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Abstract

Kolaitis and Koppartyhave shavn that for ary first-orderformula with parity quantifiersover the
languageof graphsthereis a family of multi-variate polynomialsof constant-dgreethat agreewith
the formula on all but a 2—(") fraction of the graphswith n vertices. The proof yields a boundon
the degreeof the polynomialsthatis a tower of exponentialsof heightaslarge asthe nestingdepthof
parity quantifiersin theformula. We show thatthis tower-type dependencen the depthof theformula
is necessary We build a family of formulasof depthq whoseapproximatingpolynomialsmusthave
degreeboundedrom below by a tower of exponentialsof heightproportionalto g. Our proof hastwo
main parts. First, we adaptand extendknown resultsdescribingthe joint distribution of the parity of
the numberof copiesof small subgraph®n a randomgraphto the settingof graphsof growing size.
Secondly we analysea variantof Karp’s graphcanonicallabelling algorithm and exploit its massve
parallelismto getaformulaof low depththatdefinesanalmostcanonicalpre-orderon arandomgraph.

1 Intr oduction

Sincethe 0-1 law for first-orderlogic wasestablished5, 6], therehasbeenmuchinterestin exploring the
asymptoticpropertiesof definableclasse®f graphs.Many extensionsof first-orderlogic have beenshavn
to have a 0-1 law (seefor instance[9, 4]) andin mary other caseswealer forms of convergencehave
beenestablishedseeg[3]). A recentremarkableesultin this veinis thatof Kolaitis andKopparty[8] who
study FO[&], the extensionof first-orderlogic with parity quantifies. They shav thatfor every constant
edge-probabilityp andfor every FO[®] sentencep, therearetwo explicitly computablerationalnumbers
ag, a1 suchthatfor i € {0, 1}, asn approachesfinity, the probability thattherandomgraphG(2n + i; p)
satisfiesy approaches;. In otherwords, ¢ hasan asymptoticprobability ag on the sequencef graphs
of even cardinalityanda; on thoseof odd cardinality Whatis mostinterestingaboutthis resultis that
it brings entirely nev methodsto the analysisof the asymptoticbehaiour of logics on graphs,basedon
discreteanalysisandpolynomialsover finite fields. In particular it tiesthis to the studyof approximations
of circuits by low-degreepolynomials,aswe explain next.

The 0-1 law for first-orderlogic, in its generalform is a quantifiereliminationresult. It statesthatfor
ary first-orderformula ¢, thereis a quantifierfree formula 8 suchthat ¢ is equivalentto 8 almostsurely
on graphsdravn at randomfrom G(n,1/2). To be precise,¢ andf agreeon a fraction1 — 2=" of the
graphson n vertices. We can say that ary first-orderformulais well approximatedoy a quantifierfree
formula. This is similar to the phenomenorof depth-reductiorfor circuits which hasa long history in
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computationatompleity theory For instance Allender shoved that AC-circuits have equivalent TCO-
circuitsof depth3 andquasi-polynomiakize[1]. Theresultof BeigelandTaruithatgeneralACC-circuits
have equivalentdepth-2circuits of quasi-polynomiakize with a symmetricgateat the root [2] hasbeen
exploited to remarkableeffect recentlyin the work of Williams [12]. In the contet of approximationpne
of the bestknown exampless the Razbore-Smolensk approximatiorof ACY[]-circuits by multi-variate
polynomialsover Z, of polylogarithmicdegree[10, 11]. Thequality of theapproximatioris still amatterof
interestingstudy: the methodyields anapproximatiorthatagreeon a fraction 1 — 2-(1°87)° of theinputs,
andthe questionwhetherthis can be improved to somethingof type 1 — 27" while keepingthe degree
polylogarithmicis open.

Theresultby KolaitisandKoppartymentionedabove is proved by establishinga depth-reductiorstate-
ment of a similar kind. They prove that every FO[®] formula ¢ is well-approximatedoy a formula of
a specialform (which we call the KK-normal form in the sequel)which is a Booleancombinationof
guantifierfree formulasand polynomialsof constantdegreeover Z,. The polynomialshave asvariables
Xy for every potentialedge{u, v} overthevertex-set{1,...,n}. For example,the polynomialthatgives
the parity of the numberof triplesthatextendthevertex « to atriangleis

> D XuwXowXuu. (1)
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At the heartof the constructions the analysisof the biasof certainlow degreepolynomialsof this typeon
uniformly randominputs. This understandings thenusedto carry over a quantifierelimination agument
that eliminatesone parity quantifieror onefirst-orderquantifierat a time. Relevantto our work is the fact
that, intriguingly, the eliminationof eachparity quantifierin this agumentincursan exponentialloss. The
final outcomeis that the degreed of the resultingpolynomialsis boundedfrom below by a function of
towertype onthe numberg of parity quantifierghatwereeliminated,.e.

d>2¥ )

wherethe heightof the tower is at leastq. At first look, the sourceof this inefficiencgy in the prooflooks
technicalandit might betemptingto think thatsomedifferentmethodcould perhapsavoid it altogether

In this papemwe prove thatthe non-elementargependencstatedn equation(2) cannotbe avoided. To
be precise we constructan explicit family of FO[®] formulas¢, of quantifierrank ¢ andprove thatthey
cannotbe approximatedy KK-normal forms whosepolynomialshave degreeboundedby an elementary
functionof ¢. Specifically we prove thefollowing:

Theorem 1. For everye > 0, ther existsng > 0 sud that for everyn > ng, there exists a formula
o(u, v, w) sud that, for every Booleancombinationof FO[¢]-polynomialsof degree boundedby a tower
of exponentialsf heightat mostq/O(1), wheke ¢ is the depthof ¢, the formulas¢ and p mustdisagreeon
afraction1 — e of all graphswith n vertices.

By anFO[#]-polynomialwe meana formulathathasa directtranslationasa bounded-dgreepolyno-
mial over Z,: asequencef parity quantifiersfollowed by a conjunctionof atomicfacts.

Theresultshouldbe putin contrastwith the 0-1 law for first-orderlogic mentionedabore. In thatcase
the approximatingflormulais quantifierfree, andit canbe seenthat quantifierfree-formulastranslateinto
polynomialsof degreeat mostpolynomialin the numberof free variablesof theformula.



Proof outline and techniques Our proof relieson two technicalingredients. On one handwe analyse
a canonicallabelling algorithmfor graphsgoing backto Karp [7]. We exploit its massie parallelismto
build an FO[&]-formula i (u, v) of depthO(log™ n) thatworks on graphswith n vertices. The formulais
designedn sucha way that, on almostevery graph,it definesa linear pre-orderof width at mosttwo on
the setof verticesof the graph. The secondingredientis a refinedanalysisof one of the key tools from
the Kolaitis-Koppartypaper Using andextendingtheir techniquegor estimatingthe frequenciesnod 2 of
subgraplcopies,we shav thatevery FO[®]-polynomial p(u, v, w) of degreelog log log n mustbe unable
to distinguishsometriple of distinctvertices(a, b, ¢) from ary of its permutationswith high probability

Fromthesetwo ingredientsthe lower boundfollows by taking the formula(u, v) A (v, w). Onone
handthis formula distinguishesat leastone permutationof the vertices(a, b, ¢) from someotherbecause
by linearity of the pre-orderthe classeghey lie in mustbe comparableput by the width-2 conditionon
the pre-ordernot all threeverticescansit in the sameclass. On the otherhandno formula of quantifier
ranklog log log n is ableto distinguishary permutationof sometriple (a, b, c) from the others. Sincethe
quantifierrank of ¢ is still O(log™ n), the towertype lower boundfollows. We provide moredetailsin the
body of the paper

2 Preliminaries

We use[n] to denotethe set{1,...,n}. Wewrite A = B + C ascorvenientnotationfor |[A — B| < C.
We identify the nodesof a completerootedbinarytreewith the binary stringsthat startwith the symbol1:
therootis 1, theleft child of ¢ is t0 andthe right child of ¢ is t1. The level-oder of a completebinary
treeis 1,10,11,100,101,110,111,1000, 1001, ..., i.e. orderedfirst by length,andwithin eachlength,in
lexicographicalorder Notethatif the stringsareinterpretedasnumbersaritten in binary thisis the usual
orderof the naturalnumbers.For a naturalnumbern > 1, we write biny(n) for its uniquebinary encoding
with aleadingone.

