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Universitat Politècnica de Catalunya
Anuj Dawar‡

University of Cambridge

June 25, 2013

Abstract

Kolaitis and Kopparty have shown that for any first-order formula with parity quantifiers over the
language of graphs there is a family of multi-variate polynomials of constant-degree that agree with the
formula on all but a 2−Ω(n)-fraction of the graphs with n vertices. The proof bounds the degree of the
polynomials by a tower of exponentials whose height is the nesting depth of parity quantifiers in the
formula. We show that this tower-type dependence is necessary. We build a family of formulas of depth
q whose approximating polynomials must have degree bounded from below by a tower of exponentials
of height proportional to q. Our proof has two main parts. First, we adapt and extend the results by
Kolaitis and Kopparty that describe the joint distribution of the parities of the numbers of copies of small
subgraphs in a random graph to the setting of graphs of growing size. Second, we analyse a variant of
Karp’s graph canonical labeling algorithm and exploit its massive parallelism to get a formula of low
depth that defines an almost canonical pre-order on a random graph.

1 Introduction

Since the 0-1 law for first-order logic was established [5, 6], there has been much interest in exploring the
asymptotic properties of definable classes of graphs. Many extensions of first-order logic have been shown
to have a 0-1 law (see for instance [11, 4]) and in many other cases, weaker forms of convergence have
been established (see [3]). A recent, remarkable result in this vein is that of Kolaitis and Kopparty [9] who
study FO[⊕], the extension of first-order logic with parity quantifiers. They show that for every constant
edge-probability p and for every FO[⊕]-sentence φ, there are two explicitly computable rational numbers
a0, a1 such that, for i ∈ {0, 1}, as n approaches infinity, the probability that the random graph G(2n+ i; p)
satisfies φ approaches ai. In other words, φ has an asymptotic probability a0 on the sequence of graphs of
even cardinality and a1 on the sequence of those of odd cardinality. The proof of this result brings entirely
new methods to the analysis of the asymptotic behaviour of logics on graphs, based on discrete analysis
and polynomials over finite fields. In particular, it ties this to the study of approximations of circuits by
low-degree polynomials, as we explain next.

The 0-1 law for first-order logic, in its general form is a quantifier-elimination result. It states that for
any first-order formula φ, there is a quantifier-free formula θ such that φ is equivalent to θ almost surely.
∗A preliminary shorter version of this paper appeared in the Proceedings of 39th International Colloquium on Automata, Lan-

guages and Programming (ICALP), Part II, Lecture Notes in Computer Science 7392, Springer, Warwick, UK, July 9-13, 2012.
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To be precise, φ and θ agree on a fraction 1 − 2−εn of the graphs on n vertices. We can say that any
first-order formula is well approximated by a quantifier-free formula. This is similar to the phenomenon of
depth-reduction for circuits which has a long history in computational complexity theory. For instance, Al-
lender showed that AC0-circuits have equivalent TC0-circuits of depth 3 and quasi-polynomial size [1]. The
result of Beigel and Tarui that general ACC0-circuits have equivalent depth-2 circuits of quasi-polynomial
size with a symmetric gate at the root [2] has been exploited to remarkable effect recently in the work of
Williams [14]. In the context of approximation, one of the best known examples is the Razborov-Smolensky
approximation of AC0[⊕]-circuits by multi-variate polynomials over Z2 of polylogarithmic degree [12, 13].
The method yields an approximation that agrees on a fraction 1− 2−(logn)c of the inputs.

The Kolaitis-Kopparty result mentioned above is proved by a depth-reduction argument of a similar
kind that exploits the higher degree of symmetry that FO[⊕]-formulas have over AC0[⊕]-circuits. They
prove that every FO[⊕]-formula φ is well-approximated by a formula which is a Boolean combination of
quantifier-free formulas and of polynomials over Z2 of special form, that we call FO[⊕]-polynomials, and
the degree of these polynomials depends only on φ. These polynomials have as variables Xuv for every
potential edge {u, v} over the vertex-set {1, . . . , n}. For example, the FO[⊕]-polynomial that gives the
parity of the number of triples that extend the vertex u to a triangle is∑

v:
v 6=u

∑
w:

w 6=u
w 6=v

XuvXvwXwu. (1)

At the heart of the argument is the analysis of the bias of certain low degree polynomials of this type on
uniformly random inputs. This understanding is then used to carry over a quantifier-elimination argument
that eliminates one parity quantifier or one first-order quantifier at a time. Relevant to our work is the fact
that, intriguingly, the elimination of each parity quantifier in this argument incurs an exponential loss in the
degree. The final outcome is that the degree d of the approximating polynomials is bounded from below by
a function of tower-type on the number q of parity quantifiers that were eliminated, i.e.

d ≥ 222
··
·

(2)

where the height of the tower is at least q. At first sight, the source of this inefficiency in the proof appears
technical and it might be tempting to think that a different method could perhaps avoid it altogether.

In this paper we prove that the non-elementary dependence stated in equation (2) cannot be avoided. To
be precise, we construct an explicit family of FO[⊕]-formulas φq of quantifier rank q and prove that they
cannot be approximated by a Boolean combination of quantifier-free formulas and polynomials of degree
bounded by an elementary function of q. Specifically, we prove the following:

Theorem 1. There exists a constant c > 0 such that for every large enough integer q, every ε > 0, and
every large enough integer n, there exists an FO[⊕]-formula φ(u, v, w) of quantifier rank q such that, for
every Boolean combination p of quantifier-free formulas and FO[⊕]-polynomials of degree bounded by a
tower of exponentials of height at most q/c, the formulas φ and p must disagree on a fraction 1 − ε of all
graphs with n vertices.

By an FO[⊕]-polynomial we mean a formula that has a direct translation to a bounded-degree polyno-
mial over Z2: a sequence of parity quantifiers followed by a conjunction of atomic facts. Since both φ and
p have free variables, when we say that φ and p disagree on a graph G, we mean that the set of tuples of
vertices of G satisfying φ is not the same as the set of tuples satisfying p.
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Theorem 1 should be contrasted with the 0-1 law for first-order logic. In that case the approximating
formula is quantifier-free, and such formulas translate into polynomials of degree at most polynomial in the
number of free variables.

Proof outline and techniques Our proof relies on two technical ingredients. On one hand we analyse a
canonical labeling algorithm for graphs due to Karp [8] (see [7] for another view on the logical definability
of Karp’s canonical labeling). We exploit its massive parallelism to build an FO[⊕]-formula ψ(u, v) of
depth O(log∗ n) that works on graphs with n vertices. The formula is designed in such a way that, on
almost every graph, it defines a linear pre-order of width at most two on the set of vertices of the graph.
The second ingredient is a refined analysis of one of the key tools from the Kolaitis-Kopparty paper. Using
and extending their techniques for estimating the frequencies mod 2 of subgraph copies, we show that for
every FO[⊕]-polynomial p(u, v, w) of degree log log log n and for the random graph G(n, 1/2), with high
probability there exists a triple of distinct vertices (a, b, c) such that p cannot distinguish it from any of its
permutations.

From these two ingredients, the lower bound follows by taking the formula φ(u, v, w) := ψ(u, v) ∧
ψ(v, w). On one hand this formula distinguishes at least one permutation of the vertices (a, b, c) from
some other. This is because by linearity of the pre-order the classes they lie in must be comparable, but by
the width-2 condition on the pre-order not all three vertices can sit in the same class. On the other hand,
if φ′(u, v, w) is any Boolean combination of quantifier-free formulas and FO[⊕]-polynomials of degree
log log log n, we could choose (a, b, c) in such a way that φ′ is not able to distinguish any permutation of
(a, b, c) from the others. We conclude that φ′ cannot approximate φ, and since the quantifier rank of φ is
still O(log∗ n), the tower-type lower bound follows. We provide more details in the body of the paper.

Section 2 below introduces some essential notation. Then, in Section 3 we show that for any Boolean
combination of polynomials of low-degree, on a sufficiently large random graph, there is some tuple of
elements which is not distinguished from any of its permutations. Section 4 contains the construction of
the formula ψ(u, v) that defines a linear pre-order of width at most two on almost all graphs on n vertices.
Finally, Section 5 pulls these ingredients together to establish our result. The construction in Section 3 relies
heavily on elements from [9] and [10]. Similarly, Section 4 borrows from the analysis in [8]. The reader
wishing to follow all details of the proof may wish to have copies of these three papers at hand.

2 Preliminaries

We use [n] to denote the set {1, . . . , n}. We identify the nodes of a complete rooted binary tree with the
binary strings that start with the symbol 1: the root is 1, the left child of t is t0 and the right child of t is t1.
The level-order of a complete binary tree is 1, 10, 11, 100, 101, 110, 111, 1000, 1001, . . ., i.e. the nodes are
ordered first by length, and within each length, they are ordered lexicographically. Note that if the strings
are interpreted as numbers written in binary, this is the usual order of the natural numbers. For a natural
number n ≥ 1, we write bin2(n) for its unique binary encoding with a leading one.

Let G and H be graphs. We write V (G) and E(G) to denote the vertices and edges of G respectively,
and similarly for H . A homomorphism from G to H is a mapping h : V (G) → V (H) that maps edges to
edges; i.e. such that if {u, v} ∈ E(G), then {h(u), h(v)} ∈ E(H). Let Hom(G,H) denote the collection
of all homomorphisms from G to H .

