
Some definitorial suggestions for parameterized proof
complexity

Jörg Flum1 and Moritz Müller2

1 Universität Freiburg, Germany, joerg.flum@math.uni-freiburg.de
2 Kurt Gödel Research Center, Universität Wien, Austria,

moritz.mueller@univie.ac.at

Abstract. We introduce a (new) notion of parameterized proof system. For pa-
rameterized versions of standard proof systems such as Extended Frege and Sub-
stitution Frege we compare their complexity with respect to parameterized simu-
lations.

1. Introduction

Consider the following problems for graphs: the vertex cover problem VC, the clique
problem CLIQUE, and the dominating set problem DS; they ask, given a graph G and
a natural number k, whether G contains a cardinality k vertex cover, clique, and domi-
nating set, respectively. All three problems are NP-complete and hence, from the point
of view of polynomial reductions any two of them have the same computational com-
plexity.

Taking in each case the natural number k as the parameter of an instance we get
the parameterized problems p-VC, p-CLIQUE, and p-DS. In parameterized complex-
ity there is not only a new notion of tractability, namely fixed-parameter tractability,
but also the notion of reducibility has been adapted so that it preserves fixed-parameter
tractability; the new notion being that of fpt-reduction. One knows that p-VC ≤fpt p-
CLIQUE (that is, p-VC is fpt-reducible to p-CLIQUE) and p-CLIQUE ≤fpt p-DS. How-
ever, accepting the hypotheses FPT 6= W[1] and W[1] 6= W[2] (which are fundamental
hypotheses of parameterized complexity and each of them implies P 6= NP) neither p-
CLIQUE ≤fpt p-VC nor p-DS ≤fpt p-CLIQUE. As Downey and Fellows write in [7]:

Parameterized reductions tend to be much more structure preserving than clas-
sical reductions, and certainly most classical reductions . . . are definitely not
parameterized reductions. . . . Parameterized reductions are sufficientlly refined
that instead of one large class of naturally intractable problems all of the same
complexity, there seem to be many sets of natural combinatorial problems, all
intractable in the parameterized sense, and yet of differing parameterized com-
plexity

In proof theory among the proof systems best studied there are Frege systems, Ex-
tended Frege systems, and Substitution Frege systems. Classically, they are compared
via polynomial simulations. It is known that there are polynomial simulations between
any Extended Frege system and any Substitution Frege system, while it is not known

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 18 (2012)

whether Extended Frege systems and Substitution Frege systems may be simulated by
Frege systems. The question arises whether also in this context parameterized complex-
ity yields new insights or even allows a more fine-grained analysis. In this note we want
to lay down the conceptual framework for such an analysis. Furthermore, we give some
positive and some negative answers and state some open problems.

What are natural parameterizations of proof systems? Recall that the definitions of
parameterized complexity are tailored to address complexity issues in situations where
we know that the parameter is relatively small. We believe that for Extended Frege sys-
tems the number of extension axioms used in a proof could be a natural parameter. At
least, if we start with an arbitrary, say, random tautology it doesn’t seem plausible that
many extension axioms can be used in a proof with advantage. We should emphasize
the word “random” here. For example, in a standard example often mentioned to mo-
tivate the use of extension axioms, namely the formalization of the pigeon-principle in
propositional logic, the number of extension axioms used to derive the n pigeonhole
principle by a straightforward induction on n is Ω(n3) and hence, by no means, rela-
tively small. 3 Similarly the number of applications of the substitution rule seems to be
a natural parameter for Substitution Frege Systems.

As proof systems are functions, simulations between them should be value-pre-
serving functions (as are the standard polynomial simulations). We believe that this
fact has not been taken into account appropriately in the approaches to proof theory
using parameterized complexity. Taking this fact seriously, we define the notion of fpt-
simulation. When we realized that our notion coincides with the notion of parsimonious
reduction between parameterized counting functions, we were confirmed in our believe
that this is the appropriate definition.

