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Abstract

The results of Raghavendra (2008) show that assuming Khot’s Unique Games Conjecture (2002),
for every constraint satisfaction problem there exists a generic semi-definite program that achieves the
optimal approximation factor. This result is existential as it does not provide an explicit optimal rounding
procedure nor does it allow to calculate exactly the Unique Games hardness of the problem.

Obtaining an explicit optimal approximation scheme and the corresponding approximation factor
is a difficult challenge for each specific approximation problem. An approach for determining the
exact approximation factor and the corresponding optimal rounding was established in the analysis of
MAX-CUT (KKMO 2004) and the use of the Invariance Principle (MOO 2005). However, this approach
crucially relies on results explicitly proving optimal partitions in Gaussian space. Until recently, Borell’s
result (Borell 1985) was the only non-trivial Gaussian partition result known.

In this paper, we derive the first explicit optimal approximation algorithm and the corresponding
approximation factor using a new result on Gaussian partitions due to Isaksson and Mossel (2012).
This Gaussian result allows us to determine the exact Unique Games Hardness of MAX-3-EQUAL. In
particular, our results show that Zwick’s algorithm for this problem achieves the optimal approximation
factor and prove that the approximation achieved by the algorithm is ≈ 0.796 as conjectured by Zwick.

We further use the previously known optimal Gaussian partitions results to obtain a new Unique
Games Hardness factor for MAX-k-CSP : Using the well known fact that jointly normal pairwise
independent random variables are fully independent, we show that the UGC hardness of Max-k-CSP is
d(k+1)/2e

2k−1 , improving on results of Austrin and Mossel (2009).
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1 Introduction

The study of inapproximability of Constraint Satisfaction Problems (CSPs) has been an important area of
research in complexity theory in the past two decades. A CSP is specified by a alphabet [q] and a set of
predicates P such that all P ∈ P : [q]k → {0, 1}1. Here k is called the arity of the predicate. An instance of
the problem (say G) is given by n variables x1, . . . , xn and a set of constraints E such that every e ∈ E is of
the form e = (S, P ) where S ∈ [n]k and P ∈ P .

Now, consider any mapping L : [n] → [q]. A constraint e = (S, P ) is said to be ‘‘satisfied” if
P (L(S1), . . . ,L(Sk)) = 1 where Si is the ith element of S. We also define valL(G) as valL(G) =
Ev∈EP (L(S1), . . . ,L(Sk)). The algorithmic task is to come up with the mapping L such that valL(G) is
maximized. Towards this, we define val(G) = maxL valL(G).

The reason for studying the very general framework of CSPs is because many specific problems of
interest say MAX-CUT, MAX-3-SAT etc. fall in this framework. In the past two decades, there have been
important important results in the study of inapproximability of CSPs including the monumental work of
Håstad [Hås01] who obtained optimal inapproximability results for CSPs like MAX-3-SAT and MAX-3-LIN.
Still, a gap continued to exist between the known algorithms and hardness results for many important CSPs
like MAX-CUT and MAX-2-SAT. Towards closing this gap, Khot [Kho02] introduced the Unique Games
Conjecture (UGC) which stated the following (equivalent form from [KKMO07]):

Conjecture 1. Given any δ > 0, there is a prime p such that given a set of linear equations xi − xj =
cij (mod p), it is NP-hard to decide which one of the following is true :

• There is an assignment to the xi’s which satisfies at least 1− δ fraction of the constraints.

• All assignments to the xi’s can satisfy at most δ fraction of the constraints.

A series of (often optimal) inapproximability results were proven using the Unique Games Conjecture
starting with [KR08, KKMO07] which culminated in the beautiful result of Raghavendra [Rag08] who
showed that for every CSP of constant arity and alphabet size, there is a simple and generic SDP which is
optimal assuming the Unique Games Conjecture. More specifically, he showed the following.

Theorem 2. Suppose that for the generic SDP, there is an instance G such that val(G) = s while the SDP
objective value is c. Then, assuming the UGC, given an instance G′ of the CSP such that val(G′) = c− η, it
is NP-hard to find a L such that valL(G) ≥ s + η for any η > 0. Further, there is an efficient rounding
algorithm such that given an instance G with value c on the instance G, it finds an assignment L with value
s− η (for η > 0).

While this result essentially settles the question of approximability of CSPs from an an abstract per-
spective, perhaps not too surprisingly , it says nothing about the exact hardness factors for specific CSPs.
This is in contrast to the situation in the case of MAX-CUT [KKMO07] or MAX-2-SAT [Aus07] where
exact inapproximability factors are known. The reason is that in Raghavendra’s framework (and all previous
results), determining the optimal inapproximability result for a specific CSP requires knowledge of the
optimal partitioning of the Gaussian space for the corresponding predicate. While the optimal partitioning
is known for the predicates corresponding to MAX-CUT and MAX-2-SAT, it is not known for arbitrary
predicates. In fact, it should also be mentioned that while Raghavendra’s result is a generalization of the
results for MAX-CUT and MAX-2-SAT, it does not imply the results for MAX-CUT or MAX-2-SAT
without the knowledge of the optimal Gaussian partitioning. Likewise, even though the rounding algorithm
in [Rag08] is efficient, it is a brute force search over a small space that results only in a close to optimal
rounding scheme. Thus, in a sense, the result provides implicitly a sequence of rounding algorithm whose

1We are assuming a somewhat restricted form of a CSP where all the predicates have the same arity
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approximation factors is guaranteed to converge to the hardness factor. This again is different from the
rounding algorithms in [GW95, Zwi98, LLZ02] where the rounding algorithm is far more explicit (in the
first two cases, it is simply random hyperplane rounding).

We now elaborate on the reason for difficulty in establishing exact hardness factors : The exact hardness
factor in the case of MAX-CUT [KKMO07] and MAX-2-SAT [Aus07] crucially rely on Gaussian Analysis.
More specifically, it uses the invariance principle [MOO10] together with a result in Gaussian space
specifying explicitly an Optimal Gaussian Partition for the particular predicate. However, only few optimal
Gaussian partitions are known (or even conjectured). In fact, to the best of our knowledge, before this paper,
Borell’s result [Bor85] was the only non-trivial Gaussian partition result used in hardness of approximation
(for e.g., in [KKMO07, Aus07]).

The above issue also explains the ‘‘brute-force” search aspect of the rounding scheme in [Rag08]. The
optimal rounding scheme and the optimal gaussian partitioning (for a given predicate) are known to be
intimately linked to each other (see [Rag08] for a detailed explanation). In absence of knowledge of the
optimal partitioning, [Rag08] uses the invariance principle and then resorts to a brute force search over a
small space.

1.1 Our contributions In this paper, we consider two maximization CSPs, namely, MAX-3-EQUAL and
MAX-k-CSP. Since we are dealing with maximization problems, we set the (usual) convention that an
algorithm is said to give an α-approximation (for α ≤ 1) if it always returns a solution which is at least α
times the optimal value.

We first start by describing our result for MAX-3-EQUAL. In MAX-3-EQUAL, the variables are boolean-
valued and every constraint consists of three literals and it is satisfied if and only if all the three literals are
either all zeros or all ones. We show that assuming the Unique Games Conjecture, the MAX-3-EQUAL
problem is αEQU ≈ 0.796 hard to approximate in polynomial time. On the complementary side, we also
provide a polynomial time algorithm for this problem with the approximation ratio αEQU . More formally,
we prove

Theorem 3. There is a polynomial time approximation algorithm for the MAX-3-EQUAL problem which
achieves the following approximation ratio :

α := min
δ∈(0,1]

1− 3 cos−1(1−δ)
2π

1− 3δ
4

≈ 0.796

Assuming the Unique Games Conjecture, for every δ > 0 there is no polynomial time that provides a better
approximation ratio than α+ δ.

The hardness proof uses a recent Gaussian noise stability result of Isaksson and Mossel [IM12] which
does not seem to have been previously used in the literature for proving hardness of approximation results. In
fact, all previous optimal hardness of approximation results with a ‘‘non-trivial” approximation ratio were
dependent on the Gaussian noise stability result of Borell [Bor85] eg. MAX-CUT, MAX-2-SAT.

We also give an analytic proof of the performance of the random hyperplane rounding algorithm on the
generic SDP for MAX-3-EQUAL (from [Rag08]) showing that the approximation ratio achieved by this
rounding algorithm is exactly αEQU .2 Our proof is computer assisted but completely rigorous. To the best
of our knowledge, this is the first complete analytic proof of correctness for the SDP based algorithm for
MAX-3-EQUAL problem. We note that while Zwick [Zwi98] also considers this problem and analyzes the
performance of this algorithm, the analysis is a computer based search and he notes that there is a possibility

2We actually do a variant of the random hyperplane rounding algorithm where we sample normal random variables with the
covariance matrix given by the SDP vectors. Then each variable is assigned 0 or 1 depending on the sign of the corresponding
normal random variable. Our analysis goes through even if the actual random hyperplane algorithm is used.
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of the search having missed the worst instance for the rounding algorithm. Nevertheless, the claimed optimum
in [Zwi98] is same as the optimum of our SDP.

We also note that our SDP differs slightly from [Zwi98] in the sense that ours is slightly stronger. This is
for convenience of analysis. We have not investigated whether this possible strengthening of the program is
indeed a requirement. The next section lists in detail the technical preliminaries required in this paper.