Let G and H begraphs.A homomorphisnfrom G to H is amappingh : V(G) — V(H) thatmaps
edgedo edgesi.e. suchthatif {u,v} € E(G), then{h(u),h(v)} € E(H). Let Hom(G, H) denotethe
collectionof all homomorphism&rom GG to H.

The collection of FO[&]-formulas over the languageof graphsis the smallestclassof formulasthat
containsthe atomicformulas E(z, y) andthe equalitiesz = y, andis closedundernegation,conjunction
anddisjunction,universalandexistentialquantification,andparity quantification;i.e. quantificationof the
form @&z ¢(z). The meaningof &z ¢ is thatthereis an odd numberof verticesz that satisfy ¢(z). For
atuplea = (ai,...,a;) andapermutationr € Sy, we write a o 7 for the tuple (a1, - -, arm)). If
p(x1,...,x) is a formulawith free variablesx, ..., zx, andy,...,y; arevariablesor constantswe
write p(y1, ..., yx) for the resultof replacingeachoccurrenceof z; by y;. This appliesalsoto the case
whereyy, ...,y isapermutatiorof x4, ..., z.

An atomictype on the variablesz, . . ., x; over the languageof graphsis a consistentcollection of
atomicformulasE(z;, z;) or z; = x; andnegatedatomicformulas—F(x;, ;) or z; # x; thatis maximal
with respecto set-inclusion.A positive atomictypeis the subsebf positive atomicformulasof anatomic
type.

3 Fooling polynomials of low degree

In this sectiorwe shaw thatevery FO[@]-formulaof acertaingeneraform correspondingo polynomialsof
low degreeis notableto distinguishsometriple from ary of its permutationswith high probability Roughly
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speakingthe proof strat@y is asfollows. Fix suchaformulap(z,y, z). For everyfixeda,b,c € [n], let
Y (a, b, c) bethe eventthat p cannotdistinguishary two permutationf a, b, c. Ideally we would like to
shav thatthe event Y (a, b, ¢) hasnon-ngligible probability of happeningandthatif o/,’, ¢ € [n] is a
triple disjoint from a, b, ¢, thenthe eventsY (a, b, ¢) andY (d’, ¥, ¢’) arealmostindependentIf we were
ableto do this, the resultwould follow from an applicationof Chebyshe's inequality Unfortunatelyit is
notquitetruethatY (a, b, ¢) andY (d’, ¥', ¢’) arealmostindependenin generalsowe take a detour

3.1 Formulas and polynomials

In this sectionwe definethe formulasto which our resultapplies.In short,they areBooleancombinations
of FO[@]-polynomials An FO[&]-polynomialis a formula of FO[&] consistingof a sequencef parity
guantifiersfollowed by a conjunctionof atomicformulas. Thus,in its generafform, an FO[&]-polynomial

p with freevariablesu, . . ., u; is aformulaof theform
d
DUpt1 -+ DUy, /\Uz # uj A /\E(Umun) ; (3)
ij =1
where: and j rangeover {1,...,m} in the first conjunction,and i1, ...,i4, j1,...,Jjq areindicesin
{1,...,m}. Thenumberd of atomicfactsin the conjunctionis calledthedegreeof p.

A conjunctionof atomicformulassuchasthe onein the matrix of the formula (3) correspondso the
graphHd on {uy,...,u,} thathasan edgebetweenu;, andu;, for each? € {1,...,d}. Thus,the for-
mula expresseshe parity of the numberof extensionsof uq, ..., u to acopy of H. We usethe notation
®H (uq,...,u) to denotethis formula. Note thatthe degreeof & H (u1, ..., u) is the numberof edges
of H.

Example If H is atrianglecontainingvertex u, then® H (u) is the formulathatexpresseshe parity of the
numberof extensionsof u to atriangle.Formally, & H (u) is theformula

BvPw (u#vAu#wAv#wA E(u,v) A Elv,w) N E(w,u)).

Note thatover undirectedgraphsthis formulais alwaysfalse.Thisis becausdor every trianglecontaining
u, therearetwo assignmentt thevariablesy andw whichwitnessH . Thus,thetotal numberof satisfying
assignmentss twice the numberof trianglescontainingu andis thereforealways even. In general,if

H(uq,...,u;) hasanevennumberof automorphismshatfix uy, . .., ux, then® H (uq, . . ., uy) will always
befalse,while for graphswith anodd numberof automorphismsve getnon-trivial formulas.

Thereis aprecisesensan which FO[@]-polynomialscorrespondo polynomialsoverthe Booleanedge-
variablesX,,,. For example,theformulafrom the previous examplecorrespondso the family of degree-3

polynomials
> XunXowXuu-

vE[n] weln]
vEU  wHFEU
wH#v

asu rangesover [n].



3.2 Independenceand plan of action

Themainobstaclgo carryingout theargumentsketchedatthebeginning of this sectionis thatit is nottrue,
in general thatthe eventsp(a, b, ¢) andp(a’, V', ') arealmostindependentevenif a,b,c,a’, V', ¢ areall
different. Thereasoris thatthe formulap(z, y, z) mayincludestatementsboutthe graphG which do not
involve the free variables.Thesearetrue or falseindependentlyof the choiceof a, b, c or o/, V', ¢ andthus
createcorrelationsbetweerp(a, b, ¢) andp(da’, v, ).

It is illustrative to give anexamplehow this canhappen.

Example Letp(z,y) betheformulathatis the conjunctionof the following : (1) &z E(z, z) (z hasodd
degree),(2) = @z E(y, z) (y hasevendegree);and(3) & H for somefixednon-trivial rigid graphH (« and
y do not appealfreein this). Thisis a Booleancombinationof FO[®]-polynomialsof degreeboundecby
thenumberof edgesf H.

Notethatif p(a, b) holdsthenp(b, a) mustfail. Thereforethe probabilitythatp(a, b) # p(b, a) holdsis
approximateI)Q% sinceeachof thethreeconditionin p(a, b) holdswith probabilityapproximatel)% almost
independentlyandsimilarly for p(b, a). Onthe otherhand,the probability thatbothp(a, b) + p(b,a) and
p(d,b') + p(b',a’) hold simultaneouslys approximatelyt - 3—12 This is becausén eachof thefour cases
in which both hold, condition (3) eitherholdsfor botha, b anda’, b’ or for neither(sincez andy do not
appear).We areleft with five conditionsthathold with probability approximately% almostindependently
Since4 - 3% is note-closeto (2 - %)2, thisshavsthatY (a,b) andY (o, ') arenotalmostindependent.

The examplejust sketchedsuggestghat we factor out the conditionthat doesnot dependon neither
x nory from p(z,y) < p(y,x) sincethis is the causefor the statisticaldependenceetweeny (a, b) and
Y (a’,b"). However, while suchanamgumentcanbe madeto work in the exampleabove, it is difficult to see
how to factorsomethingoutwhenp mayinvolve disjunctions.

The key obseration at this pointis thatthe full typeof (x,y) in termsof its atomictype (the pattern
of connectionsandequalitiesamongz andy) andthetruth valuesof its ® H's as H rangesover all small
graphsthatcontainz andy asverticesis enoughto determinethe truth valueof p(z, y). Thus,if we were
ableto find a full typeimplying p(z,y) thatis symmetricin = andy, we would have reducedthe caseof
generap(z, y) to thecaseof ap(x, y) thatconsistof asingleterm. Theargumentthatwe useis abit more
delicatethanthis, but thisis themainidea.

3.3 Normal forms

In this sectionwe introducesomedefinitionsanddiscusswo differenttypesof normalformsfor Boolean
combination®f FO[$]-polynomials.