We show that under fpt-simulations the parameterized versions of Extended Frege
and Substitution Frege are both equivalent to Frege. In this sense, the notion of fpt-
simulation does not offer a more fine-grained complexity analysis of these proof sys-
tems; or, expressing it in positive terms, we gain the insight that there is a simulation,
say, of an Extended Frege system in a Frege system whose superpolynomial running
time is confined to a factor depending only on the number of extension axioms used
in the original proof. Similarly, we see that there is a simulation of Substitution Frege
in Extended Frege where the number of extension axioms is bounded in terms of the
number of applications of the substitution rule.

Having in mind the goal of a more refined analysis, we propose to study the rela-
tionship between these proofs systems under parameterized polynomial simulations, a
notion that in some sense refines both, polynomial simulations and fpt-simulations: such
a simulation is a polynomial simulation with the additional property that it increases the
parameter at most polynomially. We do not see any way to simulate Substitution Frege
in Extended Frege in this sense (while conversely this is easy). However, we construct a
parameterized polynomial simulation of treelike Substitution Frege in treelike Extended
Frege.

Related work A different approach to introduce parameterizations into proof complex-
ity has been initiated by Dantchev et al. [6]. They introduced parameterized proof sys-

3 It is well-known that Buss [3] gave polynomial proofs of the pigeon-principle in Frege systems.

2

tems for parameterized problems. They considered the following parameterized prob-
lem: given a pair (α, k) of a CNF α and k ∈ N, where k is the parameter, decide whether
α has no satisfying assignment of Hamming weight at most k. The proof systems they
had in mind are classical refutation systems such as Resolution that may freely use
additional clauses expressing the constraint on the Hamming weight. The goal of this
approach is to strengthen lower bounds of classical refutation systems by showing that
their parameterized counterparts are not fpt bounded4. It can be understood as a pa-
rameterized analogue of Cook’s program, here trying to prove coW[2] 6⊆ paraNP. For
this approach Beyersdorff et al. [1] lack an interpretation of the parameterization of the
proof system and argue that it can be dispensed with.

2. Preliminaries

In this section we fix some notations and recall some definitions and results, in the first
part of parameterized complexity theory and in the second part of proof theory.

2.1. Parameterized Complexity. Formally, a parameterized problem is a pair (Q, κ)
consisting of a (classical) problem Q ⊆ {0, 1}∗ and a polynomial time computable
parameterization κ : {0, 1}∗ → N that maps any input x ∈ {0, 1}∗ to its parame-
ter κ(x) ∈ N. A parameterized problem (Q, κ) is fixed-parameter tractable, that is,
tractable from the point of view of parameterized complexity, if there is an algorithm
solving x ∈ Q in ≤ f (κ(x)) · |x|O(1) steps for some computable f : N→ N.

A function R : {0, 1}∗ → {0, 1}∗ is fpt-computable with respect to a parameteri-
zation κ if R(x) can be computed in time f (κ(x)) · |x|O(1), where again f : N → N is
computable.

Also the notion of polynomial reduction, that is, the natural notion of reduction
preserving classical tractability, has to be adapted so that it preserves fixed-parameter
tractability. An fpt-reductionR from a parameterized problem (Q, κ) to another (Q′, κ′)
is an fpt-computable (with respect to κ) reduction from Q to Q′ such that κ′(R(x)) ≤
g(κ(x)) for some computable g : N → N and all x ∈ {0, 1}∗. We write (Q, κ) ≤fpt
(Q′, κ′) if there is an fpt-reduction from (Q, κ) to (Q′, κ′).

2.2. Proof Theory. A proof system for a problem Q ⊆ {0, 1}∗ is a polynomial time
computable surjection P from {0, 1}∗ onto Q. If P (w) = x, then w is a P -proof of x.
In case Q = TAUT, we call P propositional. A proof system P is p-bounded if any
x ∈ Q has a P -proof of size |x|O(1). Cook and Reckhow [5] observed that a p-bounded
propositional proof system exists if and only if NP = coNP. Cook’s program asks to
prove that natural propositional proof systems are not p-bounded.