While revisiting the study of the relationship between Gaussian partitions and UGC hardness, we
additionally prove hardness results for MAX-k-CSPs. In particular, we investigate the hardness of the
MAX-k-AND predicate i.e. every constraint consists of k literals `1, . . . , `k and the constraint is satisfied if
and only if `1 = . . . = `k = 1. Following [Mos10] and [AM09] by using the fact that in Gaussian space,
pair-wise independence implies independence, we prove the following theorem :

Theorem 4. Assuming the Unique Games Conjecture, for every η > 0, there is no polynomial time
approximation algorithm that provides an approximation ratio better than d(k+1)/2e

2k−1 for the MAX-k-AND
problem.

This improves upon [AM09] where it was shown that MAX-k-CSP is (k + O(k0.525))/2k hard to
approximate. Assuming the Hadamard Conjecture, they could improve it to d(k + 1)/4e/2k−2.

It is worth mentioning that [AM09] proves the aforementioned hardness for a very general class of
predicates (ones whose satisfying assignments support pairwise independent distributions) but MAX-k-AND
is not included in that class of CSPs. Another important point of difference is that [AM09] shows that
given a MAX-k-CSP with optimal value 1 − η, it is (Unique Games) hard to find an assignment which
satisfies k+O(k0.525)

2k
+ η fraction of the constraints (for any η > 0). In terms of PCPs, the PCP in [AM09]

has near perfect completeness. This in fact is true even for an earlier paper on hardness of MAX-k-CSPs by
Samorodnitsky and Trevisan [ST06]. In contrast, our result shows that given an instance of MAX-k-CSP
with optimal value 1

2d(k+1)/2e − η, it is hard to find an assignment satisfying more than 1
2k

+ η fraction of the
constraints.

We do remark that while our improvement over [AM09] might seem very minor, Charikar et al.
[CMM09] give a 0.44k/2k approximation algorithm for MAX-k-CSP over boolean alphabet. This shows
that in some sense, the scope of improvement in the existing hardness results for MAX-k-CSPs is rather
limited. Of course, the question of closing the gap between our hardness result and the performance of the
algorithm of Charikar et al. remains open.

Overview of proofs of hardness: The two main novelties in our paper are :

• Use of the new Gaussian stability result of Isaksson and Mossel [IM12] to construct a ‘‘dictatorship”
test for MAX-3-EQUAL.

• Use of the ‘‘obvious” Gaussian stability result (i.e.stable partitions for independent gaussians) in a new
context to construct a ‘‘dictatorship” test for MAX-k-AND.

In particular, both these dictatorship tests are constructed by a careful combination of a ‘‘good” choice of
distribution (for the dictatorship test) and the relevant Gaussian stability result (along with the Invariance
principle). Given the dictatorship test, getting the corresponding Unique Games hardness result is rather
standard (see [KKMO07, Rag08]). For the sake of completeness, we give a complete proof of for hardness of
MAX-3-EQUAL using the corresponding dictatorship test. For MAX-k-AND, we do not show the conversion
of the dictatorship test to a Unique Games hardness result as the proof is completely analogous to that of
MAX-3-EQUAL.

To show the tightness of the UG-hardness result for MAX-3-EQUAL, we also devote a major part of
the paper towards analyzing the performance of our rounding algorithm on the generic SDP from [Rag08]
and showing that it indeed matches the hardness result. We would like to emphasize that the application
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of the Gaussian stability result of [IM12] to get a tight hardness result for MAX-3-EQUAL is not entirely
straightforward. In particular, while the result in [IM12] applies to a set of k Gaussian variables (for any k),
it is not known how to get a tight hardness result for MAX-k-EQUAL for k > 3.

1.2 Organization Section 2 states all the fourier analytic and other technical preliminaries required for
this paper. Section 3 describes a dictatorship test where the tester checks for equality of three literals.
Section 4 describes a dictatorship test where the tester checks if all the k literals are 1. Section 5 has the
two main theorems of this paper, namely a UG-hardness result for the MAX-3-EQUAL problem and a
UG-hardness result for MAX-k-AND. Section 6 describes a SDP relaxation and a rounding algorithm for
the MAX-3-EQUAL problem showing the tightness of the hardness result. Finally, Section 7 explains the
difficulty in extending our results for MAX-3-EQUAL to MAX-k-EQUAL.

2 Preliminaries

2.1 Basics of Fourier analysis Our proofs are significantly dependent on fourier analysis. We start by
giving several important definitions. For a more extensive reference, see lecture notes by Mossel [Mos05].

We recall that any function f : {−1, 1}n → R can be written as a multi-linear polynomial.

f(x) =
∑
S⊂[n]

f̂(S)xS ,

where xS =
∏
i∈S xi. Moreover, considering the uniform measure over {−1, 1}n, we have:

E[f ] = f̂(∅), V ar[f ] =
∑
S 6=∅

f̂2(S).

The i’th influence of f is given by

Ii(f) := V ar[f |x1, . . . , xi−1, xi+1, . . . , xn] =
∑
S:i∈S

f̂2(S).

2.2 Noise operators and their properties We will also require the notion of noise operators. We consider
a particularly important instantiation of the Bonami-Beckner operator namely that on functions over the
boolean hypercube {−1, 1}n equipped with the uniform measure.

Definition 5. For ρ ∈ [−1, 1], we define the Bonami-Beckner operator Tρ on functions f : {−1, 1}n → R
as follows.

Tρf(x) = E
y∼ρx

[f(y)]

where each coordinate yi is set to be xi independently with probability (1 + ρ)/2 and −xi with probability
(1− ρ)/2.

The effect of the Bonami-Beckner operator Tρ can be conveniently expressed in terms of the fourier
spectrum of a function. In particular, if f is as above, then

Tρf(x) =
∑
S⊆[n]

f̂(S)ρ|S|χS(x)

The following standard lemma proves a bound on the number of coordinates with high influence on a
function after applying the Bonami-Beckner operator on it, see e.g. [KKMO07].
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Lemma 6. Let f : {−1, 1}n → [0, 1] and τ, γ > 0. If A(f) = {i : Infi(T1−γf) ≥ τ}, then |A(f)| ≤
1/(γτ).

The next lemma is a specialization of Lemma 6.2 from [Mos10]. It says that expected value of product
of polynomials does not change by a lot when noise is added provided individual coordinates come from
correlated probability spaces such that no coordinate is absolutely fixed given rest of the coordinates.

Lemma 7. For 1 ≤ i ≤ n, let (Ωi, µi) = ({−1, 1}k, µi) where

min
x∈{−1,1}k

µi(x) ≥ α > 0.

Let (Ω, µ) =
∏n
i=1(Ωi, µi). For 1 ≤ a ≤ k, let µai be the a’th marginal of µi, in other words

µai (x) = µi({(x1, . . . , xk) : xa = x}).

Let µa =
∏n
i=1 µ

a
i . An element x ∈ Ω is a k×n matrix. We write xa for the a’th row of x which is distributed

according to µa. For 1 ≤ a ≤ k, let Qa be a multilinear polynomials Qa : {−1, 1}n → [−1, 1]. Then, for
all ε > 0, ∃γ = γ(ε, α) > 0 such that∣∣∣∣∣E

k∏
a=1

Qa(x
a)−E

k∏
a=1

T 1−γQa(x
a)

∣∣∣∣∣ ≤ εk
2.3 Gaussian Stability results The following theorem from Isaksson and Mossel [IM12] is the main
technical result that we use here.

Theorem 8. Let Ω = {−1, 1}k, ρ ∈ [0, 1] and let µ be a probability distribtion over Ω such that

• µ(x) ≥ α > 0 for all x.

• For s, t ∈ {−1, 1} and all 1 ≤ a 6= b ≤ k :

µ(xa = s, xb = t) =
1

2
ρδ(s, t) +

1

4
(1− ρ).

where δ(s, t) = 1 iff s = t. Consider the space (Ωn, µn). An element x ∈ Ωn may be viewed as a k × n
matrix. Write xa for the a’th row of this matrix for 1 ≤ a ≤ k. Note that xa is uniformly distributed in
{−1, 1}n.

Then for every ε > 0, ∃τ = τ(ε, k, α) > 0 such that for any f1, . . . , fk : {−1, 1}n → [0, 1] satisfying
maxi,j Infi(fj) ≤ τ ,

E

k∏
a=1

fa(x
a) ≤ Pr[∀a ∈ [k] : Za ≤ tj ] + ε

where Z1, . . . ,Zk ∼ N (0, 1) are jointly normal and Cov(Za,Za′) = ρ for all a 6= a′ and each tj is chosen
so that Pr[Za ≤ ta] = E[fa].