The collection of FO[⊕]-formulas over the language of graphs is the smallest class of formulas that
contains the atomic formulas E(x, y) and the equalities x = y, and is closed under negation, conjunction
and disjunction, universal and existential quantification, and parity quantification; i.e. quantification of the
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form ⊕x φ(x). The meaning of ⊕x φ(x) is that there is an odd number of vertices x that satisfy φ(x).
For a tuple a = (a1, . . . , ak) and a permutation π ∈ Sk, we write a ◦ π for the tuple (aπ(1), . . . , aπ(k)). If
p(x1, . . . , xk) is a formula with free variables x1, . . . , xk, and y1, . . . , yk are variables or constants, we write
p(y1, . . . , yk) for the result of replacing each occurrence of xi by yi. This applies also to the case where
y1, . . . , yk is a permutation of x1, . . . , xk.

An atomic type on the variables x1, . . . , xk over the language of graphs is a consistent collection of
atomic formulas E(xi, xj) or xi = xj and negated atomic formulas ¬E(xi, xj) or xi 6= xj that is maximal
with respect to set-inclusion. A positive atomic type is the subset of an atomic type containing all its positive
atomic formulas. We say that a type is injective if it contains the formula xi 6= xj whenever i 6= j. An
equality type is the subset of an atomic type containing all its equalities xi = xj and inequalities xi 6= xj .
For a graph G and a tuple a = (a1, . . . , ak) ∈ V (G)k, the atomic type of a in G is the unique atomic type
that is made true in G by the assignment xi 7→ ai. The atomic type of ak over (a1, . . . , ak−1) in G is the
subset of the atomic type of a in G containing all formulas that involve the variable xk.

3 Fooling polynomials of low degree

In this section we aim to establish that for any FO[⊕]-formula which is a Boolean combination of poly-
nomials of low degree (growing as O(log log log n)) and a sufficiently large random graph G, with high
probability there is a triple of vertices a, b, c such that the formula does not distinguish this triple from any
of its permutations. To do this, we first establish a normal form for such FO[⊕]-formulas which will permit
an analysis of their asymptotic behaviour. The normal form is established in Section 3.3, and the analysis in
Section 3.4.

Once we have the normal form, the proof strategy is roughly as follows. Fix a formula in normal form
p(x, y, z). For every fixed a, b, c ∈ [n], let Y (a, b, c) be the event that p cannot distinguish any two permu-
tations of a, b, c. Ideally we would like to show that the event Y (a, b, c) has non-negligible probability of
happening, and that if a′, b′, c′ ∈ [n] is a triple disjoint from a, b, c, then the events Y (a, b, c) and Y (a′, b′, c′)
are almost independent. If we were able to do this, the result would follow from an application of Cheby-
shev’s inequality. Unfortunately it is not quite true that Y (a, b, c) and Y (a′, b′, c′) are almost independent in
general, so we need to take a detour. The detailed argument is given in Section 3.5

3.1 Formulas and polynomials

In this section, we define the formulas to which our result applies. In short, they are Boolean combinations
of FO[⊕]-polynomials. An FO[⊕]-polynomial is a formula of FO[⊕] consisting of a sequence of parity
quantifiers followed by a conjunction of atomic formulas and negated equalities. In its general form, an
FO[⊕]-polynomial p with free variables u1, . . . , uk is a formula of the form

⊕uk+1 · · · ⊕um

∧
i 6=j

ui 6= uj ∧
d∧
`=1

E(ui` , uj`)

 , (3)

where i and j range over [m] in the first conjunction, and i1, . . . , id, j1, . . . , jd are indices in [m]. The
number d of atomic facts in the conjunction is called the degree of p. The number m of distinct variables is
the order of p.

To the formula (3) we can associate the graph H on the vertices u1, . . . , um that has an edge between
ui` and uj` for each ` ∈ [d], and the first k vertices u1, . . . , uk distinguished from the rest. We use the
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notation H(u1, . . . , uk) for such kind of graphs, and ⊕H(u1, . . . , uk) to denote the FO[⊕]-polynomial
corresponding to this graph. Note that the formula expresses the parity of the number of extensions of
u1, . . . , uk to a copy of H . Note also that the degree of ⊕H(u1, . . . , uk) is the number of edges of H .

Example 1. If H is a triangle containing vertex u, then ⊕H(u) is the formula that expresses the parity of
the number of extensions of u to a triangle. Formally, ⊕H(u) is the formula

⊕v ⊕w (u 6= v ∧ u 6= w ∧ v 6= w ∧ E(u, v) ∧ E(v, w) ∧ E(w, u)).

Note that over undirected graphs, this formula is always false. This is because for every triangle containing
u, there are two assignments to the variables v and w which witness H . Thus, the total number of satisfying
assignments is twice the number of triangles containing u and is therefore always even. In general, if H has
an even number of automorphisms that fix u1, . . . , uk, then ⊕H(u1, . . . , uk) will always be false, while for
graphs with an odd number of automorphisms we get non-trivial formulas.

Remark 1. The observation at the end of Example 1 has one important consequence: if H(u1, . . . , uk)
has r isolated vertices outside {u1, . . . , uk} and r ≥ 2, then ⊕H(u1, . . . , uk) is always false because then
the number of automorphisms of H that fix u1, . . . , uk is a multiple of r!, which is even when r ≥ 2.
In particular, this means that in the general form of FO[⊕]-polynomials displayed in equation (3) we can
always assume that

m ≤ 2d+ 1.

This will be important because, by assuming it, lower bounds on the order imply lower bounds on the degree.

Remark 2. On graphs, an atomic formula of the form E(u1, u1) is just false, while an atomic formula of the
form E(u1, u2) with distinct variables u1 and u2 is equivalent to u1 6= u2 ∧ E(u1, u2), which is an FO[⊕]-
polynomial of order two and degree one. Similarly, an atomic formula of the form u1 = u1 is just true,
while an atomic formula of the form u1 = u2 with distinct variables u1 and u2 is equivalent to the negation
of the FO[⊕]-polynomial u1 6= u2; this has order two and degree zero. This means that every quantifier-free
formula is equivalent to a Boolean combination of FO[⊕]-polynomials of order two and degree at most one.

Remark 3. There is a precise sense in which FO[⊕]-polynomials correspond to polynomials over the
Boolean edge-variablesXuv. For example, the formula from Example 1 corresponds to the family of degree-
3 polynomials ∑

v∈[n]
v 6=u

∑
w∈[n]
w 6=u
w 6=v

XuvXvwXwu.

as u ranges over [n].

3.2 Independence and plan of action

The formulas we are interested in are Boolean combinations of polynomials. Let p(x, y, z) be such a formula
and Y (a, b, c) be the event that p cannot distinguish any two permutations of a, b, c. The main obstacle to
carrying out the argument sketched at the beginning of this section is that it is not true, in general, that
the events Y (a, b, c) and Y (a′, b′, c′) are almost independent, even if a, b, c, a′, b′, c′ are all different. The
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reason is that the formula p(x, y, z) may include statements about the graph G which do not involve the free
variables. These are true or false independently of the choice of a, b, c or a′, b′, c′ and thus create correlations
between Y (a, b, c) and Y (a′, b′, c′).

It is illustrative to give an example of this.

Example 2. Let p(x, y) be the formula that is the conjunction of the following : (1) ⊕z E(x, z) (x has odd
degree), (2) ¬ ⊕z E(y, z) (y has even degree); and (3) ⊕H for some fixed non-trivial rigid graph H (x and
y do not appear free in this). This is a Boolean combination of FO[⊕]-polynomials of degree bounded by
the number of edges of H .

Note that if p(a, b) holds then p(b, a) must fail. Therefore, the probability that p(a, b) 6↔ p(b, a) holds
is approximately 2 · 1

8 since each of the three conditions in p(a, b) holds with probability approximately
1
2 almost independently, and similarly for p(b, a). On the other hand, the probability that both p(a, b) 6↔
p(b, a) and p(a′, b′) 6↔ p(b′, a′) hold simultaneously is approximately 4 · 1

32 . This is because in each of
the four cases in which both hold, condition (3) either holds for both a, b and a′, b′ or for neither (since x
and y do not appear). We are left with five conditions that hold with probability approximately 1

2 almost
independently. Since 4 · 1

32 is not ε-close to (2 · 1
8)2, this shows that Y (a, b) and Y (a′, b′) are not almost

independent.

The example just sketched suggests that we factor out the condition that does not depend on neither
x nor y from p(x, y) ↔ p(y, x) since this is the cause for the statistical dependence between Y (a, b) and
Y (a′, b′). However, while such an argument can be made to work in the example above, it is not clear what
such a factoring would entail when p contains disjunctions.

The key observation at this point is that the full type of (x, y) in terms of its atomic type (the pattern
of connections and equalities among x and y) and the truth values of its ⊕H’s as H ranges over all small
graphs that contain x and y as vertices is enough to determine the truth value of p(x, y). Thus, if we were
able to find a full type implying p(x, y) that is symmetric in x and y, we would have reduced the case of
general p(x, y) to the case of a p(x, y) that consists of a single term and eliminated the need to consider
disjunctions. The argument that we use is a bit more delicate than this, but this is the main idea.

3.3 Normal forms

In this section we introduce some definitions and discuss two different types of normal forms for Boolean
combinations of FO[⊕]-polynomials.