An [-labelledgraphis agraphwith someverticesabelledby elementf 7 in suchaway that,for every
i € I thereis exactly onevertex labelledi, andthe setof labelledverticesinducesanindependenset. The
setof labelledverticesof anI-labelledgraphH is denotedby £L(H ). Thevertex labelledby i € I is denoted
by £'(i). An I-labelledgraphH is label-connectedf H \ £(H) is connectedLet Conn’, bethe setof all
I-labelledlabel-connectedraphswith at mostt unlabelledvertices.We saythat H depend®nlabeli € I
if H(7) is notanisolatednode.We saythat / is label-dependent it depend®nall its labels.Let Conn?t
bethe subsebf all labelledgraphsin Conn’, thatarelabel-dependent.

A k-labelledgraphis a [k]-labelledgraph.A < k-labelledgraphis an-labelledgraphfor somel C [k].
Let H bea < k-labelledgraphwith labels! C [k]. A homomorphisnfrom H to apair (G, a), whereG is a
graphanda = (a1, ..., ax) is atuplein V%, is ahomomorphismy € Hom(H, G) suchthatx (H (i)) = a;
for eachi € I. A homomorphismy from H to (G, a) is injectiveif for ary distincta,b € Vg such
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that {a,b} ¢ L(H) we have x(a) # x(b). Write ®H (G, a) for the parity of the numberof injective
homomorphismé$rom H to (G, a). We usuallyomit G andwrite & H (a). When H is a k-labelledgraph
(i.e. I = [k]), thenotationfor thisin [8] is [H]2(G, a).

A KK-normalform of degreec with free-variableszq, . . . , z is a Booleancombinationof the atomic
typeson the variablesz;, . .., 2, andformulas@®H (x4, ..., zx)'s as H rangesover the k-labelledlabel-
connectedgraphswith labelledverticesz, ...,z andat mostc — (’;) non-labeledvertices. A regular
normalform of degreec with free-variablese, . .. , z; is a Booleancombinatiornof theatomictypesonthe
variableszy, ...,z andthe @H(x1,...,zx)’s as H rangesover the < k-labelledlabel-connectedabel-

dependengraphswith labelledverticeswithin x4, ..., x; andatmostc — (’5) non-labelledvertices.
Example Let ¢(x,y) betheformula
@z (E(z,2)) A~ &z (E(y, 2)),

sayingthatz hasodd degreeandy hasevendegree. This is a regular normalform. Onthe otherhand,it
is not a KK-normal form becausegheformula®z (E(x, z)) cannotbeputin theform & H (x, y) for ary 2-
labelledgraphH . However, aswe will see|t is nothardto transforme(zx, y) into anequivalentKK-normal
form.

Example Letp(z,y) betheformula
(x #yANE(z,y) A~ @ Hi(z,y) AN ®Ha(z,y)) V (z # y A ~E(z,y) A ®H1(z,y) A~ & Ha(z,y)),

whereH isthe2-labelledlabel-connectedraphthathasthreeverticesr, y, andz andasingleedgebetween
x andz, and H, is the 2-labelledlabel-connectedraphthathasthreeverticesz, y, andz andasingleedge
betweery andz. Thisis a KK-normalform. Onthe otherhand,it is notaregularnormalform becausdi;
and H, arenotlabel-dependentHowever, aswe will see,it is not hardto transform¢(z, y) into aregular
normalform.

Thetwo examplesabore areactuallylogically equivalentandit is a generafactthatBooleancombina-
tionsof FO[®]-polynomials,KK-normal forms,andregularnormalformsof the samedegreehave thesame
expressie power.

Lemma 1. Letk > 0 andc > (%) beintegers andlet ¢(a1,. .., ;) bea formulaof FO[@] thatimplies
x; # x; wheni # j. Thefollowing are equivalent:

1. ¢ is equivalento a Booleancombinationof FO[&]-polynomialsof degreeat moste,
2. ¢ is equivalento a KK-normalform of degreeat moste,
3. ¢ is equivalentto a regular normalform of degreeat moste.

Proof sketch. We only give a proof of (2) = (3) asthis is the only part of the abore equivalencethat we
requirein the sequel. We needto shaw how to transforma formula & H where H is a k-labelledlabel-
connectedyraphH with atmostc non-labelledrerticesinto anequivalentBooleancombinationof formulas
of theform &F where F' is a < k-labelledlabel-connectediabel-dependengraphwith at mostc¢ non-
labelledvertices.Thetransformatioris donein two steps.In thefirst stepwe reducethe numberof isolated
labelledverticesin H or the numberof non-labelledverticesof H at the expenseof usingpossiblylabel-
disconnectegraphs.in thesecondstepwe getrid of thelabel-disconnectegraphs.indeedthe secondstep
is asin the proof of Lemmab.6in [8] sowe needonly take careof thefirst step.
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If H is alreadylabel-dependenthereis nothingto do. Otherwiseassumery, is a labelledvertex that
is isolatedin H. Then,for every graphG andfor every ay,...,a; € Vg all different, @H(aq, ..., a;) IS
equvalentto:

Z T (@, .. ag) - OH" T (g, . ag) + ©H T (aq, ... ap-1) mod 2,
ueVy\L(H)

where:

e 7"=7k js the positve atomictypeof v over L(H) \ {xx} in H,

e H"=Tk is the k-labelledgraphthat resultsfrom deletingall edgesfrom « to a labelledvertex and
identifyingu andx;, in H,

e [~k isthe < k-labelledgraphthatresultsfrom deletingzy, in 4.

To seewhy thisgives& H (aq, . . . , ax ) hotethatthefirst sumincludesall homomorphism&om H thatmap
x; to a; for i € [k] andareinjective everywhereexceptat {u, z } thatarebothmappedo a;, andthelast
termincludesall injective homomorphismérom H~*k thatmapz; to a; for i € [k — 1]. Thereforeeach
injective homomorphisnfrom H "+ thatmapsz; to a; for i € [k — 1] andusesup a;, is countedexactly
twice andcancels. O

3.4 Distrib ution of frequencyvectors

Thefrequeny vectorof degreet in agraphG is the {0, 1}-vectorindexed by thesetof all connectedjyraphs
with at mostt verticeswherethe component is ©H (G), i.e. the parity of the numberof occurrencesf
H in G. KolaitisandKoppartygive an analysisof the distribution of frequeng vectorsin arandomgraph
G ~ G(n,1/2), for constant. Ouraimin the presensectionis to extendthis analysisto degreesthatgrow
with n andto < k-labelledgraphs.

Let Conn’y, bethesetof all < k-labelledlabel-connectedraphswith atmostt unlabelledvertices.Let
Conn?,ﬁ bethe subsebf Conn’,, containingall graphsthatarelabel-dependentet G beagraph,let a be

atuplein V%, andlet¢t > 0 beaninteger Let freq*<k’t,G(a) bethe {0, 1}-vectorindexed by the elements
Conn’g,ﬁ thathas® H (a) asits componenindexedby H. Next we extendthedefinitionof feasiblefrequeng
vectorsfrom the KK-article to the settingof < k-labelledgraphs. In defining FFreq* (7, < k, t) we will
restrictour attentionto atomictypesr thatforceall £ variabledistinct. This simplifiesmatterssignificantly
andis enoughfor our purposes.If 7 is anatomictypeon z1, ...,z thatforcesz; # x; for i # j, let
FFreq* (1, <k,t) denotethe setof all feasiblefrequencyectos. Explicitly, theseareall the {0, 1}-vectors
indexed by Conn?,i whosecomponentF' belongsto aut(F') - Z/27Z. Hereaut(F') denotegzhe numberof
automorphismef F' thatfix thelabels.Let FF¥req), (7, <k, t) denotethesetof f € FFreq*(r,<k,t) such
thathl(@) =n mod 2.

The next lemmadescribeghe distribution of freq?,ig(a) in a randomgraph. This is analogougo
Theorem?2.4in [8] extendedo growing degreesup to log log log n, andextendedrom k-labelledgraphsto
< k-labelledgraphs.