To intuitively understand the above theorem, consider the case when f1 = . . . = fk = f has range
{0, 1}. Also, let x1, . . . , xk ∈ {−1, 1}n such that each xi is uniform in {−1, 1}n and for any j ∈ [n] and
i 6= ` ∈ [k], the jth bit of xi and x` are ρ-correlated. Let us equip Rn with the standard normal measure and
define the function f̃ : Rn → {−1, 1} as follows : f̃ : x 7→ sgn(x1 − θ) where x1 is the first coordinate
of x and θ is chosen so that Ex∈{−1,1}nf(x) = Ex∈Nn(0,1)f̃(x). Then, for all ‘‘low-influence” function f ,
the probability that ∀` ∈ [k], f(x`) = 1 is upper bounded by the probability that ∀` ∈ [k], f̃(x`) = 1. We
also consider the corollary of the above theorem when ρ = 0. We do remark that the following corollary
can actually be obtained using the Invariance principle from Mossel [Mos10] and does not require the full
strength of [IM12].
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Corollary 9. Let Ω = {−1, 1}k and let µ be a probability distribtion over Ω such that

• µ(x) ≥ α > 0 for all x.

• For s, t ∈ {−1, 1} and all 1 ≤ a 6= b ≤ k :

µ(xa = s, xb = t) =
1

4
.

Consider the space (Ωn, µn). An element x ∈ Ωn may be viewed as a k × n matrix. Write xa for the
a’th row of this matrix for 1 ≤ a ≤ k. Note that xa is uniformly distributed in {−1, 1}n.

Then for every ε > 0, ∃τ = τ(ε, k, α) > 0 such that for any f1, . . . , fk : {−1, 1}n → [0, 1] satisfying
maxi,j Infi(fj) ≤ τ ,

E
k∏
a=1

fa(x
a) ≤

k∏
a=1

E[fa] + ε

Proof. The corollary follows by putting ρ = 0 in Theorem 8 and then observing that Z1, . . . ,Zk ∼ N (0, 1)
in the conclusion of Theorem 8 are simply i.i.d. N (0, 1) random variables.

2.4 Useful facts We will require the following very useful fact about Gaussians. For a reference,
see [Bac63].

Fact 10. LetX ,Y,Z ∼ N (0, 1) such that (X ,Y,Z) are jointly normal and Cov(X ,Y) = ρ1, Cov(Z,Y) =
ρ2 and Cov(X ,Z) = ρ3. Then,

Pr[X,Y, Z ≤ 0] = Pr[X,Y, Z ≥ 0] =
1

2
− cos−1 ρ1 + cos−1 ρ2 + cos−1 ρ3

4π

We will also use the following very useful construction of pairwise independent distribution (which can
be found in [BGGP12, BP89]).

Fact 11. For any k ∈ N, there is a distribution Dk on {−1, 1}k such that the following holds :

• For any i ∈ [k], E[xi] = 0

• For any i, j ∈ [k] and i 6= j, E[xixj ] = 0 i.e. any two coordinates are pairwise independent.

• Prx∈Dk [x1 = . . . = xk = 1] = 1
2d(k+1)/2e

Proof. We will construct a symmetric distribution Dk with the above mentioned properties. First, we
consider the case when k is odd. In this case, define Dk as follows :

Dk(x) =


1

k+1 if x = (1, . . . , 1)
k
k+1 ·

1

( k
(k+1)/2)

if
∑k

i=1 xi = −1

0 otherwise

It is easy to verify that all the three required properties hold for this construction of Dk. We next move to the
case when k is even. In this case, we define Dk as

Dk(x) =



1
k+2 if x = (1, . . . , 1)
1
2 ·

1

( k
k/2)

if
∑k

i=1 xi = 0

k
2k+4 ·

1

( k

1+ k2
)

if
∑k

i=1 xi = −2

0 otherwise

Again, it is easy to verify that all the three properties required of Dk hold for this construction.
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3 Dictatorship test for MAX-3-EQUAL

In this section, we will construct a dictatorship test where the tester checks for equality of 3 literals. More
precisely, we will prove the following theorem :

Theorem 12. For any 0 < δ < 1 and ε > 0, there is a distribution Dn
δ over ({−1, 1}n)3 such that if

(X,Y, Z) ∼ Dn
δ , then for every f : {−1, 1}n → [0, 1] with E[f ] = 1/2

• If f(x) = (1 + xi)/2 for some i ∈ [n], then

Pr(X,Y,Z)∼Dnδ [f(X) · f(Y ) · f(Z) + (1− f(X)) · (1− f(Y )) · (1− f(Z))] = 1− 3δ

4

• ∃τ = τ(δ, ε) > 0 and η = η(δ, ε) > 0 such that if maxi Infi(T1−ηf) ≤ τ

Pr(X,Y,Z)∼Dnδ [f(X)·f(Y )·f(Z)+(1−f(X))·(1−f(Y ))·(1−f(Z))] ≤ 1−(3 cos−1(1−δ))/2π+ε

Before starting the proof, we note that if f were a boolean function with range {0, 1}, then f(X) · f(Y ) ·
f(Z) + (1− f(X)) · (1− f(Y )) · (1− f(Z)) is 1 if and only if f(X) = f(Y ) = f(Z). Thus, we have a
dictatorship test which checks for equality of 3 bits.

Proof. Let us define a distribution Dδ over {−1, 1}3 as follows :

Dδ(x) =

{
1
2 −

3δ
8 if x = (1, 1, 1) or x = (−1,−1,−1)

δ
8 otherwise

Let D1, D2, . . . , Dn be n i.i.d. samples of Dδ. Let Di(j) denote the jth bit of Di. With this, let us define
X,Y, Z ∈ {−1, 1}n as

X = (D1(1), . . . , Dn(1)) Y = (D1(2), . . . , Dn(2)) Z = (D1(3), . . . , Dn(3))

We let the joint distribution (X,Y, Z) as defined here be Dn
δ . We start with the proof of the first item.

Completeness : Note for any particular i ∈ [n], the ith coordinate of Dδ has the same string with probability
1 − 3δ/4. Now, if f(x) = (1 + xi)/2, then it means that f(x) = 1 if xi = 1 and 0 otherwise. Hence, we
have

E(X,Y,Z)∈Dnδ [f(X) · f(Y ) · f(Z) + (1− f(X)) · (1− f(Y )) · (1− f(Z))

= E(X,Y,Z)∈D[I(Xi = Yi = Zi)] = 1− 3δ/4

where I(P ) denotes the indicator function for the predicate P . This finishes the proof of the first item. We
next do the proof of the second item.
Soundness : Let Q be the multilinear polynomial representation of f . Note that for any x ∈ {−1, 1}n,
|Q(x)| ≤ 1. Let Ω be the probability space with domain {−1, 1}3 and probability measure Dδ on it. Note
that ∀x ∈ {−1, 1}3, Dδ(x) ≥ δ/8. Hence, by Lemma 7, we get that ∃η = η(δ, ε) > 0,

|E(X,Y,Z)∈Dnδ [f(X) · f(Y ) · f(Z)− T1−ηf(X) · T1−ηf(Y ) · T1−ηf(Z)]| ≤ ε/4 (1)

Likewise, we get that

|E(X,Y,Z)∈Dnδ [(1−f(X))·(1−f(Y ))·(1−f(Z))−(1−T1−ηf(X))·(1−T1−ηf(Y ))·(1−T1−ηf(Z))]| ≤ ε/4
(2)

7



We now apply Theorem 8. In particular, note that if (X,Y, Z) ∼ Dn
δ , then the variables (Xi, Yi, Zi) are

independently and identically distributed. Also, for any i ∈ [n], Xi, Yi and Zi are pairwise ρ = (1 − δ)
correlated and for any (x, y, z) ∈ {−1, 1}3, Pr[(Xi, Yi, Zi) = (x, y, z)] ≥ δ/8 > 0. Finally, note that X , Y
and Z are distributed as Un. Hence

EX [f(X)] = EY [f(Y )] = EZ [f(Z)] = 1/2

As the Bonami Beckner operator preserves expectation of the function under the uniform distribution, we get

EX [T1−ηf(X)] = EY [T1−ηf(Y )] = EZ [T1−ηf(Z)] = 1/2

Thus, by Theorem 8, ∃τ = τ(δ, ε) such that if maxi Infi(T1−ηf) ≤ τ , then we have

|E(X,Y,Z)∈Dnδ [T1−ηf(X) · T1−ηf(Y ) · T1−ηf(Z)]| ≤ Pr[X ,Y,Z ≤ 0] + ε/4

where X ,Y,Z ∼ N (0, 1) and Cov(X ,Y) = Cov(Z,Y) = Cov(X ,Z) = 1 − δ. Here, we again assume
that τ in the hypothesis of the theorem is sufficiently small so that the hypothesis of Theorem 8 is valid.
Likewise, we get that

|E(X,Y,Z)∈Dnδ [(1− T1−ηf(X)) · (1− T1−ηf(Y )) · (1− T1−ηf(Z))]| ≤ Pr[X ,Y,Z ≤ 0] + ε/4

Combining the above with (2) and (1), we get that

E(X,Y,Z)∈Dnδ [f(X) · f(Y ) · f(Z) + (1− f(X)) · (1− f(Y )) · (1− f(Z))] ≤ 2Pr[X ,Y,Z ≤ 0] + ε

Using Fact 10, we conclude that

E(X,Y,Z)∈Dnδ [f(X) · f(Y ) · f(Z) + (1− f(X)) · (1− f(Y )) · (1− f(Z))] ≤ 1− 3 cos−1(1− δ)
2π

+ ε

completing the proof.

