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Abstract

We study the complexity of black-box constructions of pseudorandom functions
(PRF) from one-way functions (OWF) that are secure against non-uniform adversaries.
We show that if OWF do not exist, then given as an oracle any (inefficient) hard-to-
invert function, one can compute a PRF in polynomial time with only k(n) oracle
queries, for any k(n) = ω(1) (e.g. k(n) = log∗ n). This result shows a limitation of a
certain class of techniques for proving efficiency lower bounds on the construction of
PRF from OWF. Our result builds on the work of Reingold, Trevisan, and Vadhan
(TCC ’04), who show that when OWF do not exist there is a pseudorandom generator

(PRG) construction that makes only one oracle query to the hard-to-invert function.
Our proof combines theirs with the Nisan-Wigderson generator (JCSS ’94), and with
a recent technique by Berman and Haitner (TCC ’12).

Working in the same context (i.e. when OWF do not exist), we also construct a
poly-time PRG with arbitrary polynomial stretch that makes non-adaptive queries to
an (inefficient) one-bit-stretch oracle PRG. This contrasts with the well-known adaptive
stretch-increasing construction due to Goldreich and Micali.

Both above constructions simply apply an affine function (parity or its complement)
to the query answers. We complement this by showing that if the post-processing is
restricted to only taking projections then non-adaptive constructions of PRF, or even
linear-stretch PRG, can be ruled out.

We also use a result by Applebaum, Ishai, and Kushilevitz (J. Comput. ’06) to rule
out simple “hash-query-extract” PRF constructions, assuming the existence of OWF
computable in logarithmic space.
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1 Introduction

The notion of pseudorandomness is fundamental to the study of both cryptography and com-
putational complexity. An efficient algorithm G : {0, 1}n → {0, 1}n+s is a (cryptographic)
pseudorandom generator (PRG) with stretch s if no efficient adversary can distinguish a
random output from a uniformly random string, except with negligible advantage. That
is, for all poly(n)-time adversaries A, |Pr[A(G(Un)) = 1]− Pr[A(Un+s) = 1]| < 1/nω(1). A
family of functions F = {Fk | k ∈ {0, 1}n} is a pseudorandom function (PRF) if no efficient
adversary with oracle access can distinguish a random function in F from a uniformly ran-
dom function, except with negligible advantage. That is, for all poly(n)-time adversaries A,∣∣PrFk←F [A

Fk = 1]− PrF←U [A
F = 1]

∣∣ < 1/nω(1).
As the unconditional existence of PRG/PRF would imply P 6= NP, their security is

typically shown via a reduction to a hardness assumption. The weakest possible assumption
is the existence of one-way functions (OWF), functions which are easy to compute but
hard to invert. It is known that the existence of OWF is sufficient to construct PRG, i.e.
there exists a construction Gf : {0, 1}n → {0, 1}n+s that has black-box access to a function
f : {0, 1}ℓ → {0, 1}ℓ and computes a PRG whenever f is a OWF [HILL99]. In addition, it
is known that a PRG with stretch s ≥ n is sufficient to construct PRF, again in a black-box
manner [GGM86]. These can be combined to show that OWF suffice to construct PRF.

The efficiency of cryptographic constructions. Despite an intense research effort
[BM84, Yao82, GGM86, GL89, HILL99, GKL93, HHR06, Hol06, HRV10, VZ12], construc-
tions of PRG and PRF based on OWF remain relatively inefficient. Efficiency here can be
measured in several different ways, including the seed length n relative to the OWF input
length ℓ, the number of queries made to the OWF, and the circuit size of the construction.
For example, the very recent work of Vadhan and Zheng [VZ12] gives a PRG with seed length

n = O(ℓ3), which is the best known. Also, the [VZ12] construction makes Õ(ℓ3) queries to
the OWF, and of course this number lower bounds the circuit size. For PRF constructions,
these parameters are even larger. However, it would be desirable to have PRG and PRF
constructions where these parameters are smaller, especially if theoretical constructions aim
to have direct practical applications.

Unfortunately, lower bounds on the efficiency of these constructions remain elusive. Es-
sentially the only lower bound known is due to Gennaro et al. [GGKT05], who show that
any PRG construction Gf must make at least Ω(s/ log T ) queries per output when the OWF
f has security T . Perhaps surprisingly, it is consistent with current knowledge that there
exists a PRF construction that has seed length n = O(ℓ) and makes only a single query to
the OWF per output.

Reingold, Trevisan and Vadhan [RTV04] offer a possible explanation for our inability
to prove stronger lower bounds on PRG constructions. Their work also provides a useful
taxonomy of cryptographic constructions, and before explaining their result we briefly review
the portion of this that is relevant for us. (See §2 for formal definitions.) Most cryptographic
constructions, including [HILL99] and [GGM86], are of a type known as fully black-box : G
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has only black-box access to f , and any adversary A breaking Gf yields an efficient adversary
CA with black-box access to A that breaks f . Another type of construction, called weakly
black-box in [RTV04], simply guarantees that Gf is a PRG whenever f is hard to invert;
i.e., C may depend arbitrarily on the adversary A. We suggest the alternative terminology
primitive black-box, to signify both that only the primitive (and not the adversary) is treated
as a black-box, and that this is a “cruder” form of reduction.

The result of [RTV04] can be stated as follows: there exists an infinitely-often primitive
black-box PRG construction Gf : {0, 1}n → {0, 1}n+1 from a OWF f : {0, 1}ℓ → {0, 1}ℓ,
where G makes only one query to f and has seed length n = 2ℓ.

We note that primitive constructions are pathological for two reasons. First, one does
not expect to rule them out (since the construction can just ignore the oracle and construct
a PRG in the “real-world”). Second, they do not immediately yield improved “real-world”
efficiency (indeed, the construction in [RTV04] uses [HILL99] as a component, as do we).

Still, primitive constructions are important because any efficiency lower bound must ac-
count for them. For example, the lower bound of [GGKT05] also applies in the primitive
black-box setting (in the sense that a construction breaking the aforementioned query/stretch
tradeoff implies an unconditional pseudorandom generator). After more than twenty years
since the seminal results in [GGM86, HILL99] and the result by Goldreich and Micali men-
tioned below, primitive constructions appear to offer the only available explanation for the
lack of progress on efficiency lower bounds for fundamental cryptographic constructions.

Our results on PRF constructions. Our main result is an extension of [RTV04] to
pseudorandom functions. We show that there is an (infinitely-often) primitive black-box
PRF construction that makes only k(n) queries to the OWF per output, for any k(n) = ω(1)
(e.g. k(n) = log∗ n). Thus, one must avoid this construction to prove a super-constant
lower bound on the query complexity of PRF constructions. This holds for OWF that are
secure against non-uniform adversaries; it is an interesting open problem to obtain such a
construction in the uniform setting.

Theorem 1.1. For every k(n) = ω(1), there is a poly(n)-time oracle algorithm F (·) :
{0, 1}n × {0, 1}n → {0, 1} that makes k(n) non-adaptive oracle queries and satisfies the
following: for some ℓ = Θ(

√
n) and every function f : {0, 1}ℓ → {0, 1}ℓ that is hard to invert

by poly-size circuits, F f( · , Un) is a PRF for infinitely many input lengths.

The seed length of our construction is quadratic in ℓ, rather than linear as in [RTV04].
This stems from our use of the Nisan-Wigderson PRG [NW94] in the construction. Reducing
the seed length of this PRG to O(ℓ) is a well-known open problem, and such an improvement
would also reduce the seed length of our construction to O(ℓ).

We also make a modest step towards circumventing the above obstacle to proving black-
box negative results. We observe that one can rule out a simple, yet arguably natural PRF
construction using non-black-box techniques (jumping ahead, the work by Applebaum et
al. [AIK06]). This natural construction is to “hash, then extract”; that is, we let the seed of
the PRF specify a pairwise-independent (or even k-wise independent) hash function h and a
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seed s of an extractor Ext, and output Ext(f(h(x)), s). We prove a negative result for such
constructions whenever the hash function and the extractor are linear, that is, for any fixed
seed they are a linear function of the input. We note that standard construction of hash
functions [CW79, CG89, ABI86] and extractors [HILL99, Tre01] are indeed linear.

