ′ = dg1 ∧ · · · ∧ dgr. Furthermore,

dg1 ∧ · · · ∧ dgr =
∑

I

(
∏

j∈I xj

)

· detJxI
(gr) ·

∧

j∈I d log xj ,

where the sum runs over all I ∈
(

[n]
r

)

. This yields

γ′ =
∑

I
F−ℓ ĴxI

(gr) ·
∧

j∈I d log xj ,

and this representation is unique.
As in the proof of Lemma 31 we conclude

γ′ ∈ Filℓ+1 Er ⇐⇒ ∀β ∈ G : (γ′)β ∈ pν(ℓ+1,β)
(

Er
)

β

⇐⇒ ∀β ∈ G, I ∈
(

[n]
r

)

: (F−ℓ ĴxI
(gr))β ∈ pν(ℓ+1,β) F−ℓB

⇐⇒ ∀I ∈
(

[n]
r

)

: ĴxI
(gr) is (ℓ+ 1)-degenerate,

where we used Lemma 30. Since our ℓ is large enough, this is finally equivalent to
the degeneracy of ĴxI

(gr). This finishes the proof of one direction.

The converse is false, because if we fix f1 := xp
1 and f2 := xp

2, then Ĵx2
(xp

1, x
p
2) =

p2xp
1x

p
2. This is clearly degenerate, but f1, f2 are algebraically independent. �

A.2. Proofs for Section 2. For a polynomial f in some polynomial ring k[xn]
and a vector w ∈ Nn, the weighted-degree is defined as

max
{

n
∑

i=1

wiei | e ∈ Nn, coeff(xe, f) 6= 0
}

.

For the following proof we need to define a map µw : k[x] → k[x] that extracts the
highest weighted-degree part. I.e. for f ∈ k[x] of weighted-degree δ, µw(f) is the
sum of the weighted-degree-δ terms in f . E.g. µ(1,3)(2x

2
1 + 3x2) = 3x2. Note that

µw(f) = 0 iff f = 0.

Theorem 4 (restated). Let k be a field, fn ∈ k[x] be algebraically independent,
and set δi := deg(fi) for i ∈ [n]. Then [k(xn) : k(fn)] ≤ δ1 · · · δn.

Proof. Define for each i ∈ [n] the homogenization gi := zδi · fi(x/z) ∈ k[z,x] of fi
with respect to degree δi.

Firstly, z, gn are algebraically independent over k. Otherwise, there is an ir-
reducible polynomial H ∈ k[y[0,n]] such that H(z, gn) = 0. Evaluation at z = 1

yields H(1,fn) = 0. The algebraic independence of fn implies H(1,yn) = 0, hence
(y0 − 1)|H(y[0,n]) by the Gauss Lemma. This contradicts the irreducibility of H .

Thus, d′ := [k(z,xn) : k(z, gn)] is finite. We will now compare it with [k(xn) :
k(fn)] =: d. Denote the vector spaces k(z,xn) over k(z, gn) by V′, and k(xn)
over k(fn) by V. Each of these vector spaces admits a finite basis consisting of
monomials in xn only.
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Suppose S = {xα|α ∈ I}, for some I ⊂ Nn, is a basis of V′. Assume that
∑

α∈I

hα(fn) · x
α = 0

with some hα ∈ k[yn]. By homogenizing each term in this equation with respect to
the same sufficiently large degree, we obtain h′

α ∈ k[y[0,n]] such that
∑

α∈I

h′
α(z, gn) · x

α = 0.

Since the xα are linearly independent over k(z, gn), we conclude h′
α(z, gn) = 0,

hence hα(fn) = 0 for all α. Thus, d′ ≤ d.
Suppose S = {xα|α ∈ I}, for I ⊂ Nn, is a basis of V. If they are linearly

dependent in V′, then there exist hα ∈ k[y[0,n]] such that

(5)
∑

α∈I

hα(z, gn) · x
α = 0

is a nontrivial equation. Let 1 := (1, . . . , 1) ∈ Nn+1, w := (1, δn) and h′
α :=

µw(hα) ∈ k[y[0,n]]. Applying µ1 on (5) we get for some nonempty J ⊆ I a nontrivial
equation:

∑

α∈J

h′
α(z, gn) · x

α = 0.

Since h′
α(z, gn) is homogeneous and nonzero, it cannot be divisible by (z−1). Thus,

h′
α(1,fn) 6= 0 and we get a nontrivial equation in V:

∑

α∈J

h′
α(1,fn) · x

α = 0.

This contradicts the choice of I. Hence, d ≤ d′.
Finally, d = d′ and from [Kem96, Corollary 1.8] we know d′ ≤ δ1 · · · δn. �

Now we use the notation of §2.4.