4 Dictatorship test for MAX-k-AND

In this section, we construct a dictatorship test for MAX-k-AND i. e. the tester checks if a particular set of k
literals are all set to 1. For the purposes of this section, let us assume ρ(k) = 1

2d(k+1)/2e .

Theorem 13. For any k ≥ 3 and δ > 0, there is a distribution D over ({−1, 1}n)k such that if
(X1, . . . , Xk) ∼ D such that for every f : {−1, 1}n → [0, 1] with E[f ] = 1/2

• If f(x) = (1 + xi)/2 for some i ∈ [n], then

Pr(X1,...,Xk)∼D[f(X1) · . . . · f(Xk)] ≥ ρ(k)− δ

• ∃τ = τ(δ, k) > 0 and η = η(δ, k) > 0 such that if maxi Infi(T1−ηf) ≤ τ

Pr(X1,...,Xk)∼D[f(X1) · . . . · f(Xk)] ≤
1

2k
+ δ

We remark that if f were to take values in {0, 1}, then we note that f(X1) · . . . · f(Xk) = 1 if and only
if f(X1) ∧ . . . ∧ f(Xk) = 1.
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Proof. Let Dk be the distribution from Fact 11. We let ξ = δ/4. Now, we let Dξ = (1− ξ)Dk + ξUk. Let
D1, . . . , Dn be n i.i.d. samples from Dξ . Let Di(j) be the jth bit of Di. Having done this, we define Xj for
1 ≤ j ≤ k as Xj = (D1(j), . . . , Dn(j)). Let D be defined as the joint distribution of (X1, . . . , Xk).

As before, we start with the proof of the first item.
Completeness : Since f(x) = (1 + xi)/2 (for some i ∈ [n]), it means that f(x) = 1 if xi = 1 and 0
otherwise. Hence, we have

E(X1,...,Xk)∈D[f(X1) · . . . · f(Xk)] = E(X1,...,Xk)∈D[I(X1(i) = . . . = Xk(i) = 1)]

= ρ(k)(1− ξ) + ξ2−k ≥ ρ(k)− δ

Soundness : Let Q be the multilinear polynomial representation of f . Note that for any x ∈ {−1, 1}n,
|Q(x)| ≤ 1. Let Ω be the probability space with domain {−1, 1}k and probability measure Dξ on it. Observe
that Dξ(x) ≥ ξ · 2−k for all x ∈ {−1, 1}k. Hence, by Lemma 7, we get that ∃η = η(ξ, k) > 0 (note because
ξ = δ/4, we can also express η as a function of δ and k as required by the theorem),

|E(X1,...,Xk)∈D[f(X1) · . . . · f(Xk)− T1−ηf(X1) · . . . · T1−ηf(Xk)]| ≤
ξ

4
(3)

We can now apply Corollary 9 to the function T1−ηf and the random variables (X1, . . . , Xk) ∼ D. Much
like in the proof of Theorem 12, it is easy to check that all the conditions are satisfied (In particular, note that
for any i ∈ [n], X1(i), X2(i), . . . , Xk(i) are pairwise independent). By Corollary 9, ∃τ = τ(ξ, k) such that
if maxi Infi(f) ≤ τ , we have

|E(X1,...,Xk)∈D[T1−ηf(X1) · . . . · T1−ηf(Xk)]| ≤ 2−k +
ξ

4
(4)

As before, we note that τ(ξ, k) can be expressed as τ(δ, k). Here, we are assuming that the η(ξ, k) and
τ(ξ, k) chosen to be sufficiently small so that the hypothesis of Corollary 9 is valid. Combining (3) and (4),
we get that

|E(X1,...,Xk)∈D[f(X1) · . . . · f(Xk)]| ≤ 2−k +
ξ

2

5 Unique games hardness from Dictatorship test

In this section, we use the dictatorship tests constructed in Section 3 and Section 4 to show the following
theorems.

Theorem 14. Assuming the Unique Games Conjecture, for every 0 < δ < 1 and ε > 0, it is NP-hard to
distinguish an instance of MAX-3-EQUAL with value 1−3δ/4−ε from an instance of value 1− 3 cos−1(1−δ)

2π +ε.
In other words, for every ε > 0, MAX-3-EQUAL is αEQU + ε hard to approximate where

αEQU = min
δ∈(0,1)

1− 3 cos−1(1−δ)
2π

1− 3δ
4

≈ 0.796

Theorem 15. Assuming the Unique Games Conjecture, for every ε > 0, it is NP-hard to distinguish an
instance of MAX-k-AND with value 1

2d(k+1)/2e − ε from an instance of value 2−k + ε. In other words, for

every ε > 0, MAX-k-AND is d(k+1)/2e
2k−1 + ε hard to approximate.
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Theorem 14 uses the dictatorship test in Theorem 12 to reduce Unique Games to MAX-3-EQUAL.
Similarly, Theorem 15 uses the dictatorship test in Theorem 13 to reduce Unique Games to MAX-k-AND.
As we said in the introduction, these reductions are by now very standard and can be found at several places.
For the sake of convenience of the reader, we include the full proof of Theorem 14. The proof of Theorem 15
is exactly analogous and hence, we do not do it here.

We begin by defining the Unique Label cover problem followed by stating Khot’s Unique Games
Conjecture (slightly differently stated than Conjecture 1).

Definition 16. A unique Label cover problem (G,Σ) on alphabet size k is defined by a graph G = (V,E)
and a set of permutations Σ = {σ(u,v) : [k] → [k]}(u,v)∈E . For any map L : V → [k] and (u, v) ∈ E,
AL(u, v) = 1 if and only if L(v) = σ(u,v)(L(u)), otherwise it is zero. For a map L : V → [k], valL(G) =
E(u,v)∼E [AL(u, v)]. Value of the label cover problem (denoted by) val(G) = maxL:V→[k] valL(G).

Conjecture 17. [Kho02] Unique Games Conjecture : For every ε > 0, there is a k = k(ε) such given a
unique Label cover problem (G,Σ) on alphabet size k, distinguishing whether val(G) ≤ ε or val(G) ≥ 1−ε
is NP-hard. We can also assume that the graph G is regular.

Having stated the unique games conjecture, we describe a PCP verifier for the unique Label cover
problem which checks for equality of 3 bits. By the standard reduction between PCP verifiers and hardness
of approximation, we will get a hardness result for the MAX-3-EQUAL problem.

Description of the PCP verifier: Given the unique games instance (G,Σ) (on alphabet size k), we
assume that V = [n] and build a PCP tester over n · 2k boolean variables as follows : For every i ∈ [n],
we have a function fi : {−1, 1}k → {0, 1}. Note that any such truth table can be described by 2k boolean
variables and hence the family of functions {fi} can be described in all by n · 2k variables.

For a given δ ∈ (0, 1), let Dn
δ be the distribution in the hypothesis of Theorem 12. With this, the tester is

as follows :

• Pick v ∈ V uniformly at random and choose three random neighbors of v, say, w1, w2, w3 uniformly
at random.

• Choose (X,Y, Z) ∼ Dn
δ (described above) and accept if and only if

fw1 ◦ σ(w1,v)(X) = fw2 ◦ σ(w2,v)(Y ) = fw3 ◦ σ(w3,v)(Z)

Remark 18. We will also assume the functions are folded i.e. for any x, f(x) 6= f(−x). Note that this can
be done without loss of generality, because whenever a tester needs to query f(x), if x1 = 1, it queries f(x).
Else it queries f(−x) and flips the output. Also, we observe that dictators (and as such, any linear function)
satisfy this requirement.

We next show the correctness of this tester. In other words, we prove the following two lemmas.

Lemma 19. If val(G) ≥ 1− ε, then there is a set of functions {fi : {−1, 1}k → {0, 1}}i∈[n] such that the
above tester accepts with probability at least (1− 3ε)(1− 3δ/4).

Lemma 20. For any ε > 0, if the above tester passes with probability more than 1− 3 cos−1(1−δ)
2π + ε, then

∃L : V → [k] such that valL(G) = κ(ε, δ) > 0.

Since valL(G) in conclusion of κ(ε, δ) does not depend on k, hence by combining Lemma 19 and
Lemma 20 and the standard reduction between PCPs and hardness of CSPs, we prove Theorem 14. The
proofs of Lemma 19 and Lemma 20 follow.
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Proof of Lemma 19. Since val(G) ≥ (1 − ε), ∃L : V → [k] such that valL(G) ≥ 1 − ε. Let L be such a
labeling of the vertices. We let fi : {−1, 1}k → {0, 1} be the dictator function corresponding toL(i). In other
words, fi(x) = (1+xL(i))/2. Now, since valL(G) ≥ 1−ε and the constraint graphG is regular, hence if we
choose v uniformly at random and then a uniform random neighbor wi, then L(v, wi) = 1 with probability
1− ε. By a union bound, with probability at least 1− 3ε, AL(v, w1) = AL(v, w2) = AL(v, w3) = 1. If it
indeed the case i.e. AL(v, w1) = AL(v, w2) = AL(v, w3) = 1, then

fw1 ◦ σ(w1,v) = fw2 ◦ σ(w2,v) = fw3 ◦ σ(w3,v)

Now, applying the first part of Theorem 12, we get that in this case, the test accepts with probability 1− 3δ/4.
Thus, the total probability that the test accepts is at least (1− 3ε)(1− 3δ/4).