Lemma 2. For everyk > 0 there existsng > 0 sud that for everyn > ng, every atomictyper on k
variablesthatforcesall of themdistinct,everyc < logloglog n, andevery k-tuple a of distinctelementsn
[n], thedistribution of freqy; ;(a) asG = G(n,1/2 | 7(a)) is 2~/ lesloan)_closein statisticaldistance
fromtheuniformdistribution over FEreq) (1, <k, c).



Before we go on with the proof, it is worth pointing out the differencesbetweenthe statementof
Lemma?2 andthe statemeniof Theorem6.12 in the KK-article. Our statementere extendsit in two
directions,andbothdirectionsintroducedcorrespondingpointsof tensionin the statement.

The first differenceconcernsthe extensiongoing from boundeddegreein the KK-article to growing
degreeup to log log log n here. This increasedhe boundon the statisticaldistancefrom 2= (") in the
KK-article to 2—S%(n/leglogn) here. For the purposef this paper this differenceis minor. This part of
the proof consistdn adaptingthe onein the KK-article to the settingof growing degrees.This is achieved
by makingthe €’s explicit in the computationof certainGowers’ uniformity norms. It is concevable that
amorecarefulanalysiscould pushthe upperboundon the requireddegreeup to O(y/logn) at the costof
increasinghe statisticaldistancesomemore.

The secondifferenceconcernghe extensionfrom k-labelledgraphsin the KK-article to < k-labelled
graphshere. Thisintroducedheadditionalrestrictionof label-dependedthe* in freq™?). Thisrestriction
is not minor sincethe resultwould not be true without it. Luckily, though,Lemmal tells usthatwe can
assumdabel-dependercwithout lossof generality In this casediscovering the right assumptiorwasan
essentiaktepin the proof. Oncethe conceptis up, the proofis againfollowing the original one. Onefinal
differenceis that we restrictthe statemento the casewherethe atomictype r forcesall variablesdistinct.
Thisis the casewe needarnyway andsimplifiesmattersalot.

Proof sketch of Lemma2. The issueof handling < k-labelled graphsinsteadof k-labelledgraphsis not
problematiauntil we realizethatthe setsof copiesof ' andF” in (K,,, a) neednotbedisjointevenif £’ and
F’ arenon-isomorphidi.e.: Proposition8.1(2)from the KK-article fails in thecaseof < k-labelledgraphs).
This happensfor example,if ' and I’ are < k-labelledlabel-connectedraphsthat areidentical except
that /” hasonemoreisolatedlabelledvertex than F. Onthe otherhand,if F' and F’ arenon-isomorphic
anddependon all its labels,thenit canbe seenthatthe setsof copiesaredisjoint. Thisis enoughto carry
overtheamumentin the KK-article.

In orderto allow a growing ¢, it suficesto prove the following lemmathat makes the ¢ explicit in
Lemma4.7 from [8]:

Lemma3. Letg : Z¢ — {—1,1} begivenby g(y) = (—1)II-1¥:. Let i bethe uniform distribution on
Z4. Then||g||ya,, < 1 —ewheee > 1 — exp(—2~%~2d+1),

We provide the proofin theappendix.With this boundin hand the satisticaldistancebecomeg1 — ¢)”
wherer = Q(n/c) andd = O(c?). Pluggingin, the distanceendsup boundedy

<e)(p <_2—O(c4)> > Q(n/c) ’

whichis 2-%(n/loglogn) for ¢ — log log log n. O

3.5 The argumentitself

Finally we reachedhe point wherewe canexecutethe plan sketchedat the beginnng of Section3. Fix a
positive integerk (for theapplicationin Section5it sufiicesto take £ = 3) andlet p(z1, . .., =) bearegular
normalform of degreec < logloglogn. Foreverya = (ay, ..., ax) € [n]*, definethefollowing indicator
randomvariables:

I[ p(a) 4 p(ao x) for somer € Sy, |,
Y(a):=1] p(a) < p(ao ) foreveryr € Sy |.



Obviously, X(a) = 1 — Y(a), andY (a) is the indicator randomvariablefor the eventthatp doesnot
distinguishary two permutedversionsof a. Our goal is to shav that Y (a) holdsfor somea with high
probabilityandfor this we will follow the plansketchedin section3.2.

Write p(x) asa DNF onthe (Boolean)variables

T1(X), oo, T (X), H (%), ..., BH(x),

wherery, ..., 7. aretheatomictypesonzy,...,xy, andHq, ..., H, arethe < k-labelledlabel-connected,
label-dependergraphswith labelledverticeswithin z1, ..., z; andc non-labelledvertices.Let usassume
that H,, ..., H. arethe onesfor which the numberof automorphismshatfix its labelledverticesis odd,
andthatH..1,..., H, aretherest. Also assumehat H, ..., H; arethegraphsfrom amongHy,.... H,
thatdo not have ary labelatall, andH 1, ..., H. aretherest. Sinceexactly oneatomictype musthold
andeachd H;(a) isfalsefor j € {e+1,...,¢}, wemayassumehateachtermin the DNF formulahasthe

form
nx)- [[oH; - [[ 8 - [[oH;x) - ][] 2H;x). (4)
jEK JEK' jel Jjer
for somei € [r], somepartition (K, K') of [f], andsomepartition (I, I’) of [e] \ [f].

Next notethatfor every = € Sy, the sequencef Booleanvariablesr;(x o 7), ..., 7.(x o 7) IS equi-
alentto a permutationof the sequenceof Booleanvariablest(x),...,7.(x). Similarly, the sequence
of Booleanvariables@©H ¢, 1(x o 7),...,@H.(x o ) is equivalent to a permutationof the sequence
®Hpi1(x)....,®Hc(x). Thereforep(x) andp(x o m) arefunctionsof the sameBooleanvariablesand
we canwrite p(x o 7) alsoasa DNF formulawith termsof thetype (4).

Fromnow on, for every K C [f], let R betheterm

Rg := H @Hj . H @Hj,
jEK jEK’
whereK’ = [f] \ K. RecallthatHy, ..., H; areall label-freeandthereforeR doesnot dependon x.
Similarly, for every I C [e] \ [f], let S;(x) betheterm

Si(x) == [[eH,(x) - [[ ®H;x),
JE€I jer
wherel’ = ([e] \ [f]) \ I. Forevery K C [f], let px (x) denotethedisjunctionof thetermsin p(x) thatare
consistentvith Ry . Thereforep(x) is equivalentto thedisjunction\/ x4 pi(X).
Let Zx (x) bethe“all-positive-term” definedasfollows: -

ZK(X) = O'(X) . RK . S[P]\[f](x),

whereo is theatomictypethatforcesz; # z; for i # j, andall possibleedgesamongdifferentx;, z;. We
shaw thatfor everya ¢ [n]*, theevent Zx (a) = 1 impliesp(a) < p(a o ) for every« € Sy.

Lemma4. Zk(a) <Y (a).

Proof Fix a permutationt € Sj. First note that the choiceof o guaranteeshat o(a) is equivalentto
o(aom). Also, thesequence&Hy,q(aom),...,®H.(aom) is equvalentto a permutatiorof thesequence
®Hsy1(a),...,®H.(a), andall appeampositvely in Z;(a). It follows from theseterm Zx (a) appearsn
bothDNFsfor p(a) andp(a o 7), orin neither If it appearsn both,thenclearly Zx (a) = 1 impliesboth
p(a) andp(a o m). If it doesnotappeaiin either thenZx (a) = 1 impliesp(a) andp(a o 7) sinceZx (a)
is incompatiblewith ary otherterm of the DNFs for p(a) andp(a o 7). In eithercase,Zx(a) implies
p(a) < plaom). U




At this pointit will sufiiceto shaw thatfor every K C [f], theevent Zx (a) = 1 holdsfor somea € [n]*
with high probabilityin the probability spaceconditionedon Ry . Fromnow on, for every event A, write

Px[A]:=P[A| Rk |.

