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Abstract

We study certain combinatorial aspects of list-decoding, motivated by the exponential gap between
the known upper bound (of O(1/γ)) and lower bound (of Ωp(log(1/γ))) for the list-size needed to list
decode up to error fraction p with rate γ away from capacity, i.e., 1 − h(p) − γ (here p ∈ (0, 12 ) and
γ > 0). Our main result is the following:

• We prove that in any binary code C ⊆ {0, 1}n of rate 1− h(p)− γ, there must exist a set L ⊂ C
of Ωp(1/

√
γ) codewords such that the average distance of the points in L from their centroid is at

most pn. In other words, there must exist Ωp(1/
√
γ) codewords with low “average radius.”

The standard notion of list-decoding corresponds to working with the maximum distance of a
collection of codewords from a center instead of average distance. The average-radius form is in
itself quite natural; for instance, the classical Johnson bound in fact implies average-radius list-
decodability.

The remaining results concern the standard notion of list-decoding, and help clarify the current state of
affairs regarding combinatorial bounds for list-decoding:

• We give a short simple proof, over all fixed alphabets, of the above-mentioned Ωp(log(1/γ)) lower
bound. Earlier, this bound followed from a complicated, more general result of Blinovsky.

• We show that one cannot improve the Ωp(log(1/γ)) lower bound via techniques based on identi-
fying the zero-rate regime for list-decoding of constant-weight codes (this is a typical approach for
negative results in coding theory, including the Ωp(log(1/γ)) list-size lower bound). On a positive
note, our Ωp(1/

√
γ) lower bound for average-radius list-decoding circumvents this barrier.

• We exhibit a “reverse connection” between the existence of constant-weight and general codes
for list-decoding, showing that the best possible list-size, as a function of the gap γ of the rate to
the capacity limit, is the same up to constant factors for both constant-weight codes (with weight
bounded away from p by a constant) and general codes.

• We give simple second moment based proofs that w.h.p. a list-size of Ωp(1/γ) is needed for list-
decoding random codes from errors as well as erasures. For random linear codes, the correspond-
ing list-size bounds are Ωp(1/γ) for errors and exp(Ωp(1/γ)) for erasures.
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1 Introduction

The list-decoding problem for an error-correcting code C ⊆ Σn consists of finding the set of all codewords
of C with Hamming distance at most pn from an input string y ∈ Σn. Though it was originally introduced
in early work of Elias and Wozencraft [6, 15] in the context of estimating the decoding error probability
for random error models, recently the main interest in list-decoding has been for adversarial error models.
List decoding enables correcting up to a factor two more worst-case errors compared to algorithms that are
always restricted to output a unique answer, and this potential has even been realized algorithmically [10, 8].

In this work, we are interested in some fundamental combinatorial questions concerning list-decoding,
which highlight the important tradeoffs in this model. Fix p ∈ (0, 1

2) and a positive integer L. We say that
a binary code C ⊆ {0, 1}n is (p, L) list-decodable if every Hamming ball of radius pn has less than L
codewords. Here, p corresponds to the error-fraction and L to the list-size needed by the error-correction
algorithm. Note that (p, L) list-decodability imposes a sparsity requirement on the distribution of codewords
in the Hamming space. A natural combinatorial question that arises in this context is to place bounds on the
largest size of a code meeting this requirement. In particular, an outstanding open question is to characterize
the maximum rate (defined to be the limiting ratio 1

n log |C| as n→∞) of a (p, L) list-decodable code.
By a simple volume packing argument, it can be shown that a (p, L) list-decodable code has rate at most

1 − h(p) + o(1). (Throughout, for z ∈ [0, 1
2 ], we use h(z) to denote the binary entropy function at z.)

Indeed, picking a random center x, the Hamming ball B(x, pn) contains at least |C| ·
(
n
pn

)
2−n codewords

in expectation. Bounding this by (L− 1), we get the claim. On the positive side, in the limit of large L, the
rate of a (p, L) list-decodable code approaches the optimal 1 − h(p). More precisely, for any γ > 0, there
exists a (p, 1/γ) list-decodable code of rate at least 1−h(p)−γ. In fact, a random code of rate 1−h(p)−γ
is (p, 1/γ) list-decodable w.h.p. [16, 7], and a similar result holds for random linear codes (with list-size
Op(1/γ)) [9]. In other words, a dense random packing of 2(1−h(p)−γ)n Hamming balls of radius pn (and
therefore volume ≈ 2h(p)n each) is “near-perfect” w.h.p. in the sense that no point is covered by more than
Op(1/γ) balls.

The determination of the best asymptotic code rate of binary (p, L) list-decodable codes as p, L are held
fixed and the block length grows is wide open for every choice of p ∈ (0, 1

2) and integer L > 1. However,
we do know that for each fixed p ∈ (0, 1

2), this rate approaches 1 − h(p) in the limit as L → ∞. To
understand this rate of convergence as a function of list-size L, following [9], let us define Lp,γ to be the
minimum integer L such that there exist (p, L) list-decodable codes of rate 1− h(p)− γ for infinitely many
block lengths n (the quantity γ is the “gap” to “list-decoding capacity”). In [1], Blinovsky showed that a
(p, L) list-decodable code has rate at most 1− h(p)− 2−Θp(L). In particular, this implies that for any finite
L, a (p, L) list-decodable code has rate strictly below the optimal 1−h(p). Stated in terms of Lp,γ , his result
implies the corollaryLp,γ > Ωp(log(1/γ)) for rates γ-close to capacity. We provide a short and simple proof
of this corollary in Section 4. Our proof works almost as easily over non-binary alphabets. (Blinovsky’s
subsequent proof for the non-binary case in [3, 4] involved substantial technical effort. However, his results
also give non-trivial bounds for every finite L, as opposed to just the growth rate of Lp,γ .)

Observe the exponential gap (in terms of the dependence on γ) between the O(1/γ) upper bound and
Ωp(log(1/γ)) lower bounds on the quantity Lp,γ . Despite being a basic and fundamental question about
sphere packings in the Hamming space and its direct relevance to list-decoding, there has been no progress
on narrowing this asymptotic gap in the 25 years since the works of Zyablov-Pinsker [16] and Blinovsky [1].
This is the motivating challenge driving this work.
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1.1 Prior work on list-size lower bounds

We now discuss some lower bounds (besides Blinovsky’s general lower bound) on list-size that have been
obtained in restricted cases.

Rudra shows that the Op(1/γ) bound obtained via the probabilistic method for random codes is, in
fact, tight up to constant factors [14]. Formally, there exists L = Ωp(1/γ) such that a random code of
rate 1 − h(p) − γ is not (p, L) list-decodable w.h.p. His proof uses near-capacity-achieving codes for the
binary symmetric channel, the existence of which is promised by Shannon’s theorem, followed by a second
moment argument. We give a simpler proof of this result via a more direct use of the second moment
method. This has the advantage that it works uniformly for random general as well as random linear codes,
and for channels that introduce errors as well as erasures.

Guruswami and Vadhan [12] consider the problem of list-size bounds when the channel may corrupt
close to half the bits, that is, when p = 1

2−ε, and more generally p = 1−1/q−ε for codes over an alphabet
of size q. (Note that decoding is impossible if the channel could corrupt up to a half fraction of bits.) They
show that there exists c > 0 such that for all ε > 0 and all block lengths n, any (1

2 − ε, c/ε
2) list-decodable

code contains Oε(1) codewords. For p bounded away from 1
2 (or 1 − 1/q in the q-ary case), their methods

do not yield any nontrivial list-size lower bound as a function of gap γ to list-decoding capacity.

1.2 Our main results

We have already mentioned our new proof of the Ω(log(1/γ)) list-size lower bound for list-decoding general
codes, and the asymptotically optimal list-size lower bound for random (and random linear) codes.

Our main result concerns an average-radius variant of list-decoding. This variant was implicitly used in
[1, 12] en route their list-size lower bounds for standard list-decoding. In this work, we formally abstract
this notion: a code is (p, L) average-radius list-decodable if for every L codewords, the average distance
of their centroid from the L codewords exceeds pn. Note that this is a stronger requirement than (p, L)
list-decodability where only the maximum distance from any center point to the L codewords must exceed
pn.

We are able to prove nearly tight bounds on the achievable rate of a (p, L) average-radius list-decodable
code. To state our result formally, denote by Lavg

p,γ the minimum L such that there exists a (p, L) average-
radius list-decodable code family of rate 1 − h(p) − γ. A simple random coding argument shows that a
random code of 1 − h(p) − γ is (p, 1/γ) average-radius list-decodable (matching the list-decodability of
random codes). That is, Lavg

p,γ 6 1/γ. Our main technical result is a lower bound on the list-size that is
polynomially related to the upper bound, namely Lavg

p,γ > Ωp(γ
−1/2).

We remark that the classical Johnson bound in coding theory in fact proves the average-radius list-
decodability of codes with good minimum distance — namely, a binary code of relative distance δ is (J(δ−
δ/L), L) average-radius list-decodable, where J(z) = (1−

√
1− 2z)/2 for z ∈ [0, 1

2 ]. (This follows from
a direct inspection of the proof of the Johnson bound [11].) Also, one can show that if a binary code is
(1

2 − 2iε,O(1/(22iε2)) list-decodable for all i = 0, 1, 2, . . ., then it is also (1
2 − 2ε,O(1/ε2)) average-

radius list-decodable [5]. This shows that at least in the high noise regime, there is some reduction between
these notions. Further, a suitable soft version of average-radius list-decodability can be used to construct
matrices with a certain restricted isometry property [5]. For these reasons, we feel that average-radius
list-decodability is a natural notion to study, even beyond treating it as a vehicle to understand (standard)
list-decoding. In fact, somewhat surprisingly, one of our constructions of traditional list-decodable codes
with a strong weight requirement on the codewords proceeds naturally via average-radius list-decodability;
see Theorem 18 and the discussion following it for details.
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1.3 Our other results

We also prove several other results that clarify the landscape of combinatorial limitations of list-decodable
codes. Many results showing rate limitations in coding theory proceed via a typical approach in which they
pass to a constant weight λ ∈ (p, 1

2 ]; i.e., they restrict the codewords to be of weight exactly λn. They
show that under this restriction, a code with the stated properties must have a constant number of codewords
(that is, asymptotically zero rate). Mapping this bound back to the unrestricted setting one gets a rate upper
bound of 1− h(λ) for the original problem. For instance, the Elias-Bassalygo bound for rate R vs. relative
distance δ is of this nature (here λ is picked to be the Johnson radius for list-decoding for codes of relative
distance δ).