Proof systems for a problem Q are compared in strength via p-simulations: a p-
simulation of a proof system P ′ in a proof system P is a polynomial time computable
function R such that P (R(w′)) = P ′(w′) for all w′ ∈ {0, 1}∗; in case such an R exists,
we say P p-simulates P ′ and write P ′ ≤pol P ; if additionally, P ′ p-simulates P , we
call P and P ′ p-equivalent.

A Frege system F is a propositional proof system given by finitely many axiom
schemes (in the de Morgan language) and finitely many rules including, for simplicity,
modus ponens. An F -proof of a (propositional) formula α from a set of formulas Γ is

4 As pointed out in [1] one should restrict attention to instances (α, k) with contradictory α

3

a sequence of formulas such that each of them is either a member of Γ or a substitution
instance of an axiom scheme or follows from earlier formulas in the sequence by one
of the rules of F ; furthermore, the last formula of the sequence is α. An F -proof of α
is an F -proof of α from the empty set of formulas. Frege systems are assumed to be
implicationally complete, that is, whenever a set of formulas Γ logically implies α, then
there exists an F -proof of α from Γ.

For a Frege system F we denote by F ∗ the proof system treelike F : an F -proof π is
treelike if every occurrence of a formula in π is used as an hypothesis in an application
of a rule at most once; equivalently, π is treelike if it can be written as a tree labeled
by the formulas in π such that the leaves are labeled by the substitution instances of the
axiom schemes and the labels of inner nodes are obtained by one of the rules from their
immediate predecessors.

The following are well-known [10, 5].

Theorem 1. (1) (Cook, Reckhoff) Any two Frege systems are p-equivalent.
(2) (Krajı́c̆ek) F and F ∗ are p-equivalent for every Frege system F .

By part (1) of this theorem we get that, instead of (2), we could claim

F1 and F ∗2 are p-equivalent for Frege systems F1 and F2.

The same observation applies to all equivalences mentioned in this paper (not only to
p-equivalences but also to fpt-equivalences and pp-equivalences introduced later).

There are two well-studied extensions of a Frege system F :

Extension Frege. Let F be a Frege system. The Extension Frege system EF adds to F
the extension rule: It allows to add in a proof of α (without any hypotheses) an extension
axiom (r ↔ σ) where σ is a propositional formula and the extension variable r neither
occurs in σ nor in α nor in any earlier line of the proof.

Equivalently, an EF-proof of α is an F -proof of α from an extension sequence
whose extension variables do not occur in α. Here, an extension sequence (for α) of
length k is a sequence of the form

(r1 ↔ σ1), . . . , (rk ↔ σk)

with pairwise distinct extension variables r1, . . . , rk such that ri does not occur in σj
for 1 ≤ j ≤ i.

By EF∗ we denote the treelike version of EF.

Substitution Frege. Let F be a Frege system. The Substitution Frege system SF adds to
F the substitution rule that allows to derive from the formula α the formula α[x/σ]
where α[x/σ] is obtained from α by substituting the variable x by the formula σ. By
SF∗ we denote the treelike version of SF.

In [2] Buss introduces two restrictions of SF:

– Boolean Substitution Frege BSF requires that in any application of the substitution
rule the formula σ to be the Boolean constant > (TRUE) or ⊥ (FALSE);

– Renaming Frege RF requires σ to be a variable.

4

Again, BSF∗ and RF∗ denote the treelike versions of these systems.

Natural simulations of EF and SF in F roughly proceed as follows:

– Let π be an EF-proof. To delete the first extension axiom (r ↔ σ) substitute ev-
erywhere in π the formula σ for r; this transforms the extension axiom into the
tautology (σ ↔ σ) for which we add a linear size F -proof. Proceed like this with
the second extension axiom and so on. If π contains k extension axioms, the result-
ing F -proof has size |π|O(k).

– Let π be an SF-proof. Let the first application in π of the substitution rule yield
α[x/σ] from α. Replace it by a proof of α[x/σ] obtained by applying the substitu-
tion x/σ to the initial segment of π up to α. If π contains k substitution inferences,
the resulting F -proof has size |π|O(k).