An I-labeled graph is a graph with some vertices labeled by elements of I in such a way that, for every
i ∈ I there is exactly one vertex labeled i, and the set of labeled vertices induces an independent set. The
set of labeled vertices of an I-labeled graph H is denoted by L(H). The vertex labeled by i ∈ I is denoted
by H(i). An I-labeled graph H is label-connected if H \ L(H) is connected. Let ConntI be the set of all
I-labeled label-connected graphs with at most t unlabeled vertices. We say that H depends on label i ∈ I if
H(i) is not an isolated node. We say that H is label-dependent if it depends on all its labels. Let Conn∗,tI
be the subset of all labeled graphs in ConntI that are label-dependent.

A k-labeled graph is a [k]-labeled graph. A ≤k-labeled graph is an I-labeled graph for some I ⊆ [k].
Let H be a ≤ k-labeled graph with labels I ⊆ [k]. A homomorphism from H to a pair (G,a), where
G is a graph and a = (a1, . . . , ak) is a tuple in V (G)k, is a homomorphism χ ∈ Hom(H,G) such that
χ(H(i)) = ai for each i ∈ I . A homomorphism χ from H to (G,a) is injective if for any distinct
a, b ∈ V (H) such that {a, b} 6⊆ L(H) we have χ(a) 6= χ(b). Write ⊕H(G,a) for the parity of the
number of injective homomorphisms from H to (G,a). We usually omit G and write ⊕H(a). When H is
a k-labeled graph (i.e. I = [k]), the notation for this in [9] is [H]2(G,a).
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We call the number of vertices in H the order of H and the number of edges in H the degree of H .
These are the same as the order and degree respectively of the polynomial ⊕H(x). Note that if H has order
c, then it has at most c unlabeled vertices.

A KK-normal form of order m with free-variables x = (x1, . . . , xk) is a Boolean combination of the
atomic types on the variables x and formulas ⊕H(x)’s as H ranges over the k-labeled label-connected
graphs of order m with labeled vertices x. A regular normal form of order m with free-variables x is a
Boolean combination of the atomic types on the variables x and the ⊕H(x)’s as H ranges over the ≤ k-
labeled label-connected, label-dependent graphs of order m with labeled vertices within x.

Example 3. Let φ(x, y) be the formula

⊕z (E(x, z)) ∧ ¬ ⊕z (E(y, z)),

saying that x has odd degree and y has even degree. This is a regular normal form. On the other hand, it
is not a KK-normal form because the formula ⊕z (E(x, z)) cannot be put in the form ⊕H(x, y) for any 2-
labeled graph H . However, as we will see, it is not hard to transform φ(x, y) into an equivalent KK-normal
form.

Example 4. Let p(x, y) be the formula

(x 6= y ∧ E(x, y) ∧ ¬ ⊕H1(x, y) ∧ ⊕H2(x, y)) ∨ (x 6= y ∧ ¬E(x, y) ∧ ⊕H1(x, y) ∧ ¬ ⊕H2(x, y)),

whereH1 is the 2-labeled label-connected graph that has three vertices x, y, and z and a single edge between
x and z, and H2 is the 2-labeled label-connected graph that has three vertices x, y, and z and a single edge
between y and z. This is a KK-normal form. On the other hand, it is not a regular normal form because H1

and H2 are not label-dependent. However, as we will see, it is not hard to transform φ(x, y) into a regular
normal form.

The two examples above are actually logically equivalent and it is a general fact that Boolean combina-
tions of FO[⊕]-polynomials, KK-normal forms, and regular normal forms of the same order have the same
expressive power.

Lemma 2. Let k ≥ 0 and m ≥ k be integers and let φ(x1, . . . , xk) be an FO[⊕]-formula. The following
are equivalent:

1. φ is equivalent to a Boolean combination of FO[⊕]-polynomials of order at most m,

2. φ is equivalent to a KK-normal form of order at most m,

3. φ is equivalent to a regular normal form of order at most m.

Proof. We may assume that m ≥ 2 since FO[⊕]-polynomials and normal forms of order one or less are
trivial.

(1) ⇒ (2): We show how to transform an FO[⊕]-polynomial p of order at most m into an equivalent
Boolean combination of atomic types and formulas of the form⊕H where H is a k-labeled label-connected
graph of order at most m. We do this in two steps: in the first step we do it with k-labeled graphs that are
not necessarily label-connected, and in the second step we ensure the connectivity condition.

Let us say p has the form

p(y1, . . . , yt) = ⊕yt+1 · · · ⊕ys

∧
i 6=j

yi 6= yj ∧
d∧
`=1

E(yi` , yj`)

 , (4)
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where the indices i and j range over [s] in the first conjunct, i` and j` are also indices in [s] for each ` ∈ [d],
the free variables y1, . . . , yt are among x1, . . . , xk, and the bound variables yt+1, . . . , ys are disjoint from
x1, . . . , xk. After renaming the variables, we may assume that (y1, . . . , yt) = (x1, . . . , xt). Let H be the
k-labeled graph of order s with labeled vertices x1, . . . , xk, non-labeled vertices yt+1, . . . , ys, and edges
{yi` , yj`} as ` ranges over [d]. We claim that for every graph G and every a = (a1, . . . , ak) ∈ V k

G , we have

p(a) ≡
∑
f∈F

∑
σ∈Sf

σ(a) · ⊕Hf (a) mod 2, (5)

where

• F is the set of partial mappings f : [s] \ [t] → [k] \ [t] that are injective on their domain Dom(f),
including the empty map,

• for every f ∈ F , the set Sf consists of all atomic types on the variables x1, . . . , xk that contain the
positive atomic type of each yj with j ∈ Im(f) over x1, . . . , xt in H , plus the inequalities xi 6= xj
for every pair i, j ∈ [t] with i 6= j, every pair i, j ∈ [k] with i ∈ [t] and j ∈ Im(f), and every pair
i, j ∈ Im(f) with i 6= j,

• for every f ∈ F , the graph Hf is the k-labeled graph that is obtained from H by deleting all edges
between some yi with i ∈ Dom(f) and x1, . . . , xt, and by identifying yi with xf(i) for every i ∈
Dom(f).

To see that (5) holds, note that the term σ(a) · ⊕Hf (a) counts the parity of the number of injective homo-
morphisms from H to G that map xi to ai for every i ∈ [t], and yi to af(i) for every i ∈ Dom(f), subject
to the condition that a satisfies the rest of atomic relations specified in σ. Since for each f ∈ F all allowed
possibilities for the rest of atomic relations are included, the resulting count is precisely p(a). Now note that
F and Sf are finite for every f ∈ F and therefore the expression (5) is equivalent to a Boolean combination
of atomic types and ⊕H’s as required.

It remains to see how to ensure that theH’s are label-connected while preserving the bound on the order.
Conveniently, this was done in Lemma 5.6 from [9] and we refer the reader to it.

(2)⇒ (3): We need to show how to transform a formula ⊕H where H is a k-labeled label-connected
graph of order at mostm into an equivalent Boolean combination of quantifier-free formulas of the form⊕F
where F is a ≤k-labeled label-connected, label-dependent graph of order at most m. The transformation is
done in two steps. In the first step we reduce the number of isolated labeled vertices in H or the number of
non-labeled vertices of H at the expense of using possibly label-disconnected graphs. In the second step we
get rid of the label-disconnected graphs. Indeed the second step is as in the proof of Lemma 5.6 in [9] so we
need only take care of the first step.

If H is already label-dependent, there is nothing to do. Otherwise let x1, . . . , xk be the set of labeled
vertices of H , assume xk is isolated in H , and let xk+1, . . . , xs be the set of non-labeled vertices of H .
Then, for every graph G and for every a = (a1, . . . , ak) ∈ V k

G , we claim that

⊕H(a) ≡ ⊕H−xk(a) +
∑

j∈[s]\[k]

∑
σ∈Sj

σ(a) · ⊕Hxj=xk(a) mod 2, (6)

where:

• H−xk is the ≤k-labeled graph that results from deleting xk in H ,
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• Sj is the set of atomic types on the variables x1, . . . , xk that contain the positive atomic type of xj
over x1, . . . , xk−1 in H , plus the inequalities xj 6= xi for every i ∈ [k − 1],

• Hxj=xk is the k-labeled graph that results from deleting all edges from xj to a labeled vertex and
identifying xj and xk in H .

To see why (6) holds note two facts. First, the sum over j ∈ [s] \ [k] counts the parity of the number
of injective homomorphisms from H−xk into (G,a) that have ak as the image of some non-labeled vertex.
Second, since the term⊕H−xk(a) counts the parity of all injective homomorphisms fromH−xk into (G,a),
this means that each injective homomorphism from H−xk into (G,a) that has ak as the image of some non-
labeled vertex is counted exactly twice and cancels. What is left is the parity of the number of injective
homomorphisms from H−xk into (G,a) that does not have ak as the image of some non-labeled vertex.
This is precisely⊕H(a) because xk is isolated in H and therefore the only constraint it puts on the injective
homomorphisms from H into (G,a) is that non-labeled vertices are not mapped to ak.

To conclude, note that [s] \ [k] and Sj are finite for every j ∈ [s] \ [k] and therefore (6) is a Boolean
combination of atomic types and ⊕H’s as required.

(3) ⇒ (1): First, each atomic type is a quantifier-free formula, and hence a Boolean combination of
FO[⊕]-polynomials of order at most two and degree at most one by Remark 2. Here we use the assumption
made at the beginning that m ≥ 2.