The above is also the approach taken in Blinovsky’s work [1] as well as that of [12]. We show that
such an approach does not and cannot give any bound better than Blinovsky’s Ωp(log(1/γ)) bound for Lp,γ .
More precisely, for any λ > p + 2−bpL for some bp > 0, we show that there exists a (p, L) (average-
radius) list-decodable code of rate Ωp,L(1). Thus in order to improve the lower bound, we must be able to
handle codes of strictly positive rate, and cannot deduce the bound by pinning down the zero-rate regime of
constant-weight codes. This perhaps points to why improvements to Blinovsky’s bounds have been difficult.
On a positive note, we remark that we are able to effect such a proof for average-radius list-decoding (some
details follow next).

To describe the method underlying our list-size lower bound for average-radius list-decoding, it is con-
venient to express the statement as an upper bound on rate in terms of list-size L. Note that a list-size lower
bound of L > Ωp(1/

√
γ) for (p, L) average-radius list-decodable codes of rate 1 − h(p) − γ amounts to

proving an upper bound of 1− h(p)− Ωp(1/L
2) on the rate of (p, L) average-radius list-decodable codes.

Our proof of such an upper bound proceeds by first showing a rate upper bound of h(λ)−h(p)− ap/L2 for
such codes when the codewords are all restricted to all have weight λn, for a suitable choice of λ, namely
λ = p + a′p/L. To map this bound back to the original setting (with no weight restrictions on codewords),
one simply notes that every (p, L) average-radius list-decodable code of rate R contains as a subcode, the
translate of a constant λn-weight code of rateR−(1−h(λ)). (The second step uses a well-known argument.)

Generally speaking, by passing to a constant-weight subcode, one can translate combinatorial results
on limitations of constant-weight codes to results showing limitations for the case of general codes. But
this leaves open the possibility that the problem of showing limitations of constant-weight codes may be
harder than the corresponding problem for general codes, or worse still, have a different answer making it
impossible to solve the problem for general codes via the methodology of passing to constant-weight codes.
We show that for the problem of list-decoding this is fortunately not the case, and there is, in fact, a “reverse
connection” of the following form: A rate upper bound of 1 − h(p) − γ for (p, L) list-decodable codes
implies a rate upper bound of h(λ) − h(p) −

(
λ−p
1
2
−p

)
γ for (p, L) list-decodable codes whose codewords

must all have Hamming weight λn. A similar claim holds also for average-radius list-decodability, though
we don’t state it formally.

1.4 Our proof techniques

Our proofs in this paper employ variants of the standard probabilistic method. We show an extremely simple
probabilistic argument that yields a Ωp(log(1/γ)) bound on the list-size of a standard list-decodable code;
we emphasize that this is qualitatively the tightest known bound in this regime.

For the “average-radius list-decoding” problem that we introduce, we are able to improve this list-size
bound to Ωp(1/

√
γ). The proof is based on the idea that instead of picking the “bad list-decoding center”

x uniformly at random, one can try to pick it randomly very close to a designated codeword c∗, and this
still gives similar guarantees on the number of near-by codewords. Now since the quantity of interest is
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the average radius, this close-by codeword gives enough savings for us. In order to estimate the probability
that a typical codeword c belongs to the list around x, we write this probability explicitly as a function of
the Hamming distance between c∗ and c, which is then lower bounded using properties of hypergeometric
distributions and Taylor approximations for the binary entropy function.

For limitations of list-decoding random codes, we define a random variable W that counts the number
of “violations” of the list-decoding property of the code. We then show that W has a exponentially large
mean, around which it is concentrated w.h.p. This yields that the code cannot be list-decodable with high
probability, for suitable values of rate and list-size parameters.

1.5 Organization

We define some useful notation and the formal notion of average-radius list-decodability in Section 2. Our
main list-size lower bound for average-radius list-decoding appears in Section 3. We give our short proof
of Blinovsky’s lower bounds for binary and general alphabets in Section 4. Our results about the zero-error
rate regime for constant-weight codes and the reverse connection between list-decoding bounds for general
codes and constant-weight codes appear in Section 5. Finally, our list-size lower bounds for random codes
are stated in Section 6; for reasons of space, the proofs for these bounds appear in the appendix.

2 Preliminaries and notation

2.1 List decoding

We recall some standard terminology regarding error-correcting codes.
Let [n] denote the index set {1, 2, . . . , n}. For q > 2, let [q] denote the set {0, 1, . . . , q − 1}. A q-ary

code refers to any subset C ⊆ [q]n, where n is the blocklength of C. We will mainly focus on the special
case of binary codes corresponding to q = 2. The rate R = R(C) is defined to be log |C|

n log q . For x ∈ [q]n and
S ⊆ [n], the restriction of x to the coordinates in S is denoted x|S . Let Supp(x) := {i ∈ [n] : xi 6= 0}. A
subcode of C is a subset C ′ of C. We say that C is a constant-weight code with weight w ∈ [0, n], if all its
codewords have weight exactly w. (Such codes are studied in Section 5.)

For x, y ∈ [q]n, define the Hamming distance between x and y, denoted d(x, y), to be the number of
coordinates in which x and y differ. The (Hamming) weight of x, denoted wt(x), is d(0, x), where 0 is the
vector in [q]n with zeroes in all coordinates. The (Hamming) ball of radius r centered at x, denoted B(x, r),
is the set {y ∈ [q]n : d(x, y) 6 r}. In this paper, we also need the following notions of distance of a (small)
“list” L of vectors from a “center” x:

Definition 1. Given a center x ∈ [q]n and a nonempty list L ⊆ [q]n, define the maximum and average
distances of L from x respectively by:

Dmax(x,L) := max{d(x, c) : c ∈ L}, and

Davg(x,L) := Ec∈L

[
d(x, c)

]
=

1

|L|
∑
c∈L

d(x, c).

It is well-known (cf., e.g., Lemma 5 in [12]) that the average-radius of a list is minimized by the coordi-
natewise majority (or centroid) of the list:

Fact 2. Let L = {c1, c2, . . . , cL} ⊆ {0, 1}n be an arbitrary list of codewords, and let a ∈ {0, 1}n be its
centroid; that is, for any coordinate j, the jth entry of a is the majority of the corresponding entries of
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c1, c2, . . . , cL (breaking ties arbitrarily). Then

Davg(a,L) = min
a′∈{0,1}n

Davg(a′,L).

Next, we formalize the error recovery capability of the code using list-decoding.

Definition 3. Fix 0 < p < 1
2 and a positive integer L. Let C be a q-ary code with blocklength n.

1. C is said to be (p, L) list-decodable if for all x ∈ [q]n, the ball B(x, pn) contains at most L − 1
codewords of C. Equivalently, for any x and any list L ⊆ C of size at least L, we have Dmax(x,L) >
pn.

2. C is said to be (p, L) average-radius list-decodable if for any center x and anyL-tupleL of codewords,
we have Davg(x,L) > pn.

For constant-weight codes, it is convenient to augment the above notation with the weight parameter:

Definition 4. Let p, L, q, n, C be as in Definition 3, and let 0 < λ 6 1
2 . C is said to be (λ; p, L) (average-

radius) list-decodable if C is (p, L) (average-radius) list-decodable, and every codeword in C has weight
exactly λn.

We remark that the list-decodability property is standard in literature. Moreover, while the notion of
average-radius list-decodability is formally introduced by this paper, it is already implicit in [1, 2, 12]. The
following proposition asserts that this is a syntactically stronger property than standard list-decodability:

Proposition 5. If C is (p, L) average-radius list-decodable, then C is (p, L) list-decodable.

Proof: The claim follows from the observation that the maximum distance of a list from a center x always
dominates its average distance from x. 2

In particular, any limitation we establish for list-decodable codes also carries over for average-radius
list-decodable codes.

Following (and extending) the notation in [9], we make the following definitions to quantify the tradeoffs
in the different parameters of a code: the rate R, the error-correction radius p, the list-size L, and the weight
λ of the codewords (for “constant weight” codes). Further, for general codes (without the constant-weight
restriction), it is usually more convenient to replace the rate R by the parameter γ := 1 − h(p) − R; this
measures the “gap” to the “limiting rate” or the “capacity” of 1− h(p) for (p,O(1)) list-decodable codes.

Fix p, λ ∈ (0, 1
2 ] such that p < λ, 0 6 R 6 1, and a positive integer L.

Definition 6. 1. Say that the triple (p, L;R) is achievable for list-decodable codes if there exist (p, L)
list-decodable codes of rate R for infinitely many lengths n.

Define Rp,L to be the supremum over R such that (p, L;R) is achievable for list-decodable codes,
and define γp,L := 1 − h(p) − Rp,L. Similarly, define Lp,γ to be the least integer L such that
(p, L; 1− h(p)− γ) is achievable.

2. (For constant weight codes.) Say that the 4-tuple (λ; p, L;R) is achievable if there exists (λ; p, L)
list-decodable codes of rate R. Define Rp,L(λ) to be the supremum rate R for which the 4-tuple
(λ; p, L;R) is achievable.

We can also define analogous quantities for average-radius list-decoding (denoted by a superscript avg),
but to prevent notational clutter, we will not explicitly do so. Throughout this paper, p is treated as a fixed
constant in (0, 1

2), and we will not attempt to optimize the dependence of our bounds on p.
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2.2 Standard distributions and functions

In this paper, we use ‘log’ for logarithms to base 2 and ‘ln’ for natural logarithms. Also, to avoid cumber-
some notation, we often denote bz by expb(z). Standard asymptotic notations (O, o, and Ω) is employed
throughout this paper; we sometimes subscript this notation by a parameter (typically p) to mean that the
hidden constant could depend arbitrarily on the parameter.

Our proofs make a heavy of hypergeometric distributions, which we review here for the sake of com-
pleteness as well as to set the notation. Suppose a set contains n objects, exactly m < n of which are
marked, and suppose we sample s < n objects uniformly at random from the set without replacement. Let
the random variable T count the number of marked objects in the sample; then T follows the hypergeometric
distribution with parameters (n,m, s). A simple counting argument shows that, for t 6 min{m, s},

Pr[T = t] =

(
m
t

)(
n−m
s−t
)(

n
s

) .

We will denote the above expression by f(n,m, s, t). By convention, f(n,m, s, t) is set to 0 if n <
max{m, s} or t > min{m, s}.