Letusstartby computingtheprobabilityof Zx (a) for a € [n]* with a; # a; fori # j in this probability
space.Let ¢ be the maximum,over all atomictypes7(x) thatforcez; # z; for i # j, of the statistical
distancebetweerthe distribution freqzzyG(a) asG = G(n,1/2 | 7(a)) andthe uniform distribution over
FFreq*(r, < k,c). Notethat,by symmetry 5 doesnotdependon a provideda; # a; for i # j.

Lemma5.

2-¢ 1 2-¢ Uk

Proof. We have

Pul Zic(a) | = L Zg[<;>K' ]RKl _ PLSi\ <aH>D [- gg }| Plo(a)]

The denominatois 2~/ + § by choiceof §. The numeratoris (27¢ + §) - 2=(3) alsoby choiceof §. The
trailing 2=(3) factoris Pl o(a) ]. Now:

27¢+¢§ 27¢ 27¢.27f+g§.27f 2.7/ g2

2-f+6 2-F 2=f . (2=1 £ 6)

which simplifiesto

1 27¢
0 -

TS N S —
REY AP RRCRED

O

Next we compute,for every a,a’ € [n]¥ with all aq,...,ax,d},... , a, different, the probability of
Zx(a) - Zg(a’) in the probability spaceconditionedon Ry . Let v bethe maximum,over all atomictypes
7(x,x) thatforce all z1,...,zy, 2}, ...,z different, of the statisticaldistancebetweenthe distribution
freq*;;k’G(a, a') asG = G(n,1/2 | 7(a,a’)) andthe uniform distribution over FFreq*(r, < 2k,c). Note
that,by symmetry~ doesnotdependbn a, a’ providedthey areall different.

Lemma 6.

2726 1 272e+f k
: M=ty iy o )02
]PK[ZK(a) ZK(a)] (22]6:':7 27f:|:’y:F7 2f(2fﬂ:’}/)> 2 2.
Proof. Let A denotetheeventthato(a) ando(a’) bothhold. We have

il Zila) - Zic(a')| = Do ZE)

_ PLSins(@) - Sienp(a) - Ri [A]-PLA]
P[ Rg | '
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The denominatois 2~/ + ~ by choiceof 4. The numeratoiis (272¢+/ + ~) . 9-2(3) alsoby choiceof ~.
Thetrailing 2-2(2) factoris P| A ]. Now:
9 2etf 4 9 2ekf 9 2etf o-f Ly 9o f _9-2etf 9 f po-2etf
2=fF+~  2of 2-F. (2= ++)

which simplifiesto
1 2—26+f
A et N L
U

Let usnoteat this point thatthe numberof < k-labelledgraphswith at mostc non-labelledverticesis
boundedby 2(c+k)*  Therefore,if ¢ is the numberof < k-labelledlabel-connectedraphswith at mostc
non-labelledverticesthen? < %logn for sufficiently large n, andin particular

2t < /n. (5)
We usethis to prove the mainconsequencef this analysisup to now:

Lemma7. Leta,a’ € [n]* besudthatay,...,ay,a},... , ) are all different. Thefollowing hold:

1. Px[ Zx(a)] >n1/2. 9=(5) 9 (n/loglogn)
2. [Pi[ Zi(a) - Zi(a') ] — Px[ Zk(a) | - Px[ Z (a') ]| < 27Pw(n/loslosn),

Proof By Lemmaz2, bothd and~y are2—(n/loglogn)  On the otherhandwe have 26— < 2¢ < 2¢ < pl/2
by (5) andalso2f < 2¢ < n!/2 by (5). Therefore2/=¢ > 27¢ > 2=t > =12 gnd2~f > 24 > n=Y/2,
Now 1 follows from pluggingtheseboundsin Lemma5 and2 follows from pluggingtheseboundsin both
Lemmab andLemma6 andrecallingthatk is a constant. O

Now we concludeby proving the mainresultof this section:

Lemma8. For everyk > 0 ande > 0, there existsng > 0 sud thatfor everyn > ng andeveryKK-normal
formp(zy,...,z) of degreeboundedoy log log log n, for G ~ G(n, 1/2), the probability that there exists
a € [n]* with a; # a; for i # j sudthatp(a) < p(ao ) for everyr € Sy is atleast] — e.

Proof. Fix k ande andchoose large.Letm = |n/k|. Divide [n] into m disjointk-tuples(ay, ..., a,,) ar
bitrarily butin suchawaythatay,; # ay,; fori # j. Define:Y = 3, Y (a¢) andZx = 3 cpn) Zi (),
the secondfor every K C [f]. Note that by Lemma4 we have Zx < Y. We wantto shav that
Pr[ Zx = 0] <e. Thiswill beenoughsincethen

P[Y=0]=> P[Y=0|Rg]-P[Rx]< > Pg[Zx=0]-P[Rg]<e
KCle] KCle]

To shav thatP x| Zx = 0] < e we proceedby the secondnmomentmethod. To simplify notation,let
usfix K C [f] andabbreiate Zx by Z, and Zx (a;) by Z,. Similarly, all expectationsE, variancesV,

11



andprobabilitiesP appearingelow referto the probability spacePx . In computingthevarianceV| Z | =
E[ Z?] - E[ Z ]? we have

E[22]-E[ZP =3 Y EZ %] ElZ]-E[)
<Y OEIZ] 42 Y (B Z- 7] Bl %) -EZ)
i=1 i#j

—E[Z]+2- <m> . 9—8(n/loglogn)
2
— E[ 7 ] £ 27Qk(n/loglogn)’

wherethe first inequality follows from consideringthe casei = j in thefirst doublesumandignoring it
in the secondthe next inequalityfollows from the factthat Z; is a 0-1-randonvariable,the equality after
it follows from Lemma7.2 (recall that P really standsfor Px here),and the last equality follows from
m = |n/k]| andthefactthatk is a constant.

Now by Lemma7.1we have

B[ Z]>m-(n Y2.27() _ o m/loglosm)y _ ) (,1/2),
Applying it to Chebyshe's inequalitywe obtain

V[ Z

] E[ A ] + Q*Qk(n/ loglogn) 1 1
E[Z 2

B[ Z]° gz EZP

for sufiiciently large n. O

IN

P[Z=0]<

4 Defining a linear pre-order of width two

In this sectionwe constructthe formula of very low depththat definesa linear pre-orderof width 2 with
high probability The proof stratgy is to analysea variantof an algorithmfor graphcanonizatiordueto
Karp[7], andto exploit its massie implicit parallelismto getformulasof very low depth.

4.1 Plan of action

Informally, the graphcanonizatioralgorithmworksasfollows. For a givengraphG, split the verticesinto
two classes:thoseof even deggreeand thoseof odd degree. Inductively, we split the classedurther by
dividing the verticesaccordingto the parity of the numbersof neighbourghey have in eachof the existing
classesWe continuethis processuntil no moreclassesresplit.

We will needthreefactsaboutthis process:(1) thatfor G ~ G(n,1/2) the processwill reacha state
whereeachclasshasat mosttwo verticeswith high probability (2) thatthis will happenin fewer thann
“generations”of the splitting processwith high probability and(3) thatthe procesds massvely parallel:
all the classesreatedbetweenthe ¢/2-th generatiorandthe ¢-th generatiorare definablein termsof the
classexreatedn the (log, ¢)-th generation.

12



4.2 Splitting procedure

Let G = (V, F) beanundirectedgraph. For avertex x anda set B, we write p(G, z, B) for the parity of
thenumberof neighbourghatz hasin B. We extendthisto sets:

p(G, A, B) = Zp(G,x,B) mod 2.
z€A

A splitting treefor G is arootedbinary treeT" with eachnodet carryingalabel L; C V andasign
M; € {+, —} denotingwhethert is marked or unmarled andsatisfyingthe following properties:
thelabelof therootis V,
no two siblingsaremarked,
if ¢ is aninternalnode,then® L;o U L;; = L; andLyo N Ly = 0,

r w DD PR

if sisaleaf,z,y € Ly andt is marked,thenp(G, z, L) = p(G,y, Ly).