Second, let H be a ≤ k-labeled graph of order at most m. Let y1, . . . , yt be its set of labeled vertices,
which is a subset of x1, . . . , xk, and let yt+1, . . . , ys be its set of unlabeled vertices, which is a set disjoint
from x1, . . . , xk. Then

⊕H(x) ≡
∑
σ∈S

σ(x) · ⊕Hσ(x) mod 2 (7)

where:

• S is the collection of all equality types on y1, . . . , yt,

• Hσ is the ≤ k-labeled graph that results from H by identifying every vertex yj with j ∈ [t] with the
vertex yi with smallest index i ∈ [t] for which the equality yi = yj appears in σ, and by deleting
duplicated edges. If i 6= j we say that yi survives and yj disappears. All vertices yi with i ∈ [s] \ [t]
survive.

For fixed σ ∈ S, let A be the set of pairs (i, j) ∈ [s]2 such that both vertices yi and yj survive in Hσ.
Finally, let B be the subset of pairs (i, j) in A such that {yi, yj} is an edge in Hσ. Then

σ(x) · ⊕Hσ(x) ≡ ⊕yt+1 · · · ⊕ys

 ∧
(i,j)∈A

yi 6= yj ∧
∧

(i,j)∈B

E(yi, yj)

 .

This is precisely an FO[⊕]-polynomial whose free variables are the yi with i ∈ [t] that survive in Hσ. Its
order is s, which is at most m. Since S is finite, this shows that (7) is a equivalent to a Boolean combination
of FO[⊕]-polynomials of order at most m.

3.4 Distribution of frequency vectors

The frequency vector of order t in a graph G is the {0, 1}-vector indexed by the set of all connected graphs
with at most t vertices where the component H is⊕H(G), i.e. the parity of the number of occurrences of H
in G. Kolaitis and Kopparty [9] give an analysis of the distribution of frequency vectors in a random graph
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G ∼ G(n, 1/2), for constant t. Our aim in the present section is to extend this analysis to orders that grow
with n and to ≤k-labeled graphs.

Let Connt≤k be the set of all ≤ k-labeled label-connected graphs with at most t unlabeled vertices.
Let Conn∗,t≤k be the subset of Connt≤k containing all graphs that are label-dependent. Let G be a graph,
let a be a tuple in V (G)k, and let t ≥ 0 be an integer. Let freq∗,t≤k,G(a) be the {0, 1}-vector indexed by
the elements Conn∗,t≤k that has ⊕H(a) as its component indexed by H . Next we extend the definition of
feasible frequency vectors from [9] to the setting of ≤ k-labeled graphs. In defining FFreq∗(τ,≤ k, t) we
will restrict our attention to injective atomic types τ . This simplifies matters significantly and is enough
for our purposes. If τ is an injective atomic type on x1, . . . , xk, let FFreq∗(τ,≤ k, t) denote the set of all
feasible frequency vectors. Explicitly, these are all the {0, 1}-vectors indexed by Conn∗,t≤k whose component
F belongs to aut(F ) · Z2. Here aut(F ) denotes the number of automorphisms of F that fix the labels. Let
FFreq∗n(τ,≤k, t) denote the set of f ∈ FFreq∗(τ,≤k, t) such that fK1(∅) = n mod 2, where K1(∅) is the
graph with no labels and exactly one unlabeled vertex.

The next lemma describes the distribution of freq∗,t≤k,G(a) in a random graph. This is analogous to
Theorem 2.4 in [9], but see also the statement of Theorem 8.2 in [10] (about subgraph copies), on which
Theorem 2.4 is based. Our statement deviates from theirs in two directions: in generalizing it from a
constant number of vertices to a growing number of vertices up to log log log n, and from k-labeled graphs
to ≤k-labeled graphs.

Lemma 3. For every k ≥ 0 there exists n0 ≥ 0 such that for every n ≥ n0, every injective atomic type
τ on k variables, every c ≤ log log log n, and every k-tuple a of distinct elements in [n], the distribution
of freq∗,c≤k,G(a) as G ∼ G(n, 1/2 | τ(a)) is 2−Ωk(n/ logn)-close in statistical distance from the uniform
distribution over FFreq∗n(τ,≤k, c).

Here, the notation Ωk refers to an unspecified multiplicative constant that depends only on k, and the
notation G(n, 1/2 | τ(a)) denotes the uniform distribution over the graphs with vertex-set [n] restricted to
those on which the set of vertices in the tuple a induces the subgraph specified by the atomic type τ .

Before we discuss its proof, it is worth pointing out the differences between the statement of Lemma 3
and the statements of Theorem 2.4 in [9] and the more general Theorem 8.2 in [10]. Our statement here
extends them in two directions, and both of these require significant adaptation of the proof.

The first difference concerns the extension which takes us from a bounded number of vertices to a
growing number of vertices up to log log log n. In order to achieve this, we relax the statistical distance from
2−Ωk(n) in [10] to 2−Ωk(n/ logn) here. For our purposes, this weaker bound on the distance is not significant.
The proof is obtained by adapting the one in [10]. For this we need to make an explicit calculation of an
ε-bound in Lemma 4.7 in [10]. It is conceivable that a more careful analysis would yield a better bound still.
However, the bound we get is sufficient for our purposes.

The second difference concerns the extension from k-labeled graphs in Theorem 8.2 in [10] to ≤ k-
labeled graphs here. We need this extension to be able to execute the factoring argument sketched in Sec-
tion 3.2. This modification in the statement introduces the additional restriction of label-dependency (the ∗

in freq∗,t). This is required since the result would not be true without it. Luckily, though, Lemma 2 tells
us that we will be able to assume label-dependency without loss of generality. In this case discovering the
right assumption is the essential step in the proof. Once the concept is defined, the proof again follows the
original one. One final difference between our statement and Theorem 8.2 in [10] is that we are stating only
the case s = `′ = 0 of their theorem since any other case is irrelevant for our application. This also has the
benefit of shortening the proof somewhat.
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Proof sketch of Lemma 3. Handling ≤ k-labeled graphs instead of k-labeled graphs in the proof of Theo-
rem 8.2 in [10] is not problematic until we realize that the sets of copies of F and F ′ in (Kn,a) need not be
disjoint even if F and F ′ are non-isomorphic; i.e. Proposition 8.1(2) from [10] fails if I = [k] and F and F ′

are ≤k-labeled graphs instead of k-labeled graphs. This happens, for example, if F and F ′ are ≤k-labeled
label-connected graphs that are identical except that F ′ has one more labeled vertex than F that is isolated.
On the other hand, if F and F ′ are non-isomorphic and depend on all its labels, then it can be seen that the
sets of copies are disjoint. This is enough to carry over the argument in [9].

However, in order to allow a growing c, we need the following lemma that makes the ε-bound explicit
in the conclusion of Lemma 4.7 in [10]. For the definition of the µ-Gowers norm ||g||Ud,µ see Section 4.1
in [10].

Lemma 4. Let g : Zd2 → {−1, 1} be given by g(y) = (−1)
∏d

i=1 yi . Let µ be the uniform distribution on
Zd2. Then ||g||Ud,µ < 1− ε where ε > 1− exp(−2−d

2−2d+1).

Proof. Let p0 = µ(d)(0, t0) where t0 = (0, . . . ,0) and let p1 = µ(d)(0, t1) where t1 = (e1, . . . , ed) and
ej is the vector in Zd2 that is 0 everywhere except at component j where it is 1. We claim that

(Dt0g)(0) =
∏
S⊆[d]

(−1)
∏d

i=1(0i+
∑

j∈S 0i) =
∏
S⊆[d]

(−1)0 = 1

and
(Dt1g)(0) =

∏
S⊆[d]

(−1)
∏d

i=1(0i+
∑

j∈S ej,i) = (−1)1 ·
∏
S⊂[d]

(−1)0 = −1.

The first is clear. To see the second note that, whenever S is a proper subset of [d], the factor 0i +
∑

j∈S ej,i
in the exponent vanishes at each i ∈ [d] \ S, and whenever S = [d], the factor 0i +

∑
j∈S ej,i is 1 at each

i ∈ [d].
From the above,

||g||2dUd,µ =
∣∣∣E(x,t)∼µ(d) [(Dtg)(x)]

∣∣∣ =
∣∣∣∑
(x,t)

µ(d)(x, t)(Dtg)(x)
∣∣∣

≤
∣∣∣p0 · (Dt0g)(0) + p1 · (Dt1g)(0)

∣∣∣+
∑
(x,t):

(x,t)6=(0,t0)
(x,t)6=(0,t1)

µ(d)(x, t) · |(Dtg)(x)|

≤ |p0 − p1|+ 1− p0 − p1,

where the first inequality follows from the triangle inequality, and the second inequality follows from the
computations above and the fact that each (Dtg)(x) has unit magnitude.

Next we argue that if µ is the uniform distribution over Zd2 then µ(i) is the uniform distribution over
(Zd2)i+1. We show, by induction on i, that µ(i)(x, t1, . . . , ti) = 2−d(i+1) for every (x, t1, . . . , ti) ∈ (Zd2)i+1.
Since µ(0) = µ, the claim is clear for i = 0. For i > 0 we have

µ(i)(x, t1, . . . , ti) =
µ(i−1)(x, t1, . . . , ti−1) · µ(i−1)(x + ti, t1, . . . , ti−1)∑

z µ
(i−1)(z, t1, . . . , ti−1)

.