Our proofs rely on the following two properties of hypergeometric random variables. While these claims
are standard, we have included a proof in Appendix A.1 for completeness.

Fact 7 (Interchange property). For all integers n,m, s with n > max{m, s}, the hypergeometric distri-
bution with parameters (n,m, s) is identical to that with parameters (n, s,m). That is, for all t, we have
f(n,m, s, t) = f(n, s,m, t).

Fact 8. Suppose n,m,m′, s are integers such that m > m′ and n > max{m, s}. Then the hypergeo-
metric distribution with parameters (n,m, s) stochastically dominates the hypergeometric distribution with
parameters (n,m′, s). That is, for all τ , we have

∞∑
t=τ

f(n,m, s, t) >
∞∑
t=τ

f(n,m′, s, t).

Throughout this paper, we are especially concerned with the asymptotic behaviour of binomial coeffi-
cients, which is characterized in terms of the binary entropy function, defined as h(z) := −z log z − (1 −
z) log(1− z). We will use the following standard estimate without proof.

Fact 9. Fix z ∈ (0, 1), and suppose n→∞ such that zn is an integer. Then

exp2(h(z)n− o(n)) 6

(
n

zn

)
6

zn∑
i=0

(
n

i

)
6 exp2(h(z)n).

3 Bounds for average-radius list-decodability

In this section, we prove that the largest asymptotic rate of (p, L) average-radius list-decodable binary codes
is bounded by

1− h(p)− 1

L
− o(1) 6 Rp,L 6 1− h(p)− ap

L2
+ o(1),

where ap is a constant depending only on p. (Here p is a fixed constant bounded away from 0 and 1
2 .) Note

that the corresponding upper and lower bounds on γ := 1−h(p)−R are polynomially related, ignoring the
dependence on p.

We first state the rate lower bound.
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Theorem 10. Fix p ∈ (0, 1
2) and a positive integer L. Then, for all ε > 0 and all sufficiently large lengths

n, there exists a (p, L) average-radius list-decodable code of rate at least 1− h(p)− 1/L− ε.

Proof: We will show that a random code of the desired rate is (p, L) average-radius list-decodable w.h.p.
Consider a random codeC : {0, 1}Rn → {0, 1}n of rateR := 1−h(p)−1/L−ε; i.e., for each x ∈ {0, 1}Rn,
we pick C(x) independently and uniformly at random from {0, 1}n. For any a ∈ {0, 1}n and any distinct
L-tuple {x1, . . . , xL} ⊆ {0, 1}Rn, we are interested in bounding the probability of the event that D 6 Lpn,
where D :=

∑L
i=1 d(a,C(xi)).

To estimate this probability, let A be the {0, 1}-string of length Ln obtained by concatenating a repeat-
edly L times. Similarly, let Y be the {0, 1}-string obtained by concatenating C(x1), . . . , C(xL). In this
notation, note that D is simply the Hamming distance between A and Y . Now, Y is distributed uniformly
at random in {0, 1}Ln independently of the choice of A, hence the probability that D 6 pLn is at most
exp2 ((h(p)− 1)Ln) (Fact 9).

Finally, by a union bound over the choice of a and {x1, . . . , xL}, the code fails to be (p, L) average-
radius list-decodable with probability at most

2n
(

2Rn

L

)
· exp2 ((h(p)− 1)Ln) 6 exp2 (n+ (R+ h(p)− 1)Ln) = exp2 (−εLn) ,

for the given choice of R, establishing the claim. 2

We now show an upper bound of 1− h(p)− ap/L2 on the rate of a (p, L) average-radius list-decodable
code. As stated in the Introduction, the main idea behind the construction is that instead of picking the “bad
list decoding center” x uniformly at random, we pick it randomly very close to a designated codeword c∗

(which itself is a uniformly random element from C). Now as long as we are guaranteed to find a list of
L− 1 other codewords near the center, we can include c∗ in our list to lower its average radius.

However formalizing the above intuition into a proof is nontrivial, since our restriction of the center x to
be very close to c∗ introduces statistical dependencies while analyzing the number of codewords near x. We
are able to control these dependencies, but this requires some heavy calculations involving hypergeometric
distributions and the entropy function.

We are now ready to state our main result establishing a rate upper bound for (p, L) average-radius list-
decodable codes. In fact, the bulk of the work is to show an analogous upper bound for the special case of a
constant-weight code C, i.e., all codewords have weight exactly λn, for some λ ∈ (p, 1

2). We can then map
this bound for general codes using a standard argument (given in Lemma 12).

Theorem 11 (Main theorem). Fix p ∈ (0, 1
2), and let L be a sufficiently large positive integer. Then there

exist ap, a′p > 0 (depending only on p) such that the following holds (for sufficiently large lengths n):
1. If C is a (p, L) average-radius list-decodable code, then C has rate at most 1−h(p)−ap/L2 + o(1).

2. For λ := p + a′p/L, if C is a (λ; p, L) average-radius list-decodable code, then C has rate at most
h(λ)− h(p)− ap/L2 + o(1).

As already mentioned in Section 1.3, the second claim readily implies the first via the following well-
known argument (a partial converse to this statement for list-decoding will be given in Section 5):

Lemma 12. Let λ ∈ (p, 1
2 ] be such that λn is an integer. If C is a (p, L) average-radius list-decodable code

of rate R = 1 − h(p) − γ, then there exists a (λ; p, L) average-radius list-decodable code of rate at least
h(λ)− h(p)− γ − o(1).

Proof: For a random center x, the expected number of codewords c ∈ C with d(x, c) = λn is exactly
|C| ·

(
n
λn

)
2−n. For the assumed value of rate R, using Fact 9, this is at least

exp2 ((h(λ)− h(p)− γ − o(1))n) .
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Then there exists an x such that the subcode C ′ ⊆ C consisting of all codewords at a distance λn from x
has rate at least h(λ)− h(p)− γ − o(1). The claim follows by translating C ′ by −x. 2

Before we proceed to the proof of the first part of Theorem 11, we will establish the following folklore
result, whose proof illustrates our idea in a simple case.

Lemma 13 (A warm-up lemma). Fix p, λ so that p < λ 6 1
2 . Then, if C is a (λ; p, L) list-decodable code,

then C has rate at most h(λ)− h(p) + o(1).

Proof: The main idea behind the proof is that a random center of a particular weight (carefully chosen) is
close to a large number of codewords in expectation. Pick a random subset S ⊆ [n] of coordinates of size
αn, with α := (λ − p)/(1 − 2p), and let S := [n] r S. (The motivation for this choice of α will be clear
shortly.) Define the center x be the indicator vector of S; i.e., Supp(x) = S.

Consider the set L of codewords c ∈ C such that wt(c|S) > (1− p)αn; this is our candidate bad list of
codewords. Then each c ∈ L is close to c:

d(x, c) = (αn− wt(c|S)) + wt(c|S) 6 αpn+ (λ− α(1− p))n = (λ− α(1− 2p))n,

which equals pn for the given choice of α. Hence the size of L is a lower bound on the list-size of the code.
We complete the proof by computing E |L|. For any fixed c ∈ C, the random variable wt(c|S) follows

the hypergeometric distribution with parameters (n, λn, αn), which is identical to the hypergeometric dis-
tribution with parameters (n, αn, λn) (see Fact 7). Hence the probability that c is included in the list L is at
least

f(n, αn, λn, α(1− p)n) :=

(
αn

(1−p)αn
)( (1−α)n

(λ−α(1−p))n
)(

n
λn

) =

(
αn
pαn

)( (1−α)n
p(1−α)n

)(
n
λn

) ,

where the second step uses the identity λ− (1− p)α = p(1− α), which holds for our particular choice of
α. As n→∞, this is equal to

exp2 (αnh(p) + (1− α)nh(p)− h(λ)n− o(n)) = exp2((h(p)− h(λ)− o(1))n).

Thus, by linearity of expectations, the expected size of L is at least |C| · exp2((h(p)− h(λ)− o(1))n).
On the other hand, the (p, L) list-decodability of C says that |L| 6 L (with probability 1). Comparing these
lower and upper bounds on E |L| yields the claim. 2

Proof of Theorem 11 (part 2): At a high level, we proceed as in the proof of Lemma 13, but in addition
to the bad list L of codewords, we will a special codeword c∗ ∈ C such that d(x, c∗) is much smaller than
the codewords in L. Then defining L∗ to consist of c∗ and (L− 1) other codewords from L, we see that the
average distance of L∗ is much smaller than before, thus enabling us to obtain an improved rate bound.

We now provide the details. Pick a uniformly random codeword c∗ ∈ C. Let S ⊆ [n] be a random
subset of Supp(c∗) of size βn, where the parameter β is chosen appropriately later1 (this plays the role of
α in Lemma 13). Also, let x be the indicator vector of S.

As before, consider the set L of codewords c ∈ C such that wt(c|S) > (1 − p)|S|. For a fixed c ∈ C,
the random variable wt(c|S) follows the hypergeometric distribution with parameters (λn, (λ − δ)n, βn),
where δ = δ(c∗, c) is defined by d(c∗, c) := 2δn. (Observe that the normalization ensures that 0 6 δ 6 λ
for all pairs c∗, c ∈ C.) To see this, notice that we are sampling βn coordinates from Supp(c∗) without
replacement, and that wt(c|S) simply counts the number of coordinates picked from Supp(c∗) ∩ Supp(c)

1At this point, the reader might find it useful to think of both λ − p and β as Θ(1/L); roughly speaking, this setting translates
to a rate upper bound of h(λ) − h(p) − Ω(β/L).
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(the size of this intersection is exactly (λ− δ)n). Thus, conditioned on c∗, the probability that a fixed c ∈ C
is included in L is

Q(δ) :=

βn∑
w=(1−p)βn

f(λn, (λ− δ)n, βn,w). (1)

By linearity of expectations, and taking expectations over c∗, the expected size of L can be written as

Ec∗∈C

[∑
c∈C

Q(δ(c∗, c))

]
= |C| ·E Q(δ(c∗, c)), (2)

where both c∗ and c are picked uniformly at random from C. The following lemma provides a lower bound
on this expectation.

Lemma 14. For A1 := (1− p) log
(

1−p
λ

)
+ p log

(
p

1−λ

)
and A2 = 2

p2
, we have

E Q(δ(c∗, c)) > exp2

(
−(A1β +A2β

2 + o(1))n
)
,

where the expectation is taken over pairs c∗, c of codewords.