Theorem 1.2. If there is a OWF computable in logarithmic space, and in particular if
factoring is hard, then there is a OWF f such that F = {Fh,s(x) := Ext(f(h(x)), s)} is not
a PRF for any functions h and Ext that are linear for every fixed seed.

To our knowledge, it is not known how to rule out such constructions using black-box
techniques, primitive or otherwise.

The role of adaptivity in PRG constructions. Our main result also has implications
for constructions that increase the stretch of a PRG. Though the definition of a PRG only
requires stretch s ≥ 1, all cryptographic and derandomization applications of which we are
aware require much larger stretch, e.g. linear (s = Ω(n)). An important and well-known
result, due to Goldreich and Micali, is that the existence of a PRG with stretch s = 1
implies the existence of a PRG with stretch s = poly(n) for any desired polynomial. We
briefly recall the construction that establishes this result (cf. [Gol01, §3.3.2]).

For a one-bit-stretch generator G : {0, 1}n → {0, 1}n+1 and a positive integer k, let Gk(x)
denote the (n+1)-bit string resulting from k iterative applications of G, using x as the input
for the first invocation, and the first n bits of the previous output as the input for subsequent
invocations. Then, the “stretch-increasing” construction H(·) : {0, 1}n → {0, 1}m is

HG(x) := G1(x)n+1 ◦G2(x)n+1 ◦ · · · ◦Gm(x)n+1. (1)

That is, H iteratively queries G as described above, and outputs the final bit of each answer.
An aspect of this construction of particular interest to us is that the queries are adaptive,

in the sense that the ith query can be determined only after the answer to the (i − 1)th
query has been received. The presence of adaptivity in such constructions is especially
important when considering the existence of cryptographic primitives in “low” complexity
classes. The celebrated work of Applebaum et al. [AIK06], in combination with the (non-
adaptive) construction of Haitner et al. [HRV10], demonstrates the existence of a PRG
computable in NC0 under the assumption that there exists a OWF computable in logarithmic
space. However, the resulting PRG has sub-linear stretch, and the application of construction
(1) would place it outside of NC0.

Our results on adaptivity. We show that, in the primitive black-box setting, there is
a non-adaptive stretch-increasing construction with arbitrary polynomial stretch. This in
fact follows from Theorem 1.1, because the queries made by the PRF construction are non-
adaptive, and because any PRG is also a OWF. This again holds under the assumption that
the one-bit-stretch generator is secure against non-uniform adversaries.
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Theorem 1.3. For every constant c = O(1), there is a poly(n)-time oracle algorithm H(·) :
{0, 1}n → {0, 1}nc

that makes nc non-adaptive oracle queries and satisfies the following: for
some ℓ = Θ(

√
n) and every one-bit-stretch PRG G : {0, 1}ℓ → {0, 1}ℓ+1, HG(·) is a PRG for

infinitely many input lengths. In addition, H(·) has the form

HG(x) := 〈G(q1(x)), r1(x)〉 ⊕ t1(x) ◦ · · · ◦ 〈G(qnc(x)), rnc(x)〉 ⊕ tnc(x)

where qi : {0, 1}n → {0, 1}ℓ specifies the ith query, ri : {0, 1}n → {0, 1}ℓ+1 specifies the ith
parity function, and ti : {0, 1}n → {0, 1} specifies whether to complement the ith bit.

In Theorem 1.3, the post-processing consists of applying an input-dependent affine func-
tion to the query answers (this is also true in Theorem 1.1). We complement this result by
showing that the post-processing cannot be weakened to taking projections. More specif-
ically, we give a black-box separation showing that non-adaptive linear-stretch construc-
tions cannot have post-processing that only takes projections of the query answers. This
means that, in particular, there is no non-adaptive PRF construction with projection post-
processing.

Theorem 1.4. For all sufficiently large ℓ and for n ≤ 2
√
ℓ, there is no fully black-box

construction H(·) : {0, 1}n → {0, 1}n+s of a generator with stretch s ≥ 5n/ logn and error

ǫ ≤ 1/4 from any one-bit-stretch generator G : {0, 1}ℓ → {0, 1}ℓ+1 with error δ ≥ 2−
√
ℓ/30

and with security reduction size t ≤ 2
√
ℓ/30 of the form

HG(x) := G(q1(x))b1(x) ◦ · · · ◦G(qn+s(x))bn+s(x)

where qi : {0, 1}n → {0, 1}ℓ specifies the i-th query and bi : {0, 1}n → [ℓ + 1] specifies the bit
of the i-th answer to output.

Note that this holds even if G is secure against non-uniform adversaries. Theorem 1.4
indeed complements Theorem 1.3, because we observe in Theorem 4.3 that this impossibility
result also extends to the primitive black-box setting, in the sense that any such construction
implies NP/poly 6= P/poly. (Recall that primitive black-box constructions cannot be ruled
out without ruling out the existence of PRG, because if the latter exist a construction can
just ignore the oracle and output a PRG). Note that the post-processing in the Goldreich-
Micali construction (1) consists of taking projections, and thus linear-stretch constructions
require either adaptive queries or post-processing the answers in a more sophisticated way
than projecting.

It was pointed out to us by Benny Applebaum that Theorem 1.4 can be strengthened to
rule out even AC0 post-processing; we elaborate on this improvement in §1.2.

1.1 Techniques

Our main idea behind the proofs of Theorems 1.1 and 1.3 is to combine the construction
of [RTV04] with the Nisan-Wigderson PRG [NW94]. The [RTV04] construction is proved
secure by a case analysis, depending on the existence or non-existence of OWF. If OWF
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exist, we use the results of H̊astad et al. [HILL99] and Goldreich et al. [GGM86] that PRF
also exist; the construction then ignores its oracle and simply outputs a PRF.

If OWF do not exist, this means that the oracle cannot be computed by poly-size circuits
(since it is assumed to be hard to invert). We then use Goldreich-Levin [GL89] to transform
the oracle into a Boolean function that is hard to compute by any family of poly-size circuits.
Until now this is the argument in [RTV04]. (Actually [RTV04] is more involved because it
works even in the uniform setting.) We next apply the Nisan-Wigderson construction to get
an arbitrary polynomial-stretch PRG. This gives Theorem 1.3.

To turn this into a PRF and thus prove Theorem 1.1 we employ a recent technique by
Berman and Haitner [BH12]. First, we observe that for every constant c one can obtain a
“weak PRF” that is secure against adversaries which make at most nǫ·c queries and have
distinguishing advantage ≥ 1/nǫ·c. This is obtained by hashing the input to select one of the
nc bits generated via Nisan-Wigderson as above.

To obtain a single PRF that has this security for every constant c, we xor k = ω(1)
copies of the weak PRF that are secure with respect to constants c = 1, 2, . . . , k.

Since the Nisan-Wigderson construction is non-adaptive and each copy of the weak PRF
is independent, this construction makes k non-adaptive queries to its oracle.

We note that, as is well-known, the proof of correctness of the Nisan-Wigderson con-
struction requires non-uniformity, and this is what prevents this result from applying in the
uniform setting.

To break the “hash, then extract” PRF construction (Theorem 1.2), we use the OWF
computable in NC0 given by Applebaum et al. [AIK06]. Then, every Fh,s ∈ F is com-
putable by a low-degree polynomial and so can be distinguished by the results of Alon et
al. [AKK+03].

We now explain the proof of Theorem 1.4, the impossibility result for non-adaptive
constructions with projection post-processing. Our proof is similar to the lower bound
by Gennaro et al. mentioned previously [GGKT05], though we do not bound the number
of queries. For simplicity, we first explain the proof in the case in which the construction
always outputs the same bit of the answers, say the first bit (i.e. bi(x) = 1 for all i).