Hence, both simulations are not polynomial ones. In fact, it is open whether EF ≤pol F
and whether SF ≤pol F . However, the following is known [12, 2]:

Theorem 2. (1) EF, EF∗, SF, SF∗, RF, BSF are p-equivalent for every Frege systemF .
(2) RF∗, BSF∗ and F are p-equivalent for every Frege system F .

Comparing their status with that of RF∗ and of BSF∗ we see that perhaps RF and BSF
are proof systems where the ability to reuse already derived lines adds power. We shall
see a similar phenomenon for SF in the parameterized setting.

3. Parameterized proof systems and fpt-simulations

In this section we introduce the main new concepts of this paper, parameterized proof
systems and simulations between them.

Definition 3. A parameterized proof system forQ is a pair (P, κ) such that P is a proof
system for Q and κ a parameterization.

Having in mind, as we do, to compare Frege systems, Extended Frege systems, and
Substitution Frege systems, it seems not natural to consider a more general notion of
parameterized proof systems where P is only required to be an fpt-computable (with
respect to κ) function from {0, 1}∗ onto Q instead of a polynomial time computable
one.

We identify a (classical) proof system P for Q with the parameterized proof system
(P, 0), i.e., P with the parameterization that is constantly 0.

For an Extended Frege systems EF we denote by κEF the parameterization

κEF(w) := number of extension axioms in w.

Similarly, for a Substitution Frege systems SF we denote by κSF the parameterization

κSF(w) := number of applications of the substitution rule in w.

We consider the restriction EF∗ of EF with the parameterization κEF and the restrictions
SF∗, BSF(∗), and RF(∗) of SF with the parameterization κSF. We denote the resulting

5

parameterized proof systems by p-EF, p-EF∗, p-SF, p-RF, p-BSF, p-SF∗, p-RF∗ and
p-BSF∗.

In order to compare parameterized proof systems in strength we use the following
notion of simulation. We already mentioned that for parameterized counting problems
the notion coincides with that of fpt parsimonious reduction introduced in [8, Defini-
tion 14.10].

Definition 4. Let (P, κ) and (P ′, κ′) be parameterized proof systems for Q ⊆ {0, 1}∗.
An fpt-simulation of (P ′, κ′) in (P, κ) is a function R : {0, 1}∗ → {0, 1}∗ such that
(a) R is fpt-computable with repect to κ′;
(b) P ′(w′) = P (R(w′)) for all w′ ∈ {0, 1}∗;
(c) κ(R(w′)) ≤ g(κ′(w′)) for some computable g : N→ N and all w′ ∈ {0, 1}∗.
In case such anR exists, we say that (P, κ) fpt-simulates (P ′, κ′) and write (P ′, κ′) ≤fpt
(P, κ). The problems (P, κ) and (P ′, κ′) are fpt-equivalent, written (P, κ) ≡fpt (P, κ), if
(P, κ) ≤fpt (P ′, κ′) and (P ′, κ′) ≤fpt (P, κ).

Note that if P and P ′ are classical proof systems for a problem Q, then P fpt-
simulates P ′ if and only if P p-simulates P ′. However, in general, neither (P, κ) ≤fpt
(P ′, κ′) implies P ≤pol P

′ nor P ≤pol P
′ implies (P, κ) ≤fpt (P ′, κ′).

Lemma 5. If (P, κ) ≤fpt (P ′, κ′) and (P ′, κ′) ≤fpt (P ′′, κ′′), then (P, κ) ≤fpt (P ′′, κ′′).

4. Comparing proof systems via fpt-simulations

By the following result all parameterized proof systems introduced so far are fpt-equiv-
alent.

Theorem 6. p-EF, p-SF, and F are pairwise fpt-equivalent. 5

As F ≤fpt p-EF, the theorem follows from the following three propositions showing
(among others):

p-EF ≤fpt p-SF ≤fpt p-BSF ≤fpt F.