Remark. In the above estimate, the coefficient A1 is tight for all values of p and λ (assuming β → 0 keeping
p and λ fixed), but A2 can be improved significantly. For our purposes, it suffices that A2 depends on p
alone, and not on λ or β. 2

Proof: By a standard application of the Cauchy-Schwarz inequality, we can show that E δ 6 λ(1− λ). To
see this, let fj denote the fraction of codewords of C that have 1 in the jth coordinate. The weight constraint
on the codewords implies that

∑n
j=1 fj = λn. Therefore,

Ec∗,c [d(c∗, c)] =
n∑
j=1

2fj(1− fj) = 2
n∑
j=1

fj − 2
n∑
j=1

f2
j

6 2

n∑
j=1

fj −
2

n

 n∑
j=1

fj

2

= 2λn− 2λ2n,

and so, E δ 6 λ(1 − λ). Now, by Markov’s inequality, the probability that δ 6 λ(1 − λ) + 1/n is at least
1− λ(1−λ)

λ(1−λ)+ 1
n

> 1
n .

Moreover, using Fact 8 (with τ := β(1−p)), we know thatQ(δ) is a monotonically decreasing function
of δ. Therefore,

E Q(δ(c∗, c)) >
1

n
·Q(λ(1− λ) + o(1))

>
1

n
· f
(
λn, (λ2 − o(1))n, βn, β(1− p)n

)
.

The rest of the proof consists of lower bounding the right hand side. As n → ∞, using Fact 9, we get
E Q(δ) > exp2(εn− o(n)), where

ε := λ2 · h
(

(1− p)β
λ2

)
+ λ(1− λ) · h

(
pβ

λ(1− λ)

)
− λ · h

(
β

λ

)
.
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We are interested in lower bounding the exponent ε, and we do this by bounding each of the above entropy
terms individually using Fact 24 (see Appendix A.2), and canceling common terms. We just mention the
final bound ignoring the intermediate steps:

ε > β

(
(1− p) log

λ2

1− p
+ p log

λ(1− λ)

p
− log λ

)
− β2(log e)

(
(1− p)2

λ2
+

p2

λ(1− λ)

)
.

Noting that

(1− p) log
λ2

1− p
+ p log

λ(1− λ)

p
− log λ = (1− p) log

λ

1− p
+ p log

1− λ
p

= −A1,

and

(log e)

(
(1− p)2

λ2
+

p2

λ(1− λ)

)
6 (log e)

(
1

p2
+ 1

)
6

2

p2
,

we get the claim. 2

We now return to the proof of Theorem 11. From (2) and Lemma 14, if the code C has rate at least
A1β +A2β

2 + o(1) (for a suitable o(1) term), the list L has size at least L in expectation. Fix some choice
of c∗ and S such that |L| > L. Let L∗ be any list containing c∗ and L− 1 other codewords from L; we are
interested in Davg(x,L∗). Clearly, d(x, c∗) = (λ − β)n. On the other hand, for c ∈ L∗ r {c∗}, we can
bound its distance from x as: d(x, c) 6 βpn+ (λ− β(1− p))n = (λ− β(1− 2p))n, where the two terms
are respectively the contribution by S and [n] r S. Averaging these L distances, we get that

Davg(x,L∗) 6 (λ− β(1− 2p+ 2p/L))n.

Now, we pick β so that this expression is at most pn; i.e., set

β :=
λ− p

1− 2p+ 2p/L
. (3)

(Compare with the choice of α in Lemma 13.) For this choice of β, the list L∗ violates the average-radius
list-decodability property of C.

Thus the rate of a (p, L) average-radius list-decodable code is upper bounded byR 6 A1β+A2β
2+o(1),

where β is given by (3). Further technical manipulations brings this to the following more convenient form:
If L > 2p

1−2p , then

R 6 (h(λ)− h(p))− B1(λ− p)
L

+B2(λ− p)2 + o(1).

for B1 := 1
2p and B2 := 3

p2(1−2p)2
; see Lemma 26 in Appendix A.2 for a proof. Note that the second term

dominates the third whenever λ− p is small enough. In particular, for

λ := p+
B1

2B2L
= p+

p3(1− 2p)2

12L
,

the rate is upper bounded by

R 6 h(λ)− h(p)− B2
1

4B2L2
+ o(1) = h(λ)− h(p)− p4(1− 2p)2

48L2
+ o(1).

2
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4 Bounds for (standard) list-decodability

In this section, we consider the rate vs. list-size tradeoff for the traditional list-decodability notion. For the
special case when the fraction of errors is close to 1

2 , [12] showed that any code family of growing size
correcting up to 1

2 − ε fraction of errors must have a list-size Ω(1/ε2), which is optimal up to constant
factors. When p is bounded away from 1/2, Blinovsky [1, 3] gives the best known bounds on the rate of
a (p, L) list-decodable code. His results imply (see [14] for the calculations) that any (p, L) list-decodable
code of rate 1 − h(p) − γ has list-size L at least Ωp(log(1/γ)). We give a short and simple proof of this
latter claim in this section.

Theorem 15 ([1, 3]). 1. Suppose C is (λ; p, L) list-decodable code with λ = p + 1
2p
L. Then |C| 6

2L2/p, independent of its blocklength n. (In particular, the rate approaches 0 as n→∞.)

2. Any (p, L) list-decodable code has rate at most 1− h(p)− Ωp(p
L).

Proof:

1. For the sake of contradiction, assume that |C| > 2L2/p. Pick a randomL-tuple of codewords (without
replacement) L = {c1, c2, . . . , cL}, and let S be the set of indices i ∈ [n] such that each cj ∈ L has 1
in the ith coordinate. Define x to be the indicator vector of S. Note that d(x, cj) = wt(cj)−wt(x) =
λn− |S|. So Dmax(x,L) is also λn− |S|, and hence, EDmax(x,L) = λn−E |S|. Thus to obtain a
contradiction, it suffices to show that E |S| > (λ− p)n = 1

2p
Ln.

Let M := |C| be the total number of codewords of C, and let Mi be the number of codewords of C
with 1 in the ith position. Then the probability that i ∈ S is equal to g(Mi)/

(
M
L

)
, where the function

g : R>0 → R>0 is defined by g(z) :=
(max{z,L−1}

L

)
. By standard closure properties of convex

functions, g is convex on R. (Specifically, z 7→ max{z, L− 1} is convex over R, and restricted to its
image, namely, the interval [L − 1,∞), the function z 7→

(
z
L

)
is convex. Hence their composition,

namely g, is convex as well.)

We are now ready to bound E |S|:

1

n
E |S| (a)

=
1(
M
L

) · 1

n

n∑
i=1

g(Mi)
(b)

>
1(
M
L

) · g( 1

n

n∑
i=1

Mi

)
=
g(λM)(

M
L

) (c)
=

(
λM
L

)(
M
L

) .
Here we have used (a) the linearity of expectations, (b) Jensen’s inequality, and (c) the fact that
λM > 2L2 > L − 1. We complete the proof using a straightforward approximation of the binomial
coefficients.

1

n
E |S| > (λM − L)L

ML
= λL

(
1− L

λM

)L
> λL

(
1− L2

λM

)
>

1

2
λL >

1

2
pL.

2. By Lemma 12, the rate of a general (p, L) list-decodable code is upper bounded by 1−h
(
p+ 1

2p
L
)
+

o(1), which, by Fact 23 (see Section A in the Appendix), is at most 1− h(p)− 1
4(1− 2p) · pL + o(1).

2

The above method can be adapted for q-ary codes with an additional trick:

Theorem 16. 1. Suppose C is a q-ary (λ; p, L) list-decodable code with λ = p + 1
2Lp

L. Then |C| 6
2L2/λ.

2. Suppose C is a q-ary (p, L) list-decodable code. Then there exists a constant b = bp,q > 0 such that
the rate of C is at most 1− hq(p)− Ωq,p

(
1
Lp

L
)
.
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Our proof of this theorem uses the following lemma due to Erdös (see Section 2.1 of [13] for a reference.)
This result was implicitly established in our proof of Theorem 15, so we will omit a formal proof.

Lemma 17 (Erdös 1964). Suppose A is a set system over the ground set [n], such that each A ∈ A has size
at least λn. Then, if |A| > 2L2/λ, then there exist distinct A1, A2, . . . , AL in A such that

⋂L
i=1Ai has size

at least 1
2nλ

L.

Proof of Theorem 16:

1. Towards a contradiction, assume |C| > 2L2/λ. Consider the set system A = {Supp(c) : c ∈ C}.
By Lemma 17, there exists an L-tuple {c1, c2, . . . , cL} of codewords such that the intersection of their
support, say S, has size at least 1

2nλ
L > 1

2np
L. Arbitrarily partition the coordinates in S into L parts,

say S1, . . . , SL so that each Sj has size at least 1
2Lp

Ln.

Now consider a center x such that x agrees with cj on all coordinates i ∈ Sj ; for i /∈ S, set xi to be
zero. Then, clearly, d(x, cj) 6 wt(cj) − |Sj | = λn − 1

2Lp
L · n = pn. Thus the list {c1, . . . , cL}

contradicts the (p, L) list-decodability of C.

2. From a q-ary generalization of Lemma 12 (proof omitted), the rate of a (p, L) q-ary list-decodable
code is at least 1 − hq

(
p+ 1

2Lp
L
)
. For L large enough, this is at most 1 − hq(p) − Ωq,p

(
1

2Lp
L
)
,

which implies the claim.

2

5 Constant-weight vs. General codes

In this section, we will understand the rate vs. list-size trade-offs for constant-weight codes, that is, codes
with every codeword having weight λn, where λ ∈ (p, 1

2 ] is a parameter. (Setting λ = 1
2 roughly corre-

sponds to arbitrary codes having no weight restrictions.) As observed earlier, a typical approach in coding
theory to establish rate upper bounds is to study the problem under the above constant-weight restriction.
One then proceeds to show a strong negative result of the flavor that a code with the stated properties must
have a constant size (and in particular zero rate). For instance, the first part of Theorem 15 above is of this
form. Finally, mapping this bound to arbitrary codes, one obtains a rate upper bound of 1 − h(λ) for the
original problem. (Note that Lemma 12 provides a particular formal example of the last step.)