We next move to the more difficult case of soundness.

Proof of Lemma 20. The proof of this is exactly the same as that in [KKMO07]. We first describe the
labeling L and then describe its correctness. Our labeling is a randomized scheme. Let η, τ > 0 be two
parameters which are chosen according to the second part of the hypothesis of Theorem 12 for parameters
ε/2 and δ. First, for every v ∈ V , we define gv : {−1, 1}n → [0, 1] as

gv(x) = E(w,v)∈E [fw ◦ σ(w,v)(x)]

Again for every v ∈ V we define A(v) ⊆ V as

A(v) = {i : Infi(T1−ηfv) ≥ τ/2} ∪ {i : Infi(T1−ηgv) ≥ τ}

The randomized labeling scheme is the following : If the set A(v) is empty, L(v) is chosen arbitrarily. Else,
it is chosen to be a uniformly random element from the set A(v). The following claim gives us the desired
result.

Claim 21. Over the choice of randomness for choosing L, E[valL(G)] ≥ (η2τ3)/32.

By fixing the randomness in the above claim desirably, we get Lemma 20. So, the proof boils down to
proving Claim 21.

Proof. Note that the probability of acceptance of the tester is given by

E
v∈V

E
w1,w2,w3:(wi,v)∈E

E
(X,Y,Z)∈D

[I(fw1 ◦ σ(w1,v)(X) = fw2 ◦ σ(w2,v)(Y ) = fw3 ◦ σ(w3,v)(Z))]

= E
v∈V

E
w1,w2,w3:(wi,v)∈E

E
(X,Y,Z)∈D

[fw1 ◦ σ(w1,v)(X) · fw2 ◦ σ(w2,v)(Y ) · fw3 ◦ σ(w3,v)(Z)]

+ E
v∈V

E
w1,w2,w3:(wi,v)∈E

E
(X,Y,Z)∈D

[(1− fw1 ◦ σ(w1,v)(X)) · (1− fw2 ◦ σ(w2,v)(Y )) · (1− fw3 ◦ σ(w3,v)(Z))]

= E
v∈V

E
(X,Y,Z)∈D

[gv(X) · gv(Y ) · gv(Z) + (1− gv(X)) · (1− gv(Y )) · (1− gv(Z))] ≥ 1− 3 cos−1(1− δ)
2π

+ ε

A Markov argument gives that for at least an ε/2 fraction of vertices v ∈ V

E
(X,Y,Z)∈D

[gv(X) · gv(Y ) · gv(Z) + (1− gv(X)) · (1− gv(Y )) · (1− gv(Z))] ≥ 1− 3 cos−1(1− δ)
2π

+ ε/2
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Call this subset of V as A. Note that by the second part of Theorem 12, for every v ∈ A, ∃i ∈ [k], such that
Infi(T1−ηgv) ≥ τ . For v ∈ A, choose any such i which satisfies Infi(T1−ηgv) ≥ τ .

τ ≤ Infi(T1−ηgv) =
∑
S:i∈S

(1− η)|S|ĝv(S)2 =
∑
S:i∈S

(1− η)|S|
(
E(w,v)∈E [ ̂fw ◦ σ(w,v)(S)]

)2

=
∑
S:i∈S

(1− η)|S|
(
E(w,v)∈E [f̂w(σ−1

(w,v)(S))]
)2

Here σ−1
(w,v)(S) is the pre-image of the set S under the map σ(w,v). Now, by Jensen’s inequality we get that

∑
S:i∈S

(1− η)|S|
(
E(w,v)∈E [f̂w(σ−1

(w,v)(S))]
)2
≤ E

(w,v)∈E

∑
S:i∈S

(1− η)|S|f̂w
2
(
σ−1

(w,v)(S)
)

= E
(w,v)∈E

Infσ−1
(w,v)

(i)(T1−ηfw)

Using a Markov argument, this implies that for such a v ∈ A and i such that Infi(T1−ηgv) ≥ τ , at least a
τ/2 fraction of neighbors w of v satisfy,

Infσ−1
(w,v)

(i)(T1−ηfw) ≥ τ/2

Call such a pair (v, w) of vertices as ‘‘good”. Using Lemma 6, it can be easily shown that for every v ∈ V ,
|A(v)| ≤ 4/(τη). This means that for every v ∈ A, the randomized scheme L assigns L(v) = i such that
Infi(T1−ηgv) ≥ τ with probability at least (ητ)/4. Observe that for any such v ∈ A, at least τ/2 fraction of
its neighbors w are such that (v, w) is ‘‘good”. Note that for any good pair (v, w), if Infi(T1−ηgv) ≥ τ , then
Infσ−1

(w,v)
(i)(T1−ηfw) ≥ τ/2. This implies that σ−1

(w,v)(i) ∈ A(w). Thus, with probability at least (τη)/4,

L(w) = σ−1
(w,v)(i). Thus, overall the probability that L(v, w) = 1 is at least τ3η2/32. This proves the

Claim 21 and concludes the proof.

6 Approximation algorithm for the MAX-3-EQUAL problem

In this section, we give a SDP based approximation algorithm for MAX-3-EQUAL whose performance
matches the hardness result from the last section. In particular, we prove the following theorem.

Theorem 22. There is a polynomial time approximation algorithm for the MAX-3-EQUAL problem which
achieves the following approximation ration :

min
δ∈(0,1)

1− 3 cos−1(1−δ)
2π

1− 3δ
4

≈ 0.796

Thus, this theorem shows that we have an approximation algorithm whose performance ratio matches
the Unique Games hardness for this problem. Towards proving Theorem 22, we state a SDP relaxation
for the MAX-3-EQUAL problem followed by a rounding procedure and then analyze the performance
of this algorithm. The SDP formulation is the generic SDP by Raghavendra [Rag08] specialized to the
MAX-3-EQUAL problem. We assume that the variables are x1, . . . , xn ∈ {−1, 1}. The constraint set E ⊆
[n]3×{−1, 1}3 such that for every (i, j, k)×(ηi, ηj , ηk) ∈ E, we have a constraint that ηixi = ηjxj = ηkxk.
The SDP relaxation is given in Figure 1.
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SDP formulation

1. ∀ i ∈ [n], vi ∈ Rn and ‖vi‖2 = 1.

2. ∀ i, j, k ∈ [n]3, i < j < k, α(i,j,k), β(i,j,k), γ(i,j,k), δ(i,j,k) ∈ R+ ∪ {0} such that

α(i,j,k) + β(i,j,k) + γ(i,j,k) + δ(i,j,k) = 1

3. ∀ i, j, k ∈ [n]3, i < j < k,

α(i,j,k) + β(i,j,k) − γ(i,j,k) − δ(i,j,k) = 〈vi, vj〉
α(i,j,k) − β(i,j,k) + γ(i,j,k) − δ(i,j,k) = 〈vj , vk〉
α(i,j,k) − β(i,j,k) − γ(i,j,k) + δ(i,j,k) = 〈vi, vk〉

4. For e ∈ E, where e = (i, j, k)× (ηi, ηj , ηk), define

λ(e) =


α(i,j,k) if ηi = ηj = ηk,
β(i,j,k) if ηi = ηj = −ηk,
γ(i,j,k) if −ηi = ηj = ηk,
δ(i,j,k) if ηi = −ηj = ηk,

5. Subjected to the above, Maximize E(i,j,k)×(α,β,γ)∈E λ(e)

Figure 1: SDP relaxation for MAX-3-EQUAL problem

Remark 23. We note that Zwick [Zwi98] describes a SDP relaxation and a similar rounding procedure for
the MAX-3-EQUAL problem. The paper also gives numerical evidence towards showing that the performance
ratio of their algorithm is approximately 0.796. However, the paper notes that they do not have an analytical
proof of this and to the best of our knowledge, no analytical proof has appeared ever since. We analyze a
slightly different SDP and analytically show that the performance of it is indeed what we claim. The reason
we do not analyze Zwick’s SDP is because it appears to be more difficult to analyze though we are not
aware of any counterexample showing that the performance of Zwick’s algorithm is not what it is claimed in
[Zwi98].

To see why the SDP in Figure 1 is a relaxation, consider a particular assignment to the variables
x1, . . . , xn. Let us define v0 ∈ Rn as having 1 in the first coordinate and 0 everywhere else. If xi = 1,
set vi = v0. Else, if xi = −1, set vi = −v0. The rest of the variables are set as follows. For every triple
(i, j, k), i < j < k,

• If xi = xj = xk, then α(i,j,k) = 1, β(i,j,k) = γ(i,j,k) = δ(i,j,k) = 0.

• If xi = xj = −xk, then β(i,j,k) = 1, α(i,j,k) = γ(i,j,k) = δ(i,j,k) = 0.

• If −xi = xj = xk, then γ(i,j,k) = 1, α(i,j,k) = β(i,j,k) = δ(i,j,k) = 0.

• If xi = −xj = xk, then δ(i,j,k) = 1, α(i,j,k) = β(i,j,k) = γ(i,j,k) = 0.

