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Abstract

We prove the following results concerning the combinatorics of list decoding, motivated
by the exponential gap between the known upper bound (of O(1/γ)) and lower bound (of
Ωp(log(1/γ))) for the list-size needed to decode up to radius p with rate γ away from capacity,
i.e., 1− h(p)− γ (here p ∈ (0, 1/2) and γ > 0).

• We prove that in any binary code C ⊆ {0, 1}n of rate 1 − h(p) − γ, there must exist a set
L ⊂ C of Ωp(1/

√
γ) codewords such that the average distance of the points in L from

their centroid is at most pn. In other words, there must exist Ωp(1/
√
γ) codewords with

low “average radius”. The motivation for this result is that it gives a list-size lower bound
for a strong notion of list decoding; this strong form has been implicitly been used in the
previous negative results for list decoding. (The usual notion of list decoding corresponds
to replacing average radius by the minimum radius of an enclosing Hamming ball.)

The remaining results are for the usual notion of list decoding:

• We give a short simple proof, over all fixed alphabets, of the above-mentioned Ωp(log(1/γ))
lower bound due to Blinovsky.

• We show that one cannot improve the Ωp(log(1/γ)) lower bound via techniques based
on identifying the zero-rate regime for list decoding of constant-weight codes (this is a
typical approach for negative results in coding theory, including the Ωp(log(1/γ)) list size
lower bound). On a positive note, our Ωp(1/

√
γ) lower bound for the strong form of list

decoding does circumvent this barrier.

• We show a “reverse connection” showing that constant-weight codes for list decoding
imply general codes for list decoding with higher rate. This shows that the best possible
list-size, as a function of the gap γ of the rate to the capacity limit, is the same up to
constant factors for both constant-weight codes and general codes.

• We give simple second moment based proofs that w.h.p. a list-size of Ωp(1/γ) is needed
for list decoding random codes from errors as well as erasures, at rates which are γ away
from the corresponding capacities. For random linear codes, the corresponding list size
bounds are Ωp(1/γ) for errors and exp(Ωp(1/γ)) for erasures.
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1 Introduction

The list decoding problem for an error-correcting code C ⊆ Σn consists of finding the set of all
codeword of C with Hamming distance pn from an input string y ∈ Σn. Though it was originally
introduced in early work of Elias and Wozencraft [5, 14] in the context of average decoding error
probability estimation for random error models, recently the main interest in list decoding has
been for adversarial error models. List decoding enables correcting up to a factor two more worst-
case errors compared to algorithms that are always restricted to output a unique answer, and this
potential has even been realized algorithmically [9, 7, 11].

In this work, we are interested in some fundamental combinatorial questions concerning list
decoding, which highlight the important trade-offs in this model. Fix p ∈ (0, 1/2) and a posi-
tive integer L. We say that a binary code C ⊆ {0, 1}n is (p, L) list decodable if every Hamming
ball of radius pn has less than L codewords.1 Here, p corresponds to the error-fraction and L to
the list-size needed by the error-correction algorithm. Note that (p, L)-list decodability imposes
a sparsity requirement on the distribution of codewords in Hamming space. A natural combina-
torial question that arises in this context is to place bounds on the largest size of a code meeting
this requirement. In particular, an outstanding open question is to characterize the maximum rate
(defined to be the limiting ratio log |C|

n as n→∞) of a (p, L)-list decodable code.
By a simple volume packing argument, it can be shown that a (p, L)-list decodable code has

rate at most 1−h(p)+o(1). (Throughout, for x ∈ [0, 1/2], we use h(x) to denote the binary entropy
function at x.) Indeed, picking a random center x, the Hamming ball B(x, pn) contains at least
|C| ·

(
n
pn

)
2−n = |C| · 2−(1−h(p)+o(1))n in expectation. Bounding this by (L − 1), we get the claim.

On the positive side, in the limit of large L, the rate of a (p, L)-list decodable code approaches the
optimal 1−h(p). More precisely, for any γ > 0, there exists a (p, 1/γ)-list decodable code of rate at
least 1− h(p)− γ. In fact, a random code of rate 1− h(p)− γ is (p, 1/γ)-list decodable whp [15, 6],
2, and a similar result holds for random linear codes (with list-size Cp/γ) [8]. In other words, a
dense random packing of 2(1−h(p)−γ)n Hamming balls of radius pn (and therefore volume≈ 2h(p)n

each) is “near-perfect” whp in the sense that no point is covered by more than O(1/γ) balls.
The determination of the best asymptotic code rate of binary (p, L)-list decodable codes as p, L

are held fixed and the block length grows is wide open for every choice of p ∈ (0, 1/2) and integer
L ≥ 1. However, we do know that this rate tends to 1 − h(p) in the limit of large L → ∞. To
understand this rate of convergence as a function of list size L, following [8], let us define Lp,γ
to be the minimum integer L such that there exist (p, L)-list decodable codes of rate 1 − h(p) − γ
for infinitely many block lengths n (the quantity γ is the “gap” to “list decoding capacity”). In [1],
Blinovsky showed that a (p, L)-list decodable code has rate at most 1−h(p)−2−Θp(L). In particular,
this implies that for any L < ∞, a (p, L)-list decodable code has rate strictly below the optimal
1 − h(p). Stated in terms of Lp,γ , his result gives Lp,γ ≥ Ωp(log(1/γ)). We provide a short and
simple proof of this lower bound in Section 4, which also works almost as easily over non-binary
alphabets. In contrast, Blinovsky’s subsequent proof for the non-binary case involved substantial
technical effort [3, 4].

Observe the exponential gap (in terms of the dependence on γ) between the O(1/γ) upper
bound and Ωp(log(1/γ)) lower bounds on the quantity Lp,γ . Despite being a basic and fundamen-
tal question about sphere packings in Hamming space and its direct relevance to list decoding,

1This differs from the traditional definition of (p, L)-list decodability, which require at most L codewords. The
modified definition ends up being more convenient for our purposes in this paper. Further, we are interested in the
regime of large L where the two definitions are almost equivalent.

2By using random coding with expurgation, the list size can be improved to h(p)/γ.
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there has been no progress on narrowing this asymptotic gap in the 25 years since the works of
Zyablov-Pinsker [15] and Blinovsky [1]. This is the motivating challenge driving this work.

1.1 Prior work on list-size lower bounds

We now discuss some lower bounds (besides Blinovsky’s general lower bound) on list-size that
have been obtained in restricted cases.

Rudra shows that the Op(1/γ) bound obtained via the probabilistic method for random codes
is, in fact, tight up to constant factors [13]. Formally, there exists L = Ωp(1/γ) such that a random
code of rate 1− h(p)− γ is not (p, L)-list decodable w.h.p. His proof uses near-capacity-achieving
codes for the binary symmetric channel, the existence of which is promised by Shannon’s theorem,
followed by a second moment argument. We give a simpler proof via a more direct use of the
second moment method. This has the advantage that it works uniformly for random general as
well as random linear codes, and for channels that introduce errors as well as erasures.

Guruswami and Vadhan [10] consider the problem of list size tradeoff when the channel may
corrupt close to half the bits, that is, when p = 1/2 − ε, and more generally p = 1 − 1/q − ε for
codes over an alphabet of size q. (Note that decoding is impossible if the channel could corrupt
up to 1/2 fraction of bits.) They show that there exists c > 0 such that for all ε > 0 and all block
lengths n, any (1/2− ε, c/ε2)-list decodable code contains Oε(1) codewords. For p bounded away
from 1/2 (or 1 − 1/q in the q-ary case), their methods do not yield any non-trivial list-size lower
bound as a function of gap γ to list decoding capacity.

1.2 Our main results

We have already mentioned our new proofs of Blinovsky’s lower bound for general codes, and
the asymptotically optimal list-size lower bound for random (and random linear) codes.

Our main results are motivated by the above-mentioned approaches, based on a strong form
of list decoding, used in [1, 10] to establish list-size lower bounds. In this work, we formally define
the notion of (p, L)-strong list decodability of a code underlying these proofs. This notion is a very
natural one: a code is (p, L)-strongly list decodable if for every L codewords, the average distance
of their centroid from the L codewords exceeds pn. Note that this is a stronger requirement than
(p, L)-list decodability where only the maximum distance from any center point to theL codewords
must exceed pn.

We are able to prove nearly tight bounds on the achievable rate of a (p, L)-strong list decodable
code. To state our result formally, denote by Lstrong

p,γ the minimum L such that there exists a (p, L)-
strongly list decodable code family of rate 1−h(p)− γ. A simple random coding argument shows
that a random code of 1−h(p)−γ is (p, 1/γ)-strongly list decodable (matching the list decodability
of random codes). That is, Lstrong

p,γ ≤ 1/γ. Our main technical result is a lower bound on the list
size that is polynomially related to the upper bound, namely Lstrong

p,γ ≥ Ωp(γ
−1/2).