In particular, Blinovsky’s rate upper bound (Theorem 15) of 1−h(p)−2−O(L) for (p, L) list-decodable
codes follows this approach.2 More precisely, he proves that, under the weight-λ restriction, such code must
have zero rate for all λ 6 p + 2−bpL for some bp < ∞. One may then imagine improving the rate upper
bound to 1 − h(p) − L−O(1) simply by establishing the latter result for correspondingly higher values of λ
(i.e., up to p+ L−O(1)). We show that this approach cannot work by establishing that (average-radius) list-
decodable codes of positive (though possibly small) rates exist as long as λ−p > 2−O(L). Thus Blinovsky’s
result identifies the correct zero-rate regime for the list-decoding problem; in particular, his bound is also
the best possible if we restrict ourselves to this approach. In this context, it is also worth noting that for
average-radius list-decodable codes, Theorem 11 already provides a better rate upper bound than what the
zero-rate regime indicates, thus suggesting that the “zero-rate regime barrier” is not an inherent obstacle,
but more a limitation of the current proof techniques.

In the opposite direction, we show that the task of establishing rate upper bounds for constant weight
codes is not significantly harder than the general problem. Formally, we state that that if the “gap to list-
decoding capacity” for general codes is γ, then the gap to capacity for weight-λn codes is at least

(
λ−p
1
2
−p

)
γ.

2For notational ease, we suppress the dependence on p in the O and Ω notations in this informal discussion.
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Stated differently, if our goal is to establish a L−O(1) lower bound on the gap γ, then we do not lose by first
passing to a suitable λ (that is not too close to p).

5.1 Zero-rate regime

Theorem 18. Fix p ∈ (0, 1
2), and set b = bp := 1

2

(
1
2 − p

)2. Then for L > 1
2b log

(
32
b

)
and all sufficiently

large n, there exists a (λ; p, L) average-radius list-decodable code of rate at least R − o(1), with λ 6
p+ 5e−bL and R := min{e−2bL, e−bL/(6L)} = Ωp,L(1).

Proof: The basic idea of the proof is that a random code is (p, L) average-radius list-decodable, even if the
codewords are biased to have weight close to pn. We then use expurgation to ensure that all codewords have
the same weight. We now provide the details. Set ε := e−bL and λ′ := p + 4ε; verify that for the assumed
values of L, we have 1

2 − λ
′ > 1

2

(
1
2 − p

)
. Choose a random code C : {0, 1}Rn → {0, 1}n in the following

way. For each x ∈ {0, 1}Rn, each coordinate of C(x) chosen independently to be 1 with probability λ′ (and
0 with the complementary probability).

Firstly, for a fixed x ∈ {0, 1}Rn, by Chernoff bound, its encoding C(x) has weight in the interval
(λ′ ± ε)n with probability at least 1 − 2 exp(−2ε2n) > 1 − exp2(−2ε2n + o(n)). By union bound, this
holds for all x with probability at least 1− exp2(Rn− 2ε2n+ o(n)).

Next, we consider the event that C is (p, L) average-radius list-decodable. Specifically, we require that
for every L-tuple of messages X := {x1, . . . , xL} ⊆ {0, 1}Rn and every center a ∈ {0, 1}n, the encodings
of the xis are pn-far from a on average. It is easy to bound the probability of this event for a fixed pair
(a,X), and naively, we might hope to achieve this for all such pairs by a simple union bound. However, this
does not quite work, since the union bound over a contributes a 2n factor loss to the probability and results
in a trivial bound. To get around this issue, we note that for any list of messages X , it suffices to control
the above event for a specific choice of a, namely, an arbitrary centroid of the encodings of x1, . . . , xL; we
then finish the argument by a union bound over all X . Since the centroid minimizes the average distance of
a center to a given list (see Fact 2), the code is now guaranteed to be (p, L) average-radius list-decodable.

Fix an L-list X := {x1, . . . , xL} of messages, let a denote the centroid of their encodings. For a fixed
j ∈ [n], by Chernoff bound, the probability that the jth entry of a is 1 is at most exp2

(
−2
(

1
2 − λ

′)2 L),
which is at most

exp2

(
−1

2

(
1

2
− p
)2

L

)
= exp(−bL) = ε.

Moreover, the entries of a in the n coordinates are all independent, and hence, by another application of the
Chernoff bound (in the multiplicative form), the weight of a is at most 2εn, except with probability at most
exp2(−εn/3). Assuming that this event holds, for each x ∈ X ,

d(a, x) > wt(x)− wt(a) > (λ′ − ε)n− 2εn > (λ′ − 4ε)n =: pn,

and hence the average distance of X from a is also more than pn. Finally, by a union bound over X , we can
conclude that the code is (p, L) average-radius list-decodable, except with probability exp2(RLn− εn/3).

Thus, for R = min{ε2, ε/(6L)}, with probability 1− o(1), the random code C satisfies the following:

• Each codeword in C has weight at most (λ′ + ε)n. Note that λ′ + ε = p+ 5ε = p+ 5e−bL.

• C is (p, L) average-radius list-decodable.

Fix anyC with the above properties. This satisfies all our requirements, except that its codewords could have
varying weights. Fortunately, however, this is easily fixed, since, by the pigeonhole principle, C contains a
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constant-weight subcode C ′ of size at least |C|/(n+ 1), and hence of rate R− o(1). Now, if w0 denotes the
weight of the codewords of C ′, then note that w0 6 (p+ 5e−bL)n, establishing the claim with λ := w0/n.
2

Note that the statement of Theorem 18 also yields as a corollary (λ; p, L) list-decodable codes of positive
rate with λ exponentially close to p, since standard list-decodability is only a weaker requirement. However,
interestingly, the above proof does not work directly because we do not have a simple analogue of Fact 2
identifying the best center that minimizes the maximum radius of a list. Indeed, the authors are not aware of
any proof of this result except going through average-radius list-decodability.

5.2 A reverse connection between constant-weight and arbitrary codes

Lemma 19. Fix p, λ such that 0 < p < λ 6 1
2 . Then in the notation of Definition 6, if γ := 1−h(p)−Rp,L,

then

h(λ)− h(p)− γ 6 Rp,L(λ) 6 h(λ)− h(p)−

(
λ− p
1
2 − p

)
γ.

Proof: The left inequality is essentially the content of Lemma 12; we show the second inequality here. The
manipulations in this proof are of a similar flavor to those in Lemma 13, but the exact details are different.

Suppose C is a (λ; p, L) list-decodable code of blocklength n and rate R, such that each codeword in C
has weight exactly λn. Pick a random subset S ⊆ [n] of coordinates of size α2n, with α2 := (λ−p)/(1

2−p),
and let S := [n]r S. (Interestingly, our setting of α2 differs from the parameter α employed in the proof of
Lemma 13 only by a factor of 2. The motivation for this choice of α2 will become clear shortly.) Consider
the subcode C ′ consisting of codewords c ∈ C such that wt(c|S) > α2n/2. For our choice of α2, one can
verify that if c ∈ C ′, then c has weight at most p(1−α2)n = p|S|when restricted to S (this is the motivation
behind our choice of α2).

Consider the restriction of C ′ to the coordinates in S, C ′|S := {c|S : c ∈ C ′}. Our key observation
is that C ′|S , as a code of blocklength α2n, is (p, L) list-decodable. Suppose not. Then there exists a center
x′ ∈ {0, 1}S and a size-L list L ⊆ C such that d(x′, c|S) 6 pα2n for all c ∈ L. Now, extend x′ to
x ∈ {0, 1}n such that x agrees with x′ on (the coordinates in) S and is zero on the remaining coordinates.
Then L violates the (p, L) list-decodability of C, since for every c ∈ L,

d(x, c) = d(x′, c|S) + wt(c|S) 6 pα2n+ p(1− α2)n = pn.

Therefore, C ′|S must be (p, L) list-decodable, and hence, by the hypothesis of the lemma, its size is at most
exp2((1 − h(p) − γ + o(1))α2n) with probability 1. (It is crucial for this proof that the blocklength of C ′

is α2n, which is significantly smaller than n.)
Now, for a fixed c ∈ C, the random variable wt(c|S) follows the hypergeometric distribution with

parameters (n, λn, α2n), which is identical to the hypergeometric distribution with parameters (n, α2n, λn).
Hence, the probability that c is included in C ′ is at least

f(n, α2n, λn, α2n/2) =

(
α2n
α2n/2

)( (1−α2)n
(λ−α2/2)n

)(
n
λn

)
(∗)
=

(
α2n
α2n/2

)( (1−α2)n
p(1−α2)n

)(
n
λn

)
> exp2 (α2n+ h(p)(1− α2)n− h(λ)n− o(n)) .
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In the step marked (∗), we have used the the identity λ− α2/2 = p(1− α2), which holds for our particular
choice of α2. Summing this over all c ∈ C, the expected size of C ′|S is at least

exp2 (Rn+ α2n+ h(p)(1− α2)n− h(λ)n− o(n)) .

Finally, comparing the upper and lower bound on the expected size of C ′|S , we get

R+ α2 + (1− α2)h(p)− h(λ)− o(1) 6 (1− h(p)− γ)α2 + o(1),

which can be rearranged to give the desired bound R 6 h(λ)− h(p)− α2γ + o(1). 2

6 List-size bounds for random codes

In this section, we establish optimal (up to constant factors) bounds on the list-size of random codes, both
general as well as linear.3 Results of this vein were already shown by Rudra for the errors case [14], based on
the large near-disjoint packings of Hamming balls implied by Shannon’s capacity theorems. Here we give
a direct proof based on the second moment method.4 In addition, our proofs extend easily to give list-size
bounds for list-decodable codes for erasure channels as well.

Throughout this section and Appendix B, we work with random q-ary codes – both general and linear.
A random q-ary code (for q > 2) is simply a random map C : [q]k → [q]n where, for each x ∈ [q]k, its
image C(x) is picked independently and uniformly at random from [q]n. On the other hand, a q-ary random
linear code is a random linear map C : Fkq → Fnq obtained in the following way. We fix an arbitrary basis
(typically, but not necessarily, the standard basis) for the vector space Fkq , and the encoding of the basis
vectors is chosen independently and uniformly at random from Fnq ; the encoding map C naturally extends
for all messages in Fkq via linearity.

6.1 Proof idea

Our results proceed directly via the second moment method. Towards this goal, we define a random variable
W that counts the number of witnesses (i.e., a bad list of codewords together with the center) that certify
the violation of the (p, L) list-decodability property. Thus the code is (p, L) list-decodable if and only if
W = 0. We then show that (a) W has large expectation (i.e., EW is exponential in n), but (b) its variance
is relatively small (i.e., VarW/(EW )2 is exponentially small in n). Then using the Chebyshev inequality
(Fact 28), we can conclude that W > 0, except with an exponentially small probability, which is what we
set out to show.