Lemma 37 (p-th powering). Let A be an Fp-algebra and let a, b ∈ W(A) such that

a− b ∈ VW(A). Then ap
ℓ

− bp
ℓ

∈ Vℓ+1 W(A) for all ℓ ≥ 0.

Proof. We use induction on ℓ, where the base case ℓ = 0 holds by assumption. Now

let ℓ ≥ 1. By induction hypothesis, there is c ∈ VℓW(A) such that ap
ℓ−1

= bp
ℓ−1

+c.

Using VF = p and p−1
(

p
i

)

∈ N for i ∈ [p − 1], we conclude ap
ℓ

− bp
ℓ

=
(

bp
ℓ−1

+

c
)p

− bp
ℓ

= cp +
∑p−1

i=1 p−1
(

p
i

)

VF
(

bp
ℓ−1(p−i)ci

)

∈ Vℓ+1 W(A). �

Lemma 38 (Multinomials [Sin80, Theorem 32]). Let ℓ, s ≥ 1 and let α ∈ Ns such

that |α| = pℓ. Then pℓ−vp(α) divides the multinomial coefficient
(

pℓ

α

)

:=
(

pℓ

α1,...,αs

)

.

Now we use the notation of §2.5 and consider a function field L := k(xn) over a
perfect field k.

Lemma 16 (restated). We have ker
(

Wℓ+iΩ
r
L

Fi

−→ Wℓ Ω
r
L

)

⊆ Filℓ Wℓ+iΩ
r
L.

Proof. Let ω ∈ Wℓ+iΩ
r
L with Fi ω = 0. Applying Vi : Wℓ Ω

r
L → Wℓ+iΩ

r
L and

noting that Vi Fi = pi, we conclude that piω = 0. Proposition I.3.4 of [Ill79]

implies ω ∈ Filℓ Wℓ+iΩ
r
L. �
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A.3. Proofs for Section 3.

Theorem 19 (restated). Let fr ∈ k[x] be polynomials. Assume that k(x) is a
separable extension of k(fr). Then, f r are algebraically independent over k if and
only if Jk[x]/k(f r) 6= 0.

Proof. Let f r be algebraically independent over k. Since k(x) is separable over
k(fr), we can extend our system to a separating transcendence basis fn of k(x)
over k. Since k[fn] is isomorphic to a polynomial ring, we have Jk[fn]/k

(fn) 6= 0.
Lemmas 6 and 9 imply Jk[x]/k(fn) 6= 0, thus Jk[x]/k(f r) 6= 0.

Now let fr be algebraically dependent over k. The polynomials remain de-
pendent over the algebraic closure L := k, which is perfect. Hence, L(fr) is
separable over L, and [Eis95, Corollary 16.17 a] implies r > trdegL(L(fr)) =
dimL(fr)

Ω1
L(fr)/L

. Thus df1, . . . , dfr are linearly dependent, so JL(fr)/L
(f r) = 0,

implying JL[fr]/L
(fr) = 0 by Lemma 6. The inclusion L[fr] ⊆ L[x] induces

an L[fr]-module homomorphism Ωr
L[fr ]/L

→ Ωr
L[x]/L, hence JL[x]/L(f r) = 0.

Lemma 5 implies Jk[x]/k(fr) = 0. �

Remark 39. Note that without the separability hypothesis algebraic dependence of
the fr still implies Jk[x]/k(fr) = 0.

Lemma 20 (restated). Let fm ∈ k[x] have transcendence degree r and maxi-
mal degree δ, and assume that char(k) = 0 or char(k) > δr. Then the extension
k(x)/k(fm) is separable.

Proof. In the case char(k) = 0 there is nothing to prove, so let char(k) = p > δr.
After renaming polynomials and variables, we may assume that f r, x[r+1,n] are
algebraically independent over k. We claim that x[r+1,n] is a separating transcen-
dence basis of k(x)/k(fm). A transcendence degree argument shows that they
form a transcendence basis. Hence it suffices to show that xi is separable over
K := k(fm,x[r+1,n]) for all i ∈ [r]. By Theorem 4, we have [k(x) : K] ≤ [k(x) :
k(fr,x[r+1,n])] ≤ δr < p. Therefore, the degree of the minimal polynomial of xi

over K is < p, thus xi is indeed separable for all i ∈ [r]. �

A.4. Proofs for Section 4. We use the notation of §4.2.

Lemma 30 (restated). Let ℓ ≥ 0 and let f ∈ B ⊂ E0. Then f is (ℓ+1)-degenerate

if and only if the coefficient of xβ in F−ℓ f is divisible by pν(ℓ+1,β) for all β ∈ G.