In Proposition 7 and Proposition 8 we obtain the first two ‘inequalities’ by merely ob-
serving that known p-simulations already are fpt-simulations.

Proposition 7. p-EF ≤fpt p-SF and p-EF∗ ≤fpt p-SF∗.

Proof. Cook and Reckhow’s original p-simulation [5] of EF in SF is an fpt-simulation
of p-EF in p-SF; this yields the first assertion.

We turn to the second claim. An EF∗-proof π of α is an F ∗-proof of α from an
extension sequence (r1 ↔ σ1), . . . , (rk ↔ σk) (recall that the ri have to be paiwise

5 The second author gave a talk at the workshop Proof complexity (11w5103, Banff Interna-
tional Research Station) on this subject mentioning that at that time we didn’t know whether
p-EF ≤fpt F . Kaveh Ghasemloo pointed out that he was convinced that such a simulation
could be constructed via the system G∗

1 (cf. [4, p.179]).

6

distinct and that ri neither occurs in σj for 1 ≤ j ≤ i nor in α). By the Deduction
Theorem for F (see [11, Lemma 4.4.10]) there is an F -proof π′ of

(rk ↔ σk)→ (rk−1 ↔ σk−1)→ · · · → (r1 ↔ σ1)→ α (1)

(where the iterated implications are associated to the right) of size |π|O(1). By part (2)
of Theorem 1 we can assume that π′ is treelike.

By our assumption on the extension variables, the variable rk occurs exactly once
in (1). We apply the substitution rule and substitute σk for rk in (1); hence we get the
formula obtained from (1) by replacing the equivalence (rk ↔ σk) by (σk ↔ σk).
We add a short F ∗-proof of (σk ↔ σk) and apply modus ponens to arrive at formula
(1) with k − 1 instead of k. Repeating this process gives an SF∗-proof of α of size
O(k · |π′|). We observe that in this simulation k extension axioms are simulated in SF∗

by k applications of the substitution rule. Therefore, this is an fpt-simulation. 2

Proposition 8. p-SF ≤fpt p-BSF.

Proof. Buss [2] simulates an application of the substitution rule α
α[x/σ] as follows: first,

he applies twice the BSF-substitution rule to get

α[x/>] and α[x/⊥]

from α; then he adds short proofs of

((σ ∧ α[x/>])→ α[x/σ]) and ((¬σ ∧ α[x/⊥])→ α[x/σ]).

Finally, he derives α[x/σ] from these four formulas.
In this way, an SF-proof with k applications of the substitution rule is transformed

in polynomial time into an BSF-proof with 2k applications of the BSF-substitution rule.
Hence, this is an fpt-simulation. 2

Proposition 9. p-BSF ≤fpt F.

Proof. Let π be an BSF-proof of β with k applications of the BSF-substitution rule.
Let π1 be the initial segment of π that ends in the premise α of the first application
α

α[x/σ] with σ ∈ {>,⊥} of this rule. We obtain the F -proof π′1 of α[x/σ] by applying
the substitution x/σ to every line of π1. Furthermore, delete all occurrences of α[x/σ]in
π, thus getting π′. Then π′1, π

′ is a BSF-proof of β with (k−1) applications of the BSF-
substitution rule and of size at most 2|π|. Repeating this process we finally obtain an
F -proof of β of size 2k · |π|. 2

Standard p-simulations of SF in EF (e.g., see [12]) map an SF-proof π of a for-
mula α(x̄) (where x̄ are the propositional variables in α) with k applications of the
substitution rule and ` lines to an EF-proof with ` · |x̄| extension axioms. They are not
fpt-simulations. By the previous theorem there is an fpt-simulation of p-SF in p-EF. We
encourage the reader to give a ‘direct’ one.

7

5. Comparing proof systems via parameterized polynomial simulations

In the previous section we have seen that fpt-simulations are too coarse in the sense
that they do not distinguish any two of the parameterized proof system considered so
far. In this section therefore we analyze these proof systems under a notion of simula-
tion which strengthens both, the notion of p-simulation and that of fpt-simulation. For
parameterized decision problems this concept was introduced in [9].