Givena splitting treeT" for G, let R(T") denotethe setof unmarled nodesthatareeithertheroot or area
left child. Let R'(T") bethe subsebf nodesin R(T') thatareeithertheroot or suchthattheir labelandthe
labelof their sibling areboth non-empty?. Onestepof the splitting proceduravorksasfollows:

1. lett betheleastnodein R(T) in level-order® andmarkit,

2. for everyleafs, let Ly, := {x € Ls : p(G,x, L) = a} for botha = 0 anda = 1,

3. make* s0 ands1 theleft andright childrenof s andleave themunmarled.
Let P(T) betheresultof applyingonestepof thesplitting procedureo 7'. If thenodet thatis choserin the
first stepalsobelongsto R/(T') we saythatthe stepis proper, otherwiseimproper. When R'(T') is empty

we saythatthe procedurestallsat7". Notethatwhenit stallsit will never make a properstepagain. The
procedurestartsat the splitting tree Tj, thathasonly anunmarledrootlabelledby V.

4.3 Analysisof the splitting procedure

Let T; bethetreethathasonly anunmarledroot labelledby V. For k > 1, let T}, := P(Ty_1). Ideally
we would like to shav that aftera modestnumberof steps,all leaves of the splitting tree arelabelledby
singletonsor emptysets.Unfortunatelythesplitting procedurés notableto produceatreewith thisproperty
in generalnotevenwith high probabilityon arandomgraph.The bestwe will beableto shaw is thatfor a
randomlygeneratedjraph,with high probabilityall leaveswill have at mosttwo vertices.

Let ussingleoutthreekey desirablepropertiesof Ty, wherethethird is our goal:

(Ag): Ty, hasL; # () for every nodet,
(By): Ty, hasbeengeneratedhroughproperstepsonly,

IKarprequiredalsoL: # () andL:1 # @. For usit will becorvenientto notrequireit andKarp’s analysiswill still gothrough
with minor modificationsthatwe will pointout.

%Karp definedR(T") asthe setof unmarked nodest thatare eitherthe root or thathave a sibling ¢’ suchthat|L,/| > |L:|, or
|Ly| = |L¢| andarealeft child. This differencds inessentiato theanalysis.Theonly importantpointis to unambiguouslghoose
oneof thetwo childrenwhenbothareunmarled andnon-empty

3Karp usedsymmetricorder This differenceis notessentiafor Karp's analysisbut is importantfor us.

“Karp’s versionmalesthis steponly if L., # 0 for botha = 0 anda = 1; this noteis relatedto footnote1.
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(Cy): Ty, has|L| < 2 for every leaft.
In thefollowing we will show:

1. property(Ax) holdswith high probabilityfor modestvaluesof k&,
2. property(Ay) implies(B,:) for every graphandevery k& > 0,
3. conditionedon (Bsx), property(Csyr) holdswith high probability for modestvaluesof k.

Beforewe analysdheprobabilityof (A4;) we needto introducesometerminologyandalemmafrom[7].
Let T' be a splitting treefor somegraph H on the verticesV. A nodet of T is called properly marked if
it is marked andit is eitherthe root or a left child suchthatits label andthe label of its sibling are both
non-empty ° To every properlymarked nodet we associatea setS; C V: the setof all = for which L;
is the uniqgueminimal (with respecto setinclusion)properlymarked nodecontainingz. Let S(T') bethe
collectionof all suchsets. For every properlymarked nodet, let 3; bet togetherwith the setof properly
marked nodess # t suchthat L is a maximalsubsewof L,. NotethatS; = Ascp,Ls, whereA denotes
symmetricdifference Definel(z, St) := > 5, P(H, x, Ls) mod 2. Wewill saythatanothergraphG on
theverticesV is consistenwith 7' if p(G,z, L;) = p(H,z, L;) holdsfor everyz € V' andevery properly
markednodet.

We statea consequencef Lemmas4 and5 in [7] ©:

Lemma 9. LetT bethe splitting tree of somegraph on the verticesV andlet H be chosenuniformly at
randomamongthe graphson the verticesV that are consistentvith 7'. If ¢ is a nodein R'(T), thenthe
distribution of {p(H, x, L) } v is uniformover the assignmentthat satisfythe constaints

p(H, S, Ly) = €(Ly, S) foreveryS e S(Ty) \ {Y},
wherY is theuniquesetin S(7) of which L, is a propersubset.

In orderto be ableto make useof this lemmait is importantto notice thatif G denotesa random
graphdrawvn from G(n, 1/2) andTy, Ty, . . . denotegherandomsequencef splitting treesproducedy this
randomgraph,thenthedistribution of 7 conditionedon Ty, ..., T} is equallyproducedasfollows: first
chooseagraphH uniformly atrandomamongthoseconsistenwith T}, andthenrun onestepof thesplitting
procedureon T}, with respecto H. This follows from the factthatthe maiginal of a uniform distribution
with respecto a subsebf its supportis uniformly distributedon thatsubset.

Now we cananalysehe probability of (A;):

Lemma 10. Letn > 1 andk > 1 beintegers sud that4k < log, n, andlet G ~ G(n,1/2). Then,the
probability that (A4y,) fails is 251 - exp(—n /26F).

Proof In orderto simplify notation,in this proofwe let n; := |L,|. For anodet atdepth? < k in T}, we
saythatt is unbiasedf |n; — n - 27¢| < n - 2-(2k~¢+1) holds,andbiasedotherwise Note for laterusethat
we allow theerrortermn - 2 (2k=4+1) to grow with ¢, but thatit alwaysstaysbelav n - 2~¢ becausé < k.
Let usconsiderthe eventdefinedasfollows:

(A4}): Ty, hasevery nodeunbiased.

S0ur properlymarked nodescorrespondo the marked nodesin Karp’s analysis.
®It would seemfrom Lemmad4 in [7] thatwe alsoneedtheconstrainip(G, L., L) = 0. However, in our notationthis constraint
is implicit sincep(G, L:, L) countseachedgewithin L. exactly twice.
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Notethatsincetheerrortermfor ¢ = k is smallerthann - 2%, property(A; ) implies(Ay). Thus,it sufices
to boundthe probabilitythat (A}) fails.

Since(4y) holds,if (A}) failsthenthereis alargest? € {0, ...,k — 1} suchthat(4}) is trueand(A4;_ ;)
isfalse.Fix ¢ € {0,...,k — 1}, aleafr of T;, anda € {0, 1}, andwe boundthe probabilitythatthe child
ra of » becomesiasedn Ty, ; conditionedon T, satisfying(A}). Lett bethenodewith respecto which
the splitting step? + 1 is made. Sincewe areassuminghat7; satisfie 4;), eachlabelis non-emptyand
thereforet belongsto R'(7;). Let Y bethe uniquesetin S(7;) of which L; is a propersubset. By the
discussiorafterLemma9, thetree7;,, canbe seenasproducedy first choosingH uniformly atrandom
amongthe graphsthatare consistentwith 7, andthenapplyingthe splitting procedureon T, with respect
tot and H. By Lemma9, thedistribution of {p(H, x, L;) }.cv is uniform over theassignmentthatsatisfy
the constraints

p(H, S, L) = 0L, S) (6)

forevery S'in S(Ty)\{Y'}. In particular sinceall setsin S(7;) arepairwisedisjoint, if S is theuniquemini-
malsetin S(7}) thatcontainsL,., thenthedistribution of {p(H, x, L;) } .cs is uniform over theassignments
thatsatisfythe constrain{(6) for this.S only, or no constraintatall if S =Y.