As a particular example, consider the case of random general codes under errors. In this case, the
“potential violations” of the list-decoding property are indexed by pairs (a,X), where a ∈ {0, 1}n is an
arbitrary center, and X is an arbitrary distinct L-tuple of messages {x1, x2, . . . , xL} ⊆ {0, 1}k. We thus
define the indicator random variable I(a,X) for the event that d(a,C(x)) 6 pn for all x ∈ X , and let
W :=

∑
a,X I(a,X). The mean and variance estimates for W follow by standard calculations. See the

formal proofs for details.
3In contrast to Sections 3–5, our results on random codes are stated as bounds on the list-size in terms of the rate. Recall that a

rate upper bound of 1 − hq(p) − Ωq,p(1/L) corresponds to a list-size bound of Ωq,p(1/γ) for codes of rate 1 − hq(p) − γ.
4We remark that the argument in [14] is also based on the second moment method, but applied to a more complicated random

variable.
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6.2 Error list-decodability bounds

We state our bounds for standard list-decodable codes (under errors), deferring the complete proofs to Ap-
pendices B.1 and B.2.

Theorem 20. Fix q > 2, 0 < p < 1− 1/q and γ > 0.

1. A random q-ary code of rate 1 − hq(p) − γ is
(
p,

1−hq(p)
2γ

)
list-decodable with probability at most

expq (−Ωp,γ(n)).

2. A random q-ary linear code of rate 1− hq(p)− γ is
(
p,

δq,p
2γ

)
list-decodable with probability at most

expq (−Ωp,γ(n)). Here, δq,p is a constant depending on only q and p.

6.3 Erasure list-decodability bounds

The technique outlined in Section 6.1 also extends to give list-size bounds for random q-ary codes under
the erasure model, which we now review briefly. In this model, the output alphabet is the usual alphabet [q]
augmented with a special erasure symbol ‘?’. For a string a ∈ ([q] ∪ {?})n, define Supp∗(a) to be the set
of indices i such that ai 6= ?. Also, we say that a, b ∈ ([q] ∪ {?})n agree with each other if ai = bi for all
i ∈ Supp∗(a) ∩ Supp∗(b).

Definition 21. A code C ⊆ [q]n is said to be (p, L) erasure list-decodable if for all a ∈ ([q] ∪ {?})n
satisfying |Supp∗(a)| = (1− p)n, at most L− 1 codewords of C (treated as strings over ([q]∪ {?})) agree
with a.

We are now ready to state our bounds for random (general and linear) codes under erasures. Note the
exponential gap between the list-sizes of linear and general random codes under erasures.

Theorem 22. Fix q > 2, 0 < p < 1 and γ > 0.

1. A random q-ary code of rate 1 − p − γ is
(
p, 1−p

2γ

)
erasure list-decodable with probability at most

expq (−Ωp,γ(n)).

2. Let q be a prime power. A random q-ary linear code of rate 1 − p − γ is
(
p, 1

q · exp2

(
p(1−p)

16γ

))
erasure list-decodable with probability at most exp2 (−Ωp(n)).

The proofs for the above two bounds appear respectively in Appendices B.3 and B.4.

References

[1] V. M. Blinovsky. Bounds for codes in the case of list decoding of finite volume. Problems of Informa-
tion Transmission, 22(1):7–19, 1986. 1, 2, 3, 5, 11

[2] V. M. Blinovsky. Asymptotic Combinatorial Coding Theory. Kluwer Academic Publishers, Boston,
1997. 5

[3] V. M. Blinovsky. Code bounds for multiple packings over a nonbinary finite alphabet. Problems of
Information Transmission, 41(1):23–32, 2005. 1, 11

16



[4] V. M. Blinovsky. On the convexity of one coding-theory function. Problems of Information Transmis-
sion, 44(1):34–39, 2008. 1

[5] M. Cheraghchi and V. Guruswami. Restricted isometry via list decoding. Work in progress, 2012. 2

[6] P. Elias. List decoding for noisy channels. Technical Report 335, Research Laboratory of Electronics,
MIT, 1957. 1

[7] P. Elias. Error-correcting codes for list decoding. IEEE Transactions on Information Theory, 37:5–12,
1991. 1

[8] V. Guruswami. Linear-algebraic list decoding of folded Reed-Solomon codes. In Proceedings of the
26th IEEE Conference on Computational Complexity, pages 77–85, June 2011. 1
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A Technical results on standard functions

A.1 Properties of hypergeometric distributions

Proof of Fact 7: We consider a modification of the experiment in the definition of the hypergeometric
distribution. Consider a set of n distinguishable objects that are marked by two players, Alice and Bob.
Alice picks m objects uniformly at random and marks it ‘A’. Simultaneously, Bob picks s objects uniformly
at random and marks it ‘B’. Moreover, the choices of Alice and Bob are independent of each other. We
claim that the number of objects T marked by both Alice and Bob follows the hypergeometric distribution
with parameters (n,m, s). Indeed, conditioned on the subset A of objects selected by Alice, the number
of objects from A that are picked by Bob follows the hypergeometric distribution with parameters (n,m, s)
(independent of A); we now obtain the claim by unconditioning on A.
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Note that the above experiment is symmetric w.r.t. Alice and Bob, and hence the same argument shows
that T follows the hypergeometric distribution with parameters (n, s,m) as well. The lemma now follows.
2

Proof of Fact 8: Consider an urn containing n balls, of which exactly m′ are black, m − m′ are green,
and the remaining are white. Sample s balls from the urn without replacement. Then, the number B of
black balls picked follows the hypergeometric distribution with parameters (n,m′, s), whereas the number
N of nonwhite (i.e., black or green) balls picked follows the hypergeometric distribution with parameters
(n,m, s). Since, for any outcome, it holds that N > B, the probability that N > τ is at least that of the
event that B > τ , which is what we wanted to show. 2

Remark. The joint random variable (B,N) is a stochastic coupling between the two hypergeometric distri-
butions. 2

A.2 Properties of the binary entropy function

In this section, we will prove some standard properties of the binary entropy function used in this paper.

Fact 23. For any p, λ such that 0 < p < λ 6 1
2 , we have

h(λ)− h(p) >
1

2
(1− 2p) · (λ− p).

Proof: We begin with the identity

h(λ)− h(p) =

∫ λ

p
h′(z) dz = (log e)

∫ λ

p
ln

(
1− z
z

)
dz.

For u > 1, we have lnu > u−1
u , which implies that for 0 < z 6 1

2 ,

ln

(
1− z
z

)
>

1−z
z − 1
1−z
z

=
1− 2z

1− z
> (1− 2z).

Therefore,

h(λ)− h(p) > (log e)

∫ λ

p
(1− 2z) dz = (log e)(1− λ− p)(λ− p) > (log e)

(
1

2
− p
)

(λ− p),

which establishes the claim.

2

Fact 24. For all z ∈ (0, 1), we have z log(1/z) + (log e)(z − z2) 6 h(z) 6 z log(1/z) + (log e)z.

Proof: After expanding the definition of h(·), the above inequality reduces to

z − z2 6 −(1− z) ln(1− z) 6 z.

We can equivalently write this as

ln(1− z) 6 −z, and ln

(
1 +

z

1− z

)
6

z

1− z
,
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both of which are special cases of the standard inequality ln(1 + z) 6 z valid for all real z. 2

Next, we show how to massage the rate upper bound given in Theorem 11 in Section 3 into a more
convenient form. For the remainder of the section, we set A1 := (1 − p) log

(
1−p
λ

)
+ p log

(
p

1−λ

)
, and

A2 := 2
p2

.

Lemma 25.
A1 6 (1− 2p) · h(λ)− h(p)

λ− p
+

5

p
(λ− p).

Proof: We begin with

A1 = (1− p) log

(
1− p
λ

)
+ p log

(
p

1− λ

)
6 (1− p) log

(
1− p
p

)
+ p log

(
p

1− λ

)
= (1− 2p) log

(
1− p
p

)
+ p log

(
1− p
1− λ

)
= (1− 2p)h′(p) + p log

(
1− p
1− λ

)
.

To complete the proof, we bound each term separately. First,

h′(p) = h′(λ)−
∫ λ

p
h′′(z) dz = h′(λ) +

∫ λ

p

log e

z(1− z)
dz

6 h′(λ) +

∫ λ

p

4

z
dz 6 h′(λ) +

4(λ− p)
p

.

Also, by the concavity of h, h(λ) − h(p) > h′(λ)(λ − p), so h′(p) 6 h(λ)−h(p)
λ−p + 4(λ−p)

p . On the other
hand, applying the inequality ln z 6 z − 1 with z = 1−p

1−λ , we get

log

(
1− p
1− λ

)
6 (log e)

λ− p
1− λ

6 4(λ− p) 6 λ− p
p2

,

since p < 1
2 and e < 4. Plugging these in the upper bound for A1 gives the claim. 2

Lemma 26. Fix ε ∈
(

0, 1−2p
2p

)
, and set β := (λ− p)/(1− 2p+ 2pε). Then

A1β +A2β
2 6 h(λ)− h(p)−B1ε(λ− p) +B2(λ− p)2

for B1 := 1
2p and B2 := 3

p2(1−2p)2
. (Note that B1 and B2 are independent of λ and ε.)

Proof: From Lemma 25, we have

A1β 6

[
(1− 2p) · h(λ)− h(p)

λ− p
+

5(λ− p)
p

]
· λ− p

1− 2p+ 2pε

6
1− 2p

1− 2p+ 2pε
· (h(λ)− h(p)) +

5(λ− p)2

p(1− 2p)
.
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Assuming 0 < ε < 1−2p
2p , we can upper bound this by

A1β 6
1− 2p− pε

1− 2p
· (h(λ)− h(p)) +

5(λ− p)2

p(1− 2p)

= h(λ)− h(p)− h(λ)− h(p)

1− 2p
· pε+

5(λ− p)2

p(1− 2p)

6 h(λ)− h(p)− pε(λ− p)
2

+
5(λ− p)2

p(1− 2p)

using Fact 23. Also, A2β
2 6 2(λ−p)2

p2(1−2p)2
. Thus,

A1β +A2β
2 6 h(λ)− h(p)− pε(λ− p)

2
+

5(λ− p)2

p(1− 2p)
+

2(λ− p)2

p2(1− 2p)2

6 h(λ)− h(p)− pε(λ− p)
2

+
3(λ− p)2

p2(1− 2p)2
.