Definition 10. Let (P, κ) and (P ′, κ′) be parameterized proof systems forQ ⊆ {0, 1}∗.
A pp-simulation (or, parameterized polynomial simulation) of (P ′, κ′) in (P, κ) is a p-
simulation R of P ′ in P such that

κ′(R(w′)) ≤ q(κ(w′)) for some polynomial q and all w′ ∈ {0, 1}∗.

In case such an R exists, we say that (P, κ) pp-simulates (P ′, κ′) and write (P ′, κ′) ≤pp
(P, κ). The problems (P, κ) and (P ′, κ′) are pp-equivalent, written (P, κ) ≡pp (P, κ), if
(P, κ) ≤pp (P ′, κ′) and (P ′, κ′) ≤pp (P, κ).

Clearly, if (P ′, κ′) ≤pp (P, κ), then P ′ ≤pol P and (P ′, κ′) ≤fpt (P, κ).

As the proofs of Proposition 7 and of Proposition 8 show, we get:

Proposition 11. p-EF ≤pp p-SF, p-EF∗ ≤pp p-SF∗, and p-SF ≤pp p-BSF.

Example 12. The p-simulation of BSF in RF from [2] maps a BSF-proof with k sub-
stitution inferences of a formula with m variables to an RF-proof with k · (m − 1)
substitution inferences. This is not a pp-simulation (not even an fpt-simulation).

By the results of the previous section there is an fpt-simulation of p-SF in p-EF even
though (as mentioned at the end of that section) standard p-simulations of SF in EF are
not fpt-simulations. We do not know whether p-SF ≤pp p-EF. However, this holds for
the tree-like versions of these proof systems:

Theorem 13. p-SF∗ ≤pp p-EF∗.

Proof. We say that an SF∗-proof of β from an extension sequence (for β) is an ESF∗-
proof of β if every application of the substitution rule has the form

α

α[x/σ]

where the formula x ∧ σ does not contain any extension variable.
Clearly, an EF∗-proof of β is an ESF∗-proof of β without applications of the sub-

stitution rules.

We now describe how to stepwise eliminate applications of the substitution rule in
ESF∗-proofs. So, let π be an ESF∗-proof of β with k applications of the substitution
rule. We depict π as a labeled tree T with β at the root; for any node t of T labeled by
γ the subtree Tt rooted at this node (and consisting of the predecessors of this node)
constitutes an ESF∗-proof of γ. Consider a node t such that

8

– t is labeled by a formula α[x/σ] obtained from its predecessor t− labeled by α by
an application of the substitution rule (via the substitution x/σ);

– no further applications of the substitution rule occur in Tt.

Let r be a variable not occuring in π and obtain Tt− (x/r) by substituting x by r in
all formulas of Tt− . By the proviso on the applications of the substitution rule in an
ESF∗-proof, the variable x is not a substitution variable and hence extension axioms of
T are transformed into extension axioms in Tt− (x/r). Hence, Tt− (x/r) is an F ∗-proof
of α[x/r] from a set of extension axioms.

Let π′ be a short F ∗-proof of

(α[x/r]→ ((r ↔ σ)→ α[x/r][r/σ]︸ ︷︷ ︸
=α[x/σ]

))

Using the new extension axiom (r ↔ σ) (and adding some applications of modus
ponens) we merge this F ∗-proof with Tt− (x/r) to get a F ∗-proof of α[x/σ] from an
extension sequence.

... Tt− (x/r)
... π′

α[x/r] (α[x/r]→ ((r ↔ σ)→ α[x/σ])
((r ↔ σ)→ α[x/σ]) (r ↔ σ)

α[x/σ]

Replace in the original proof π the subtree Tt(x/r) by this new proof, thus obtaining a
proof π′′. It should be clear that π′′ is an ESF∗-proof of β with k − 1 applications of
the substitution rule.