Applying the induction hypothesis this is

2−di · 2−di

2d · 2−di
= 2−d(i+1).
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Thus, p0 = p1 = 2−d(d+1) and we get |p0 − p1|+ 1− p0 − p1 = 1− 2−d(d+1)+1. Putting it all together
we conclude that

||g||Ud,µ ≤ (1− 2−d(d+1)+1)1/2d ≤ e−2−d(d+1)+1·2−d
= e−2−d2−2d+1

With the ε-bound from Lemma 4 in hand we can mimic the proof of Theorem 8.2 in [10] to get the proof
of Lemma 3. First we note that the bound in the conclusion of Theorem 4.8 in [10] for the special case in
which µ is the uniform distribution is really (1− ε)r for the ε from Lemma 4. This translates into the same
bound for the conclusions of Lemmas 4.1 and 3.3 in [10]. The bound in the conclusion of Lemma 3.3 in [10]
is eventually plugged into the hypothesis of Vazirani’s XOR Lemma, which returns the bound 2` · (1− ε)r
on the statistical distance, where in our case ` is the number of ≤k-labeled label-connected label-dependent
graphs with at most c unlabeled vertices. A generous bound on this factor is ` ≤ 2(c+k)2+1. Now note that
in the proof of Theorem 8.2 in [10], the remaining parameters are r = Ωk(n/c) and d = O(c2). Using the
bound on ε from Lemma 4, we get the following bound on the statistical distance:

2` · (1− ε)r ≤ 2(c+k)2+1 ·
(

exp
(
−2−O(c4)

))Ωk(n/c)
.

For c ≤ log log log n this is 2−Ωk(n/ logn), as required.

3.5 The argument itself

Finally we are at the point where we can execute the plan sketched at the beginning of Section 3. Fix a
positive integer k (for the application in Section 5 it suffices to take k = 3) and let p(x1, . . . , xk) be a
regular normal form of order c ≤ log log log n. For every a = (a1, . . . , ak) ∈ [n]k, define the following
indicator random variables:

X(a) := I[ p(a) 6↔ p(a ◦ π) for some π ∈ Sk ],

Y (a) := I[ p(a)↔ p(a ◦ π) for every π ∈ Sk ].

Obviously, X(a) = 1 − Y (a), and Y (a) is the indicator random variable for the event that p does not
distinguish any two permuted versions of a. Our goal is to show that in a random graph G, with high
probability, Y (a) holds for some a, and for this we will follow the plan sketched at the beginning of this
section.

Write p(x) as a DNF on the (Boolean) variables

τ1(x), . . . , τr(x),⊕H1(x), . . . ,⊕H`(x),

where τ1, . . . , τr are the atomic types on x1, . . . , xk, and H1, . . . ,H` are the ≤ k-labeled label-connected,
label-dependent graphs with labeled vertices within x1, . . . , xk and order at most c. Observe that, in particu-
lar,H1, . . . ,H` have at most c unlabeled vertices and thus belong to Conn∗,c≤k . Let us assume thatH1, . . . ,He

are the ones for which aut(Hi) is odd, and thatHe+1, . . . ,H` are the rest. Also assume thatH1, . . . ,Hf are
the graphs from among H1, . . . ,He that do not have any label at all, and Hf+1, . . . ,He are the rest. Since
atomic types are mutually exclusive and each ⊕Hj(a) is false for j ∈ {e + 1, . . . , `}, we may assume that
each term in the DNF formula has the form

τi(x) ·
∏
j∈K
⊕Hj ·

∏
j∈K′
⊕Hj ·

∏
j∈I
⊕Hj(x) ·

∏
j∈I′
⊕Hj(x). (8)
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for some i ∈ [r], some partition (K,K ′) of [f ], and some partition (I, I ′) of [e] \ [f ].
Next note that for every permutation π ∈ Sk, the sequence of Boolean variables τ1(x ◦ π), . . . , τr(x ◦

π) is equivalent to a permutation of the sequence of Boolean variables τ1(x), . . . , τr(x). Similarly, the
sequence of Boolean variables⊕Hf+1(x◦π), . . . ,⊕He(x◦π) is equivalent to a permutation of the sequence
⊕Hf+1(x), . . . ,⊕He(x). Therefore p(x) and p(x ◦ π) are functions of the same Boolean variables and we
can write p(x ◦ π) also as a DNF formula with terms of the type (8).

From now on, for every K ⊆ [f ], let RK be the term

RK :=
∏
j∈K
⊕Hj ·

∏
j∈K′
⊕Hj ,

where K ′ = [f ] \ K. Recall that H1, . . . ,Hf are all label-free and therefore RK does not depend on x.
Similarly, for every I ⊆ [e] \ [f ], let SI(x) be the term

SI(x) :=
∏
j∈I
⊕Hj(x) ·

∏
j∈I′
⊕Hj(x),

where I ′ = ([e] \ [f ]) \ I . For every K ⊆ [f ], let pK(x) denote the disjunction of the terms in p(x) that are
consistent with RK . Therefore p(x) is equivalent to the disjunction

∨
K⊆[f ] pK(x).

Define the “all-positive-term” as one in which ⊕Hj(x) appears positively for all j ∈ [e] \ [f ]:

ZK(x) := σ(x) ·RK · S[e]\[f ](x),

where σ is the atomic type that forces xi 6= xj for i 6= j, and all possible edges among different xi, xj . We
show that for every a ∈ [n]k, the event ZK(a) = 1 implies p(a)↔ p(a ◦ π) for every π ∈ Sk.

Lemma 5. ZK(a) ≤ Y (a).

Proof. Fix a permutation π ∈ Sk. First note that the choice of σ guarantees that σ(a) is equivalent to
σ(a ◦π). Also, the sequence⊕Hf+1(a ◦π), . . . ,⊕He(a ◦π) is equivalent to a permutation of the sequence
⊕Hf+1(a), . . . ,⊕He(a), and all appear positively in ZK(a). It follows from these facts that either the
term ZK(a) appears in both DNFs for p(a) and p(a ◦ π), or in neither. If it appears in both, then clearly
ZK(a) = 1 implies both p(a) and p(a ◦ π). If it does not appear in either, then ZK(a) = 1 implies p(a)
and p(a ◦ π) since ZK(a) is incompatible with any other term of the DNFs for p(a) and p(a ◦ π). In either
case, ZK(a) implies p(a)↔ p(a ◦ π).

At this point it will suffice to show that for everyK ⊆ [f ], the event ZK(a) = 1 holds for some a ∈ [n]k

with high probability in the probability space conditioned on RK . From now on, for every event A, write

PK [ A ] := P[ A |RK ].

Let us start by computing the probability of ZK(a) for a ∈ [n]k with ai 6= aj for i 6= j in this probability
space. Let δ be the maximum, over all injective atomic types τ(x), of the statistical distance between the
distribution freq∗,c≤k,G(a) asG ∼ G(n, 1/2 | τ(a)) and the uniform distribution over FFreq∗(τ,≤k, c). Note
that, by symmetry, δ does not depend on a provided ai 6= aj for i 6= j.

Lemma 6.
PK [ ZK(a) ] ≤

(
2−e

2−f
+ δ · 1

2−f − δ
+ δ · 2−e

2−f · (2−f − δ)

)
· 2−(k2);

and

PK [ ZK(a) ] ≥
(

2−e

2−f
− δ · 1

2−f + δ
− δ · 2−e

2−f · (2−f + δ)

)
· 2−(k2).
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Proof. We have

PK [ ZK(a) ] =
P[ ZK(a) ·RK ]

P[ RK ]
=

P[ S[e]\[f ](a) ·RK | σ(a) ] · P[ σ(a) ]

P[ RK ]

The denominator is at most 2−f + δ and at least 2−f − δ by choice of δ. Similarly, the numerator is at most
(2−e + δ) · 2−(k2) and at least (2−e − δ) · 2−(k2)also by choice of δ. Note that P[ σ(a) ] = 2−(k2). Now:

2−e + δ

2−f − δ
− 2−e

2−f
=

2−e · 2−f + δ · 2−f − 2−e · 2−f + 2−e · δ
2−f · (2−f − δ)

which simplifies to

δ · 1

2−f − δ
+ δ · 2−e

2−f · (2−f − δ)
.

Similarly,

2−e

2−f
− 2−e − δ

2−f + δ
= δ · 1

2−f + δ
+ δ · 2−e

2−f · (2−f + δ)
.

Next we compute, for every a,a′ ∈ [n]k with all a1, . . . , ak, a
′
1, . . . , a

′
k distinct, the probability of

ZK(a) · ZK(a′) in the probability space conditioned on RK . Let γ be the maximum, over all injec-
tive atomic types τ(x,x′), of the statistical distance between the distribution freq∗,c≤2k,G(a,a′) as G ∼
G(n, 1/2 | τ(a,a′)) and the uniform distribution over FFreq∗(τ,≤ 2k, c). Note that, by symmetry, γ
does not depend on a,a′ provided they are all distinct.

Lemma 7.

PK [ ZK(a) · ZK(a′) ] ≤
(

2−2e

2−2f
+ γ · 1

2−f − γ
+ γ · 2−2e+f

2−f · (2−f − γ)

)
· 2−2(k2).

Proof. Let A denote the event that σ(a) and σ(a′) both hold. We have

PK [ ZK(a) · ZK(a′) ] =
P[ ZK(a) · ZK(a′) ·RK ]

P[ RK ]

=
P[ S[e]\[f ](a) · S[e]\[f ](a

′) ·RK |A ] · P[ A ]

P[ RK ]
.

The denominator is at least 2−f − γ by choice of γ. The numerator is at most (2−2e+f + γ) · 2−2(k2) also by
choice of γ. The trailing 2−2(k2) factor is P[ A ]. Now:

2−2e+f + γ

2−f − γ
− 2−2e+f

2−f
=

2−2e+f · 2−f + γ · 2−f − 2−2e+f · 2−f + 2−2e+f · γ
2−f · (2−f − γ)

which simplifies to

γ · 1

2−f − γ
+ γ · 2−2e+f

2−f · (2−f − γ)
.
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Let us note at this point that the number of ≤ k-labeled graphs of order at most c is bounded by 2c
2+1.