2

B List-decoding bounds for random codes

Throughout this section, we fix the parameters q, p, and n. For a ∈ [q]n, let Bq(a, pn) be the q-ary Hamming
ball with center a and radius pn. Let µ denote the fraction of points of [q]n that are inside a Hamming ball
of radius pn; i.e., µ = |Bq(a, pn)|/qn for an arbitrary a ∈ [q]n. We need the following estimate on µ (this
generalizes Fact 9 for larger alphabet sizes):

Fact 27. As n→∞, expq((hq(p)− 1− o(1))n) 6 µ 6 expq((hq(p)− 1)n).

We also need the following simple corollary of Chebyshev’s inequality:

Fact 28. Let W be a nonnegative random variable. Then, W = 0 with probability at most Var W
(E W )2

.

B.1 Proof of part 1 of Theorem 20 (random general codes under errors)

Consider a random code C : [q]k → [q]n, where k := (1 − hq(p) − γ)n. Fix a positive integer L, to be
specified later. For any center a ∈ [q]n, and any (ordered) list of L messages X := (x1, x2, . . . , xL) ⊆ [q]k,
let I(a,X) be the indicator random variable for the event that the encoding of x falls inside the ball Bq(a, pn)
for all x ∈ X . Moreover, define W :=

∑
a,X I(a,X). Clearly, the code C is (p, L) list-decodable if and

only if W > 0.

For a fixed center a and a fixed message x, the event that the encoding of x falls inside Bq(a, pn) occurs
with probability µ; since the encodings of distinct messages are statistically independent, Pr I(a,X) = µL.
Also, assuming k > L + 1, the number of possible (a,X) pairs is at least 1

2q
kL · qn, since the number of

ordered L-lists X of distinct messages is

qk(qk − 1) · · · (qk − L+ 1) > qkL

(
1−

L−1∑
i=0

i

qk

)
= qkL

(
1−

(
L
2

)
qk

)
> qkL

(
1− 2L

2k

)
>

1

2
qkL.
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Therefore, by linearity of expectations, EW > 1
2µ

LqnqkL.

We now upper bound the variance of W . For two lists of messages X and Y , define the intersection
parameter l = l(X,Y ) := |X ∩ Y |. If X and Y are disjoint (equivalently, if l(X,Y ) = 0), then the events
I(a,X) and I(b, Y ) are independent for any pair of centers a, b. Therefore,

VarW =
∑
X,Y

∑
a,b

(E [I(a,X)I(b, Y )]−E [I(a,X)] ·E [I(b, Y )])

=
∑

X∩Y 6=∅

∑
a,b

(E [I(a,X)I(b, Y )]−E [I(a,X)] ·E [I(b, Y )])

6
∑

X∩Y 6=∅

∑
a,b

E [I(a,X)I(b, Y )]

=
∑

X∩Y 6=∅

∑
a,b

Pr [I(a,X) = 1 and I(b, Y ) = 1].

=

L∑
l=1

∑
|X∩Y |=l

∑
a,b

Pr [I(a,X) = 1 and I(b, Y ) = 1].

For convenience, we convert the inner summation into an expectation by randomizing over the centers
a, b:

VarW 6 q2n
L∑
l=1

∑
|X∩Y |=l

Pra,b,C [I(a,X) = 1 and I(b, Y ) = 1]. (4)

Here, in addition to the randomness of the code, the centers a and b are picked uniformly at random from
[q]n.

Fix 0 < l 6 L, and a pair (X,Y ) such that |X ∩ Y | = l. Fix an arbitrary z ∈ X ∩ Y ; such a
z is guaranteed to exist since X and Y intersect. Now, the event E that I(a,X) = I(b, Y ) = 1 can be
equivalently expressed as the conjunction of the events

• Both a, b fall inside Bq(C(z), pn);

• For each x ∈ X r z, the encoding of x falls inside Bq(a, pn); and

• For y ∈ Y rX , the encoding of y falls inside Bq(b, pn).

The first event occurs with probability µ2, and conditioned on the choice of a and b, the second and
third events occur with probabilities µL−1 and µL−l respectively (and they are independent given a and
b). Therefore the probability of E is µ2L−l+1. Finally, by an easy counting, the number of pairs (X,Y ) with
|X ∩ Y | = l is at most L2Lqk(2L−l). Thus, we can bound the variance of W as

VarW 6 q2n
L∑
l=1

L2Lqk(2L−l)µ2L−l+1.

Dividing by (EW )2, we get

VarW

(EW )2
6

L∑
l=1

4L2L(qkµ)−lµ.
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For our choice of parameters, we have qkµ = q−γn, and hence

VarW

(EW )2
6

L∑
l=1

L4Lqγlnµ 6 L4L+1qγLnq−(1−hq(p))n.

This quantity is expq (−Ωp,γ(n)) for L :=
1−hq(p)

2γ , and hence we are done by Fact 28.

B.2 Proof of part 2 of Theorem 20 (random linear codes under errors)

We follow the same outline as in Appendix B.1, so we will only highlight the differences. LetC be a random
linear code of blocklength n and dimension k = (1− hq(p)− γ)n. We consider pairs (a,X) as before, but
we now allow only linearly independent list of messages X . Moreover, the definition of W is unchanged,
except that we sum over only the admissible X . Finally, we modify the definition of the parameter l to
take linearity into account. For a pair of lists X and Y (each of which is linearly independent), we define
l = l(X,Y ) := dim(Span(X) ∩ Span(Y )) (where, for any set Z of message vectors, Span(Z) denotes its
linear span). Note that l = 0 if and only if they X and Y are linearly independent of each other.

For any linearly independent set X , the encodings of vectors in X are statistically independent, and
hence E I(a,X) = µL. Once again, the number of linearly independent lists X is again at least 1

2q
kL;

indeed, the number of such lists is

(qk − 1)(qk − q) · · · (qk − qL−1) > qkL

(
1−

L−1∑
i=0

qi−k

)
> qkL

(
1− qL−k

)
>

1

2
qkL.

Therefore, as before, EW > 1
2(qkµ)Lqn.

As before, the events I(a,X) and I(b, Y ) are statistically independent whenever X and Y are linearly
independent, i.e., l = 0. Therefore, as before, we can bound the variance of W by

VarW 6 q2n
L∑
l=1

∑
l(X,Y )=l

Pra,b,C [E ],

where E is the event that I(a,X) = 1 and I(b, Y ) = 1. Now, fix an l such that 1 6 l 6 L, and fix a pairX,Y
such that dim(Span X ∩ Span Y ) = l. Then, Y can be partitioned as Y = Y0 ∪ Y1, with (a) |Y0| = l and
|Y1| = L− l, (b) X is linearly independent from Y1, and (c) Y0 ⊆ Span(X ∪ Y1). Fix an arbitrary y0 ∈ Y0.
Then, by the span condition, we can write y0 =

∑
u∈X∪Y1 θu · u for some set of scalars {θu}u∈X∪Y1 . Note

that it is possible that y0 lies in the span of X . But, since Y is an independent set, y0 cannot be written as a
linear combination of vectors from Y1 alone; in particular, there exists some u ∈ X with θu 6= 0.

In order to upper bound the probability of E , we estimate the probability that C(y0) ∈ Bq(b, pn), after
conditioning on the subevent E ′ that C(u) ∈ Bq(a, pn) for all u ∈ X , and C(u) ∈ Bq(b, pn) for all u ∈ Y1.
(It is easy to check that the latter event occurs with probability µ|X∪Y1| = µ2L−l.)

At this point, it is convenient to re-center the vectors in X ∪ Y1 as follows: For u ∈ X , define C ′(u) :=
C(u)− a, and for u ∈ Y1, define C ′(u) := C(u)− b. After conditioning on E ′, the random variables C ′(u)
(for u ∈ X ∪Y1) are i.i.d. and are uniformly distributed inside the ball Bq(0, pn); furthermore, they are also
independent of the choice of a and b. In terms of these new random variables, we can write

C(y0)− b =
∑

u∈X∪Y1

θu · C ′(u) +

(∑
u∈X

θu

)
a+

∑
u∈Y1

θu − 1

 b.
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We claim that conditioned on E ′, C(y0) − b ∈ Bq(0, pn) occurs with probability at most q−Ω(n). We
discuss two cases:

1. Suppose
∑

u∈X θu 6= 0, or
∑

u∈Y1 θu 6= 1. Then, conditioned on the choice of C ′(u)s, the random
variable C(y0)−b is distributed uniformly at random inside Fnq and hence falls inside Bq(0, pn) with
probability µ.

2. Suppose that
∑

u∈X θu = 0, and
∑

u∈Y1 θu = 1. In this case, we have

C(y0)− b =
∑

u∈X∪Y1 : θu 6=0

θu · C ′(u). (5)

Thus, if m := |{u : θu 6= 0}|, then C(y0) − b is a sum of m points sampled independently and
uniformly from the ball Bq(0, pn). Also, as observed earlier, there exists some u ∈ X such that
θu 6= 0; moreover, since

∑
u∈X θu = 0, there are at least two u’s in X with θu 6= 0; i.e., m > 2. We

now bound the probability of E conditioned on E ′ using the following fact:

Lemma 29. For every q > 2 and every p ∈ (0, 1
2), there exists δ = δq,p such that the following holds

all large enough integers n. Ifm > 2, and if v1, v2, . . . , vm arem independent and uniformly random
samples from Bq(0, pn), then the probability that v1 + v2 + · · · + vm ∈ Bq(0, pn) is bounded by
nO(m) · q−δn.

We skip a formal proof of this lemma. A special case of this statement corresponding to m = q = 2
can be found in [9] (see Lemma 7), and the proof given there generalizes to give our claim with
syntactic modifications.

We now return to the proof of Theorem 20. Since m 6 2L = On→∞(1), Lemma 29 implies that,
conditioned on E ′, the stated event E also occurs with probability at most q−δn+O(L logn) = q−δn+o(n).
(Without loss of generality, we may choose δ small enough so that this bound is larger than µ.)

Therefore, the conditional probability of E is at most the maximum of the two cases, namely expq(−δq,pn+
o(n)). To complete the variance bound, we need an estimate on the number of pairs (X,Y ) such that
l(X,Y ) = l. Partition Y as Y0 ∪ Y1 as before. Now, X ∪ Y1 can be picked in at most qk(2L−l) ways. Also,
for each y ∈ Y0, we can write y as a linear combination of vectors in X ∪ Y1 in at most q2L−l 6 q2L ways.
Thus the total number of pairs (X,Y ) with l(X,Y ) = l is at most q2Ll · qk(2L−l). Thus, the variance can be
bounded as

VarW 6 q2n
L∑
l=1

q2Ll · qk(2L−l)µ2L−lq−δn+o(n)

6
L∑
l=1

4(EW )2 · q2Ll
(
qkµ
)−l

q−an+o(n)

6 4(EW )2 ·
L∑
l=1

q2Llqγln−an+o(n)

6 4Lq2L2
qγLn−an+o(n) · (EW )2.