We start by considering a (non-explicit) PRG G : {0, 1}ℓ → {0, 1}ℓ+1 that is hard to break
even for circuits that have oracle access to G. Such PRG are obtained in an unpublished
manuscript of Impagliazzo [Imp96] and in a work by Zimand [Zim98]. (They work in a
slightly different setting, however, obtaining a PRG with high probability in the random
oracle model. For completeness we present a streamlined version of their arguments in §5.)
By padding, we can modify our oracle to have the extra property that G(x)1 = x1 for every
x. But now, H doesn’t need to query G because each output bit G(qi(x))bi(x) can be replaced
with qi(x)1. So we can consider an adversary A that breaks HG by simply checking, given
a challenge z ∈ {0, 1}m, whether there exists an x such that zi = qi(x)1 for all i. This
breaks H as soon as the output length is ≥ |x|+1. Since H doesn’t use G anymore, neither
does the adversary A. Hence the ability to access A does not compromise the security of G,
contradicting Definition 2.1.

To generalize our result to constructions that output different bits (i.e. not always the
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first one), we identify a set of indices T ⊆ [ℓ + 1] of size ℓ(1 − Θ(1/ log ℓ)), such that for
most input strings x ∈ {0, 1}n, most of the bits bi(x) chosen by H fall inside T . We exploit
this fact by designing an oracle PRG G that reveals the first |T | bits of its input on the set
T ; that is, G(x)|T = x1x2 · · ·x|T | for every input x. We then consider an adversary A that
distinguishes HG from uniform by examining, for every x ∈ {0, 1}n, only the bits i such that
bi(x) ∈ T , and checking if each bit matches the corresponding bit from the query qi(x). This
turns out to break H as soon as the the output length is ≥ |x| + Ω(|x|/ log |x|) (we do not
attempt to optimize this value and content ourselves with anything sublinear). On the other
hand, A depends on G just because of the knowledge of the set T , which means that oracle
access to A does not compromise the security of G, again contradicting 2.1.

To obtain the result for primitive constructions, we observe that A can be computed in
NP/poly, and hence under the assumption that NP/poly = P/poly we obtain a distinguisher.

1.2 More related work

The earlier work [Vio05] (which was later extended by [Lu06]) analyzes a type of pseudoran-
dom generator construction that is very similar to ours. The constructions in [Vio05] make
non-adaptive queries to an oracle one-way function, and then apply an arbitrary unbounded-
fan-in constant-depth circuit (AC0) to the outputs; [Vio05] shows that such constructions
cannot have linear stretch. At first glance this construction is incomparable to Theorem
1.4, because it starts from a weaker primitive (one-way function instead of one-bit-stretch
generator) but on the other hand allows for AC0 postprocessing instead of just projections.

However, it was pointed out to us by Benny Applebaum that a strengthening of Theorem
1.4 follows from [Vio05] when combined with the works [AIK06] and [HRV10]. Specifically,
a version of Theorem 1.4 holds even if the construction H is allowed to apply an AC0 circuit
to the output of the one-bit-stretch oracle PRG G (rather than just taking projections). We
now elaborate on this improvement. (We also remark that at the moment this establishes
a strengthened negative result only for constructions that start from a uniform hardness
assumption, because Theorem 1.1 in [Vio05] is only proved for those.)

Assume that there exists a black-box construction H(·) : {0, 1}n → {0, 1}n+s of a PRG
from a one-bit-stretch PRG which has the form HG(x) := Cx(G(q1(x)), . . . , G(qpoly(n)(x))),
where Cx is an AC0 circuit generated arbitrarily from x and the functions qi are arbi-
trary as before. Let G

(·)
HRV : {0, 1}ℓ → {0, 1}ℓ+1 be the black-box construction of a PRG

from a OWF given by [HRV10, Theorem 6.1]. This construction has the form Gf
HRV(x) :=

C ′(x, f(x′1), . . . , f(x
′
t)) where C ′ is an NC1 circuit and the x′i are disjoint projections of the

input x. Then, we can apply the compiler from [AIK06, Remark 6.7] to obtain a black-box

construction G
(·)
AIK : {0, 1}ℓ → {0, 1}ℓ+1 of a PRG from a OWF of the form Gf

AIK(x) :=
C ′′(x, f(x′1), . . . , f(x

′
t)), where now C ′′ is an NC0 circuit (and thus is also an AC0 circuit).

(For both GHRV and GAIK the seed length is ℓ = poly(m), where m is the input length of the
oracle OWF, though the [AIK06] compiler does increase the seed length.) Finally, by combin-

ing H and GAIK, we obtain a black-box construction H
(·)
∗ : {0, 1}n → {0, 1}n+s of a PRG from

a OWF which has the form Hf
∗ (x) := C ′′′x (f(q1(x)), . . . , f(qpoly(n)(x))) where C ′′′x is an AC0
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circuit. This is a contradiction to [Vio05, Theorem 1.1] when the oracle f : {0, 1}m → {0, 1}k
has logω(1) m < k ≤ mO(1) and the stretch s is greater than n · logO(1)m/k = o(n).

Finally, we mention that in a concurrent work, Bronson, Juma and Papakonstantinou
[BJP11] also study non-adaptive black-box PRG constructions and obtain results which are
incomparable to ours.

Organization In §2 we formally define the types of black-box constructions we consider.
In §3 we give our PRF construction (Theorem 1.1) and the corresponding stretch-increasing
construction (Theorem 1.3). In §4 we prove the black-box separation result (Theorem 1.4).
Finally, in §5 we construct the one-bit-stretch oracle generator used in §4.

2 Black-box constructions

Here we give the formal definitions of the black-box constructions that we consider. To
explain and motivate these, we start by sketching the proof of correctness of the Goldreich-
Micali construction (1).

Suppose there is an adversary A that distinguishes HG(Un) from Um with advantage
greater than ǫ ·m. Using a hybrid argument, one can show that there exists a k ∈ [m] such
that A distinguishes the distributions Uk−1 ◦

(
HG(Un)|[m−(k−1)]

)
and Uk ◦

(
HG(Un)|[m−k]

)

with advantage greater than ǫ. Then, we define a probabilistic oracle circuit C(·) as follows:
on input (x, b) ∈ {0, 1}n × {0, 1}, CA,G computes HG(x) using its oracle to G, chooses
y ∈ {0, 1}k−1 uniformly at random, and then outputs A

(
y ◦ b ◦HG(x)|[m−k]

)
. Depending on

whether (x, b) was chosen from Un+1 or from G(Un), the input C gives to A will come from
one of the two hybrid distributions that A can distinguish between, and so C distinguishes
G with advantage greater than ǫ, contradicting G’s pseudorandomness.

This argument is an example of a black-box reduction: it applies to any (possibly hard
to compute) functions G and A, provided that we are given oracle access to them. We now
formally define stretch-increasing PRG constructions in the fully black-box setting.

Definition 2.1 (Fully black-box stretch-increasing construction). An oracle function H(·) :
{0, 1}n → {0, 1}n+s is a fully black-box stretch-increasing construction with security reduc-
tion size t of a generator with stretch s and error ǫ from any one-bit-stretch oracle generator
G : {0, 1}ℓ → {0, 1}ℓ+1 with error δ if the following holds:

For every 1-bit stretch generator G : {0, 1}ℓ → {0, 1}ℓ+1 and every adversary A, if A
distinguishes HG with advantage ǫ, i.e.

∣∣Pr[A(HG(Un)) = 1]− Pr[A(Un+s) = 1]
∣∣ ≥ ǫ

then there is an oracle circuit C(·) of size t that, when given oracle access to both A and G,
distinguishes G with advantage δ, i.e.