1.3 Our other results

We also make several clarifying observations on the landscape of the bounds for list-decodable
codes, as well as the general methodology of proving combinatorial limitations of list-decodable
codes. Many negative results in coding theory (i.e., results which place an upper bound on rate)
proceed via a typical approach in which they pass to a constant weight λ ∈ (p, 1/2]; that is, restrict
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the codewords to be of weight exactly λn. They show that under this restriction, a code with the
stated properties must have a constant number of codewords (that is, zero rate). Mapping this
bound back to the unrestricted setting one gets a rate upper bound of 1 − h(λ) for the original
problem. For instance, the Elias-Bassalygo bound for rate R vs. relative distance δ is of this nature
(here λ is picked to be the Johnson radius for list decoding for codes of relative distance δ).

The above is also the approach taken in Blinovsky’s work [1] as well as that of [10]. We show
that such an approach does not and cannot give any bound better than Blinovsky’s Ωp(log(1/γ))
bound for Lp,γ . More precisely, for any λ ≥ p + 2−cpL for some cp > 0, we show that there exists
a (p, L)-(strongly) list decodable code of rate Ωp,L(1). Thus in order to improve the lower bound,
we must be able to handle codes of strictly positive rate, and cannot deduce the bound by pinning
down the zero-rate regime of constant-weight codes. This perhaps points to why improvements
to Blinovsky’s bounds have been difficult. On a positive note, we remark that we are able to effect
such a proof for strong list decodability (some details follow next).3

To describe the method underlying our list-size lower bound for strongly list-decodable codes,
it is convenient to express the statement as an upper bound on rate in terms of list-sizeL. Note that
a list-size lower bound of L ≥ Ωp(1/

√
γ) for (p, L)-strongly list-decodable codes of rate 1−h(p)−γ

amounts to proving an upper bound of 1 − h(p) − Ωp(1/L
2) on the rate of (p, L)-strongly list

decodable codes. Our proof of such an upper bound proceeds by first showing a rate upper
bound of h(λ)−h(p)−Ωp(1/L

2) for such codes whose codewords are restricted to all have weight
λn (for a suitable choice of λ ∈ (p, 1/2]). To map this back to the original setting (with no weight
restrictions on codewords), one simply notes that every (p, L)-strongly list decodable code of rate
R has a constant λ-weight subcode of rate R− (1− h(λ)).

Generally speaking, by passing to a constant-weight subcode, one can translate combinatorial
results on limitations of constant-weight codes to results showing limitations for the case of gen-
eral codes. We are not aware of a reverse connection (for any of the standard combinatorial coding
problems) that allows one to translate limitations for general codes into corresponding limitations
for constant-weight codes. This leaves open the possibility that the problem of showing limita-
tions of constant-weight codes may be harder than the corresponding problem for general codes,
or worse still, have a different answer making it impossible to solve the problem for general codes
via the methodology of passing to constant-weight codes.

We show that for the problem of list decoding this is fortunately not the case, and there is
in fact a reverse connection of the above form. Formally, we prove that a rate upper bound of
1−h(p)−γp,L for (p, L)-list decodable codes implies a rate upper bound of h(λ)−h(p)−γp,L

(
λ−p

1/2−p

)
for (p, L)-list decodable codes whose codewords must all have Hamming weight λn. A similar
claim holds also for strong list decodability, though we don’t state it formally.

1.4 Our proof techniques

Our proofs in this paper employ variants of the standard probabilistic method. We show an ex-
tremely simple probabilistic argument that yields a Ωp(log(1/γ)) bound on the list size of a stan-
dard list decodable code; we emphasize that this is qualitatively the tightest known bound. For
the “strong list decoding” problem that we introduce, we are able to improve this list-size bound
to Ωp(1/

√
γ). The proof is based on the idea that instead of picking the “bad list decoding center”

3Though the technical details are very different, it may be worth noting the similarity of this with bounds for rate
vs. distance. Passing to the zero-rate regime for constant-weight codes gives the Elias-Bassalygo bound, and the more
sophisticated and stronger second linear programming bound is obtained by working in the regime of positive rate.
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uniformly at random, one can try to pick it randomly very close to a codeword, and this still gives
similar guarantees on the number of near-by codewords. Now since the quantity of interest is the
average radius, this close-by codeword gives enough savings for us.

For bounds on random codes, our main novelty is to define a random variable Z that counts
the number of “violations” of the list-decoding property of the code. We then show that Z has a
exponentially large mean around which it is concentrated w.h.p. This yields that the code cannot
be list-decodable with high probability, for suitable values of rate and list size parameters.

1.5 Organization

We define some useful notation and the formal notion of strong list decodability in Section 2. Our
main negative result on limitations of strongly list-decodable codes appears in Section 3; for ease of
readability, the most technical part of the proof is isolated as Appendix ??. We give our short proof
of Blinovsky’s lower bound in Section 4. Our results about the zero-error rate regime for constant-
weight codes and the reverse connection between list decoding bounds for general codes and
constant-weight codes appear in Section 5. Finally, our list size lower bounds for random codes
are discussed in Section 6, with the case of list decoding from erasures appearing as Appendix B.

2 Notation and Preliminaries

We recall some standard terminology regarding error-correcting codes. For q ≥ 2, let [q] denote the
set {0, 1, . . . , q − 1}. By a q-ary code, we mean any set C ⊆ [q]n, where n is called the blocklength
of C. We will mainly focus on the special case of binary codes corresponding to q = 2. The rate
R = R(C) is defined to be log |C|

n log q .4 For x ∈ [q]n and S ⊆ [n], we denote by x|S the restriction of x to
the coordinates in S. Let supp(x) := {i ∈ [n] : xi 6= 0}. A subcode of C is simply any C ′ ⊆ C.

For x, x′ ∈ [q]n, define the Hamming distance between x and x′, denoted d(x, x′), to be the
number of coordinates in which x and x′ differ. The weight (or density) of x ∈ [q]n, denoted wt(x),
is d(0, x), where 0 is the all-zeros vector in [q]n. Also let B(x, r) denote the hamming ball of
radius r centered at x; that is, B(x, r) := {x′ ∈ [q]n : d(x, x′) ≤ r}. In this work, we introduce a
nonstandard extension of the notion of distance to small lists of vectors as follows: for L ⊆ [q]n,
define Dmax(x,L) := max{d(x, x′) : x′ ∈ L} and Davg(x,L) := Ex′∈L[d(x, x′)].

We formalize the error recovery capability of the code using list decoding.

Definition 1. Fix 0 < p < 1/2 and a positive integer L .

1. A q-ary code C is said to be (p, L)-list decodable if for all x ∈ [q]n, we have |C∩B(x, pn)| ≤ L−1.
In other words, for any x and any list L ⊆ C of size at least L, we have Dmax(x,L) > pn.

2. C is said to be (p, L)-strongly list decodable if for any x and L as in the previous item, we have
Davg(x,L) > pn.

3. C is said to be (λ; p, L)-(strongly) list decodable if C is (p, L)-(strongly) list decodable, and every
codeword in C has weight exactly λn.

Here the first definition is standard, and the third (i.e., (λ; p, L)-list decodability) provides a
useful notation. Also we emphasize that while formally introduced by us, the notion of (p, L)-

4log denotes logarithm to base 2.
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strong list-decodability property is implicit in [1, 2, 10]. The following claim asserts that this is a
syntactically stronger notion than standard list-decodability:

Proposition 2. If C is (p, L)-strongly list decodable, then C is (p, L)-list decodable.

Proof: Follows from the fact that Dmax(x,L) always dominates Davg(x,L) for all x and size-L lists
L of C. �

Following (and extending) the notation in [8], we make the following definitions to quantify
the trade-offs in the different parameters (error-correction radius p, list-size L, weight of the code
λ and its rateR). Fix 0 < p, λ < 1/2, 0 ≤ R ≤ 1 and a positive integer L. Say that the triple (p, L;R)
is achievable for (strongly) list decodable codes if there exists (p, L)-(strongly) list decodable codes
of rate R for infinitely many lengths n. Similarly the 4-tuple (λ; p, L;R) is achievable if there exists
(λ; p, L)-(strongly) list decodable codes of rate R.

Definition 3. Fix 0 < p < 1/2.

1. Define Lp,γ to be the least integer L such that (p, L; 1 − h(p) − γ) is achievable. Similarly, define
Rp,L to be the supremum over R such that (p, L;R) is achievable for list decodable codes. Finally, the
gap to the optimal/limiting rate (of 1− h(p)) is defined to be γp,L := 1− h(p)−Rp,L.

2. For λ ∈ (p, 1/2], define Rp,L(λ) to be the supremum rate R for which the 4-tuple (λ; p, L;R) is
achievable.

We can also define analogous quantities for strong list decoding, but to prevent notational
clutter, we will not explicitly do so.

Useful properties of standard functions. We collect together several facts and estimates that will
be useful in our results. The proofs of the standard claims in this subsection will be omitted.

We use the notation f(n, a, b, i) to denote (ai)(
n−a
b−i )

(nb)
. We say that a random variable X follows

the hypergeometric distribution with parameters n, a, b if Pr[X = i] = f(n, a, b, i). We will need
the following elementary combinatorial identity involving the hypergeometric distribution.