Sincer is unbiasedthe set L, is non-empty Fix xo € L, C S. A differentway of generating
the distribution {p(H, z, L;) } .cs without samplingH is by first choosingvaluesfor p(—, z, L;) for = €
S\ {zo} uniformly andindependenthat random,andthensettingthe valuefor p(—, =y, L;) to theunique
valuethatsatisfiegheconstrainp(—, S, L;) = ¢(L¢, S), or settingit uniformly andindependenthatrandom
if S =Y. IneithercasethenumberX of elementsc in L, \ {z¢} for whichp(—, z, L;) = a is arandom
variabledistributedaccordingto the binomialdistribution B(m, 1) with m = n, — 1. Notefor laterusethat
|n.e — X| < 1 becausenly z, couldbe missedin the count. By Hoeffding’s inequalityfor the binomial
distribution, the probabilitythat| X — J - m| > ¢ is boundecby 2e=2t"/m_whichis boundedy

2672t2/(2n-2*‘z) (7)

because is unbiasecandhencen = n, — 1 < n-2~¢ +n.2=-@k=+1) < 25. 2-¢ hecausd < k. Now, if
ra werebiasedwe would have

My — 1 27(z+1)} > .9 @ (E+rD+1).
Since|n,, — X| < 1 andsince|3 - n, —n-27D| < L.y . 2=(k=+1) pecause is unbiasedpy the
triangleinequalitythis would meanthat
‘X _ % ‘nr‘ > .9 @k—(+D)+1) % op 9= (k=0+1) g
andin particular using0 < ¢ < k — 1 and4k < log, n, that
X -1 (n,— 1) >n -2

Theprobabilityof thishappenings boundedy (7) with t = n-273%  whichis atmoste := 2 exp(—n-27%).

The argumentis now finishedby two union bounds.By the union boundover the 2¢ leavesof Ty, the
probability that someleaf of T; generates biasedchild is at most2¢ - e. By the unionboundover ¢, the
probabilitythatthereexistsan? € {0, ..., k—1} for which(A}) holdsbut (47, ,) failsis atmosth;& AN
Thus,the probabilitythat (4} fails is bounded**+! - exp(—n - 275%). O

Next we obsere that(Ay) implies (Byx ).
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Lemma1l. For anygraphG andk > 0, if (Ax) holds,then(Byx ) holds.

Proof. In acompletebinarytreeof depthk, the numberof left childrenat depthat mostk is Zle 2i—1 =
2% — 1. Now, if T}, satisfieg A;), thentherootandevery left child atdepthat mostk hasgenerated proper
stepin the procesof producingT,:; theseare2* properstepsasclaimed. O

Finally we notethat3-elemensetssplit with high probabilityif enoughstepsareproper Thisis similar
toLemma in [7].

Lemma12. LetG ~ G(n,1/2) andlet £ > 0. Then,the probability that (B ) holdsand (C},) fails is at
most(;) - 272",

Proof. Fix a3-elementsetA C V andfix ¢ < k. Let S, denotetheeventthatthesetA is not split at step?
and P, denotethe eventthatstep? is proper We aimto shaw thatP| ﬂle Se N ﬂle P, ] < 27%F andthe
resultthenfollows by a unionboundover all threeelementsubsets.
Now,
Pl i=1 SeN izt Pe] =TT PUSest 0 Prsa | Miza(Sin Py ]
whichis boundedoy
[1:7 PL Se1 | Peri NNy (Sin P) 1. ®)

So,it sufficesto shawv thateachtermin (8) is boundedby i.

Fix ¢ € {0,...,k — 1} andlet T denotethesequencef splitting treesTy, ..., 7. Let 7 denotetheset
of all sequencesf splitting treesof length? + 1 and74 denotethesubsebf 7 consistingof thosesequences
U = Uy, ...,U; in which all stepsareproperand A doesnot split atarny stageandU, splits properly i.e.
with respecto anodein R'(Uy). In otherwords,the sequencdJ satisfiesP; 1 N ﬂle(Si N P;). We now
aguethat, for ary givenU € 7, wehaeP[ Sy, | T=U] < 1.

Let r bealeafof T, suchthat A C L,. Lett bethenodeof T; with respecto which the splitting step
¢ + 1 is made.We aguethat, conditionedon the eventthatthis stepis proper i.e. ¢ belongsto R/(T}), the
probabilitythattheelementf A arenotsplit apartin 7,1 is atmost1/4. Let Y betheuniquesetin S(7;)
of which L, is a propersubset.By the discussiorafter Lemma9, thetree7;,; canbe seenasproduced
by first choosingH uniformly at randomamongthe graphsthat are consistenwith 7, andthenapplying
the splitting procedureon 7, with respecto ¢t and H. By Lemma9, thedistribution of {p(H, z, L) },cv IS
uniform over the assignmentthatsatisfythe constraints

p(G7 S7 Lt) :E(Ltys) (9)

for every S € S(7y) \ {Y'}. In particular sinceall setsin S(7}) are pairwisedisjoint, if S is the unique
minimal setin S(7}) thatcontainsL,., thenthedistribution of {p(H, x, L) } s is uniform over theassign-
mentsthat satisfythe constraint(9) for this S only, or no constraintatall if S = Y. Thus,in caseS # Y

thereare2/SYL:1~1 choicesfor {p(H, z, L;)}zcs and2/SYLd—3 suchchoicesthatareconstanbover 4, and
in caseS = Y thereare2!5Y¢| choicesfor {p(H, x, L)} »c5 and2/5U =2 suchchoicesthatareconstant
over A. In bothcaseghis givesprobability 1 /4 asclaimed.

16



To completetheargument et £, denotetheevent Py N ﬂf:l(Si N P;). We have:

P[Se1 | Ee]=P[SpaNE]-PLE]™
=Y verPlSes1NE | T=U]-P[T=U]-P[E,]!
=Y ver, PlSet1 | T=U]-P[T=U]-P[E]"

<3 Yuer, IT=U]-P[ ]
= - P[E]-P[E |
pu— %_
This completeghe proof of thelemma. O

We arereadyto synthesizavhatwe learnedn asinglelemma.ln its statementthe choiceof parameters
is madeto minimize the probability of failure. Otherchoiceswith othergoalswould work aswell.

Lemma 13. Let G ~ G(n,1/2). Then,the probability that T},,1/7) doesnot satisfy(C[nl/q) is at most
2—Q(nl/8)_

Proof. Choosek = [1logyn] in Lemmal10 andk = [r!/7] in Lemmal2 and link them through
Lemmall. O

4.4 Defining the splitting steps

In this sectionwe shav thatsets; of the splitting treesT}, aredefinableby formulasi;(x) of very low
quantifierrank. Firstlet usrecallthatif the splitting stepis madewith respecto nodet, thenevery leaf s
splitsinto the sets

Ly ={x € L;:p(G,z, L) = 0}
Lg ={ze€Ls:p(G,x, L) =1}.

Notethatthenodesatdepth? aregeneratedby the /-th splitting step.For every non-rootnodet in a splitting
treeT’, letvy(t) bethenodeof 7' thatgenerated. In thefollowing letu(1) := 1 andu(¢) := biny(2(¢— 1))
for every ¢ > 2.

Lemma 14. Let G bea graphandlet k > ¢ > 1. Then,for every nodet at depth? in T, we have
vy, (t) = u(?).

Proof Letuswrite T' = Tj. If ¢ is oneof thetwo nodesatdepthl, thenvy(t) is theroot, whichagreeswith
u(1). Assumenow thatt is anodeatdepth? > 2. Let numy be suchthatnums(bingy(1z)) = 1x for every
binarystringz. We shav thatnums (v (t)) = 2(¢ — 1). We proceedby inductionon ¢. For ¢ = 2 we have
it sincethenvy(¢) is theleft child of theroot 10, andnums (10) = 2. Now, if ¢ is anodeatdepth? > 2 and
we assumehatnums(vr(t)) = 2(¢ — 1), thenfor everya € {0, 1} we have

nums (vy(ta)) = numg(vyp(t)) +2 =200 —1)+2=2((£+1) - 1)

wherethefirst follows from thefactthatthenodesatlevel /41 aregeneratedby thenext left-child following
vr(t) in thelevel-order andthatthelevel-orderon nodesagreeswith theorderof the naturalnumbersvhen
they arereadin binary O
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Now, for ay,...,a; € {0, 1}, define
V1a;.-a,(T) = /\ Bz (Vi) (2) A E(z, 2)) A /\ @z (Yu(i)(2) A E(z, 2)).