∣∣Pr[CA,G(G(Uℓ)) = 1]− Pr[CA,G(Uℓ+1) = 1]
∣∣ ≥ δ.
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We next formally define primitive black-box constructions. These differ from the above
in that the adversary C may depend arbitrarily on A (i.e. C is not required to treat A as
a black-box), but C is only required to exist in the case when A is efficient. We work in
the asymptotic setting for these definitions because our results are cleaner to state in that
setting. We also note that our primitive black-box constructions will hold for infinitely many
(as opposed to sufficiently large) input lengths.

Definition 2.2 (Infinitely-often primitive black-box stretch-increasing construction). Let
ℓ be a security parameter, and let n = n(ℓ) and s = s(ℓ). An oracle function H(·) :
{0, 1}n → {0, 1}n+s is an infinitely-often primitive black-box stretch-increasing construc-
tion with stretch s if the following holds:

For every c there exists c′ such that for every ℓ0 there exists ℓ ≥ ℓ0 such that for every
G : {0, 1}ℓ → {0, 1}ℓ+1, if there exists a circuit A of size at most nc that distinguishes HG

with advantage at least 1/nc, i.e.

∣∣Pr
[
A
(
HG(Un)

)
= 1

]
− Pr [A (Un+s) = 1]

∣∣ ≥ 1/nc

then there exists a circuit C(·) of size at most ℓc
′

that distinguishes G with advantage at least
1/ℓc

′

, i.e. ∣∣Pr
[
CG (G(Uℓ)) = 1

]
− Pr

[
CG (Uℓ+1) = 1

]∣∣ ≥ 1/ℓc
′

.

Definition 2.3 (Infinitely often primitive black-box PRF construction). Let ℓ be a security
parameter and let n = n(ℓ). A set of oracle functions F =

{
f (·) : {0, 1}n → {0, 1}

}
is an

infinitely-often primitive black-box PRF construction if the following holds:
For every c there exists c′ such that for every ℓ0 there exists ℓ ≥ ℓ0 such that for every

g : {0, 1}ℓ → {0, 1}ℓ, if there exists a circuit A(·) of size at most nc that distinguishes F g

with advantage at least 1/nc, i.e.

∣∣∣∣ Prf←F

[
Afg

= 1
]
− Pr

f←U

[
Af = 1

]∣∣∣∣ ≥ 1/nc

then there exists a circuit C(·) of size at most ℓc
′

that inverts g with probability at least 1/ℓc
′

,
i.e.

Pr
[
Cg (g(Uℓ)) ∈ g−1(g(Uℓ))

]
≥ 1/ℓc

′

.

3 Non-adaptive primitive black-box constructions

In this section we prove Theorems 1.1 and 1.3. We first state the definitions of OWF and
hard to compute functions that we will use.

Definition 3.1 (One-way function). Let f : {0, 1}∗ → {0, 1}∗ be a function. f is hard to
invert if for all constants c, there is a constant ℓ0 such that for all ℓ ≥ ℓ0 and every oracle
circuit C(·) of size at most ℓc we have Pr[Cf (f(Uℓ)) ∈ f−1(f(Uℓ))] < 1/ℓc. If in addition f
is computable by circuits of size poly(ℓ), f is a one-way function.
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Definition 3.2 (Hard to compute infinitely often). Let f : {0, 1}∗ → {0, 1} be a Boolean
function. f is hard to compute infinitely often if for every c and ℓ0, there exists ℓ > ℓ0 such
that for every circuit C of size at most ℓc, we have Pr[C(Uℓ) = f(Uℓ)] < 1/2 + 1/ℓc.

In what follows we will sometimes make the assumption that “OWF do not exist”, which
means that for any function f that is hard to invert, every poly(ℓ)-sized circuit family fails
to compute f on infinitely many input lengths. The following lemma constructs a function
that is hard to compute infinitely often from one that is hard to invert, when OWF do not
exist. This was also proved in [RTV04] in the uniform setting. Our proof, which relies on
non-uniformity, is a bit simpler.

Lemma 3.3. Assume that OWF do not exist, and let f : {0, 1}∗ → {0, 1}∗ be hard to invert.
Then the Boolean function f ′(x, r) := 〈f(x), r〉 is hard to compute infinitely often.

Proof. Assume for contradiction that there exist constants c and ℓ0 such that for all ℓ ≥ ℓ0,
there exists a circuit C of size ≤ ℓc such that Pr[C(Uℓ, U

′
ℓ) = 〈f(Uℓ), U

′
ℓ〉] ≥ 1/2 + 1/ℓc,

where Uℓ and U ′ℓ denote independent instances of the uniform distribution on {0, 1}ℓ (we
assume for simplicity that f is length-preserving). Then by the Goldreich-Levin theorem,
there exist constants c′ and ℓ′0 such that for all ℓ ≥ ℓ′0, there exists a circuit C ′ of size ≤ ℓc

′

such that Pr[C ′(Uℓ) = f(Uℓ)] ≥ 1/ℓc
′

. Now notice that C ′ computes a weak OWF; that is,
the function computed by C ′ can only be inverted on strictly less than a 1−1/(2ℓc

′

) fraction
of inputs by circuits of size poly(ℓ) for sufficiently large ℓ, because any circuit which inverts
C ′ on a 1− 1/(2ℓc1) fraction of inputs also inverts f on at least a 1/(2ℓc1) fraction of inputs.
However, using the standard direct product construction (originally due to Yao [Yao82]; see
also [Gol01, Thm. 2.3.2]), this implies the existence of a OWF, contradicting the assumption
that OWF do not exist.

3.1 Stretch-increasing construction

In this subsection we prove Theorem 1.3, the non-adaptive stretch-increasing construction;
this can be viewed as a warmup for our PRF construction in the subsequent subsection. We
use the following definition of PRG.

Definition 3.4 (Pseudorandom generator). A function G : {0, 1}n → {0, 1}n+s is a (T, ǫ)-
pseudorandom generator if s ≥ 1 and for every oracle circuit C(·) of size ≤ T , we have∣∣Pr[CG(G(Un)) = 1]− [CG(Un+s) = 1]

∣∣ < ǫ.

By virtue of Lemma 3.3, Theorem 1.3 will actually hold when the oracle is any function
that is hard to invert. For completeness and to justify the term “stretch-increasing”, we note
that any one-bit-stretch PRG is hard to invert.

Lemma 3.5. If G : {0, 1}ℓ → {0, 1}ℓ+1 is a (p(ℓ), 1/p(ℓ))-pseudorandom generator for all
polynomials p and sufficiently large ℓ, then it is hard to invert.
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Proof. Assume for contradition that there exist constants c and ℓ0 such that for all ℓ > ℓ0
there exists a circuit C of size≤ ℓc and an ǫ ≥ 1/ℓc such that Pr[C(G(Uℓ)) ∈ G−1(G(Uℓ))] = ǫ.
Then, define an adversary A(·) : {0, 1}ℓ+1 → {0, 1} as follows: on input y, AG computes
x = C(y), uses its oracle to G to check if G(x) = y, and outputs 1 iff this holds. We clearly
have |A| = poly(ℓ) and Pr[A(G(Uℓ)) = 1] = ǫ.

Let T ⊆ Im(G) be the set of outputs that C inverts, and note that
∑

y∈T Pr[G(Uℓ) =

y] = ǫ. For each y ∈ T we have Pr[G(Uℓ) = y] ≥ 1/2ℓ, and so |T |/2ℓ ≤ ǫ. Then, since A will
only output 1 on inputs that C can invert and since no string outside Im(G) can be inverted,
we have Pr[A(Uℓ+1) = 1] = |T |/2ℓ+1 ≤ ǫ/2, and thus A distinguishes G from uniform with
advantage ≥ ǫ/2 = 1/poly(ℓ).

In order to apply the Nisan-Wigderson construction, we recall the notion of designs.

Definition 3.6 (Design). A collection of sets S1, . . . , Sd ⊆ [n] is an (ℓ, α)-design if

1. ∀i : |Si| = ℓ.