Fact 4. For all n, a, b, i, we have f(n, a, b, i) = f(n, b, a, i).

We will use the following estimates related to the binary entropy function without further
mention.

Fact 5 (The binary entropy function). Define the binary entropy function by h(z) := −z log z − (1 −
z) log(1− z). Then for any constant z ∈ (0, 1) and n→∞, we have 2h(z)n−o(n) ≤

(
n
zn

)
≤ 2h(z)n.

Fact 6. For all z ∈ (0, 1), we have z log(1/z) + (log e)(z − z2) ≤ h(z) ≤ z log(1/z) + (log e)z.

3 Bounds for strong list decodability

In this section, we establish upper and lower bounds of 1 − h(p) − 1/LΘ(1) on the rate for (p, L)-
strongly list decodable codes.

3.1 Lower bound on rate.

The result below follows by a standard random coding argument.
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Theorem 7. Let 0 < p < 1/2 and L a positive integer. Then for all ε > 0 and all sufficiently large lengths
n, there exists a (p, L)-strongly list decodable code of rate at least 1− h(p)− 1/L− ε.

Proof: We show that a random code C : {0, 1}Rn → {0, 1}n of rate R = 1− h(p)− 1/L− ε is (p, L)-
strongly list-decodable whp. For each m ∈ {0, 1}Rn, pick C(m) independently and uniformly at
random from {0, 1}n. For any x ∈ {0, 1}n and any distinctL-tuple {m1, . . . ,mL} ⊆ {0, 1}Rn, we are
interested in bounding the probability of the event that D ≤ Lpn, where D :=

∑L
i=1 d(x,C(mi)).

Let X be the {0, 1}-string of length Ln obtained by concatenating x repeatedly L times. Simi-
larly, let Y be the {0, 1}-string obtained by concatenating C(m1), . . . , C(mL); then, Y is distributed
uniformly at random in {0, 1}Ln independent of the choice of x. Now, note that D is simply the
Hamming distance between X and Y . Hence, the probability that D ≤ pLn is at most 2(h(p)−1)Ln.

Finally, by a union bound over the choice of x and {m1, . . . ,mL}, the probability that the code
is not (p, L)-strongly list decodable is at most

2n
(

2Rn

L

)
· 2(h(p)−1)Ln ≤ 2Ln( 1

L
+R+h(p)−1) = 2−εLn,

for the given choice of R, thus establishing the claim. �

3.2 Upper bound on rate.

We now show an upper bound of 1−h(p)−cp/L2 on the rate of a (p, L)-strongly list decodable code.
The proof is based on a simple idea, but to convert this to a full proof requires some calculations
and analytic manipulations (involving the hypergeometric distribution and the entropy function).
To repeat our main idea from the Introduction, instead of picking the “bad list decoding center”
uniformly at random, we pick it randomly very close to a codeword, and this still gives similar
guarantees on the number of near-by codewords. Now since the quantity of interest is the average
radius, this close-by codeword gives enough savings for us.

Before we proceed with the proof, we first establish a rate upper bound for the special case
when all codewords are restricted to be of a fixed weight λn for a suitably chosen λ ∈ (p, 1/2).
We can then map this bound to the general case by the following standard argument. (We will
establish a converse to this claim in Section 5.)

Lemma 8. Let λ ∈ (p, 1/2) be such that λn is an integer. If C is a (p, L)-(strongly) list-decodable code
of rate R = 1 − h(p) − γ, then there exists a (λ; p, L)-(strongly) list decodable code C ′ of rate at least
h(λ)− h(p)− γ − o(1).

Proof: For a random center x, the expected number of codewords c ∈ C with d(x, c) = λn is
exactly |C| ·

(
n
λn

)
· 2−n ≥ 2Rn · 2(h(λ)−1−o(1))n = 2(h(λ)−h(p)−γ−o(1))n. Then there exists an x such that

the subcode Cx consisting of all codewords at a distance λn from x has a rate at least h(λ)−h(p)−
γ − o(1). Defining C ′ to be Cx − x gives the claim. �

We now state our main result establishing a rate upper bound for (p, L)-list decodable codes.

Theorem 9 (Main theorem). Let 0 < p < 1/2 and let L a sufficiently large positive integer. Then, there
exist ap, cp > 0 such that the following holds (for sufficiently large lengths n):

1. If C is a (p, L)-strongly list-decodable code, then C has rate at most 1− h(p)− cp/L2.

2. For λ := p + ap/L, if C is a (λ; p, L)-strongly list-decodable code, then C has rate at most h(λ) −
h(p)− cp/L2.
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Using Lemma 8, it suffices to show the second part. Before we do this, we will establish the
following folklore result, whose proof illustrates our idea in a simple case.

Lemma 10 (A warm-up lemma). If C is a (λ; p, L)-list-decodable code, then C has rate at most h(λ) −
h(p) + o(1).

Proof: The proof is via the probabilistic method. Pick a random subset S ⊆ [n] of coordinates of
size αn, with α := (λ−p)/(1−2p).5 Define the center x to be the indicator vector of S: xi = 1 ⇐⇒
i ∈ S. Let L be the set of codewords c ∈ C such that wt(c|S) ≥ (1− p)αn. For any c ∈ L, we have

d(x, c) = (αn− wt(c|S)) + wt(c|S) ≤ αpn+ (λ− α(1− p))n = (λ− α(1− 2p))n,

which equals pn for the given choice of α. Hence L lies entirely inside the ball B(x, pn).
Now, we want to compute E[|L|]. For any fixed c ∈ C, the probability that c lies in L is at least

f(n, λn, αn, α(1− p)n), which by Fact 4 equals
( αn
(1−p)αn)(

(1−α)n
(λ−α(1−p))n)

( nλn)
. Verify that for our choice of α,

it holds that λ− (1− p)α = p(1− α). Therefore, conveniently, the above expression is equal to(
αn
pαn

)( (1−α)n
p(1−α)n

)(
n
λn

) =
2αnh(p)+(1−α)nh(p)−o(n)

2h(λ)n
= 2(h(p)−h(λ)−o(1))n.

Therefore, by linearity of expectations, the expected size of L is at least |C| × 2(h(p)−h(λ)−o(1))n =
2(R+h(p)−h(λ)−o(1))n. On the other hand, the (p, L)-list decodability of C implies that |L| < L with
probability 1. Comparing the lower and upper bounds on expected size of L, we get R + h(p) −
h(λ)− o(1) ≤ 1

n logL, which yields the claim. �

Proof of Theorem 9: At a high level, we proceed as in the proof of Lemma 10, but in addition to
the bad list L, we will produce a special codeword c∗ ∈ C such that d(x, c∗) is much smaller than
pn. Then defining a new bad list L′ consisting of c∗ and (L− 1) other codewords from L, we show
that Davg(x,L′) is at most pn, which would contradict the strong list decodability of C.

We now provide the details. Pick a uniformly random codeword c∗ ∈ C and let S be a random
subset of supp(c∗) of size βn, where β is a constant to be chosen appropriately later. Let x be
the indicator vector of S. Define L to be the collection of codewords c ∈ C such that wt(c|S) ≥
(1− p)|S|. (Note that c∗ ∈ L.) Conditioned on c∗, the probability that c ∈ L is

Q(c∗, c) :=
1(
λn
βn

) βn∑
i=(1−p)βn

(
(λ− δ)n

i

)(
δn

βn− i

)

where d(c∗, c) := 2δ(c∗, c)n = 2δn. Observe that Q(c∗, c) is really a function of δ(c∗, c) = δ. There-
fore, the expected size of L is Ec∗∈C

[∑
c∈C Q(δ(c∗, c))

]
= |C| · Ec,c∗∈C [Q(δ)]. The following claim

lower bounds the expectation of the random variable Q = Q(δ).

Claim 11 (Estimate of EQ). There exist A := (1 − p) log
(

1−p
λ

)
+ p log

(
p

1−λ

)
and B = Bp ∈ (0,∞)

such that for any code C with all codewords of weight λ, we have

Ec∗,c[Q(δ(c∗, c))] ≥ 2−(Aβ+Bβ2)n.

5The reason for setting α to this value will be clear shortly.
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Proof Sketch: First, note that 0 ≤ δ ≤ λ always. Also, it is easy to see that the quantity Q(δ) is
monotonically decreasing with increasing δ. Moreover, by a simple application of the Cauchy-
Schwarz inequality, we have Ec∗,c[δ] ≤ λ(1 − λ). Now, if Q were a convex function of δ, then we
could lower bound E[Q(δ)] by Jensen’s inequality; unfortunately, the convexity assumption does
not hold. However, it turns out that when δ is restricted to the “middle” range

λp+ n−1/4 ≤ δ ≤ λ− λ2/2,

we can approximate Q(δ) well by a convex function Q̃(δ). Hence the proof strategy can be made
to work for Q̃, except for the extreme values of δ. We then handle the “small” regime (i.e., 0 ≤ δ ≤
λp+ n−1/4) and the “large” regime (i.e., λ− λ2/2 ≤ δ ≤ λ) by additional simple tricks.