Proof. The map F−ℓ defines a bijection between the terms of f and the terms of
F−ℓ f mapping cxα 7→ uxβ with u = F−ℓ(c) and β = p−ℓα. Since α ∈ Nn, we have
vp(β) = vp(p

−ℓα) = vp(α) − ℓ ≥ −ℓ, thus ν(ℓ + 1, β) = min{ℓ + vp(β), ℓ} + 1 =
min{vp(α), ℓ} + 1, which implies the claim. �

A.5. Proofs for Section 5. We use the notation of §5.

Lemma 32 (restated). Let f ∈ Gℓ+1,t[z] be a polynomial of degree D < pt − 1
and let ξ ∈ Gℓ+1,t be a primitive (pt − 1)-th root of unity. Then

coeff(zd, f) = (pt − 1)−1 ·
∑pt−2

j=0 ξ−jdf(ξj) for all d ∈ [0, D].

Proof. Set m := pt−1. Note that m is a unit in Gℓ+1,t, because m /∈ (p). It suffices

to show that
∑m−1

j=0 ξ−jdξij = m · δdi for all d, i ∈ [0,m− 1]. This is clear for d = i,

so let d 6= i. Then
∑m−1

j=0 ξ−jdξij =
∑m−1

j=0 ξj(i−d) = 0, because ξi−d is an m-th
root of unity 6= 1. �
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Lemma 33 (restated). Given Gℓ+1,t, a primitive (pt − 1)-th root of unity ξ ∈
Gℓ+1,t, an arithmetic circuit C over Gℓ+1,t[z] of degree D < pt − 1 and d ∈ [0, D].

The coeff(zd, C) can be computed in FP#P (with a single #P-oracle query).

Proof. Set m := pt − 1. As in §5, we assume that Gℓ+1,t = Z/(pℓ+1)[x]/(h),
where deg(h) = t, and ξ = x + (h). By Lemma 32, we have to compute a sum

S :=
∑m−1

i=0 ai with ai ∈ Gℓ+1,t. Each summand ai can be computed in polynomial
time, because C can be efficiently evaluated. Since the number of summands in S
is exponential, we need the help of a #P-oracle to compute it.

Each ai can be written as ai =
∑t−1

j=0 ci,jξ
j with ci,j ∈ Z/(pℓ+1). Thus, we can

represent ai by a tuple ci ∈ [0, pℓ+1 − 1]t of integers, and a representation of S

can be obtained by computing the componentwise integer sum s =
∑m−1

i=0 ci. Set

N := m · pℓ+1. Then s, ci ∈ [0, N − 1]t, so we can encode the tuples s and ci into
single integers via the bijection

ι : [0, N − 1]t → [0, N t − 1], (n0, . . . , nt−1) 7→
∑t−1

j=0 njN
j .

This bijection and its inverse are efficiently computable. Moreover, ι is compatible

with the sum under consideration, i.e. ι(s) =
∑m−1

i=0 ι(ci), thus we reduced our
problem to the summation of integers which are easy to compute.

To show that ι(s) can be computed in #P, we have to design a non-deterministic
polynomial-time Turing machine that, given input as above, has exactly ι(s) ac-
cepting computation paths. This can be done as follows. First we branch over all
integers i ∈ [0,m− 1]. In each branch i, we (deterministically) compute the integer
ι(ci) and branch again into exactly ι(ci) computation paths that all accept. This

implies that the machine has altogether
∑m−1

i=0 ι(ci) = ι(s) accepting computation
paths. �

We now state here the claims proved by Mengel [Men12]. Define the problem
of ℓ-Degen as: Given a univariate arithmetic circuit computing C(x) ∈ Qp[x], test
whether C(x) is ℓ-degenerate. Note that for ℓ = 1 this is the same as the identity
test C(x) ≡ 0 (mod p), which can be done in randomized polynomial time (or
ZPP). The situation drastically changes when ℓ > 1.

Theorem 40. [Men12] For ℓ > 1, ℓ-Degen is C=P-hard under ZPP-reductions.

Proof sketch. Denote by ZMC the problem: Given m ∈ N and a univariate arith-
metic circuit computing C(x) ∈ Q[x], test whether coeff(xm, C(x)) = 0. By
[FMM12] ZMC is C=P-hard. The idea is to reduce ZMC to 2-Degen. Randomly
pick a sufficiently large prime p. Consider the circuit C′(x) := pxp−m ·C(x). It can
be shown that C′(x) is 2-degenerate iff coeff(xm, C(x)) = 0. �

Corollary 41. [Men12] Let ℓ > 1. If ℓ-Degen is in PH then PH collapses.

Proof sketch. Classically, we have

PH ⊆ NP#P ⊆ NPC=P.

By the theorem it now follows that

PH ⊆ NPZPPℓ-Degen

⊆ NPNPℓ-Degen

.

Thus, if ℓ-Degen ∈ Σi then PH ⊆ Σi+2. �
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A.6. Proofs for Section 6. We use the notation of §6.