2. ∀i 6= j : |Si ∩ Sj| ≤ α.

Lemma 3.7 ([NW94]). For any integers d and ℓ such that log d ≤ ℓ ≤ d, there exists a
collection S1, . . . , Sd ⊆ [4ℓ2] which is an (ℓ, log d)-design. For this collection, on input j ∈ [d]
the set Sj can be constructed in time poly(ℓ).

We now give the proof of Theorem 1.3.

Theorem 3.8 (Theorem 1.3 restated). Let ℓ be a security parameter, and let n = 17ℓ2. Then
for any constant c > 1, there exists an infinitely-often primitive black-box stretch-increasing
construction H(·) : {0, 1}n → {0, 1}nc

from any one-bit-stretch generator G : {0, 1}ℓ →
{0, 1}ℓ+1. In addition, H(·) is computable in time poly(n), and has the form

HG(x) := 〈G(q1(x)), r1(x)〉 ⊕ t1(x) ◦ · · · ◦ 〈G(qnc(x)), rnc(x)〉 ⊕ tnc(x)

where qi : {0, 1}n → {0, 1}ℓ specifies the ith query, ri : {0, 1}n → {0, 1}ℓ+1 specifies the ith
parity function, and ti : {0, 1}n → {0, 1} specifies whether to complement the ith bit.

Proof. If OWF exist, then by the results of [HILL99] there exists a PRG H ′ : {0, 1}n →
{0, 1}nc

. Then, the construction H(·) is simply HG(z) := H ′(z). Note that this can be
achieved in the form stated in the theorem by setting ri(z) = 0ℓ+1 for all i and z, and
choosing the ti appropriately to compute each bit of H ′.

Now assume that OWF do not exist. Let G : {0, 1}ℓ → {0, 1}ℓ+1 be any function,
and define f : {0, 1}2ℓ+1 → {0, 1} as f(x, r) := 〈G(x), r〉. Fix a constant c > 1, and define
n = 4(2ℓ + 1)2 (which is at most 17ℓ2 for sufficiently large ℓ). Let S1, . . . , Snc ⊆ [n] be the
(2ℓ + 1, c logn) design guaranteed by Lemma 3.7. Then, the construction HG : {0, 1}n →
{0, 1}nc

is defined as
HG(z) := f(z|S1) ◦ · · · ◦ f(z|Snc ).
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If there exists a polynomial p and a circuit family of size p(ℓ) which distinguishes G from
uniform with advantage at least 1/p(ℓ), then the theorem is trivially true. Thus, we can take
G to be (p(ℓ), 1/p(ℓ))-pseudorandom for all polynomials p and sufficiently large ℓ. We will
show that if HG can be distinguished from random by an efficient adversary, then f can be
computed efficiently with probability noticeably bigger than 1/2, contradicting Lemmas 3.3
and 3.5.

Assume for contradiction that there exists a constant c0 and a circuit family A of
size nc0 that distinguishes HG(Un) from Unc with advantage 1/nc0. Using the well-known
equivalence between distinguishing and next-bit predicting [Yao82], this implies the exis-
tence of an i ∈ [nc] and a circuit family A′ : {0, 1}i−1 → {0, 1} of size nO(c0) such that
Pr

[
A′(HG(Un)|[i−1]) = HG(Un)i

]
≥ 1/2 + 1/nc+c0. Separating out the part of the input

indexed by Si, this can be rewritten as

Pr
(x,y)←(U2ℓ+1,Un)

[
A′(HG(z)|[i−1]) = HG(z)i

]
≥ 1/2 + 1/nc+c0, (2)

where z ∈ {0, 1}n is defined by z|Si
= x and z|Si

= y|Si
. By an averaging argument, there is

a way to fix y ∈ {0, 1}n such that (2) holds; from here on we assume that this y is fixed. For
each j ∈ [i− 1], define the function fj : {0, 1}2ℓ+1 → {0, 1} as fj(x) := f(z), where now z is
defined by z|Si∩Sj

= x1x2 · · ·x|Si∩Sj | and z|Si∩Sj
= y|Si∩Sj

. Note that since Si ∩ Sj ≤ c logn

and y is fixed, each fj is computable by a circuit family of size poly(n) = poly(ℓ). Finally,
define the circuit family A′′ : {0, 1}2ℓ+1 → {0, 1} as A′′(x) := A′(f1(x), . . . , fi−1(x)). It can
be easily checked that A′′ has size poly(ℓ) and correctly computes f on a random input with
probability at least 1/2 + 1/nc+c0.

3.2 PRF construction

We now extend the previous construction to get a low-query, non-adaptive primitive black-
box PRF construction from any OWF f . The proof again proceeds via a case analysis,
as follows. In the case when OWF exist, [HILL99] and [GGM86] give a PRF. If OWF do
not exist, we again use 〈f(x), r〉 in the Nisan-Wigderson construction. By combining this
with a pairwise-independent hash function, we obtain for any i a “weak PRF” Fi, which has
security nΩ(i) when i = O(1). Then by taking k(n) = ω(1) and F :=

⊕
j≤kFj, and showing a

reduction from breaking Fi to breaking F , we obtain that F is a PRF because any poly-size
circuit breaking F contradicts the hardness of Fi for sufficiently large i = O(1) ≤ k.

Theorem 3.9 (Theorem 1.1 restated). Let ℓ be a security parameter, and let n = 16ℓ2.
For any k = k(n) = ω(1), there is an infinitely-often primitive black-box PRF construction
F =

{
F (·) : {0, 1}n → {0, 1}

}
from any oracle function f : {0, 1}ℓ → {0, 1}ℓ, of the form

F f(x) :=
⊕

1≤i≤k
〈f(qi(x)), ri(x)〉 ⊕ t(x)

where qi : {0, 1}n → {0, 1}ℓ specifies the ith query, ri : {0, 1}n → {0, 1}ℓ specifies the ith
parity function, and t : {0, 1}n → {0, 1} specifies whether to complement the output bit. The
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functions qi, ri, and t are specified by the O(n)-bit seed of F (·) ∈ F and are all poly(n)-time
computable.

Proof. Note that the theorem is trivially true for any oracle that is not hard to invert, so we
assume throughout that f is hard to invert.

If OWF exist, then by [HILL99] and [GGM86] we know that infinitely-often PRF exist
(in fact they exist for all sufficiently large input lengths), so we can take F (·) to be the
construction that ignores its oracle and outputs such a PRF. This can be achieved in the
stated form by setting ri(x) = 0ℓ for all i and x, and choosing t appropriately to compute
the PRF.

Now assume that OWF do not exist. We give the construction Fi, from which we will
construct F :=

⊕
j≤k Fj.

Let f ′ : {0, 1}∗ → {0, 1} be defined on even input lengths by f ′(x, r) := 〈f(x), r〉. For
any even ℓ ∈ N, let n = 4ℓ2.1 For an integer i ≤ n/ logn, let H = {h : {0, 1}n → [ni]}
be a pairwise-independent hash family, and let S1, . . . , Sni ⊆ [n] be the (ℓ, i logn)-design
guaranteed by Lemma 3.7. (The bound i ≤ n/ log n is to guarantee ni ≤ 2n.)

Then, Fi =
{
Fh,z : {0, 1}n → {0, 1}

∣∣ h ∈ H, z ∈ {0, 1}n
}
is defined as

Fh,z(x) := f ′
(
z
∣∣
Sh(x)

)

Note that Fh,z(x) has the form 〈f(qi(x)), ri(x)〉. As i is bounded, Fh,z is computable (with
oracle access to f) in time nα for a universal constant α independent of i.

The following claim relates the hardness of distinguishing Fi to that of computing f ′.

Claim. If there exists a circuit of size ≤ ni/4 that distinguishes Fi with advantage ≥ 1/ni/4,
then there exists a circuit of size ℓO(i) that computes f ′(Uℓ) with probability ≥ 1/2 + 1/ℓ3i.