The complete proof is quite cumbersome since it involves heavy use of several standard es-
timates (of binomial coefficients) and Taylor approximations. Moreover, one also needs to verify
the convexity of Q̃(δ). For ease of readability, we finish the rather technical proof in Appendix A.
�

Let us now proceed with completing the proof of Theorem 9. By Claim 11, assuming R ≥
Aβ + Bβ2 + o(1) for a suitable o(1) term, E[|L|] ≥ L. Fix c∗ and S such that |L| ≥ L. Let L′ be
any list containing c∗ and L − 1 other codewords from L. For c ∈ L′ ⊆ L, we have d(x, c) ≤
βpn + (λ − β(1 − p))n = (λ − β(1 − 2p))n, whereas d(x, c∗) = (λ − β)n. Averaging these L
distances, Davg(x,L′) ≤ (λ − β(1 − 2p + 2p/L))n. Now, pick β so that this is at most pn; that is,
set β := (λ − p)/(1 − 2p + 2p/L). For this choice of β, the list L′ contradicts the (p, L)-strong list
decodability of C. Thus, contrary to our starting assumption, the rate is at most Aβ + Bβ2 + o(1)
(for the special choice of β). We can further upper bound this by (see Claim 23 in Appendix A)

h(λ)− h(p)− A0(λ− p)
L

+B0(λ− p)2

for some A0 > 0 and B0 <∞ depending on p. Setting λ := p+A0/(2B0L) gives the claim. �

4 Bounds for (standard) list decodability

In this section, we consider the rate vs. list size trade-off for the traditional list-decodability notion.
For the special case when the fraction of errors is close to 1/2, [10] showed that any code family
of growing size correcting up to 1/2 − γ fraction of errors must have a list size Ω(1/γ2), which
is optimal up to constant factors. When p is bounded away from 1/2, Blinovsky [1, 3] gives the
best known bounds on the rate of a (p, L)-list decodable code. He showed that any code of rate
1 − h(p) − γ has list-size at least Ωp(log(1/γ)).6 For completeness we give a self-contained and
simpler proof of this result in this section.

Theorem 12 (Blinovsky [1, 3]). 1. Suppose C is (λ; p, L)-list decodable code with λ = p+ 1
2p
L. Then

|C| is at most 2L2/λ (independent of the blocklength n). (In particular, the rate approaches 0 as
n→∞.)

2. Suppose C is a (p, L)-list decodable code. Then there exists a constant cp > 0 such that the rate of C
is at most 1− h(p)− 2−cpL.

Proof: By Proposition 8, it suffices to show the first part, since then the rate of C is upper bounded
by 1 − h(λ) = 1 − h(p + 1

2p
L) ≤ 1 − h(p) − Θp(

h′(p)
2 pL) (using Taylor expansion). We prove the

6He states his results in a different form however. The reader is referred to [13] for this form of the result.
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first part by the first moment method. Assume that |C| > 2L2/λ. Pick a random (distinct) L-tuple
of codewords L = {c1, c2, . . . , cL} ⊆ C, and define x by xi = 1 iff cji = 1 for all 1 ≤ j ≤ L. Note
that x is at a distance of λn − wt(x) from each cj , so that E[Dmax(x,L)] = λn − E[wt(x)]. Thus to
complete the proof, it suffices to show that E[wt(x)] ≥ 1

2p
L.

Define the function ϑ : R≥0 → R≥0 by ϑ(z) =
(max{z,L−1}

L

)
. By standard closure properties of

convex functions, ϑ is convex on R≥0. Now, let M := |C| and Mi be the number of codewords
with 1 in the ith position. Then it can be verified that xi = 1 with probability ϑ(Mi)/

(
M
L

)
. Thus, by

linearity of expectations, the expected weight of x is

1(
M
L

) n∑
i=1

ϑ(Mi) =
n(
M
L

)Ei∈[n] [ϑ(Mi)]
(a)

≥ n(
M
L

)ϑ(E[Mi])
(b)
=

n(
M
L

)(λM
L

)
.

Here we have used (a) Jensen’s inequality, and (b) the fact that λM > 2L2 ≥ L. Finally, a straight-
forward approximation gives the promised bound:(

λM
L

)(
M
L

) ≥ (λM − L)L

ML
= λL

(
1− L

λM

)L
≥ λL

(
1− L2

λM

)
≥ 1

2
λL ≥ 1

2
pL .

�

The above method can be adapted for q-ary codes with an additional trick.

Theorem 13. 1. Suppose C is a q-ary (λ; p, L)-list decodable code with λ = p+ 1
2Lp

L. Then |C| is at
most 2L2/λ.

2. Suppose C is a q-ary (p, L)-list decodable code. Then there exists a constant cp,q > 0 such that the
rate of C is at most 1− hq(p)− 2−cp,qL.

Before we prove Theorem 13, we will state a convenient lemma due to Erdös. (See Section 2.1
of [12] for reference.) This result was implicitly established in our proof of Theorem 12; so we will
omit the formal proof.

Lemma 14 (Erdös 1964). Suppose A is a set system over the ground set [n], such that each A ∈ A has
size at least λn. Then if |A| ≥ 2L2/λ, then there exist distinct A1, A2, . . . , AL in A such that

⋂L
i=1Ai has

size at least 1
2nλ

L.

Proof of Theorem 13: As in Theorem 12, it suffices to show the first part. Towards a contradiction,
assume |C| ≥ 2L2/λ. Define the set system A = {supp(c) : c ∈ C}. By Lemma 14, there exists
an L-tuple {c1, c2, . . . , cL} of codewords such that the intersection of their support, say S, has size
≥ 1

2nλ
L ≥ 1

2np
L. Arbitrarily partition the coordinates in S into L parts {S1, . . . , SL} of almost-

equal size n/(2L) · pL. Now, define the center x by:

xi :=

{
cji , if i ∈ Sj , and
0, if i 6∈ S.

Note that x agrees with cj on Sj , so that d(x, cj) ≤ λn − 1
2Lp

Ln = pn. Therefore, {c1, . . . , cL} is a
bad list of codewords contradicting the (p, L)-list decodability of C. �

5 Constant-weight vs. General codes

In this section, we will understand the rate vs. list-size trade-offs for constant-weight codes, that
is, codes with every codeword of weight λn, where λ ∈ (p, 1/2] is a parameter. (Note that setting
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λ = 1/2 corresponds to arbitrary codes having no weight restrictions.) As observed earlier, a
typical approach in coding theory to establish rate upper bounds is to study the problem under
the above constant-weight restriction. One then proceeds to show a strong negative result of the
flavor that a code with the stated properties must have a constant size (and in particular zero rate).
For instance, the first part of Theorem 12 above is of this form. Finally, mapping this bound to
arbitrary codes, one obtains a rate upper bound of 1 − h(λ) for the original problem. (Note that
Lemma 8 provides a particular formal example of the last step.)

In particular, Blinovsky’s rate upper bound (Theorem 12)7 of 1 − h(p) − 2−O(L) for (p, L)-
list decodable codes follows this approach. More precisly, he proves that, under the weight-λ
restriction, such code must have zero rate for all λ ≤ p + 2−cL for some c < ∞. One may then
imagine improving the rate upper bound to 1−h(p)−L−O(1) simply by establishing the latter result
for correspondingly higher values of λ (i.e., up to p+ L−O(1)). We show that this approach cannot
work by establishing that list-decodable codes of positive (but possibly small) rates exist as long as
λ − p ≥ 2−O(L). Thus Blinovsky’s result identifies the correct zero-rate regime for the list-decoding
problem; in particular, his bound is also the best possible if we restrict ourselves to this approach.

In the opposite direction, we show that the task of establishing rate upper bounds for constant
weight codes is not significantly harder than the general problem. Formally, we state that that if
the “gap to capacity” for general codes is γ, then the gap to capacity for weight-λ codes is at least
γ
(

λ−p
1/2−p

)
. Stated differently, if our goal is to establish a L−O(1) lower bound on the gap γ, then

we do not lose by first passing to a suitable λ (that is not too close to p).

5.1 Zero-rate regime

We now prove the existence of (p, L)-strongly list-decodable codes of positive rate where all code-
words have constant weight which is very close to pn.

Theorem 15. For every 0 < p < 1/2, there exists d = d(p) = 1
2(1/2 − p)2 ∈ (0,∞) such that for

all sufficiently large L, there exists a (λ; p, L)-strongly list decodable code of rate at least R − o(1) with
R = e−2dL and λ ∈ [p, p+ 12e−dL].

The proof proceeds by random coding followed by expurgation. Set ε := 4e−dL and λ′ := p+2ε.
Now, pick a random 2Rn × n code matrix C with each entry set to 1 with probability λ′. For our
choice of parameters, we can show that whp, C satisfies the following properties:

• C is (p, L)-strongly list-decodable.