Iterating this process k times we finally get an F ∗-proof π∗ of β from an exten-
sion sequence (for β) consisting of k extension axioms. As π∗ is obtained from π in
polynomial time the mapping π 7→ π∗ is the desired pp-simulation of p-SF∗ in p-EF∗.
2

Note that in the previous proof we have used that the SF-proof we start with is
treelike: the simulation replaces all predecessors of a formula obtained by a substitution
rule. In an arbitrary SF-proof some later inferences may be based on some formulas not
further available.

We prove the following result by standard means:

Proposition 14. p-EF ≤pp p-EF∗.

Proof. Let π = α1, . . . , αs be an EF-proof with k extension axioms. For 1 ≤ i ≤ s we
set γi :=

∧i
j=1 αj . We construct for i = 1, . . . , s successively EF∗-proofs πi of γi such

that the variables in πi are precisely those in α1, . . . , αi and the extension axioms in πi
are the same as in α1, . . . , αi.

The tree π1 just consists of the root labeled by α1. Assume that we have already
constructed the EF∗-proof πi of γi. To construct πi+1 we first consider the case where
αi+1 is an extension axiom or a substitution instance of an axiom of F . Let π1 be a

9

short F ∗-proof of (u → (v → (u ∧ v))). Then π1[u/γi, v/αi+1] is an F ∗-proof of
(γi → (αi+1 → γi+1)) of size O(|γi+1|). As an intermediate step we get an F ∗-proof
π2 of (αi+1 → γi+1) from the F ∗-proofs πi and π1[u/γi, v/αi+1] by an application of
modus ponens. A further modus ponens inference yields from π2 and the ‘leaf’ αi+1 the
desired F ∗-proof πi+1 of γi+1.

... π1[u/γi, v/αi+1]
... πi

(γi → (αi+1 → γi+1)) γi
(αi+1 → γi+1) αi+1

γi+1

Now assume that αi+1 is obtained by one of the rules of F . The general case being
analogous, we treat the case where this rule is modus ponens. So assume αi+1 is ob-
tained from αk and α` (where 1 ≤ k, ` ≤ i) by modus ponens. Let π1 be an F ∗-proof
of (

∧i
j=1 uj → (uk ∧ u`)) of size polynomial in i. Substituting in π1 the ujs by the αjs

yields an F ∗-proof π2 of (γi → (αk ∧ α`)) of size polynomial in |γi|.
To a short F ∗-proof of ((u → v) → ((v → w) → (u → (u ∧ w)))) we apply the

substitution [u/γi, v/(αk ∧ α`), w/αi+1] obtaining an F ∗-proof π3 of size O(|γi+1|) of

((γi → (αk ∧ α`))→ ((αk ∧ α`)→ αi+1)→ (γi → γi+1))).

Finally, let π4 be an F ∗-proof of ((αk∧α`)→ αi+1) of sizeO(|αk|+|α`|+|αi+1|) (recall
that αi+1 was obtained from αk and α` by modus ponens). Now it is easy to merge πi,
π1, π2, π3, and π4 to an F ∗-proof πi+1 of γi+1.

It is easy to construct a treelike proof π∗ of αs from πs. It is clear that π∗ can be
computed from π in polynomial time. 2

Theorem 15. F ≡pp p-BSF∗ ≡pp p-RF∗ ≤pp p-EF ≡pp p-EF∗ ≡pp SF∗ ≤pp p-SF ≡pp
p-BSF.

Proof. The first two equivalences are easy to see. The third equivalence follows from
the preceding proposition. The equivalence p-EF∗ ≡pp p-SF∗ follows from Proposi-
tion 11 and Theorem 13. The last equivalence follows from Proposition 11, too. 2

Hence, the proof systems mentioned in the previous theorem belong to at most three
distinct pp-degrees. Are these degrees distinct? Note that this theorem doesn’t mention
p-RF. Does it belong to any of these degrees? Of course, F ≤pp p-RF ≤pp p-SF.
Furthermore, we can show the following:

Proposition 16. If p-RF ≤pp p-EF, then p-SF ≤pp p-EF.