Before proving this claim, we show how it implies the theorem. Let k = k(n) be any
monotonic non-decreasing integer function such that k = ω(1) and k ≤ n/ log n, and define
F :=

⊕
j≤kFj. We will show that a distinguisher of size nc for F implies the existence of

a distinguisher of size nO(c) for Fi. Then by choosing an appropriate i = Θ(c) and letting
n be sufficiently large to guarantee k ≥ i, this will imply the existence of a poly-size circuit
computing f ′, in contradiction to Lemma 3.3.

Assume for contradiction that there exist constants c and n0 and a circuit (family) A(·)

of size nc such that A(·) distinguishes F from uniform with advantage ≥ 1/nc for all input

lengths n ≥ n0. For any i ≤ k, we construct a circuit A
(·)
i that distinguishes Fi from uniform

with the same advantage on the same input lengths, as follows: AOi simulates A(·), and
answers its oracle queries with O ⊕

⊕
j 6=iFj. The key point is that if O = Fi then the

simulated oracle is F , and if O is uniform then the simulated oracle is uniform. The size of
Ai is ≤ nc · k(n) · nα, where nα is the size needed to compute each Fj . Let c

′ = c+O(1) be
a constant (independent of i) such that |Ai| ≤ nc′, and note that Ai distinguishes Fi with
advantage ≥ 1/nc′ on all input lengths n ≥ n0.

1We are now using ℓ to refer to the input length of f ′, which is twice the input length of f .
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Now let i = ⌈4c′⌉, and let n′0 ≥ n0 be the smallest integer such that k(n′0) ≥ i. Then Ai

has size ≤ ni/4 and distinguishes Fi with advantage ≥ 1/ni/4 on all input lengths n ≥ n′0. By
the claim this gives a circuit of size ℓO(1) that computes f ′(Uℓ) with probability 1/2+1/ℓO(1)

for all input lengths ℓ ≥
√

n′0/2, which contradicts Lemma 3.3.
We now prove the claim.

Proof of Claim. Let A(·) be an oracle circuit of size ≤ ni/4 such that
∣∣∣∣ Pr
Fh,z←Fi

[
AFh,z = 1

]
− Pr

F←U

[
AF = 1

] ∣∣∣∣ ≥
1

ni/4
.

Let B : {0, 1}ni → {0, 1} be the circuit of size |A| ·nO(i) which, on input x, selects a uniform
h ∈ H and simulates A(·) by answering query q ∈ {0, 1}n with xh(q) ∈ {0, 1}. By construction
we have

Pr
z∈{0,1}n

[
B
(
f ′(z|S1), . . . , f

′(z|Sni
)
)
= 1

]
= Pr

Fh,z←Fi

[
AFh,z = 1

]
.

Let E be the event, over the choice of a uniform function F ← U and a uniform h ∈ H,
that AF◦h makes two queries q 6= q′ such that h(q) = h(q′); it can be shown that PrF,h[E] <
|A|2/ni ≤ 1/ni/2 by a collision-probability argument. Then,

Pr
z∈{0,1}ni

[B(z) = 1 | ¬E] = Pr
F←U

[
AF = 1

]

and thus
∣∣∣∣ Pr
z∈{0,1}n

[
B
(
f ′(z|S1), . . . , f

′(z|Sni
)
)
= 1

]
− Pr

z∈{0,1}ni
[B(z) = 1]

∣∣∣∣ ≥
1

ni/4
− Pr[E] >

1

2ni/4
.

(Technically, this inequality holds either for B or for the circuit which outputs the opposite
of B; we take B to be the circuit for which it holds. Also, note that we can take B to be a
deterministic circuit by fixing the choice of h ∈ H that maximizes the above difference.)

By the Nisan-Wigderson analysis (cf. proof of Theorem 3.8), the fact that each distinct
Sj , Sj′ have overlap ≤ i log n implies the existence of a circuit C of size ≤ |B| · nO(i) = ℓO(i)

that computes f ′ correctly on a 1/2+ 1/2n5i/4 ≥ 1/2 + 1/ℓ3i fraction of inputs of size ℓ.

This completes the proof of the theorem.

3.3 An impossible PRF construction

Here we briefly mention a seemingly natural approach for constructing PRF from OWF, and
show that it fails for a specific choice of the OWF. For simplicity of notation we take the
PRF and OWF to have the same input length n.

The approach is to “hash, then extract”; that is, we let the seed of the PRF specify
a pairwise-independent hash function h : {0, 1}n → {0, 1}n, and a seed s ∈ {0, 1}m of an
extractor Ext : {0, 1}n × {0, 1}m → {0, 1}, and output

F f(x) := Ext(f(h(x)), s).
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More generally, one can hash the input to poly(n) k-wise independent samples for k = O(1),
apply f to each sample, and then extract. All the considerations in this section apply to
this more general construction as well.

We observe that such an approach cannot produce a PRF without either (a) violating
many widely-held cryptographic assumptions or (b) relying on properties of Ext other than
its output being statistically close to uniform.

Theorem 1.2. If there is a OWF computable in logarithmic space, and in particular if
factoring is hard, then there is a OWF f such that F = {Fh,s(x) := Ext(f(h(x)), s)} is not
a PRF for any functions h and Ext that are linear for every fixed seed.

Proof sketch. To show that this approach cannot work, we use the NC0 OWF given by
Applebaum, Ishai and Kushilevitz [AIK06], any linear hash function [CW79, CG89, ABI86],
and any extractor that becomes linear when the seed is fixed [HILL99, Tre01].

Theorem 3.10 ([AIK06]). If there is a OWF computable in logarithmic space, then there is
a OWF computable in NC0.

Because any NC0 function is computable by a degree d = O(1) polynomial, using these
components we obtain that every Fh,s ∈ F is computable by a degree-d polynomial. Then,
using the results of Alon et al. [AKK+03], there is a a poly-time adversary making 2O(d)

queries that has distinguishing advantage Ω(1).

We also mention that such a construction can be broken by essentially the same argument
even when f is a linear-stretch PRG (a stronger primitive than OWF), using the NC0 con-
struction of such PRG due to [AIK08] which is secure under the (somewhat non-standard)
assumption of Alekhnovich [Ale03].

Finally, we briefly consider a more general type of construction than the above. These are
constructions realized by poly-size bounded-depth circuits with parity gates. Reasoning as
above, one can infer that if there are one-way functions computable in logarithmic space then
such a construction yields a PRF computable by bounded-depth circuits with parity gates.
Such PRF can be broken in quasi-polynomial time [RR97, KL01], while a polynomial-time
distinguisher is unlikely to exist [Vio11].

4 Fully black-box stretch-increasing constructions

In this section we prove Theorem 1.4. The key property we require of our one-bit-stretch
oracle G, stated in the next theorem, is that it reveals a large portion of its input, i.e. most
of the output bits are simply copied from the input.

Theorem 4.1. Let ℓ, d ∈ N be sufficiently large with d ≤ ℓ/2. Then, for any subset T ⊆ [ℓ+1]
with |T | = ℓ− d and any oracle A, there exists a generator G : {0, 1}ℓ → {0, 1}ℓ+1 such that

1. G is (2d/30, 2−d/30)-pseudorandom against adversaries with oracle access to A (and G).

2. For every input x ∈ {0, 1}ℓ, G(x)|T = x1x2 · · ·xℓ−d.
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We defer the proof of this theorem to Section 5, and instead start by showing how it is
used to prove Theorem 1.4. First, we need a simple technical lemma showing that for any
stretch-increasing construction of the specified form, we can find a large set of indices inside
which most bi(x) fall for most choices of x.

Lemma 4.2. Let n, d, s, ℓ ∈ N with d < ℓ. Let {bi : {0, 1}n → [ℓ + 1]}i∈[n+s] be a collection
of n+ s functions. Then, there exists a set T ⊆ [ℓ + 1] of size ℓ− d such that

Pr
x

[
|{i : bi(x) ∈ T}| ≥ (n+ s) ·

(
1− 4(d+ 1)

ℓ+ 1

)]
≥ 3

4
.