• Every codeword has weight (λ′±ε)n. In particular, the maximum weight is at most (p+3ε)n.

Pick a C satisfying these two properties, and let Ci denote the sub-code of C consisting of the
weight-i codewords. Then, defining i∗ = λn to be the most popular weight, the subcode Ci∗
satisfies our constraints. The formal proof follows.

Proof of Theorem 15: Set ε := 4e−dL and λ′ := p + 2ε. Assume that L is large enough so that
p+ 4ε < 1/2 and verify that 1/2− λ′ ≥ 1

2(1/2− p) in this case. Pick a random code C : {0, 1}Rn →
{0, 1}n, where for each y ∈ {0, 1}Rn, every coordinate of C(y) is chosen independently to be 1 with
probability λ′. First, by Chernoff bound followed by union bound, the probability that there exists
y ∈ {0, 1}Rn with |wt(y)− λ′n| > εn is at most 2Rn · 2−2ε2n. This is our first bad event.

7For notational ease, we supress the dependence on p in the O and Ω notations in this informal discussion.
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Now, we bound the probability of the occurrence of a bad list of codewords. Fix a list {y1, . . . , yL} ⊆
({0, 1}Rn)L and define x to be its centroid: that is, xj is the majority of the L bits (C(yi)j : 1 ≤ i ≤
L). By Chernoff bound, for j ∈ [n], the probability that xj = 1 is at most

e−2(1/2−λ′)2L ≤ e−
1
2

(1/2−p)2L = e−Ld = ε/4.

By a second application of Chernoff bound, the probability that the weight of x exceeds εn = (1 +

3)(εn/4) is at most e−
32(εn/4)

3 = e−3εn/4. Our second bad event is that there exists a list {y1, . . . , yL}
such that the weight of x is > εn. By union bound over all possible lists, the probability of this
event is at most

(
2Rn

L

)
· e−3εn/4 ≤ e(RL−3ε/4)n.

Since R < min{ε2, ε/2L}, the random code avoids both the bad events with probability 1 −
2−Ωp(n). Fix any such code C (avoiding both bad events). For any list {y1, . . . , yL} ⊆ C with
centroid x, for all 1 ≤ i ≤ L, we have

d(x, yi) ≥ wt(yi)− wt(x) ≥ (λ′ − ε)n− εn = (λ′ − 2ε)n = pn,

where x is the center of the list as defined above. Therefore, the average distance of the list from
the center is also at least pn. Hence, the code C ′ is (p, L)-strongly list decodable. Now, using
the pigeonhole principle, we can find a sub-code with all codewords having weight exactly w
having size at least 2Rn/(n+ 1) = 2(R−o(1))n. Defining λ := w/n, we obtain a (λ; p, L)-strongly list
decodable code of rate R− o(1). Finally, it is clear that λ ≤ λ′ + ε = p+ 3ε ≤ p+ 12e−Ld. �

5.2 A reverse connection between constant-weight and arbitrary codes

Lemma 16. Let γ = γp,L be the gap to capacity for arbitrary codes. Then, for every λ ∈ (p, 1/2],

h(λ)− h(p)− γ ≤ Rp,L(λ) ≤ h(λ)− h(p)− γ
(

λ− p
1/2− p

)
.

Proof: The left inequality is essentially the content of Claim 8; we show the second inequality
here. Suppose C is a (λ; p, L)-list decodable code of rate R. Pick a random subset S of coordinates
of size αn with α = (λ − p)/(1/2 − p). (The motivation for this choice will become clear shortly.)
Consider the subcode C ′ consisting of the codewords c ∈ C such that wt(c|S) ≥ αn/2. For our
choice of α, one can verify that if c ∈ C ′, then c has weight at most p(1−α)n = p|S|when restricted
to S.

The key insight is that the code C ′|S := {c|S : c ∈ C ′} (of blocklength αn) is (p, L)-list de-
codable. Suppose not. Then there exists a center x′ ∈ {0, 1}S and a size-L list L ⊆ C ′ such that
d(x′, c|S) ≤ pαn for all c ∈ L. Now, extend x′ to x ∈ {0, 1}n such that x|S = x′ and xi is zero for
i 6∈ S. Then, for c ∈ L, we have d(x, c) ≤ d(x′, c|S) + wt(c|S) ≤ pαn + p(1 − α)n = pn. Thus,
L ⊆ B(x, pn), contradicting the (p, L)-list decodability of C (and hence of C ′).

By hypothesis, we can bound the size of C ′|S by 2(1−h(p)−γ)αn (with probability 1). On the other
hand, in expectation, the size of C ′|S is at least

|C| ·

(
λn
αn/2

)((1−λ)n
αn/2

)(
n
αn

) = |C| ·

(
αn
αn/2

)( (1−α)n
(λ−α/2)n

)(
n
λn

)
appealing to Fact 4 again. Finally, verify that λ − α/2 = p(1 − α). By standard approximation,
this quantity is at least exp2[R + α + (1 − α)h(p) − h(λ) − o(1))n].8 Comparing the upper and

8We use exp2(z) to denote 2z .
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lower bound on the (expected) size of C ′|S , we get R + α + (1 − α)h(p) − h(λ) ≤ (1 − h(p) − γ)α.
Rearranging this inequality gives the desired bound R ≤ h(λ)− h(p)− αγ. �

6 List-size Bounds for Random codes

In this section, we establish optimal (up to constant factors) bounds on the list-size of random
codes, both general as well as linear. Results of this vein were already shown by Rudra for the
errors case [13], based on the large near-disjoint packings of Hamming balls implied by Shannon’s
capacity theorems. Here we give a direct proof based on the second moment method.9 In addition,
our proofs extend easily to give list-size bounds for the erasures case as well.

By a random code, we mean a random map Enc : {0, 1}k → {0, 1}n where the image Enc(x)
of each x ∈ {0, 1}k is picked independently and uniformly at random from {0, 1}n. On the other
hand, to obtain a random linear code, we fix an arbitrary basis for the vector space {0, 1}k, and the
encoding of the basis vectors is chosen independently and uniformly at random. The encoding
map Enc is then extended for all messages in {0, 1}k via linearity.

6.1 Bounds for Random codes under Errors

As mentioned before, our results proceed directly via the second moment method. Towards this
goal, we define a random variable Z that counts the number of witnesses (i.e., a bad list of code-
words together with the center) that certify the violation of the (p, L)-list decodability property.
Note that the code is (p, L)-list decodable iff Z = 0. We then show that Z has large expectation
(i.e., exponential in n) and that Var[Z] = exp(−Ωq,p,γ(n))E[Z]2 = o(E[Z]2). Using the Chebyshev
inequality, we can conclude that Z > 0, except with an exponentially small probability, which
gives the claim.

As a particular example, consider the case of random general codes under errors. Here, we let
X be an arbitrary distinct L-tuple of messages {x1, x2, . . . , xL} ⊆ C and a be an arbitrary center.
Then define the indicator random variable I(X, a) for the event that d(a,Enc(x)) ≤ pn for all
x ∈ X . Finally, define Z :=

∑
X,a I(X, a). The mean and variance estimates of Z follow by a

standard calculation. Our formal results and proofs follow.

6.1.1 General codes

Theorem 17. For every 0 < p < 1− 1/q and γ > 0, with probability 1− q−Ωp,γ(n), a random q-ary code
of rate 1− hq(p)− γ is not (p,

1−hq(p)
2γ )-list decodable.

Before presenting the proof, let us define some convenient notation. We denote by Bq(a, r)
the Hamming ball with center a and radius r. Define Volq(n, r) be the volume of Bq(·, r), and
µq(n, r) := Vol(n, p)/qn. It is a standard fact that q(Hq(z)−o(1))n ≤ Volq(n, zn) ≤ qHq(z)n. We will
use B(a) (resp. µ) as a shorthand to denote Bq(a, pn) (resp. µq(n, pn)).

Proof: At a high level, we apply the second moment method to the random variable Z that counts
the number of witnesses (i.e., a bad list of codewords and the corresponding center) certifying the
violation of the (p, L)-list decodability property. Consider a random code Enc : [q]k=Rn → [q]n

9We remark that the argument in [13] is also based on the second moment method, but applied to a more complicated
random variable.