Notethat (z) is true sincethenthe conjunctionsareempty We shaw thatthe;(x) arethe formulaswe
areafter

Lemma 15. Let G beagraphandlet £ > ¢ > 0. Then,for every nodet at depthat most/ in Ty, the
formulay;(z) defineshesetL; in G.

Proof. For every non-leafnodet at depth? — 1 we have vy (ta) = w(¢) for botha = 0 anda = 1 by
Lemmal4. Therefore

Ly ={z € Ly : p(G,z, Lyp)) = 0}
Ly ={x € Ly : p(G, x, Lyw)) = 1},

Now, if £ = laias - - - ay, thenunfoldingtherecursionwe have that L, is the setof verticesz € V for which
p(G,z, Ly;)) = a; holdsfor everyi € {1,...,¢}. Thisis preciselywhaty(z) says. O

Notethatthequantifierankof ¢;(z) depend®nly onthedepthof ¢. Thereforelet ¢(¢) bethequantifier
rankof ¢ (z) for someandhenceevery ¢ of depth?. Notethatq(¢) is monotonenon-decreasing.

Lemma 16. ¢(¢) = O(log™ ).

Proof. If ¢ is anodeis at depth?, the largestu(:) in the definition of v is 2(¢ — 1). Sinceq is monotone
non-decreasinge have
q(0) = 1+ q(|bina(2(¢ = 1))]).

Sincethelengthof bing (2(¢ — 1)) islogy(¢) + O(1), thisrecurrencaivesqg(¢) = O(log* ¢) asclaimed. [

4.5 Definingthe linear pre-order
Finally we arereadyto prove the mainlemmaof this section.

Lemma 17. For everye > 0, ther existsng > 0 sud thatfor all n > n( ther is a formula(z,y) of
quantifierrankO(log* n) sud that, for G ~ G(n, 1/2), the probability that ¢ definesa linear pre-order of
width at most2 is at leastl — .

Proof Fix ¢ > 0 andletny belargeenoughsothatfor everyn > ng the probabilityin Lemmal3is atmost
e. Forfixedn > no, letk = [n!/4], andlet«(x, y) betheformula:

\/ ¢s /\ ¢t

s<t
where s andt rangeover the leaves of Ty, in the disjunction. If T} hasall its leaveslabelledby setsof
size at mosttwo this definesa linear pre-orderof width at mosttwo. By choiceof ng this happenswith

probability atleastl — e. Finally, by Lemmal6, the quantifierrank of ¥ is O(log* k) whichis O(log* n)
sincek < n. O

18



5 Establishingthe lower bound

Herewe putit all togetherto prove Theoreml.

Theorem 2 (Theoreml re-stated) For everyé > 0, there existsng > 0 sud that for everyn > ng there
existsa formula ¢(z, y, z) sud that, for every Booleancombinationof FO[&]-polynomialsp(zx, y, z) of
degreeboundedy a towerof exponentialf heightat mostg/O(1), wheee g is thedepthof ¢, theformulas
¢ andp mustdisagreeon a fraction1 — § of all graphswith n vertices.

Proof Fix § > 0 andchoosen large enoughandn > ny. Let ¢ (z,y) betheformulafrom Lemmal7 for
e =10/2. Letp(z,y, z) := ¢¥(z,y) NY(y, z). Let g bethequantifierrankof ¢, whichis the sameasy. We
have g < clog™ n for someconstant: > 0. We claimthatthis ¢(z, y, z) witnesseshetheorem.

Supposep(z, y, z) is a Booleancombinationof FO[&]-polynomialsof degreeboundedby a tower of
exponential®f heightg/c— 3 thatagreeswith ¢(x, y, z) onmorethanad-fractionof graphswith n vertices.
By Lemmal we mayassumehatp(z, y, z) is aregularnormalform of the samedegree.By the —3 in the
choiceof theheightg/c— 3 of thetower of exponentialsthedegreeof p(z, y, z) is boundedy log log log n.
If ng is largeenoughwith probabilityatleastl — ¢ /2 thereexistsatriple a, b, ¢ of distinctverticesfor which
Y (a, b, c) holds. Also if ng is large enoughwith probabilityatleastl — §/2 theformulay(z,y) definesa
linear pre-orderof width at most2. By the unionbound,with positive probabilityall threehold. Let G be
suchthat:

1. ¢(z,y, =) andp(z,y, z) agreeon GG,
2. Y(z,y) definesalinearpre-order< of width atmost2 in G,
3. thereexistsatriple of distinctverticesa, b, ¢ of G for which Y (a, b, ¢) holds.

Now, assumewithoutlossof generalitythata < b < ¢: otherwisepermutethemaccordingly Note thatwe
cannothave ¢ < a asotherwiseall threea, b, ¢ would belongto the sameclassof the pre-order which is
not possiblebecauséts width is 2 anda, b, ¢ aredistinct. But then¢(a, b, ¢) holdsand¢(c, a, b) doesnot
hold, which meanghat ¢ distinguisheone permutationof (a, b, ¢) from another But thenp alsodoes;a
contradictiorto Y (a, b, ¢). O
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A Making e explicit
Firstwe shaw if 12 is theuniform distribution over ZJ thenthedistribution (") with whichthenorm||g||;a ,
is definedis the uniform distribution over (Z4)+1.

Lemma 18. Let y be the uniformdistribution on Z¢. Theny(¥ is the uniformdistribution on (Z¢)*+* for
everyi € N.

Proof By inductiononi we shav thatu(¥ (x, t1,...,t;) = 279+ for every (x, ty, ..., t;) € (Z4)*1.
Sincep®) = 4, theclaimis clearfor i = 0. Fori > 0 we have
PO (x by, 1) pO D (x bt bi)

Zz #(i_l) (Z: tla s 7ti—1)

u(i)(xatla s 7t’L) -

Applying theinductionhypothesighisis
27 g
od . 9—di '

O

Lemma 19. Letg : Z¢ — {—1,1} begivenby g(y) = (—1)1_[7:1 Yi, Let u bethe uniformdistribution on

g2
Z4. Then||gl|ya, < e 2“7

Proof. Letpy = u(?(0,to) wherety = (0,...,0) andletp; = u(9(0,t;) wheret; = (ey,...,e,) and
e; is the j-th standardunit vectorin Z4. We have

(Dy9)(0) = T (—1)ma©@#%5es0) = TT (—1)° = 1.

SCld] SCld]
Also
(D, 9)(0) = H (_1)H?:1(0¢+Zjes €ji) — H (_1)1_[?:1(0#2]-65 €ji) . (_1)H?:1(0i+2je[d] €ji)
scla 5

WhenS is apropersubsedf [d], thefactor0; + .. 5 €;,; in theexponentvanishesateachi € [d] \ S. On
theotherhand for S = [d], thefactor0; + >, s e;; is 1 ateachi € [d]. Therefore

(De,9)(0) = J (-1)°- (-1t = —1.
SCld)
S#ld]

Thus

d
1911, = [Eqe tyepia (Deg)(@)]| =

>l (z,t)(Dig) ()
(z,t)

< lpo - (Dtog)(0) +p1- Do, 9)(0)[ + > pP(z,t) - [(Deg)()]
(z,t)(i’(té,t())
(@.6)#(0.t1)

<lpo—p1l +1—=po—p1
=1— 2—d(d+1)—|—1
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where the first inequality follows from the triangle inequality the secondinequality follows from the
computationsabove andthe fact thateach(D;g)(xz) hasmagnitudel, andthe last equality follows from
po = p1 = 2~4U4+1) by the previouslemma.We concludethat

lgllipa,, < (1 — 2@+ ¢ o@D lomd _ pmitoadst
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