Therefore, using the bound c ≤ log log log n, we have ` ≤ 1
2 log n for sufficiently large n, and in particular

2` ≤
√
n. (9)

We use this to prove the main consequence of this analysis up to now:

Lemma 8. Let a,a′ ∈ [n]k be such that a1, . . . , ak, a
′
1, . . . , a

′
k are all different. The following hold:

1. PK [ ZK(a) ] ≥ n−1/2 · 2−(k2) − 2−Ωk(n/ logn).

2. |PK [ ZK(a) · ZK(a′) ]− PK [ ZK(a) ] · PK [ ZK(a′) ]| ≤ 2−Ωk(n/ logn).

Proof. By Lemma 3, both δ and γ are 2−Ωk(n/ logn). On the other hand we have 2e−f ≤ 2e ≤ 2` ≤ n1/2 by
(9) and also 2f ≤ 2` ≤ n1/2 by (9). Therefore 2f−e ≥ 2−e ≥ 2−` ≥ n−1/2 and 2−f ≥ 2−` ≥ n−1/2. Now
1 follows from plugging these bounds into the lower bound in Lemma 6 and 2 follows from plugging these
bounds into the upper bound in Lemma 6 and the bound in Lemma 7 and recalling that k is a constant.

Now we conclude by proving the main result of this section:

Lemma 9. For every k > 0 and ε > 0, there exists n0 ≥ 0 such that for every n ≥ n0 and every regular
form p(x1, . . . , xk) of order bounded by log log log n, for G ∼ G(n, 1/2), the probability that there exists
a ∈ [n]k with ai 6= aj for i 6= j such that p(a)↔ p(a ◦ π) for every π ∈ Sk is at least 1− ε.

Proof. Fix k and ε and choose n0 large. Letm = bn/kc. Divide [n] intom disjoint k-tuples (a1, . . . ,am) ar-
bitrarily but in such a way that a`,i 6= a`,j for i 6= j. Define: Y =

∑
`∈[m] Y (a`) and ZK =

∑
`∈[m] ZK(a`),

the second for every K ⊆ [f ]. Note that by Lemma 5 we have ZK ≤ Y . We want to show that
PK [ ZK = 0 ] ≤ ε. This will be enough since then

P[ Y = 0 ] =
∑
K⊆[e]

P[ Y = 0 |RK ] · P[ RK ] ≤
∑
K⊆[e]

PK [ ZK = 0 ] · P[ RK ] ≤ ε.

To show that PK [ ZK = 0 ] ≤ ε we proceed by the second moment method. To simplify notation, let
us fix K ⊆ [f ] and abbreviate ZK by Z, and ZK(a`) by Z`. Similarly, all expectations E, variances V,
and probabilities P appearing below refer to the probability space PK . In computing the variance V[ Z ] =
E[ Z2 ]− E[ Z ]2 we have

E[ Z2 ]− E[ Z ]2 =
∑
i,j

E[ Zi · Zj ]−
∑
i,j

E[ Zi ] · E[ Zj ]

≤
∑
i

E[ Z2
i ] + 2 ·

∑
i 6=j

(
E[ Zi · Zj ]− E[ Zi ] · E[ Zj ]

)
≤
∑
i

E[ Zi ] + 2 ·
∑
i 6=j

(
P[ Zi · Zj ]− P[ Zi ] · P[ Zj ]

)
= E[ Z ] + 2 ·

(
m

2

)
· 2−Ωk(n/ logn)

= E[ Z ] + 2−Ωk(n/ logn),

where the first inequality follows from considering the case i = j in the first double sum and ignoring it
in the second, the next inequality follows from the fact that Zi is a 0-1-random variable, the equality after
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it follows from Lemma 8.2 (recall that P really stands for PK here), and the last equality follows from
m = bn/kc and the fact that k is a constant.

Now by Lemma 8.1 we have

E[ Z ] ≥ m ·
(
n−1/2 · 2−(k2) − 2−Ωk(n/ logn)

)
= Ωk(n

1/2).

Applying it to Chebyshev’s inequality we obtain

P[ Z = 0 ] ≤ V[ Z ]

E[ Z ]2
≤ E[ Z ] + 2−Ωk(n/ logn)

E[ Z ]2
≤ ε

for sufficiently large n.

4 Defining a linear pre-order of width two

In this section we construct the formula of very low depth that defines a linear pre-order of width 2 with
high probability. The proof strategy is to analyse a variant of an algorithm for graph canonization due to
Karp [8], and to exploit its massive implicit parallelism to get formulas of very low depth.

4.1 Plan of action

Informally, the graph canonization algorithm works as follows. For a given graph G, split the vertices into
two classes: those of even degree and those of odd degree. Inductively, we split the classes further by
dividing the vertices according to the parity of the numbers of neighbours they have in each of the existing
classes. We continue this process until no more classes are split.

We will need three facts about this process: (1) that for G ∼ G(n, 1/2) the process will reach a state
where each class has at most two vertices with high probability, (2) that this will happen in fewer than n
“generations” of the splitting process with high probability, and (3) that the process is massively parallel:
all the classes created between the `/2-th generation and the `-th generation are definable in terms of the
classes created in the (log2 `)-th generation.

4.2 Splitting procedure

Let G = (V,E) be an undirected graph. For a vertex x and a set B, we write p(G, x,B) for the parity of
the number of neighbours that x has in B. We extend this to sets:

p(G,A,B) =
∑
x∈A

p(G, x,B) mod 2.

A splitting tree for G is a rooted binary tree T with each node t carrying a label Lt ⊆ V and a sign
Mt ∈ {+,−} denoting whether t is marked or unmarked, and satisfying the following properties:

1. the label of the root is V ,

2. no two siblings are marked,

3. if t is an internal node, then1 Lt0 ∪ Lt1 = Lt and Lt0 ∩ Lt1 = ∅,
1Karp requires also Lt0 6= ∅ and Lt1 6= ∅. For us it is convenient to not require it and Karp’s analysis still goes through with

minor modifications that we point out.
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4. if s is a leaf, x, y ∈ Ls and t is marked, then p(G, x, Lt) = p(G, y, Lt).

Given a splitting tree T for G, let R(T ) denote the set of unmarked nodes that are either the root or are a
left child. Let R′(T ) be the subset of R(T ) containing the root and all nodes t such that the label of t and
its sibling are both non-empty2. One step of the splitting procedure works as follows:

1. let t be the least node in R(T ) in level-order3 and mark it,

2. for every leaf s, let Lsa := {x ∈ Ls : p(G, x, Lt) = a} for both a = 0 and a = 1,

3. make4 s0 and s1 the left and right children of s and leave them unmarked.

Let P(T ) be the result of applying one step of the splitting procedure to T . If the node t that is chosen in the
first step also belongs to R′(T ) we say that the step is proper, otherwise improper. When R′(T ) is empty
we say that the procedure stalls at T . Note that when it stalls it will never make a proper step again. The
procedure starts at the splitting tree T0 that has only an unmarked root labeled by V .

4.3 Analysis of the splitting procedure

Let T0 be the tree that has only an unmarked root labeled by V . For k ≥ 1, let Tk := P(Tk−1). Ideally
we would like to show that after a modest number of steps, all leaves of the splitting tree are labeled by
singletons or empty sets. Unfortunately the splitting procedure is not able to produce a tree with this property
in general, not even with high probability on a random graph. The best we will be able to show is that for a
randomly generated graph, with high probability all leaves will have at most two vertices.

We identify three key desirable properties of Tk, where the third is our goal:

(Ak): Tk has Lt 6= ∅ for every node t,

(Bk): Tk has been generated through proper steps only,

(Ck): Tk has |Lt| ≤ 2 for every leaf t.

In the following we will show:

1. property (Ak) holds with high probability for suitable values of k,

2. property (Ak) implies (B2k ) for every graph and every k ≥ 0,

3. conditioned on (B2k ), property (C2k ) holds with high probability for suitable values of k.

Before we analyse the probability of (Ak) we need to introduce some terminology and a lemma from [8].
Let T be a splitting tree for some graph H on the vertices V . To every node t ∈ R′(T ) we associate a set
St ⊆ V : the set of all x for which t is the maximal node in R′(T ) such that Lt contains x. Let S(T ) be
the collection of all such sets. For every t ∈ R′(T ), let βt be t together with the set of nodes s ∈ R′(T )
such that s 6= t and Ls is a maximal subset of Lt. Note that St = 4s∈βtLs, where 4 denotes symmetric
difference. Define `(x, St) :=

∑
s∈βt p(H,x, Ls) mod 2. We will say that another graph G on the vertices

V is consistent with T if p(G, x, Lt) = p(H,x, Lt) holds for every x ∈ V and every node t ∈ R′(T ).
We state a consequence of Lemmas 4 and 5 in [8] 5:

2Karp defines R(T ) as the set of unmarked nodes t that are either the root or that have a sibling t′ such that |Lt′ | > |Lt|, or
|Lt′ | = |Lt| and are a left child. This difference is inessential to the analysis. The only important point is to unambiguously choose
one of the two children when both are unmarked and non-empty.