12



with R = 1 − hq(p) − γ. For a list of L messages X = {x1, x2, . . . , xL} ⊆ {0, 1}k, and a ∈ {0, 1}n,
define the indicator variable I(X, a) to be 1 iff Enc(x) ∈ B(a) for all x ∈ X . Then define Z :=∑

X,a I(X, a). Clearly, Z > 0 iff the code is (p, L)-list decodable.
For every x and every a, the event Enc(x) ∈ B(a) occurs wp µq(n, pn) = µ; therefore, by

independence, for a list of messages X , we have E [I(X, a)] = µL. Therefore, by the linearity of
expectations, E [Z] = µL

(
2k

L

)
qn ≥ L−L

(
qkµ
)L
qn. For two lists of messages X and Y , say X ∼ Y if

X ∩ Y 6= ∅. Clearly, if X 6∼ Y , then the events I(X, a) and I(Y, b) are independent. Therefore, we
have

Var[Z] =
∑
X,Y

∑
a,b

(E[I(X, a)I(Y, b)]−E[I(X, a)]E[I(Y, b)])

≤
∑
X∼Y

∑
a,b

E[I(X, a)I(Y, b)] =
∑
X∼Y

∑
a,b

Pr[I(X, a) = 1 and I(Y, b) = 1]

= q2n
∑
X∼Y

Pra,b,Enc[I(X, a) = 1 and I(Y, b) = 1],

where, in addition to the randomness in the code, the centers a and b are also picked at random.
Fix a pair (X,Y ) such that |X ∩ Y | = ` > 0. Let z ∈ X ∩ Y be arbitrary. Then for any a, b, the

event I(X, a) = I(Y, b) = 1 implies that

• Enc(x) ∈ B(a) for x ∈ X\{z};

• Enc(y) ∈ B(b) for y ∈ Y \X ;

• {a, b} ⊆ B(Enc(z)).

Thus this event happens with probability at most µ2L−`+1. Finally, summing over all the pairs
(X,Y ) with ` > 0 (the number of such pairs is at most L2Lqk(2L−`)),

Var[Z] ≤ q2n
L∑
`=1

L2Lqk(2L−`)µ2L−`+1 ≤
L∑
`=1

L4L(qkµ)−`µ · (EZ)2,

after some rearrangement. Note that qkµ = q−γn for our choice of the rate. Therefore,

Var[Z] ≤
L∑
`=1

L4Lqγ`nµ · (EZ)2 ≤ L4L+1qγLn−(1−hq(p))n · (EZ)2.

Therefore, letting L = (1 − hq(p))/(2γ), we observe that Var[Z] = q−Ωp,γ(n)(EZ)2. Finally, by
Chebyshev’s inequality, Z = 0 (i.e., the code is (p, L)-list decodable) with probability q−Ωp,γ(n). �

6.1.2 Random linear codes

We now turn to the case of random linear codes.

Theorem 18. For every 0 < p < 1 − 1/q there exists δq,p > 0 such that for all γ > 0, with probability
1− q−Ωp,γ(n), a random q-ary linear code of rate at least 1−Hq(p)− γ is not (p, δq,p/(2γ))-list decodable
with high probability.
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Proof: We follow the same outline as in Theorem 17; we will only highlight the differences. Con-
sider a random linear code of dimension k = (1 − Hq(p) − γ)n. We define I(X, a) in an identi-
cal manner, but only for the linearly independent lists of messages X . (The definition of Z is un-
changed.) Furthermore, for a pair of lists X and Y , define ` = `(X,Y ) := dim(span(X)∩ span(Y ))
(rather than the size of their intersection). Moreover, we say that X ∼ Y iff ` = 0; that is, iff
span(X) and span(Y ) have a nontrivial intersection.

Estimating E[Z] as before10, we get E[Z] ≥ 1
2 · L

−L(qkµ)Lqn. Also, we can write

Var[Z] ≤ q2n
∑
X∼Y

Pra,b,Enc [I(X, a) = 1 and I(Y, b) = 1] .

Fix a pair X,Y such that dim(span X ∩ span Y ) = ` > 0. Then, there exists Z ⊆ Y of size L − `,
such thatX ∼ Z and Y ⊆ span(X ∪ Z). Let y0 ∈ Y \Z be arbitrary. Then, since y0 ∈ span(X ∪ Z),
we have y0 =

∑
u∈X∪Z ζ(u)u for some scalars ζ(u). Note that it is possible that y0 lies in the span

of X . But, since Y is an independent set, y0 cannot be written as a linear combination of vectors
from Z ⊆ Y \{y0}. Hence, there exists some u ∈ X with ζ(u) 6= 0.

In order to compute the desired probability, condition on the event that Enc(u) ∈ B(a) for
u ∈ X and Enc(u) ∈ B(b) for u ∈ B(b). We may re-express this as Enc(u) = δ(u) + a for u ∈ X
and Enc(u) = δ(u) + b for u ∈ Z. We thus get a family of iid random variables {δ(u)}u∈X∪Z , each
of which is uniformly distributed inside B(0). Further they are also independent of a and b. In
terms of the δ(·)’s, we have Enc(y0)− b =

∑
u∈X∪Z ζ(u)δ(u) + ζ(X) a+ (ζ(Z)− 1) b.

We claim that the conditional probability that Enc(y0)−b ∈ B(0) is at most q−δp,qn. We discuss
two cases:

1. Suppose ζ(X) 6= 0 or ζ(Z) 6= 1. Then conditioned on δ(·)’s, the random variable Enc(y0)− b
is distributed uniformly at random and hence falls inside B(0) with probability µ.

2. Suppose ζ(X) = 0 and ζ(Z) = 1. In this case, Enc(y0)−b is simply a sum of some number of
points uniformly sampled from the ball B(0). Notice that since Y is not linearly dependent,
we must have ζ(x) 6= 0 for some x ∈ X . Also, since ζ(x)’s sum to zero, there are at least two
nonzero ζ(x)’s. Therefore, Enc(y0)− b is the sum of l ≥ 2 random points chosen uniformly
from B(0). We use the following fact: that there exists δq,p > 0 such that, if w1, w2, . . . , wl
are l ≥ 2 independent and uniformly random samples from B(0), then the probability that
w1 +w2 + . . .+wl is also inside B(0) is bounded by q−δq,pn. Thus, the stated event also occurs
with probability q−δq,pn. (Without loss of generality, we may take q−δq,pn to be larger than µ.)

Therefore, the conditional probability is at most 2−δq,pn. Thus, Var[Z] ≤ q2n
∑

X∼Y µ
2(L−`)q−δq,pn.

Proceeding as before, we get Var[Z] ≤ O(L4L+1q(γL−δq,p)nE[Z]2). The conclusion follows simi-
larly. �

6.2 Bounds for Random codes under Erasures

To model erasures, we augment the alphabet [q] with the erasure symbol ∗ to get [q]∗ := [q] ∪ {∗}.
For a ∈ [q]n∗ , define supp∗(a) to be the set of all indices i such that ai 6= ∗. Let Eq(n, r) be the set
of a ∈ [q]n∗ such that |supp∗(a)| = n − r. Say that a, b ∈ [q]n∗ agree with each other if ai = bi for all
i ∈ supp∗(a) ∩ supp∗(b).

10Here we must be careful to sum over only the linearly independent L-tuples X .
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Definition 19. A code C ⊆ {0, 1}n is said to be (p, L)-erasure list decodable if for all a ∈ Eq(n, pn), at
most L− 1 codewords in C (treated as strings over [q]∗) agree with a.

We now state our results showing limitations of erasure list-decodability of random and ran-
dom linear codes.

Theorem 20. For every 0 < p < 1 and γ > 0, with probability 1−q−Ωp,γ(n), a random code of blocklength
n and rate at least 1− p− γ is not (p, 1−p

2γ )-erasure list decodable.

Theorem 21. Let q be a prime power. Then there exists a constant cq > 0 such that for every 0 < p < 1
and γ > 0, with probability 1 − q−Ωp,γ(n), a random q-ary linear code of rate at least 1 − p − γ is not

(p, q
cqp(1−p)

2γ )-erasure list decodable with high probability.

Note the exponential gap in the list size for linear and general codes under erasures. We
present the proofs for the erasure case in Appendix B.
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A Rate upper bound for strong list decoding

We now finish the proof of Claim 11 which was used in the proof of our main result (Theorem 9)
on the rate upper bound for strongly list-decodable codes.

Proof of Claim 11: (Continued from Section 3.2)
Divide the range of δ into three regimes.

Small δ: 0 ≤ δ ≤ λp+ n−1/4. We claim that in this regime, Q(δ) ≥ 2−o(n). To see this, set

i :=

{
β
λ (λ− δ)n, if 0 ≤ δ ≤ λp, and
β(1− p)n, if λp ≤ δ ≤ λp+ n−1/4.

It is easy to see that i ≥ β(1−p)n and that i = β
λ (λ−δ)n+o(n) for all δ. (Here, βλ (λ−δ)n represents

the expected weight of S.) Now, Q(δ) is at least

1(
λn
βn

)((λ− δ)n
i

)(
δn

βn− i

)
.

For the prescribed choice of i, by Stirling’s approximation, we can verify that Q(δ) ≥ 2−o(n).

Large δ: λ − λ2/2 ≤ δ ≤ λ. In this case, Q(δ) can be very small, which affects the expectation.
However, we can upper bound the probability of this event by Markov inequality:

Pr[δ ≥ λ− λ2/2] ≤ λ− λ2

λ− λ2/2
≤ 1− λ/2.

Therefore, δ is smaller than λ− λ2/2 with probability at least λ/2.

Middle regime: λp+ n−1/4 ≤ δ ≤ λ− λ2/2. In this regime, we have

Q(δ) ≥ 1(
λn
βn

)( (λ− δ)n
(1− p)βn

)(
δn

pβn

)
.