Proof. Let S ⊆ [ℓ + 1] denote a random subset of size d + 1. We have Prx,i,S[bi(x) ∈ S] =
(d + 1)/(ℓ + 1), and so we can fix some S so that Prx,i[bi(x) ∈ S] ≤ (d + 1)/(ℓ + 1). This
can be restated as Ex [Pri [bi(x) ∈ S]] ≤ (d + 1)/(ℓ + 1), and so by Markov’s inequality we
have Prx[Pri[bi(x) ∈ S] ≥ 4(d + 1)/(ℓ + 1)] ≤ 1/4. Letting T := [ℓ + 1] \ S completes the
proof.

We now prove Theorem 1.4.

Theorem 1.4. For all sufficiently large ℓ and for n ≤ 2
√
ℓ, there is no fully black-box

construction H(·) : {0, 1}n → {0, 1}n+s of a generator with stretch s ≥ 5n/ logn and error

ǫ ≤ 1/4 from any one-bit-stretch generator G : {0, 1}ℓ → {0, 1}ℓ+1 with error δ ≥ 2−
√
ℓ/30

and with security reduction size t ≤ 2
√
ℓ/30 of the form

HG(x) := G(q1(x))b1(x) ◦ · · · ◦G(qn+s(x))bn+s(x)

where qi : {0, 1}n → {0, 1}ℓ specifies the i-th query and bi : {0, 1}n → [ℓ + 1] specifies the bit
of the i-th answer to output.

Proof. Let H(·) be a construction of the specified form. Fix a parameter d := ℓ/ logn. Fix
T ⊆ [ℓ + 1] to be the subset of size ℓ − d guaranteed by Lemma 4.2. For each x ∈ {0, 1}n,
let Ix denote the set {i : bi(x) ∈ T} ⊆ [n + s]. Using s = 5n/ logn, the chosen value
for d, and the fact that |Ix| is an integer, the bound from Lemma 4.2 can be restated as
Prx [|Ix| ≥ n+ 1] ≥ 3/4 for sufficiently large n and ℓ. In the remainder of the proof, we refer
to x such that |Ix| ≥ n+ 1 as good.

Let T−1 denote a transformation such that T−1(j) = k if j is the kth smallest element of
T (this is simply to provide a mapping from G’s output bits to the corresponding revealed
input bits). The adversary A : {0, 1}n+s → {0, 1} is defined as the function which accepts
exactly the set

{z : ∃x ∈ {0, 1}n such that x is good and ∀i ∈ Ix, zi = qi(x)T−1(bi(x))}.

Let G : {0, 1}ℓ → {0, 1}ℓ+1 be the PRG guaranteed by Theorem 4.1 using these choices of T
and A. We claim that A distinguishes HG(Un) from Un+s with advantage at least 1/4. To
see this, consider z which is a uniformly chosen output of HG, i.e. z = HG(x) for x ← Un.
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Because x is good with probability at least 3/4, and because HG(x)i = qi(x)T−1(bi(x)) for all
i ∈ Ix by item 2 of Theorem 4.1, we have Pr[A(HG(Un)) = 1] ≥ 3/4. Conversely, for the
case where A’s input is chosen from Un+s, we have the following calculation:

Pr
z←Un+s

[A(z) = 1] = Pr
z

[
∃x : x is good ∧ ∀i ∈ Ix : zi = qi(x)T−1(bi(x))

]

≤
∑

x∈{0,1}n
x is good

Pr
z

[
∀i ∈ Ix : zi = qi(x)T−1(bi(x))

]

≤
∑

x∈{0,1}n
x is good

2−(n+1)

≤ 1

2
.

(The second inequality follows from the fact that |Ix| ≥ n + 1 for x that are good.)
Finally, note that item 1 in Theorem 4.1 (along with the choice of d and the upper

bound on n) implies that there is no oracle circuit C of size at most 2
√
ℓ/30 such that CA,G

distinguishes G with advantage at least 2−
√
ℓ/30. Therefore, H does not meet the conditions

of Definition 2.1 for the stated parameters.

Next, we show that this theorem can be extended to the primitive black-box setting.

Theorem 4.3. Let n = n(ℓ) ≤ 2
√
ℓ and s = s(n) ≥ 5n/ logn. Let H(·) : {0, 1}n → {0, 1}n+s

be a primitive black-box stretch-increasing construction with stretch s from any family of
one-bit-stretch generators G : {0, 1}ℓ → {0, 1}ℓ+1. If H has the form

HG(x) := G(q1(x))b1(x) ◦ · · · ◦G(qn+s(x))bn+s(x)

and the qi and bi are computable by poly(n)-sized circuits, then NP/poly 6= P/poly.

Proof. Let H be a primitive black-box stretch-increasing construction of the specified form.
Let G and Ix be defined as in Theorem 1.4 (the oracle A against which G is secure is not
relevant here). Because the qi, bi functions are computable by poly(n)-size circuits, there is a
poly(n)-size circuit family which computes the string HG(x)|Ix on input x, while making no
oracle calls to G. As a result, we can define a non-deterministic poly(n)-size circuit family
which distinguishes HG from uniform with advantage 1/4: on input z ∈ {0, 1}n+s, the circuit
non-deterministically guesses x ∈ {0, 1}n, and accepts iff |Ix| ≥ n + 1 and z|Ix = HG(x)|Ix .
The proof that this is indeed a distinguisher for HG is identical to the argument given for
Theorem 1.4.

Now assume for contradiction that NP/poly = P/poly, i.e. that every non-deterministic
circuit family can be simulated by a deterministic circuit family with only a polynomial
increase in size. Then, there is a poly(n)-size deterministic circuit family that distinguishes
HG from uniform with noticeable advantage. By the definition of a primitive black-box
construction, there must also be such a circuit family that distinguishes G, contradicting G’s
pseudorandomness.
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5 Constructing the oracle generator

In this section we prove Theorem 4.1 (restated for convenience), which gives the one-bit-
stretch oracle generator used in the proofs of our negative results (Theorems 1.4 and 4.3).

Theorem 4.1. Let ℓ, d ∈ N be sufficiently large with d ≤ ℓ/2. Then, for any subset T ⊆ [ℓ+1]
with |T | = ℓ− d and any oracle A, there exists a generator G : {0, 1}ℓ → {0, 1}ℓ+1 such that

1. G is (2d/30, 2−d/30)-pseudorandom against adversaries with oracle access to A (and G).

2. For every input x ∈ {0, 1}ℓ, G(x)|T = x1x2 · · ·xℓ−d.

On constructing the oracle. A direct proof that a random function G : {0, 1}ℓ →
{0, 1}ℓ+1 is a pseudorandom generator even for circuits that have oracle access to G does
not seem immediate to us. The existence of such oracles is shown via an indirect route in
an unpublished manuscript of Impagliazzo [Imp96] and – in a slightly different scenario – in
a work by Zimand [Zim98]. Both works proceed by considering an oracle one-way function,
and then applying standard constructions of generators from one-way functions (for which
one can now use [HILL99] or [HRV10]).

We proceed by first considering a hard-to-invert oracle permutation π, and then using
the Goldreich-Levin hardcore bit [GL89] to get one bit of stretch. This approach will have
security exponential in the input length of π, and so we can apply π to the relatively few
(Θ(ℓ/ log ℓ)) bits outside of |T |, and then use padding to get a generator G on ℓ bits that
reveals most of its input

We know of two ways to demonstrate the existence of such a permutation π. One is
via a theorem in [GGKT05] which uses a clever encoding argument to prove that a random
permutation is hard to invert with very high probability. They show that if there exists
a small circuit which inverts a permutation π on some fraction of inputs, then π can be
succinctly encoded when the circuit is given as advice. Then, since only a small number of
permutations have succinct encodings, the probability that a random π can be sufficiently
inverted by a fixed circuit is small, and a union bound over circuits gives the result.