It is easy to verify that with these assignments of α(i,j,k), β(i,j,k), γ(i,j,k), δ(i,j,k) and vi, constraints 1, 2 and 3
are indeed satisfied. Further, for this assignment, if a constraint e ∈ E is satisfied, then it is easy to see that
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λ(e) = 1. Also, if a constraint e is not satisfied, then λ(e) = 0. Thus, the objective value of the program for
this assignment is exactly the fraction of constraints e ∈ E which are satisfied and hence its a relaxation.

6.1 Rounding algorithm Our rounding algorithm is as follows : Let Σ ∈ Rn×n be the matrix such that
Σi,j = 〈vi, vj〉. Note that Σ is positive semidefinite. So, we let X ∼ N (0,Σ) i.e. X be a jointly normal
distribution in Rn with mean at the origin and the covariance matrix Σ. The rounding algorithm gets a sample
X and assigns xi = 1 if Xi ≥ 0 and −1 otherwise. Here Xi denotes the ith coordinate of X . We will call
this rounding as the ‘‘random gaussian” rounding. We now prove Theorem 22 by analyzing the performance
of the aforedescribed algorithm.

We would also like to remark that (perhaps not too surprisingly), if instead of the ‘‘random gaussian”
rounding, we would have used ‘‘random hyperplane” rounding, the performance of the algorithm would have
been the same and our analysis would have also gone through without any changes.

Proof of Theorem 22. We start by considering a particular constraint e ∈ E. Without loss of generality,
assume that e = (i, j, k) × (1, 1, 1). We note that if the latter part of the argument were not (1, 1, 1) any
other (ηi, ηj , ηk) ∈ {−1, 1}3 the analysis will remain unchanged.

Now, for the particular edge e, its contribution to the SDP objective is λ(e) = α(i,j,k). On the other hand,
let the expected contribution to the true objective from this edge be κ(e). Note that

κ(e) = Pr[(Xi,Xj ,Xk ≥ 0) ∪ (Xi,Xj ,Xk < 0)] (5)

As is standard, the performance ratio of the algorithm is lower bounded by inf κ(e)/λ(e). Hence, we will
simply aim to prove a lower bound on inf κ(e)/λ(e). Now, plugging Fact 10 into (5) and using that for any
(i, j, k), α(i,j,k) + β(i,j,k) + γ(i,j,k) + δ(i,j,k) = 1, we get that

κ(e) = 1− cos−1(〈vi, vj〉) + cos−1(〈vj , vk〉) + cos−1(〈vi, vk〉)
2π

= 1−
cos−1(2(α(i,j,k) + β(i,j,k))− 1) + cos−1(2(α(i,j,k) + γ(i,j,k))− 1) + cos−1(2(α(i,j,k) + δ(i,j,k))− 1)

2π

Thus, for a, b, c, d ∈ R+ ∪ {0}, if we define

g(a, b, c, d) ≡
1− cos−1(2(a+b)−1)+cos−1(2(a+c)−1)+cos−1(2(a+d)−1)

2π

a

then,
κ(e)

λ(e)
≥ min

a,b,c,d
g(a, b, c, d) subjected to a+ b+ c+ d = 1 and a, b, c, d ≥ 0

For the purposes of the analysis, it is helpful to fix the value of a, and then find the optimum choice of b, c,
d for that value of a to minimize g(a, b, c, d). Subsequently, one optimizes over the choice of a. In other
words, let us define ha(b, c, d) as

ha(b, c, d) = cos−1(2(a+ b)− 1) + cos−1(2(a+ c)− 1) + cos−1(2(a+ d)− 1)

Ψ(a) = max
b,c,d

ha(b, c, d) subjected to b+ c+ d = 1− a and b, c, d ≥ 0 where a > 0 (6)

Hence, we now get that
κ(e)

λ(e)
≥ inf

0<a≤1

1− Ψ(a)
2π

a
(7)

Thus, we now focus on finding Ψ(a) for every a ∈ (0, 1]. In order to find out Ψ(a), we find out the local
minima by evaluating the partial derivatives of the function ha(b, c, d) and also investigate the value of
ha(b, c, d) at the boundaries of the domain.
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6.2 Minimum value of ha(b, c, d) at the boundary of the domain : The next claim gets the maximum
of ha(b, c, d) when b, c, d lie on the boundary of the domain defined in Equation 6.

Claim 24. The maximum of ha(b, c, d) when b, c and d lie on the boundary of the domain defined in (6) is
cos−1(2a− 1) + 2 cos−1(a).

Proof. Note that because b, c, d ≥ 0 and b + c + d = 1 − a, the boundary of the domain is defined by at
least one of b, c and d being 0. Without loss of generality, we assume b = 0. In that case,

ha(0, c, d) = cos−1(2a− 1) + cos−1(2(a+ c)− 1) + cos−1(2(a+ d)− 1)

with c+ d = 1− a and c, d ≥ 0. Performing the substitution d = 1− a− c, we get

ha(0, c, d) = cos−1(2a− 1) + cos−1(2(a+ c)− 1) + cos−1(1− 2c) (8)

where 0 ≤ c ≤ 1− a. Now, note that since a is fixed, hence ha(0, c, d) is solely a function of c. Hence, to
find out the maximum of ha(0, c, d), we evaluate it at the end points of the domain i.e. at c = 0, c = 1− a
and at its critical points.

• If c = 0, then d = 1 − a. Hence, at this point, ha(b, c, d) = ha(0, 0, 1 − a) = cos−1(2a − 1) +
cos−1(2a− 1) + cos−1(1) = 2 cos−1(2a− 1).

• If c = 1 − a, then d = 0. Hence, at this point, ha(b, c, d) = ha(0, 1 − a, 0) = cos−1(2a − 1) +
cos−1(1) + cos−1(2a− 1) = 2 cos−1(2a− 1).

Having evaluated ha(0, c, d) at the boundary points, we now find out the critical points of this function.
Differentiating the expression in (8), we get

∂ha(0, c, d)

∂c
=

−2√
1− (2(a+ c)− 1)2

+
2√

1− (1− 2c)2
= 0

This implies that
1− (2(a+ c)− 1)2 = 1− (1− 2c)2

⇒ (2(a+ c)− 1) = ±(1− 2c)

This means that either a = 0 or a+ 2c = 1. Since a > 0, we can neglect the first condition. Thus, the only
condition we need to consider is a+ 2c = 1. Because a+ c+ d = 1, this means that c = d = (1− a)/2.
Thus, ha(0, c, d) = cos−1(2a− 1) + 2 cos−1(a). Thus, we get that

max
c,d

ha(0, c, d) = max{cos−1(2a−1)+2 cos−1(a), 2 cos−1(2a−1)} = cos−1(2a−1)+2 cos−1(a) (9)

The last equality uses Fact 26.

6.3 Evaluation of ha(b, c, d) at the critical points : The next claim evaluates the maximum of ha(b, c, d)
at the critical points of the domain.

Claim 25. The maximum value of ha(b, c, d) at the critical points inside the domain defined in (6) is given by

maxha(b, c, d) =

{
π + cos−1(4a− 1) if 0 ≤ a ≤ 1/4,
3 cos−1((4a− 1)/3) if 1/4 < a ≤ 1.
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Proof. Note that b+ c+ d = 1− a. Thus, we get

ha(b, c, d) = cos−1(1− 2c− 2d) + cos−1(2(a+ c)− 1) + cos−1(2(a+ d)− 1)

Now, that since a is fixed, ha(b, c, d) is a function of c and d alone. At the critical point,

∂ha(b, c, d)

∂c
=

2√
1− (1− 2c− 2d)2

− 2√
1− (1− 2a− 2c)2

= 0

∂ha(b, c, d)

∂d
=

2√
1− (1− 2c− 2d)2

− 2√
1− (1− 2a− 2d)2

= 0

Thus, at the critical point,

(1− 2c− 2d)2 = (1− 2a− 2c)2 = (1− 2a− 2d)2

⇒ ±(1− 2c− 2d) = ±(1− 2a− 2c) = ±(1− 2a− 2d)

We now solve for c, d for the various possibilities listed above.

• 1 − 2c − 2d = 1 − 2a − 2c = 1 − 2a − 2d. In this case, we get a = c = d and hence b = 1 − 3a.
Since b ≥ 0, this possibility occurs only when 0 ≤ a ≤ (1/3). If this indeed holds,

ha(b, c, d) = cos−1(1− 4a) + cos−1(4a− 1) + cos−1(4a− 1) = π + cos−1(4a− 1)

• 1− 2c− 2d = −(1− 2a− 2c) = 1− 2a− 2d. In this case, we get a = c = b and d = 1− 3a. Again
as d ≥ 0, this possibility occurs only when 0 ≤ a ≤ (1/3). As before,

ha(b, c, d) = cos−1(1− 4a) + cos−1(4a− 1) + cos−1(4a− 1) = π + cos−1(4a− 1)

• 1 − 2c − 2d = 1 − 2a − 2c = −(1 − 2a − 2d). This goes exactly the same way as in the previous
case. Here again, we have

ha(b, c, d) = cos−1(1− 4a) + cos−1(4a− 1) + cos−1(4a− 1) = π + cos−1(4a− 1)

• −(1− 2c− 2d) = 1− 2a− 2c = 1− 2a− 2d. In this case, b = c = d = (1− a)/3. Now, we get

ha(b, c, d) = cos−1((4a− 1)/3) + cos−1((4a− 1)/3) + cos−1((4a− 1)/3) = 3 cos−1((4a− 1)/3)

That means that for the critical points, maxha(b, c, d) = max{π + cos−1(4a− 1), 3 cos−1((4a− 1)/3)} if
0 < a ≤ 1/3. On the other hand, if a > 1/3, then maxha(b, c, d) = 3 cos−1((4a− 1)/3).