Lemma 42 (Using sparsity). Let ℓ ≥ 0 and let g ∈ B be an s-sparse polynomial of
degree less than D ≥ 2 which is not (ℓ+1)-degenerate. Let S ⊂ R be a subset such
that |S \ pR| = (ns⌈log2 D⌉)2D, and let r ∈ [n].

Then there exist c ∈ S and a prime q ≤ (ns⌈log2 D⌉)2 such that g(xr, c) ∈ R[xr]

is not (ℓ+ 1)-degenerate, where c :=
(

c⌊D
0⌋q , c⌊D

1⌋q , . . . , c⌊D
n−r−1⌋q

)

∈ Rn−r.

Proof. Write g =
∑

β∈Nr gβx
β
r with gβ ∈ R[x[r+1,n]]. Since g is not (ℓ + 1)-

degenerate, there exists α ∈ Nn such that the coefficient cα ∈ R of xα in g is
not divisible by pmin{vp(α),ℓ}+1. Write α = (α′, α′′) ∈ Nr × Nn−r. Since cα is the

coefficient of xα′′

[r+1,n] in gα′ , this polynomial cannot be divisible by pmin{vp(α),ℓ}+1.

Our aim is to find c ∈ Rn−r such that gα′(c) is not divisible by pmin{vp(α),ℓ}+1, since

then it is neither by the possibly higher power pmin{vp(α
′′),ℓ}+1. In other words, if

we write gα′ = peg′, where g′ is not divisible by p, we have an instance of PIT over
the field R/pR ∼= k.

We solve it using a Kronecker substitution, so consider the univariate polynomial

h′ := g′
(

tD
0

, tD
1

, . . . , tD
n−r−1)

∈ R[t] in the new variable t. Since deg g′ = deg gα′ ≤
deg g < D, the substitution preserves terms, so h′ /∈ pR[t]. Furthermore, h′ is s-
sparse and of degree < Dn. For any q ∈ N, let hq be the polynomial obtained
from h′ by reducing every exponent modulo q. By [BHLV09, Lemma 13], there are
< ns log2 D many primes q such that hq ∈ pR[t]. Since the interval [N2] contains
at least N primes for N ≥ 2 (this follows e.g. from [RS62, Corollary 1]), there is a
prime q ≤ (ns⌈log2 D⌉)2 with hq /∈ pR[t]. Since deg(hq) < qD ≤ (ns⌈log2 D⌉)2D =
|S \ pR|, there exists c ∈ S with hq(c) /∈ pR. �

Lemma 43 (p-adic triangle is isosceles). Let α, β ∈ Qs. Then vp(α + β) ≥
min{vp(α), vp(β)}, with equality if vp(α) 6= vp(β).

Proof. Let i ∈ [s] such that vp(α+β) = vp(αi+βi). Then vp(α+β) = vp(αi+βi) ≥
min{vp(αi), vp(βi)} ≥ min{vp(α), vp(β)}.

Now assume vp(α) 6= vp(β), say vp(α) < vp(β). Let i ∈ [s] such that vp(α) =
vp(αi). Then vp(αi) < vp(βi), therefore we obtain vp(α + β) ≤ vp(αi + βi) =
min{vp(αi), vp(βi)} = vp(αi) = vp(α) = min{vp(α), vp(β)} ≤ vp(α+ β). �

Lemma 44. Let ℓ ≥ 0, let g ∈ B and let α ∈ Nn with vp(α) ≥ ℓ. Then g is
(ℓ+ 1)-degenerate if and only if xα · g is (ℓ+ 1)-degenerate.

Proof. It suffices to show that min{vp(β), ℓ} = min{vp(α + β), ℓ} for all β ∈ Nn.
But the assumption implies that min{vp(β), ℓ} = min{vp(α), vp(β), ℓ}, which is
≤ min{vp(α+β), ℓ} by Lemma 43 with equality, if vp(α) 6= vp(β). If vp(α) = vp(β),
then min{vp(β), ℓ} = min{vp(α), ℓ} = ℓ ≥ min{vp(α+ β), ℓ}. �

Let fm ∈ A be polynomials and let ϕ : k[x] → k[xr] be a k-algebra homomor-
phism. We say that ϕ is faithful to fm if trdegk(fm) = trdegk(ϕ(fm)).

Lemma 45 (Faithful is useful [BMS11, Theorem 11]). Let ϕ : A → k[xr] be a
k-algebra homomorphism and fm ∈ A. Then, ϕ is faithful to fm iff ϕ|k[fm] is
injective.

Lemma 46. [Sch80, Corollary 1] Let nonzero f ∈ k[xr], and S ⊆ k with |S| >
deg f . Then there exists b ∈ Sr such that f(b) 6= 0.
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