Therefore, as before, the probability that W = 0 is also at most expq(γLn − an + o(n)). Thus, setting
L := δ/(2γ), the claim follows.
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B.3 Proof of part 1 of Theorem 22 (random general codes under erasures)

Consider a random code C : [q]k → [q]n, where k = (1 − p − γ)n. Let A be the set of potential inputs
to the decoding algorithm, that is, A := {a ∈ ([q] ∪ {?})n : |Supp∗(a)| = (1 − p)n}. We modify the
definition of W as follows. For every a ∈ A and ordered L-list X of messages, define I(a,X) to be the
indicator random variable for the event that, for all x ∈ X , the encoding C(x) of x agrees with a; finally,
in the definition of W , we consider only (a,X) pairs of the above form. As in the errors case, the code is
(p, L) erasure list-decodable if and only if W = 0.

For every a ∈ A and x ∈ [q]k, the encoding of x agrees with a with probability q−(1−p)n, and hence by
independence, the probability that I(a,X) = 1 is expq (−(1− p)Ln). Therefore,

EW > q−(1−p)Ln ·
(
n

np

)
q(1−p)n · 1

2
qkL,

where the second factor is the number of possible a, and the third term is a lower bound on the number of
X’s. Moreover, proceeding as before, we can bound the variance of W by

VarW 6
L∑
l=1

∑
|X∩Y |=l

∑
a,b

Pr [E ] , (6)

where E is the event that I(a,X) = I(b, Y ) = 1.

Now, fix an arbitrary pair (X,Y ) with |X ∩ Y | = l > 0. Observe that the event E implies that both a
and b agree with the encoding C(u) of some u ∈ X ∩ Y (indeed, such a u is guaranteed to exist). Since
C(u) is a string over [q] (i.e., it does not contain any ‘?”s), it follows that a and b must themselves agree
with each other. Moreover, the event E requires that (a) C(x) agrees with a for all x ∈ X r Y , (b) C(y)
agrees with b for all y ∈ Y r X , and (c) C(z) agrees with both a and b for z ∈ X ∩ Y . Therefore, the
probability of E is at most

expq (−|S||X r Y | − |T ||Y rX| − |S ∪ T ||X ∩ Y |) = expq (−2(1− p)(L− l)n− |S ∪ T |l) ,

where S := Supp∗(a) and T := Supp∗(b). Now, for a given pair (S, T ), the number of pairs of centers
(a, b) such that (a) Supp∗(a) = S, (b) Supp∗(b) = T , and (c) a and b agree with each other (i.e., a|S∩T =
b|S∩T ), is equal to q|S∪T |. Thus, the inner summation in (6),∑

a,b

Pr [I(a,X) = 1 and I(b, Y ) = 1] =
∑
S,T

expq (−2(1− p)(L− l)n− |S ∪ T |(l − 1))

6

(
n

pn

)2

expq (−2(1− p)(L− l)n− (1− p)n(l − 1))

=

(
n

pn

)2

q−(1−p)(2L−l−1)n.

Finally, plugging in this estimate in (6),

VarW 6
L∑
l=1

L2Lqk(2L−l) · q−(1−p)(2L−l−1)

(
n

np

)2

= (EW )2 ·
L∑
l=1

4L2L · q((1−p)n−k)l−(1−p)n

6 (EW )2 · 4L2L+1 · qγnL−(1−p)n.

Thus, for L := 1−p
2γ , the variance of W is o((EW )2), and hence we are done.
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B.4 Proof of part 2 of Theorem 22 (random linear codes under erasures)

We first note that if a linear code contains a list of L linearly independent codewords agreeing with some
a ∈ A, then its list-size is at least qL−1. Indeed, if c1, c2, . . . , cL are codewords agreeing with a, then, in fact,
so does every ‘affine’ linear combination of the codewords; i.e., every vector of the form θ1c1 + · · ·+ θLcL
where the θi are scalars satisfying θ1 + θ2 + · · ·+ θL = 1. Note that the number of such linear combinations
is exactly qL−1.

Consider a random linear code C of blocklength n and dimension k = (1 − p − γ)n. Recall that A is
the set of strings a over Fq ∪{?} such that | Supp∗(a)| = (1−p)n. For a ∈ A and any linearly independent
L-list X of messages, define I(a,X) to be the indicator random variable for the event that C(x) agrees with
a for all x ∈ X , and let W :=

∑
a,X I(a,X).

For fixed a and X , it is easy to see that E I(a,X) = expq (−(1− p)Ln), and therefore (as in Ap-
pendix B.3),

EW > q−(1−p)Ln ·
(
n

np

)
q(1−p)n · 1

2
qkL.

For a pair of lists X and Y (each of which is linearly independent), define l = l(X,Y ) := dim(Span(X)∩
Span(Y )). It is easy to check that if l = 0 (i.e., X and Y are linearly independent), the random variables
I(a,X) and I(b, Y ) are statistically independent. Therefore, we can bound the variance of W by

VarW 6
L∑
l=1

∑
l(X,Y )=l

∑
a,b

Pr [E ],

where E is the event that I(a,X) = 1 and I(b, Y ) = 1.

Fix a pair X,Y such that dim(Span X ∩ Span Y ) = l > 0. As in Subsection B.2, we partition
Y as Y0 ∪ Y1, where (a) |Y0| = l and |Y1| = L − l, (b) X is linearly independent from Y1, and (c)
Y0 ⊆ Span(X ∪ Y1). Moreover, pick y0 ∈ Y0 arbitrarily, so that y0 =

∑
u∈X∪Y1 θu · u for some scalars

{θu}u∈X∪Y1 . Note that θx 6= 0 for at least one x ∈ X .

Now, fix a pair of strings a, b ∈ A, and let S := Supp∗(a) and T := Supp∗(b). We are interested
in the probability of E for this choice of a and b. (Note that for general codes, this event implies that the
strings a and b had to agree with each other; this is not so for linear codes.) For any x ∈ X , conditioned
on the event that C(x)|S = a|S , the random variable C(x)|TrS is uniformly distributed over FTrSq . Since
y0 =

∑
x∈X θx ·x+

∑
y∈Y1 θy ·y (with θx 6= 0 for some x ∈ X), it follows that C(y0)|TrS is also uniformly

distributed over FTrSq . Hence, conditioned on the event that C(x) agrees with a for all x ∈ X and C(y)

agrees with b for all y ∈ Y1, the probability that C(y0) agrees with b is at most q−|TrS|. Hence,∑
a,b

Pr [E ] 6
∑
S,T

q−(1−p)n|X∪Y1|q−|TrS| · q|S|+|T |,

= q−(1−p)n(2L−l)q2(1−p)n ·
∑
S,T

q−|TrS|,

6 q−(1−p)n(2L−l)q2(1−p)n ·
∑
S,T

2−|TrS|,

= q−(1−p)n(2L−l)q2(1−p)n
(
n

np

)2

ES,T

[
2−|TrS|

]
.

Here, the expectation is over S, T ⊆ [n] of size (1 − p)n, chosen independently and uniformly at random.
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By Lemma 30 below, this quantity can be bounded by

q−(1−p)n(2L−l)q2(1−p)n
(
n

np

)2

· exp2

(
−1

8
p(1− p)n+ o(n)

)
.

Plugging this in our upper bound for the variance, we have

VarW 6
L∑
l=1

q2Llqk(2L−l) · q−(1−p)n(2L−l)q2(1−p)n
(
n

np

)2

· 2−
1
8
p(1−p)n+o(n)

6 4(EW )2
L∑
l=1

q2Llq((1−p)n−k)l · 2−
1
8
p(1−p)n+o(n)

6 4Lq2L2
qγnL2−

1
8
p(1−p)n+o(n) · (EW )2

Thus, for

L :=
p(1− p)
16γ log q

,

this ratio is o(1). Thus, the code contains a bad list of L linearly independent messages w.h.p.; this implies
that its list-size is at least qL−1.

Lemma 30. If S, T are independently and uniformly random subsets of [n] of size (1− p)n, then

ES,T

[
2−|TrS|

]
6 exp2

(
−p(1− p)n

8
+ o(n)

)
.

Proof: We prove this by thresholding on |T r S|. It can be easily checked that the random variable |T r S|
has the hypergeometric distribution with parameters (n, pn, (1 − p)n), and hence its mean is p(1 − p)n.
Hence, since hypergeometric random variables are concentrated around their mean, we expect that |TrS| >
1
8p(1− p), except with an exponentially small probability.

We now justify the above intuition by explicit calculations. For any t, the probability that |T rS| = t is
equal to

f(n, (1− p)n, pn, t) :=

(
(1−p)n

t

)(
pn
pn−t

)(
n
pn

) =

(
(1−p)n

t

)(
pn
t

)(
n
pn

) .

For t 6 1
8p(1− p)n, this can be upper bounded by 2εn+o(n), where

ε := (1− p)h
(p

8

)
+ ph

(
1− p

8

)
− h(p).

We are interested in upper bounding the exponent ε. We will assume that p 6 1/2; the argument in the
p > 1/2 case is symmetric (by replacing p by 1− p). By concavity of h(·),

ε 6 h

(
(1− p) · p

8
+ p · 1− p

8

)
− h(p) 6 h(p/4)− h(p).

By Fact 24,

ε 6

[
p

4
log

(
4

p

)
− p log

(
1

p

)]
+ (log e)

[p
4
− (p− p2)

]
.

For 0 < p 6 1/2, the first term is negative, and hence ε 6 (log e)
(
p2 − 3p

4

)
6 −1

4p log e 6 −p(1−p)
4 .
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Thus, summing over all t 6 1
8p(1 − p)n, the event |T r S| 6 1

8p(1 − p)n occurs with probability at

most exp2

(
−p(1−p)n

4 + o(n)
)

. Hence, the desired expectation is bounded as

E
[
2−|TrS|

]
6 Pr

[
|T r S| 6 1

8
p(1− p)n

]
· 1 + exp2

(
−1

8
p(1− p)n

)
,

establishing the claim. 2
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