However, using Fact 27, the above simplifies to saying that at the critical points,

maxha(b, c, d) =

{
π + cos−1(4a− 1) if 0 ≤ a ≤ 1/4,
3 cos−1((4a− 1)/3) if 1/4 < a ≤ 1.
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Combining Claims 24 and 25 along with (7), we get that

κ(e)

λ(e)
≥ min

{
inf

a∈(0,1/4]

1− π+cos−1(4a−1)
2π

a
, inf
a∈(1/4,1]

1− 3 cos−1((4a−1)/3)
2π

a
, inf
a∈(0,1]

1− 2 cos−1(a)+cos−1(2a−1)
2π

a

}

By Fact 28, the first quantity inside the minimum simplifies to 1 as follows :

inf
a∈(0,1/4]

1− π+cos−1(4a−1)
2π

a
=

1− π+cos−1(4∗(1/4)−1)
2π

(1/4)
= 1 (10)

At this point, we are left with the task of finding the following quantities :

inf
a∈(0,1]

1− 2 cos−1(a)+cos−1(2a−1)
2π

a
inf

a∈(1/4,1]

1− 3 cos−1((4a−1)/3)
2π

a

Thus, we are now left with the task of finding the infimum of two single-variable functions and then taking
the minima of these two quantities. We do this computation by evaluating these two functions at sufficiently
many points and then taking the infimum of these. For a mathematical justification, see Appendix B. Doing
the numerical computation, we get,

inf
a∈(0,1]

1− 2 cos−1(a)+cos−1(2a−1)
2π

a
= [0.802225, 0.804225] (11)

inf
a∈(1/4,1]

1− 3 cos−1((4a−1)/3)
2π

a
= [0.795070, 0.796070] (12)

Further, the value of a achieving the infimum in (12) is a = 0.700296± 0.000001. Hence, we have that

κ(e)

λ(e)
≥ inf

a∈(1/4,1]

1− 3 cos−1((4a−1)/3)
2π

a
= inf

a∈(0,1]

1− 3 cos−1((4a−1)/3)
2π

a

The second equality (i.e. making the domain (0, 1] instead of (1/4, 1]) follows because Fact 27 and (10) can
be combined as:

∀0 < a ≤ 1/4
1− 3 cos−1((4a−1)/3)

2π

a
≥

1− π+cos−1(4a−1)
2π

a
≥ 1

Put δ = 4(1− a)/3. Then, we get that

inf
a∈(0,1]

1− 3 cos−1((4a−1)/3)
2π

a
= inf

0≤δ<4/3

1− 3 cos−1(1−δ)
2π

1− 3δ
4

= inf
0≤δ≤1

1− 3 cos−1(1−δ)
2π

1− 3δ
4

Here the last equality is true because we have earlier observed that the infimum of the expression in (12) is
obtained when a ≈ 0.700. This means the corresponding value of δ ≈ 0.400 < 1. Thus, making the domain
of δ to be (0, 1] instead of (0, 4/3] does not affect the value of the infimum. This also conclude the proof of
the theorem.

.
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7 Difficulty in getting optimal results for MAX-k-EQUAL

Given our results on MAX-3-EQUAL, a very obvious question is whether or not our results can be extended
to MAX-k-EQUAL for k > 3. More concretely, since it is known that assuming the UGC, Raghavendra’s
SDP achieves the optimal approximation ratio for every CSP, it is natural to ask if the ‘‘random gaussian”
rounding algorithm described in subsection 6.1 indeed achieves this ratio. We now explain the difficulty in
proving such a result in a nutshell.

Consider the case of MAX-k-EQUAL. Let (g1, . . . , gk) be jointly normally distributed random variables
such that each gi ∼ N n(0, 1) (the value of n is immaterial as long as n ≥ k). Assume that for all 1 ≤ a ≤ n,
the covariance matrix of g1(a), . . . , gk(a) is given by ρ ∈ Rk×k (and ρ is independent of a). Here gi(a)
represents the ith coordinate of gi.

Let us define a family of distributions D(ρ) in the following way. Consider any distribution A over
{−1, 1}k. Such a A ∈ D(ρ) if and only if the following two properties hold : (i) ∀ 1 ≤ i ≤ k, A(i) is
a uniformly random bit. (ii) ∀ 1 ≤ i < j ≤ k, E[A(i) · A(j)] = ρij . We next define the following two
quantities :

f(ρ) = Prg∈Nn(0,1)[∀i ∈ [k] g · gi ≥ 0] + Prg∈Nn(0,1)[∀i ∈ [k] g · gi < 0]

h(ρ) = max
A∈D(ρ)

[A(1) = . . . = A(k)]

It is easy to show that the approximation ratio achieved by the ‘‘random gaussian” rounding algorithm on
Raghavendra’s SDP is (lower)-bounded by minρ f(ρ)/h(ρ).

If we want to show that the ‘‘random gaussian” rounding algorithm on Raghavendra’s SDP indeed
achieves the optimal approximation ratio, then the task essentially boils down to constructing a dictatorship
test for MAX-k-EQUAL whose ratio of soundness to completeness is minρ f(ρ)/h(ρ). To do this, let us
assume that arg minρ f(ρ)/h(ρ) = ρ′.

By the very definition of h(ρ′), it is very easy to construct a dictatorship test for MAX-k-EQUAL whose
completeness is h(ρ′). To do this, let us assume that the distribution inD(ρ′) which achieves the maximum in
the definition of h(ρ′) is A. Let us now sample (X1, . . . , Xk) ∈ An. Now, consider f : {−1, 1}n → {0, 1}.
If f is a dictator, it is easy to see that the probability of f(X1) = . . . = f(Xk) is exactly h(ρ′). The hard
part is to bound the soundness of the dictatorship test. In other words, assuming that f is a balanced function
where every coordinate has a low-influence, we need to bound the probability that f(X1) = . . . = f(Xk).
An application of the invariance principle [Mos10] says that we essentially need to analyze the following : Let
f ′ : Rn → {0, 1} be a function on the gaussian space such that E[f ′(x)] = 1/2. Let g1, . . . , gk ∼ N n(0, 1)
be jointly normally distributed random variables where for all 1 ≤ a ≤ n, the covariance matrix of
g1(a), . . . , gk(a) is given by ρ′. We need to upper bound the probability that f ′(g1) = . . . = f ′(gk). The
result in [IM12] says that this probability is maximized when f ′ defines a halfspace as long as all the off
diagonal entries of ρ′−1 are non-positive. For the case of k = 3, by a direct analysis of the rounding algorithm,
it was shown that ρ′ is a matrix who diagonal entries are all 1 and all the off-diagonal entries are the same
positive quantity. From this, it is easy to check that all the off diagonal entries of ρ′−1 are non-positive and
hence the results of [IM12] are applicable here. On the other hand, for k > 3, it seems difficult to compute
ρ′ exactly or even prove that all the off diagonal entries of ρ′−1 are non-positive. This makes it impossible
to apply the results of [IM12] and hence summarizes the difficulty in extending the results to the case of
MAX-k-EQUAL.

8 Conclusion

Our results illustrate the importance of Gaussian partition results in establishing exact optimal UGC hardness
and rounding schemes. Not only did we show that a new Gaussian partition result allows to obtain exact
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UGC hardness of MAX-3-EQUAL, we also showed how the trivial Gaussian partition gives near optimal
hardness for MAX-k-CSPs.

There are many interesting open problem that emerge from our work and previous work. Perhaps the most
natural open problem is regarding the hardness of MAX-k-EQUAL. In particular, is it true that the generic
SDP from [Rag08] followed by the random gaussian / hyperplane rounding is optimal for MAX-k-EQUAL
(assuming the Unique Games Conjecture)?

A more general challenge it to obtain further optimal Gaussian partition results. In particular we recall the
Standard Simplex Conjecture from [IM12] which says that if (X,Y ) are jointly normal random variables in
Rn such that X,Y ∼ N (0, 1) and Cov(X,Y ) = ρIn where ρ > 0, then a partitioning of the gaussian space
into k parts of equal measure such that (X,Y ) fall in the same partition is maximized when the partition
corresponds to a k-simplex centered at the origin. Proving this, will have consequences for hardness of
MAX-k-CUT.
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A Useful Trigonometric facts

Fact 26. For every 0 ≤ a ≤ 1, 2 cos−1(a)− cos−1(2a− 1) ≥ 0.

Proof. Note that

cos(2 cos−1(a)) = 2a2 − 1 ≤ 2a− 1 = cos(cos−1(2a− 1))

Now recall that if 0 ≤ θ, φ ≤ π, then cos θ ≤ cosφ if and only if θ ≥ φ. Clearly, as a ≥ 0, 0 ≤ 2 cos−1(a) ≤
π. Also, 0 ≤ cos−1(2a− 1) ≤ π. This concludes the proof.