Expressing this probability in terms of “rate”, we get

1

n
logQ(δ) ≥ (λ− δ)h

(
(1− p)β
λ− δ

)
+ δh

(
pβ

δ

)
− λh

(
β

λ

)
− o(1).
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Lower bounding this using Fact 6, we get

1

n
logQ(δ) ≥ β[(1− p) log

λ− δ
(1− p)

+ p log
δ

p
− log λ]− β2(log e)

(
(1− p)2

λ− δ
+
p2

δ

)
− o(1).

= β[(1− p) log(λ− δ) + p log δ + h(p)− log λ]− β2(log e)

(
(1− p)2

λ− δ
+
p2

δ

)
.

When δ is restricted to the middle regime, verify that (1−p)2
λ−δ + p2

δ = Op(1), independent of λ and δ.
Therefore,

Q(δ) ≥ (λ− δ)β(1−p)n δβpn 2(βh(p)−β log λ−Op(β2))n,

which we define to be Q̃(δ). Note that, conveniently, Q̃(δ) is a polynomial function of δ.
The key claim is that in the desired range λp+n−1/4 ≤ δ ≤ λ−λ2/2, Q̃(δ) is a both monotonically

decreasing and convex in δ. Clearly, it suffices to show these two properties for the function ˜̃Q(δ) :=
(λ− δ)τ1δτ2 , where we have set τ1 := β(1− p)n and τ2 := βpn for ease of notation.

1. Monotonicity. Differentiating the function wrt δ, we get

d

dδ
˜̃Q(δ) = (λ− δ)τ1−1δτ2−1 [τ2(λ− δ)− τ1δ].

For our parameters, τ2(λ − δ) − τ1δ = βn[pλ − δ] ≤ −βn3/4 < 0. Thus Q̃ is monotonically
decreasing.

2. Convexity. Differentiating twice wrt δ, we get

d2

dδ2
˜̃Q(δ) = (λ− δ)τ1−2δτ2−2 [(τ1δ − τ2(λ− δ))2 − τ1δ

2 − τ2(λ− δ)2].

For our choice of τ1 and τ2, this simplifies to

(λ−δ)τ1−2δτ2−2 [β2n2(δ−pλ)2−βn(1−p)δ2−βnp(λ−δ)2] ≥ (λ−δ)τ1−2δτ2−2 [β2n2(δ−pλ)2−2n].

Finally, since δ− pλ ≥ n−1/4, this expression is bounded below by (λ− δ)τ1−2δτ2−2 [β2n3/2−
2n]. For fixed β and sufficiently large n, this is nonnegative, establishing the convexity of Q̃.

Now, to complete the proof, we essentially apply Jensen’s inequality in the middle range. It is
useful to consider two separate cases.

1. Suppose Pr[small δ] = Pr[δ ≤ pλ + n−1/4] ≥ 1/n. Then restricting ourselves to this range,
we have E[Q] ≥ 1

n · 2
−o(n) = 2−o(n).

2. On the other hand, suppose that the small values of δ have a probability at most 1/n. Con-
ditioning on the event that δ is in the middle or high range (i.e., δ ≥ λp + n−1/4), we have
E[δ |middle or high range] ≤ λ(1−λ)

1− 1
n

= λ(1 − λ) + o(1). Now, further conditioning on the

middle range, the expectation can only go lower. That is,

E[δ | middle range] ≤ E[δ | middle or high range] ≤ λ(1− λ) + o(1).

Moreover, the probability of the middle range is at least λ/2− o(1) ≥ λ/4.
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Therefore,

E[Q] ≥ (λ/4)E[Q(δ) |middle range] ≥ (λ/4)E[Q̃(δ) |middle range].

Applying Jensen to the convex function Q̃, we get

E[Q] ≥ (λ/4)Q̃(E[δ |middle range]) ≥ (λ/4)Q̃(λ(1− λ) + o(1)).

The final inequality uses the monotonicity of Q̃ and the fact that the conditional expectation
of Q̃ is at most λ(1 − λ) + o(1). Finally, it remains to estimate Q(λ(1 − λ) + o(1)). Plugging
in λ(1− λ) in place of δ, we see that

(1− p) log(λ− δ) + p log δ + h(p)− h(λ) = (1− p) log(λ2) + p log(λ(1− λ)) + h(p)− h(λ),

which on rearranging equals A := (1 − p) log
(

1−p
λ

)
+ p log

(
p

1−λ

)
. Therefore, Q̃(λ(1 − λ) +

o(1)) ≥ 2−(Aβ+Op(β2))n.

Therefore, E[Q] is at least the minimum of the two estimates, which is ≥ 2−(Aβ+Bβ2)n. �

Claim 22. Suppose A := (1− p) log
(

1−p
λ

)
+ p log

(
p

1−λ

)
. Then,

A− (1− 2p)
(h(λ)− h(p))

λ− p
≤ 5(λ− p)

p
.

Proof: Applying the inequality ln z ≤ z − 1 with z = 1−p
1−λ , we get

log(
1

1− λ
) ≤ log(

1

1− p
) + (λ− p) log e

(1− p)
≤ log(

1

1− p
) + 4(λ− p).

since p < 1/2 and e < 4. Plugging this in the definition of A, and also using λ ≥ p, we get

A ≤ (1− 2p) log(
1− p
p

) + 4p(λ− p) ≤ (1− 2p)h′(p) + 2(λ− p).

On the other hand, by the Lagrange Mean Value Theorem, there exists ξ ∈ (p, λ) such that
(h(λ)− h(p)) = h′(ξ)(λ− p). Since h′ is monotonically decreasing in (0, 1/2), we have

(h(λ)− h(p))

λ− p
= h′(ξ) ≥ h′(λ).

Finally, we have

h′(λ) = h′(p)−
∫ λ

p
|h′′(z)|dz = h′(p)−

∫ λ

p

log e

z(1− z)
dz ≥ h′(p)− 2(λ− p)

p(1− p)
≥ h′(p)− 4

p
(λ− p),

again using e < 4.
Plugging in both these estimates, we get

A− (1− 2p)
(h(λ)− h(p))

λ− p
≤ (1− 2p)h′(p) + 2(λ− p)− (1− 2p)h′(p) +

4(1− 2p)

p
(λ− p)

≤ (2 +
4(1− 2p)

p
)(λ− p).

Finally, using the obvious inequalities 2 < 1/p and 4(1− 2p)/p < 4/p, we get the result. �
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Claim 23. Suppose A := (1 − p) log
(

1−p
λ

)
+ p log

(
p

1−λ

)
and B = B(p) < ∞. Let ε be sufficiently

small and β := (λ− p)/(1− 2p+ ε). Then

Aβ +Bβ2 ≤ h(λ)− h(p)−A0(λ− p)ε+B0(λ− p)2

for some A0 > 0 and B0 <∞ depending on p (and independent of ε and λ).

Proof: From Claim 22, we have

Aβ ≤
[

1− 2p

λ− p
(h(λ)− h(p)) +

5(λ− p)
p

]
· λ− p

1− 2p+ ε

=
1− 2p

1− 2p+ ε
(h(λ)− h(p)) +

5(λ− p)2

p(1− 2p)

Assuming ε < 1− 2p, we can upper bound this by

Aβ ≤ 1− 2p− ε/2
1− 2p

(h(λ)− h(p)) +
5(λ− p)2

p(1− 2p)

= h(λ)− h(p)− ε

2(1− 2p)
(h(λ)− h(p)) +

5(λ− p)2

p(1− 2p)

Now, by the convexity of h(·), we have

h(λ)− h(p)

λ− p
≥ h(1/2)− h(p)

1/2− p
=

2(1− h(p))

1− 2p
.

Therefore, we have

Aβ ≤ h(λ)− h(p)− ε

2(1− 2p)

2(λ− p)(1− h(p))

1− 2p
+

5(λ− p)2

p(1− 2p)

≤ h(λ)− h(p)− ε(λ− p) 1− h(p)

(1− 2p)2
+

5(λ− p)2

p(1− 2p)
.

Also, Bβ2 ≤ B(λ−p)2
(1−2p)2

. Therefore,

Aβ +Bβ2 ≤ h(λ)− h(p)− ε(λ− p) 1− h(p)

(1− 2p)2
+ (

5

p(1− 2p)
+

B

(1− 2p)2
)(λ− p)2.

Therefore the claim holds with A0 := 1−h(p)
(1−2p)2

and B0 := 5
p(1−2p) + B

(1−2p)2
. �

B Bounds for Random codes (Erasure case)

We recall the notation. Let [q]∗ := [q]∪{∗}. For a ∈ [q]n∗ , define supp∗(a) to be the set of all indices i
such that ai 6= ∗. Let Eq(n, r) be the set of a ∈ [q]n∗ such that |supp∗(a)| = n−r. (We have |Eq(n, r)| =(
n
r

)
qn−r.) Say that a, b ∈ [q]n∗ agree with each other if ai = bi for all i ∈ supp∗(a)∩ supp∗(b). Finally,

we will abbreviate 1− p by α and Eq(n, pn) by E .
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B.1 Random General codes

Theorem 24 (Theorem 20 restated). For every 0 < p < 1 and γ > 0, with probability 1 − 2−Ωp,γ(n), a
random code of blocklength n and rate at least 1− p− γ is not (p, 1−p

2γ )-erasure list decodable.