3Karp used symmetric order. This difference is not essential for Karp’s analysis but is important for us.
4Karp’s version makes this step only if Lsa 6= ∅ for both a = 0 and a = 1; this note is related to footnote 1.
5It would seem from Lemma 4 in [8] that we also need the constraint p(G,Lt, Lt) = 0. However, in our notation this constraint

is implicit since p(G,Lt, Lt) counts each edge within Lt exactly twice.
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Lemma 10. Let T be the splitting tree of some graph on the vertices V and let H be chosen uniformly at
random among the graphs on the vertices V that are consistent with T . If t is a node in R′(T ), then the
distribution of {p(H,x, Lt)}x∈V is uniform over the assignments that satisfy the constraints

p(H,S, Lt) = `(Lt, S) for every S ∈ S(Tk) \ {Y },

where Y is the unique set in S(T ) of which Lt is a proper subset.

In order to be able to make use of this lemma it is important to notice that if G denotes a random
graph drawn from G(n, 1/2) and T0, T1, . . . denotes the random sequence of splitting trees produced by this
random graph, then the distribution of Tk+1 conditioned on Tk is equally produced as follows: first choose
a graph H uniformly at random among those consistent with Tk, and then run one step of the splitting
procedure on Tk with respect to H . This follows from the fact that the restriction of a uniform distribution
to a subset of its support is uniformly distributed on that subset.

Now we can analyse the probability of (Ak):

Lemma 11. Let n ≥ 1 and k ≥ 1 be integers such that 4k ≤ log2 n, and let G ∼ G(n, 1/2). Then, the
probability that (Ak) fails is 2k+1 · exp(−n/26k).

Proof. In order to simplify notation, in this proof we let nt := |Lt|. For a node t at depth ` ≤ k in Tk, we
say that t is unbiased if |nt − n · 2−`| ≤ n · 2−(2k−`+1) holds, and biased otherwise. Note for later use that
we allow the error-term n · 2−(2k−`+1) to grow with `, but that it always stays below n · 2−` because ` ≤ k.
Let us consider the event defined as follows:

(A′k): Tk has every node unbiased.

Note that since the error-term for ` = k is smaller than n · 2−k, property (A′k) implies (Ak). Thus, it suffices
to bound the probability that (A′k) fails.

Since (A′0) holds, if (A′k) fails then there is a largest ` ∈ {0, . . . , k−1} such that (A′`) is true and (A′`+1)
is false. Fix ` ∈ {0, . . . , k − 1}, a leaf r of T`, and a ∈ {0, 1}, and we bound the probability that the child
ra of r becomes biased in T`+1 conditioned on T` satisfying (A′`). Let t be the node with respect to which
the splitting step ` + 1 is made. Since we are assuming that T` satisfies (A′`), each label is non-empty and
therefore t belongs to R′(T`). Let Y be the unique set in S(T`) of which Lt is a proper subset. By the
discussion after Lemma 10, the tree T`+1 can be seen as produced by first choosing H uniformly at random
among the graphs that are consistent with T`, and then applying the splitting procedure on T` with respect to
t and H . By Lemma 10, the distribution of {p(H,x, Lt)}x∈V is uniform over the assignments that satisfy
the constraints

p(H,S, Lt) = `(Lt, S) (10)

for every S in S(T`)\{Y }. In particular, since all sets in S(T`) are pairwise disjoint, if S is the unique mini-
mal set in S(T`) that contains Lr, then the distribution of {p(H,x, Lt)}x∈S is uniform over the assignments
that satisfy the constraint (10) for this S only, or no constraint at all if S = Y .

Since r is unbiased, the set Lr is non-empty. Fix x0 ∈ Lr ⊆ S. A different way of generating
the distribution {p(H,x, Lt)}x∈S without sampling H is by first choosing values for p(−, x, Lt) for x ∈
S \ {x0} uniformly and independently at random, and then setting the value for p(−, x0, Lt) to the unique
value that satisfies the constraint p(−, S, Lt) = `(Lt, S), or setting it uniformly and independently at random
if S = Y . In either case, the number X of elements x in Lr \ {x0} for which p(−, x, Lt) = a is a random
variable distributed according to the binomial distribution B(m, 1

2) with m = nr− 1. Note for later use that
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|nra − X| ≤ 1 because only x0 could be missed in the count. By Hoeffding’s inequality for the binomial
distribution, the probability that

∣∣X − 1
2 ·m

∣∣ ≥ t is bounded by 2e−2t2/m, which is bounded by

2e−2t2/(2n·2−`) (11)

because r is unbiased and hence m = nr − 1 < n · 2−` + n · 2−(2k−`+1) ≤ 2n · 2−` because ` < k. Now, if
ra were biased we would have ∣∣∣nra − n · 2−(`+1)

∣∣∣ > n · 2−(2k−(`+1)+1).

Since |nra −X| ≤ 1 and since
∣∣1

2 · nr − n · 2
−(`+1)

∣∣ ≤ 1
2 · n · 2

−(2k−`+1) because r is unbiased, by the
triangle inequality this would mean that∣∣X − 1

2 · nr
∣∣ > n · 2−(2k−(`+1)+1) − 1

2 · n · 2
−(2k−`+1) − 1

and in particular, using 0 ≤ ` ≤ k − 1 and 4k ≤ log2 n, that∣∣X − 1
2 · (nr − 1)

∣∣ ≥ n · 2−3k.

The probability of this happening is bounded by (11) with t = n · 2−3k, which is at most ε := 2 exp(−n ·
2−6k).

The argument is now finished by two union bounds. By the union bound over the 2` leaves of T`, the
probability that some leaf of T` generates a biased child is at most 2` · ε. By the union bound over `, the
probability that there exists an ` ∈ {0, . . . , k−1} for which (A′`) holds but (A′`+1) fails is at most

∑k−1
`=0 2` ·ε.

Thus, the probability that (A′k) fails is bounded by 2k+1 · exp(−n · 2−6k).

Next we observe that (Ak) implies (B2k).

Lemma 12. For any graph G and k ≥ 0, if (Ak) holds, then (B2k) holds.

Proof. In a complete binary tree of depth k, the number of left children at depth at most k is
∑k

i=1 2i−1 =
2k − 1. Now, if Tk satisfies (Ak), then the root and every left child at depth at most k has generated a proper
step in the process of producing T2k ; these are 2k proper steps as claimed.

Finally we note that 3-element sets split with high probability if enough steps are proper. This is similar
to Lemma 7 in [8].

Lemma 13. Let G ∼ G(n, 1/2) and let k ≥ 0. Then, the probability that (Bk) holds and (Ck) fails is at
most

(
n
3

)
· 2−2k.

Proof. Fix a 3-element set A ⊆ V and fix ` ≤ k. Let S` denote the event that the set A is not split at step `
and P` denote the event that step ` is proper. We aim to show that P[

⋂k
`=1 S` ∩

⋂k
`=1 P` ] ≤ 2−2k and the

result then follows by a union bound over all three element subsets.
Now,

P[
⋂k
`=1 S` ∩

⋂k
`=1 P` ] =

∏k−1
`=0 P[ S`+1 ∩ P`+1 |

⋂`
i=1(Si ∩ Pi) ]

which is bounded by ∏k−1
`=0 P[ S`+1 | P`+1 ∩

⋂`
i=1(Si ∩ Pi) ]. (12)

So, it suffices to show that each term in (12) is bounded by 1
4 .
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Fix ` ∈ {0, . . . , k − 1} and let T denote the sequence of splitting trees T0, . . . , T`. Let T denote the set
of all sequences of splitting trees of length `+1 and TA denote the subset of T consisting of those sequences
U = U0, . . . , U` in which all steps are proper and A does not split at any stage and U` splits properly, i.e.
with respect to a node in R′(U`). In other words, the sequence U satisfies P`+1 ∩

⋂`
i=1(Si ∩ Pi). We now

argue that, for any given U ∈ T , we have P[ S`+1 | T = U ] ≤ 1
4 .

Let r be a leaf of T` such that A ⊆ Lr. Let t be the node of T` with respect to which the splitting step
` + 1 is made. We argue that, conditioned on the event that this step is proper, i.e. t belongs to R′(T`), the
probability that the elements of A are not split apart in T`+1 is at most 1/4. Let Y be the unique set in S(T`)
of which Lt is a proper subset. By the discussion after Lemma 10, the tree T`+1 can be seen as produced by
first choosing H uniformly at random among the graphs that are consistent with T`, and then applying the
splitting procedure on T` with respect to t and H . By Lemma 10, the distribution of {p(H,x, Lt)}x∈V is
uniform over the assignments that satisfy the constraints

p(G,S, Lt) = `(Lt, S). (13)

for every S ∈ S(T`) \ {Y }. In particular, since all sets in S(T`) are pairwise disjoint, if S is the unique
minimal set in S(T`) that contains Lr, then the distribution of {p(H,x, Lt)}x∈S is uniform over the assign-
ments that satisfy the constraint (13) for this S only, or no constraint at all if S = Y . Thus, in case S 6= Y
there are 2|S∪Lt|−1 choices for {p(H,x, Lt)}x∈S and 2|S∪Lt|−3 such choices that are constant over A, and
in case S = Y there are 2|S∪Lt| choices for {p(H,x, Lt)}x∈S and 2|S∪Lt|−2 such choices that are constant
over A. In both cases this gives probability 1/4 as claimed.