Proof. Assume p-RF ≤pp p-EF. By Proposition 11 it suffices to show p-BSF ≤pp p-EF.
So let π = α1, . . . , αs be a BSF-proof with k substitution inferences (substituting a
variable by ⊥ or by >). Let y1, . . . , yk and z1, . . . , zk be new variables (not occurring
in π) and let

δ :=
∧k
i=1 ¬yi ∧

∧k
i=1 zi.

10

Consider the sequence
(δ → α1), . . . , (δ → αs).

This sequence can be “filled up” to an RF-proof with k substitution inferences (substi-
tuting a variable by another variable): if αi in π is a substitution instance of an axiom,
replace (δ → αi) by a short F -proof of (δ → αi). If αi is obtained by modus ponens
from αj , αj′ with j, j′ < i, then replace (δ → αi) by a short F -proof of (δ → αi) from
(δ → αj) and (δ → αj′). Finally, if αi is obtained by a substitution inference, then there
is j < i such that αi = αj[x/⊥] or αi = αj[x/>] for some variable x. Assume this is
the `th substitution inference (1 ≤ ` ≤ k) in π and that αi = αj[x/⊥] (the other case
αi = αj[x/>] is similar). Replace (δ → αi) by the following RF-proof: give a short
F -proof of (δ ∧ αj[x/y`]→ αi) (note that ¬y` is a conjunct of δ) and derive αj[x/y`]
from αj by an RF substitution inference; from these two formulas it is easy to derive
(δ → αi).

Clearly, this RF-proof can be computed from π in polynomial time. By assumption
we can in polynomial time compute from this RF-proof an EF-proof π′ of (δ → αs)
with kO(1) extension axioms. Since the yi’s and the zi’s occur in δ, they are not used
as extension variables in π′. Let π′′ result from π′ by substituting ⊥ for all occurrences
of the yi’s and > for all occurrences of the zi’s. Then (note the yi’s and the zi’s do not
occur in αs) π′′ is an EF-proof of (δ′ → αs) where δ′ is a true Boolean sentence (a
true formula without variables). Adding a short proof of δ′ and an application of modus
ponens gives an EF-proof of αs. 2

Acknowledgements. The authors thank the John Templeton Foundation for its support
through Grant #13152, The Myriad Aspects of Infinity. The second author thanks the
FWF (Austrian Research Fund) for its support through Grant P 23989 - N13.

References

1. O. Beyersdorff, N. Galesi, M. Lauria and A. Razborov. Parameterized Bounded-Depth
Frege is Not Optimal. Proceedings 38th International Colloquium on Automata, Languages
and Programming (ICALP), pp. 630–641, Springer-Verlag, 2011.

2. S. Buss. Some remarks on the lengths of propositional proofs. Archive for Mathematical
Logic 34:377–394, 1995.

3. S. Buss. Polynomial size proofs of the propositional pigeon principle. Journal of Symbolic
Logic 52:916–927, 1987.

4. S. Cook and P. Nguyen. Logical Foundations of Proof Complexity. Cambridge University
Press, 2010.

5. S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. The
Journal of Symbolic Logic 44:36–50, 1979.

6. S. S. Dantchev, B. Martin, and S. Szeider. Parameterized proof complexity. Computational
Complexity 20 (1):51–85, 2011.

7. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag, 1999.
8. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.
9. L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct PCPs for

NP. Journal of Computer and System Sciences 77(1):91-106, 2011.
10. J. Krajı́c̆ek. On the number of steps in proofs. Annals of Pure and Applied Logic 41:153–

178, 1989.

11

11. J. Krajı́c̆ek. Bounded arithmetic, propositional logic, and complexity theory. Cambridge
University Press, 1995.

12. J. Krajı́c̆ek and P. Pudlák. Propositional proof systems, the consistency of first order theories
and the complexity of computations. The Journal of Symbolic Logic 54:1063–1088, 1989.

12

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