Proof: Consider a random code of blocklength n and size 2k, where k = (α−γ)n, where α = 1−p.
For a list of L messages X = {x1, x2, . . . , xL} ⊆ {0, 1}k, and a ∈ E , define the indicator random
variable I(X, a) to be 1 iff Enc(x) agrees with a for all x ∈ X . Let Z :=

∑
X,a I(X, a). It is clear

that the code C is (p, L)-erasure list decodable if and only if Z = 0.

For every X and a, we have Pr [I(X, a) = 1] = q−αLn, so that E[Z] = q−αLn
(
qk

L

)(
n
np

)
qαn ≥

L−Lq−(αn−k)Lqαn
(
n
np

)2 using standard approximations. Also,

Var[Z] ≤
∑

X∩Y 6=∅

∑
a,b

Pr [I(X, a) = 1 and I(Y, b) = 1] .

Fix an arbitrary pair (X,Y ) with |X ∩ Y | = ` > 0. Further, let S, T denote the supports of a
and b respectively. Now, suppose I(X, a) = I(Y, b) = 1. Then, for an arbitrary z ∈ X ∩ Y , Enc(z)
agrees with both a and b. Since Enc(z) is a string over {0, 1} (not involving ∗), this implies that
a, b must themselves agree with each other.

The event I(X, a) = I(Y, b) = 1 requires that the encodings of points in X\Y (resp., Y \X)
agree with a (resp. b), whereas for z ∈ X ∩ Y , Enc(z) must agree with both a, b. Therefore, the
probability of this event is at most

q−(|S||X\Y |+|T ||Y \X|)q−|S∪T ||X∩Y | = q−2α(L−`)nq−|S∪T |`

Summing over all pairs (a, b), and noting that the number of pairs (a, b) such that supp∗(a) = S,
supp∗(b) = T , and a|S∩T = b|S∩T is equal to q|S∪T |, we get∑

a,b

Pr [I(X, a) = 1 and I(Y, b) = 1] =
∑
S,T

q−2α(L−`)nq−|S∪T |`q|S∪T |

≤
(
n

αn

)2

q−2α(L−`)nq−αn(`−1)

=

(
n

pn

)2

q−α(2L−`−1)n

Finally, summing over X,Y pairs with X ∩ Y 6= ∅, we get

Var[Z] ≤
L∑
`=1

L2Lqk(2L−`)q−αn(2L−`)qαn
(
n

np

)2

.

≤
L∑
`=1

L2L(q−kqαn)`q−αnE[Z]2.

≤ L2L+1q(γL−α)nE[Z]2.

Therefore, for L = α/2γ, we have Var[Z] = q−Ωp,γ(n)E[Z]2, and we are done. �
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B.2 Random Linear codes

Theorem 25 (Theorem 21 restated). There exists a constant cq > 0 such that for every 0 < p < 1 and

γ > 0, with probability 1− q−Ωp,γ(n), a random linear code of rate at least 1− p− γ is not (p, 1
2q

cqp(1−p)
2γ )-

erasure list decodable with high probability.

Proof: First of all, note that if we demonstrate a bad list containing L linearly independent points,
then it automatically implies a general bad list of size qL−1. This follows from the fact that if
c1, c2, . . . , cL agree with a, then any linear combination ζ1c1 + . . .+ ζLcL also agrees with a, as long
as ζ1 + ζ2 + . . .+ ζL = 1. (Note that the number of such linear combinations is exactly qL−1.)

Consider a random linear code C of dimension k = (α − γ)n, where α = 1 − p. For a linearly
independent set of L messages X ⊆ {0, 1}k, and for every a ∈ Eq(n, pn), define I(X, a) to be the
indicator random variable for the event that Enc(x) agrees with a for all x ∈ X . Also, define Z to
be
∑

X,a I(X, a). For a fixedX and a, E [I(X, a)] = q−αLn. Summing over the linearly independent
L-tuples X , we get

E [Z] ≥ 1

2
L−LqkL · q−αLn · qαn

(
n

np

)
Define ` = `(X,Y ) := dim(span(X) ∩ span(Y )). For a pair X , Y of lists, say X ∼ Y if span(X)

and span(Y ) have a nontrivial intersection; that is, ` > 0. If X 6∼ Y , then X and Y are linearly
independent of each other. In turn, the random variables I(X, a) and I(Y, b) are also independent
of each other. So, we get

Var[Z] ≤
∑
X∼Y

∑
a,b

Pr [I(X, a) = 1 and I(Y, b) = 1]

Fix a pair X,Y such that dim(span X ∩ span Y ) = ` > 0. As in Theorem 18, we define Z and
y0 ∈ Y \Z and write y0 =

∑
u∈X∪Z ζ(u)u for some scalars ζ(u). For any a, b ∈ E , let S = supp∗(a)

and T = supp∗(b). (Note that for general codes, for the event I(X, a) = I(Y, b) = 1 to occur, the
strings a and b had to agree with each other on S ∩ T ; this is not so for linear codes.) For any
x ∈ X , conditioned on the event Enc(x)|S = a|S , the random variable Enc(x)|T\S is uniformly
distributed over {0, 1}|T\S|. Since y0 =

∑
x∈X ζ(x)x+

∑
z∈Z ζ(z) z with ζ(x) 6= 0 for some x ∈ X ,

it follows that Enc(y0)|T\S is also uniformly distributed over {0, 1}|T\S|. Hence, conditioned on
the event that Enc(x) agrees with a for all x ∈ X and Enc(z) agrees with b for all z ∈ Z, the
probability that Enc(y0) agrees with b is at most q−|T\S|. Hence,∑

a,b

Pr [I(X, a) = I(Y, b) = 1] ≤ q−αn(2L−`) ·
∑
S,T

q|S|+|T |q−|T\S|,

= qαn(`−2L)q2αn

(
n

np

)2

ES,T

[
q−|T\S|

]
where the expectation is over S, T ⊆ [n] of size (1 − p)n, chosen independently and uniformly
randomly. By Lemma 26,

∑
a,b

Pr [I(X, a) = I(Y, b) = 1] ≤ q−αn(2L−`)q2αn

(
n

np

)2

q−cqp(1−p)n.
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for some c > 0. The variance of Z can thus be bounded by

Var[Z] ≤
L∑
`=1

L2Lqk(2L−`)qαn(`−2L)q2αn

(
n

np

)2

q−cqp(1−p)n

≤ L2L
L∑
`=1

qγ`nq−cqp(1−p)n
(
q(k−αn)Lqαn

(
n

np

))2

≤ L4L+1qγLnq−cqp(1−p)n(EZ)2

where the summand is maximized again for ` = L. For k = (α − γ)n, letting L = (cq/2) · p(1 −
p)/γ, we have Var Z = q−Ω(n)(EZ)2. We are thus done by an application of the second moment
method. �

Lemma 26. There exists cq > 0 (independent of n and p) such that if S, T are independent random subsets
of [n] of size (1− p)n, then

ES,T

[
q−|T\S|

]
= O

(
q−cqp(1−p)n

)
.

Proof: We prove this by thresholding on the value of |T\S|. By symmetry, the quantity ES,T
[
q−|T\S|

]
is the same as ET

[
q−|T\S|

]
where S is fixed to be {1, 2, . . . , (1 − p)n}. In this case, the random

variable |T ∩ S| has the hypergeometric distribution with mean (1 − p)2n. We will first upper
bound the probability of the event that |T\S| ≤ 1

2p(1 − p)n, which is equivalent to the tail event
|T ∩ S| ≥ E[|T ∩ S|] + 1

2p(1− p)n. By a standard Hoeffding bound for hypergeometric variables,

Pr

[
|T\S| ≤ 1

2
p(1− p)n

]
= Pr

[
|T ∩ S| ≥ (1− p)2n+

1

2
p · (1− p)n

]
≤

((
1− p

1− p/2

)1−p/2( p

p− p/2

)p−p/2)n
= 2

−
(

(1−p/2) log
1−p/2
1−p −p/2

)
n

It can be checked that in the interval [0, 1), the inequality

(1− p/2) log
1− p/2
1− p

≥ 7p/10

holds, so that the tail probability is given by Pr
[
|T\S| ≤ 1

2p(1− p)n
]
≤ 2−pn/5. Finally, the expec-

tation is bounded as

E
[
2−|T\S|

]
≤ Pr

[
|T\S| ≤ 1

2
p(1− p)n

]
· 1 + Pr

[
|T\S| ≥ 1

2
p(1− p)n

]
· q−

1
2
p(1−p)n

≤ 2−pn/5 + q−
1
2
p(1−p)n ≤ 2 · q−cqp(1−p)n

for cq = 1/(5 log q). �
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