To complete the argument, let E` denote the event P`+1 ∩
⋂`
i=1(Si ∩ Pi). We have:

P[ S`+1 | E` ] = P[ S`+1 ∩ E` ] · P[ E` ]−1

=
∑

U∈T P[ S`+1 ∩ E` | T = U ] · P[ T = U ] · P[ E` ]−1

=
∑

U∈TA P[ S`+1 | T = U ] · P[ T = U ] · P[ E` ]−1

≤ 1
4 ·
∑

U∈TA P[ T = U ] · P[ E` ]−1

= 1
4 · P[ E` ] · P[ E` ]−1

= 1
4 .

This completes the proof of the lemma.

We are ready to synthesize what we have learned in a single lemma. In its statement, the choice of
parameters is made to minimize the probability of failure. Other choices with other goals would work as
well.

Lemma 14. Let G ∼ G(n, 1/2). Then, the probability that Tdn1/5e does not satisfy (Cdn1/5e) is at most

2−Ω(n1/6).

Proof. Choose k = d1
5 log2 ne in Lemma 11 and k = dn1/5e in Lemma 13 and link them through

Lemma 12.

4.4 Defining the splitting steps

In this section we show that sets Lt of the splitting trees Tk are definable by formulas ψt(x) of very low
quantifier rank. First let us recall that if the splitting step is made with respect to node t, then every leaf s
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splits into the sets

Ls0 = {x ∈ Ls : p(G, x, Lt) = 0}
Ls1 = {x ∈ Ls : p(G, x, Lt) = 1}.

Note that the nodes at depth ` are generated by the `-th splitting step. For every non-root node t in a splitting
tree T , let vT (t) be the node of T that generated t. In the following let u(1) := 1 and u(`) := bin2(2(`−1))
for every ` ≥ 2.

Lemma 15. Let G be a graph and let k ≥ ` ≥ 1. Then, for every node t at depth ` in Tk, we have
vTk(t) = u(`).

Proof. Let us write T = Tk. If t is one of the two nodes at depth 1, then vT (t) is the root, which agrees
with u(1). Assume now that t is a node at depth ` ≥ 2. Let num2 be such that num2(bin2(n)) = n for
every positive integer n. We show that num2(vT (t)) = 2(`− 1). We proceed by induction on `. For ` = 2
we have it since then vT (t) is the left child of the root 10, and num2(10) = 2. Now, if t is a node at depth
` ≥ 2 and we assume that num2(vT (t)) = 2(`− 1), then for every a ∈ {0, 1} we have

num2(vT (ta)) = num2(vT (t)) + 2 = 2(`− 1) + 2 = 2((`+ 1)− 1)

where the first follows from the fact that the nodes at level `+1 are generated by the next left-child following
vT (t) in the level-order, and that the level-order on nodes agrees with the order of the natural numbers when
they are read in binary.

Now, for a1, . . . , a` ∈ {0, 1}, define

ψ1a1···a`(x) :=
∧̀
i=1
ai=1

⊕z (ψu(i)(z) ∧ E(x, z)) ∧
∧̀
i=1
ai=0

¬ ⊕z (ψu(i)(z) ∧ E(x, z)).

Note that ψ1(x) is true since then the conjunctions are empty. We show that the ψt(x) are the formulas we
are after.

Lemma 16. Let G be a graph and let k ≥ ` ≥ 0. Then, for every node t at depth at most ` in Tk, the
formula ψt(x) defines the set Lt in G.

Proof. For every non-leaf node t at depth ` − 1 we have vT (ta) = u(`) for both a = 0 and a = 1 by
Lemma 15. Therefore

Lt0 = {x ∈ Lt : p(G, x, Lu(`)) = 0}
Lt1 = {x ∈ Lt : p(G, x, Lu(`)) = 1},

Now, if t = 1a1a2 · · · a`, then unfolding the recursion we have that Lt is the set of vertices x ∈ V for which
p(G, x, Lu(i)) = ai holds for every i ∈ {1, . . . , `}. This is precisely what ψt(x) says.

Note that the quantifier rank of ψt(x) depends only on the depth of t. Therefore, let q(`) be the quantifier
rank of ψt(x) for some and hence every t of depth `. Note that q(`) is monotone non-decreasing.

Lemma 17. q(`) = O(log∗ `).

Proof. If t is a node at depth `, the largest u(i) in the definition of ψt is 2(` − 1). Since q is monotone
non-decreasing we have

q(`) = 1 + q(|bin2(2(`− 1))|).
Since the length of bin2(2(`−1)) is log2(`)+O(1), this recurrence gives q(`) = O(log∗ `) as claimed.
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4.5 Defining the linear pre-order

Finally we are ready to prove the main lemma of this section.

Lemma 18. There exists d > 0 such that for every δ > 0, there exists n0 ≥ 0 such that for every n ≥ n0

there is a formula ψ(x, y) of quantifier rank at most d log∗ n such that, for G ∼ G(n, 1/2), the probability
that ϕ defines a linear pre-order of width at most 2 is at least 1− δ.

Proof. Choose d to be the universal multiplicative constant in the O(log∗ `) notation in Lemma 17. Fix
δ > 0 and let n0 be large enough so that for every n ≥ n0 the probability in Lemma 14 is at most δ, and
q(n) ≤ d log∗ n. For fixed n ≥ n0, let k = dn1/5e, and let ψ(x, y) be the formula:∨

s,t
s≤t

ψs(x) ∧ ψt(y),

where s and t range over the leaves of Tk in the disjunction. If Tk has all its leaves labeled by sets of size at
most two this defines a linear pre-order of width at most two. By choice of n0 this happens with probability
at least 1− δ. Finally, by Lemma 17, the quantifier rank of ψ is q(k) ≤ q(n) ≤ d log∗ n.

5 Establishing the lower bound

Here we put it all together to prove Theorem 1.

Theorem 19. 1 There exists a constant c > 0 such that for every large enough integer q, every ε > 0, and
every large enough integer n, there exists an FO[⊕]-formula φ(u, v, w) of quantifier rank q such that, for
every Boolean combination p of quantifier-free formulas and FO[⊕]-polynomials of degree bounded by a
tower of exponentials of height at most q/c, the formulas φ and p must disagree on a fraction 1 − ε of all
graphs with n vertices.

Proof. Let d be the constant in Lemma 18 and choose c := d+1. Choose q0 large enough (to be determined
later), fix q ≥ q0 and ε > 0, and choose n0 large enough (to be determined later) and fix n ≥ n0. Let
ψ(x, y) be the formula from Lemma 18 for δ = ε/2 and the fixed n; in particular n0 must be larger than the
n0 from Lemma 18 for this particular δ. Let φ(x, y, z) := ψ(x, y) ∧ ψ(y, z). Since we want the quantifier
rank of φ to be at most q, we choose n0 large enough so that d log∗ n ≥ q whenever n ≥ n0. We claim that
this φ(x, y, z) witnesses the theorem.

Suppose p(x, y, z) is a Boolean combination of quantifier-free formulas and FO[⊕]-polynomials of
degree bounded by a tower of exponentials of height q/c that agrees with φ(x, y, z) on more than an ε-
fraction of graphs with n vertices. Since q ≥ q0 is large enough, a tower of exponentials of height q/c =
q/(d+ 1) has height at most q/d− 4, and since q ≤ d log∗ n, the degree is bounded by log log log log n. By
Remarks 1 and 2 we may assume that p(x, y, z) is a Boolean combination of FO[⊕]-polynomials of order
2 log log log log n+ 1, which is at most log log log n if n ≥ n0 is large enough.

By Lemma 2 we may assume that p(x, y, z) is a regular normal form of this order. If n0 is large enough,
with probability at least 1 − ε/2 there exists a triple a, b, c of distinct vertices for which Y (a, b, c) holds.
Also if n0 is large enough, with probability at least 1− ε/2 the formula ψ(x, y) defines a linear pre-order of
width at most 2. By the union bound, with positive probability all three hold:

1. φ(x, y, z) and p(x, y, z) agree on G,

2. ψ(x, y) defines a linear pre-order � of width at most 2 in G,
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3. there exists a triple of distinct vertices a, b, c of G for which Y (a, b, c) holds.

Now, assume without loss of generality that a � b � c: otherwise permute them accordingly. Note that we
cannot have c � a as otherwise all three a, b, c would belong to the same class of the pre-order, which is
not possible because its width is 2 and a, b, c are distinct. But then φ(a, b, c) holds and φ(c, a, b) does not
hold, which means that φ distinguishes one permutation of (a, b, c) from another. But then p also does; a
contradiction to Y (a, b, c).

Final remarks The lower bound is achieved by a formula with free variables. In particular, when we say
that p(x, y, z) cannot agree with φ(x, y, z) on more than an ε-fraction of the graphs with n vertices, what
we mean is that, on at least a (1 − ε)-fraction of the graphs, the ternary relations on the set of vertices that
are defined by φ(x, y, z) and p(x, y, z) are not identical. It would be nice to obtain a similar kind of lower
bound for sentences, i.e. formulas without free variables. However, since every sentence φ agrees on at
least half the graphs with n vertices with one of the two constant polynomials p = 0 or p = 1, the correct
lower-bound statement in this setting is different: that for every ε > 0 and every sufficiently large n, any
low-degree p cannot agree with φ on more than a (1

2 + ε)-fraction of the graphs with n vertices. A candidate
such sentence φ could be the one saying that the number of edges between the minimum and the maximum
classes in the pre-order is odd. However we were not able to prove that this sentence φ must be uncorrelated
to any low degree FO[⊕]-polynomial p, i.e. that for any such p, the probability that φ and p agree on a
random graph is very close to 1/2. We leave this as an interesting open problem.

Acknowledgment We are grateful to Swastik Kopparty for discussions and comments on a previous ver-
sion of this paper.
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