Fact 27. Let −1 ≤ x ≤ 1. Then, if x ≥ 0, then π + cos−1(x) ≤ 3 cos−1(x/3). Else if, x ≤ 0, then
π + cos−1(x) ≥ 3 cos−1(x/3).

Proof. Consider f(x) = 3 cos−1(x/3) − π − cos−1(x). Then, note that within the domain (−1, 1), the
function is differentiable and hence

df(x)

dx
=

−1√
1− x2/9

+
1√

1− x2

This means that df(x)/dx = 0 if and only if x = 0. Also, note that f(0) = 0. Also f(1) > 0 and f(−1) < 0.
This concludes the proof.
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Fact 28. Let f : (0, 1/4]→ R be defined as

f(x) =
1− π+cos−1(4x−1)

2π

x

Then, f(x) is decreasing in the interval (0, 1/4].

Proof. We do a change of variables. Put cos θ = 4x− 1. Thus proving the claim is equivalent to showing
that for π/2 ≤ θ ≤ π, g(θ) (defined below) is an increasing function in the said interval.

g(θ) = 4 ·
1
2 −

θ
2π

1 + cos θ

Next, we evaluate g′(θ).

g′(θ) = 4 ·
(1 + cos θ) · −1

2π + sin θ ·
(

1
2 −

θ
2π

)
(1 + cos θ)2

Note that if we show g′(θ) ≥ 0 in the interval θ ∈ [π/2, π], then it implies that g(θ) is an increasing function
in the same interval. Thus, we need to show that for θ ∈ [π/2, π]

(1 + cos θ) · −1

2π
+ sin θ ·

(
1

2
− θ

2π

)
≥ 0

which is equivalent to showing

(π − θ) sin(θ/2) ≥ cos(θ/2) ≡ π − θ − cot(θ/2) ≥ 0

So, we finally need to show that h(θ) = π − θ − cot(θ/2) is non-negative in the interval θ ∈ [π/2, π). But
h′(θ) = − cot2(θ) < 0. This means that h(θ) ≥ h(π) = 0 proving our claim.

Fact 29. For 0 ≤ x ≤ 1, cos−1(x) ≤ π/2− x

Proof.

sinx ≤ x ⇒ cos(π/2− x) ≤ x ⇒ π/2− x ≥ cos(x)

Fact 30. For 0 ≤ x ≤ 1, cos−1(x− 1) ≤ π −
√
x

Proof. Let g(x) = cos(
√
x)− 1 + x. Observe that g(0) = 0. Also,

g′(x) = −sin
√
x

2
√
x

+ 1 > 0

This implies that g(x) ≥ 0 for all 0 ≤ x ≤ 1. This implies

cos(
√
x)− 1 + x ≥ 0 ⇒ x− 1 ≥ − cos(

√
x) = cos(π −

√
x)

⇒ cos−1(x− 1) ≤ π −
√
x

Fact 31. For 0.9 ≤ x ≤ 1, cos−1(x) ≤ 3
√

1− x.

21



Proof. Put x = 1− ε. Then, the claim is equivalent to proving that for 0 ≤ ε ≤ 0.1, cos−1(1− ε) ≤ 3
√
ε.

Towards this, define g(ε) = 3
√
ε− cos−1(1− ε). Clearly, g(0) = 0. Next, we note that

g′(ε) =
3

2
√
ε
− 1√

1− (1− ε)2
=

3

2
√
ε
− 1√

2ε− 4ε2

Now, note that for ε ∈ [0, 0.1], g′(ε) ≥ 0. Hence, for ε ∈ [0, 0.1], g(ε) ≥ 0 finishing the proof.

Fact 32. For 0.9 ≤ x ≤ 1, cos−1(2x− 1) ≤ 5
√

1− x.

Proof. Note that putting x = 1− ε, this is equivalent to proving that for 0 ≤ ε ≤ 0.1, cos−1(1− 2ε) ≤ 5
√
ε.

To prove this, consider the function g(ε) = 5
√
ε− cos−1(1− 2ε). Clearly, g(0) = 0. Also,

g′(ε) =
5

2
√
ε
− 2√

1− (1− 2ε)2
=

5

2
√
ε
− 1√

ε− ε2

Now, note that for ε ∈ [0, 0.1], g′(ε) ≥ 0. Hence, for ε ∈ [0, 0.1], g(ε) ≥ 0 finishing the proof.

B Justification for numerically finding the minima

In Section 6, we numerically evaluate the minimum of two single variable functions using the software
‘‘Mathematica”. We now give a detailed explanation of how we find the minima of these functions to the
desired error and the mathematical soundness of this computer-assisted procedure.

B.1 Infimum of h1(a) Given a function h1 : (0, 1]→ R from Section 6 (which is defined as)

h1(a) =
1− 2 cos−1(a)+cos−1(2a−1)

2π

a

To find infa∈(0,1] h1(a), we do the following :

• Show that for the interval A1 = (0, xs] and A2 = [xt, 1] (where xs = 0.179 and xt = 0.99),
infx∈A1 h1(x) ≥ 0.85 and infx∈A2 h1(x) ≥ 0.83

• Show that for the interval A3 = (xs, xt), and x ∈ A3, |h′1(x)| ≤ ∆ where ∆ = 500

• Divide the interval A3 into ∆/η (with η = 10−4) intervals of equal length and evaluate h1 at each of
these points where h1(a) is evaluated at each point with an error of ε = 10−6. Subsequently, take the
minimum of all these numbers.

It is clear that the above procedure returns the infimum of h1 in the interval (0, 1] to within error ε+η ≤ 10−3.
Following this procedure, infa∈(0,1] h1(a) was obtained to be 0.803225. Since, we note that the error can be
at most 10−3, hence infa∈(0,1] h1(a) ∈ [0.802225, 0.804225].

We now give proofs for the first and the second item in the above procedure.

Proposition 33. Let h1 : [0, 1]→ R be defined as

h1(a) =
1− 2 cos−1(a)+cos−1(2a−1)

2π

a

Then, for 0 ≤ a ≤ 0.179, h(a) ≥ 0.85.
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Proof. Using Fact 29 and Fact 30, we have

h1(a) =
1− 2 cos−1(a)+cos−1(2a−1)

2π

a
≥ 2a+

√
2a

2πa
=

1

π
+

1

π
√

2a

Plugging in the values, this implies that as long as a ≤ 0.179, h1(a) ≥ 0.85.

Proposition 34. Let h1 : [0, 1]→ R be defined as

h1(a) =
1− 2 cos−1(a)+cos−1(2a−1)

2π

a

Then, for 0.99 ≤ a ≤ 1, h(a) ≥ 0.83.

Proof. Using Fact 31 and Fact 32, we have

h1(a) =
1− 2 cos−1(a)+cos−1(2a−1)

2π

a
≥

1− 6
√

1−a+5
√

1−a
2π

a

Plugging in the values, this implies that as long as 0.99 ≤ a ≤ 1, h1(a) ≥ 0.83.

Proposition 33 and Proposition 34 imply the proof of the first item. The next proposition implies the
correctness of the third item.

Proposition 35. For every a ∈ [0.179, 0.99], |h′1(a)| ≤ 500.

Proof.

h′1(a) =

a
π
√

1−a2 + a

π
√

1−(1−2a)2
− 1 + cos−1(a)

π + cos−1(2a−1)
2π

a2

This implies that

|h′1(a)| ≤
a

π
√

1−a2 + a
2π
√
a−a2 + 3

a2
≤ 3

a2
+

1
π
√

1−a2 + 1
2π
√
a−a2

a

To bound the value of |h′1(a)|, we consider the two cases : when 0.179 ≤ a ≤ 0.5 and when 0.99 ≥ a > 0.5.
Splitting into these two cases, it is easy to show

|h′1(a)| ≤ 500

B.2 Infimum of h2(a) Recall that we need to find the following quantity :

inf
a∈(1/4,1]

h2(a) where h2(a) =
1− 3 cos−1((4a−1)/3)

2π

a

We do the following change of variables : We put (4a− 1)/3 = cosx. Then, the problem becomes finding
the quantity

inf
x∈[0,π/2)

g(x) where g(x) = 4 ·
1− 3x

2π

1 + 3 cosx

To find infx∈[0,π/2) g(x), we do the following :
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• Show that for x ∈ [0, π/2), |g′(x)| ≤ ∆ where ∆ = 50

• Divide the interval [0, π/2) into ∆/η (with η = 10−4) intervals of equal length and evaluate g(x) at
each of these points where g(x) is evaluated at each point with an error of ε = 10−6. Subsequently,
take the minimum of all these numbers.

It is clear that the above procedure returns the infimum of h2 in the interval (0, 1] to within error ε+η ≤ 10−3.
Following this procedure, infa∈(0,1] h2(a) was obtained to be 0.796070. Since the error is bounded by 10−3,
we know infa∈(0,1] h2(a) ∈ [0.795070, 0.796070] We now give proof for the first item in the above procedure.

Proposition 36. Let g : [0, π/2)→ R be defined as above. Then, for x ∈ [0, π/2), |g′(x)| ≤ 50

Proof.

g′(x) = 12 ·
sinx− 3x sinx

2π − 1
2π −

3 cosx
2π

(1 + 3 cosx)2

It is now trivial to see that the absolute value of g′(x) is bounded by 50 at all points in [0, π/2).
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