The second way, and the one that we use here, is an arguably more direct argument show-
ing that any fixed circuit with access to a fixed auxiliary oracle has negligible probability (over
the choice of permutation) of sufficiently inverting the permutation. This method is from
[Imp96] and [Zim98] (though they consider general length-preserving functions rather than
permutations), and hinges on a combinatorial trick which originally appeared in [GKL93].
Briefly, it is shown that for a fixed circuit C, the expected number of subsets of size k that
are inverted by C is not too large. Then, Markov’s inequality is used to show that the
probability that C inverts any set of size m ≈ k2 is small, since to do so C would have to
invert each of its

(
m
k

)
subsets of size k (this is the combinatorial trick).

We now turn to the formal proof of Theorem 4.1. There are two main ingredients; the
first is the well-known Goldreich-Levin hard-core bit theorem [GL89]. It can be checked that
the standard proof of this theorem relativizes; we omit the details.
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Theorem 5.1. Let f : {0, 1}d → {0, 1}m be a function, and let A be any oracle. Let C be
an oracle circuit of size T such that Pr[CA(f(Ud), U

′
d) = 〈Ud, U

′
d〉] ≥ 1/2 + ǫ. Then, for d

sufficiently large, there exists an oracle circuit B of size at most α · T · (d/ǫ)2 (where α is a
universal constant) such that Pr[BA(f(Ud)) = Ud] ≥ ǫ3/8d.

The second ingredient is the fact that there exist permutations π which are hard to invert
even for adversaries that have access to π and to an arbitrary fixed auxiliary oracle.

Theorem 5.2. Let d ∈ N be sufficiently large. Then for any oracle A, there exists a
permutation π : {0, 1}d → {0, 1}d that is (2d/5, 2−d/5)-hard to invert against adversaries
with oracle access to π and A.

Before giving the proof, we state and prove two lemmas. The aforementioned combina-
torial trick, due to [GKL93], is given by the following lemma.

Lemma 5.3. Let U be a finite set, let Γ = {φ : U → {0, 1}} be a family of predicates on U ,
and let pk be an upper bound on the probability that φ chosen uniformly from Γ returns true
for every element in a subset of size k, i.e.

∀K ⊆ U, |K| = k : Pr
φ←Γ

[
∏

x∈K
φ(x) = 1

]
≤ pk.

Then, for any m such that k ≤ m ≤ |U |, we have

Pr
φ←Γ

[
∃M ⊆ U, |M | ≥ m :

∏

x∈M
φ(x) = 1

]
≤

(|U |
k

)
· pk(

m
k

) .

Proof. Let φ(X) denote
∏

x∈X φ(x). We have E [|{K ⊆ U : |K| = k and φ(K) = 1}|] ≤
(|U |

k

)
·

pk by linearity of expectation. Then the lemma follows from double counting, because for
any set M ⊆ U of size m, φ(M) = 1 iff φ(K) = 1 for every one of the

(
m
k

)
subsets K ⊆ M

of size k.

We now explain why this lemma is helpful. Following [Imp96] and [Zim98], we bound the
probability (over the permutation π) that a fixed circuit C of size s inverts a fixed set K of
size k; this is done by considering the probability that any k out of the at most ks distinct
queries made by C on inputs from K are mapped by π to K; specifically, we bound

pk ≤
(
ks

k

)
·
(

k

|U |

)k

≈ sk(|U |
k

) .

The factor of sk means that we cannot use a union bound over all
(|U |

k

)
subsets of size k. So

we instead use Lemma 5.3, choosing m so that
(
m
k

)
≈ s2.3k, which makes the probability of

inverting a set of size m small enough to use a union bound over all circuits.
We also require a bound on the number of oracle circuits of a given size.

18



Lemma 5.4. There are at most 2s(3+4 log s) oracle circuits of size s which have access to two
oracles π and A.

Proof. We define the size of a circuit to be the number of wires it has; this is also an upper
bound on the number of gates. For each wire in the circuit, we must specify two things:

• which gate it is an output of (or if it is an input wire) and which position it is in for
this gate

• which gate it is an input of (or if it is an output wire) and which position it is in for
this gate

Note that the positions are relevant for wires incident on oracle gates, as the functions
computed by these gates may not be symmetric. Specifying either incident gate for a given
wire takes log s bits (as there are at most s gates), and likewise each position can be specified
with log s bits. Therefore, each of the s wires can be specified with 4 log s bits. Finally, for
each gate, we must specify which of the five types it is (∧,∨,¬, π-oracle or A-oracle), which
takes three bits.

Proof of Theorem 5.2. We will in fact show that a random π has the desired property with
probability at least 1−2−2

d/4
. Fix an oracle A and an oracle circuit C of size s. Fix a subset

K ⊆ {0, 1}d of size k; we will first bound the probability that C inverts all of K. Let Qπ
x

denote the set of at most s distinct queries that CA,π(x) makes to π (for some choice of x
and π), and let Qπ

K :=
⋃

x∈K Qπ
x. We assume without loss of generality that the last query

that C makes to π is the string that C outputs (this is justified because any circuit which
does not query its output string can be modified into one that does with an increase in size
that is so small as to not affect the union bound below).

A necessary condition for C to invert all of K is that π−1(x) ∈ Qπ
K for all x ∈ K. Since

|Qπ
K | ≤ ks, we can bound this by

Pr
π

[
∀x ∈ K : π−1(x) ∈ Qπ

K

]
≤ Pr

π

[
∃X ⊆ Qπ

K :
⋃

x∈X
π(x) = K

]

≤
(
ks

k

)
·
(

k

2d

)(
k − 1

2d − 1

)
· · ·

(
1

2d − k + 1

)

≤
(
eks

2d

)k

.

We now apply Lemma 5.3 in the obvious way: U is {0, 1}d, and there is a predicate
φπ ∈ Γ for each permutation π, where φπ(x) = 1 iff CA,π(x) = π−1(x). By the lemma, the
probability that there exists a set M of size m ≥ k such that C inverts every element of M
is bounded from above by (e2 · k · s/m)k. Choosing k = 2d/3, m = 24d/5 and s = 2d/5, this is

bounded by 2−2
d/3

for sufficiently large d. By Lemma 5.4, there are at most 22
d/5·Θ(d) circuits

of size 2d/5, and so the probability over the choice of π that there exists a circuit of size 2d/5

which inverts a set of size at least 24d/5 is at most 2−2
d/3+2d/5·Θ(d) < 2−2

d/4
for sufficiently

large d. Therefore, π is (2d/5, 2−d/5)-hard to invert with probability at least 1− 2−2
d/4

.
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We may now give the proof of Theorem 4.1.

Proof of Theorem 4.1. Let the oracle A and the subset T be given. Recall that |T | = ℓ− d,
and let π : {0, 1}d → {0, 1}d be the permutation guaranteed by Theorem 5.2 which is
(2d/5, 2−d/5)-hard to invert against adversaries with oracle access to π and A. Then, the
generator G treats its input x ∈ {0, 1}ℓ as (x1, x2, x3) ∈ {0, 1}ℓ−2d × {0, 1}d × {0, 1}d, and
outputs the (ℓ+ 1)-bit string defined as follows:

G(x)|[ℓ+1]\T = π(x3) ◦ 〈x3, x2〉 G(x)|T = x1 ◦ x2.

Now assume for contradiction that there exists an oracle circuit C : {0, 1}ℓ+1 → {0, 1} of
size at most 2d/30 such that Pr[CA,G(G(Uℓ)) = 1] − Pr[CA,G(Uℓ+1) = 1] ≥ 2−d/30 (dropping
the absolute value w.l.o.g.). Because the permutation π is the only part of G’s output which
may be “difficult” to compute, we can take C to have oracles (A, π) instead of (A,G) at
the cost of increasing C’s size by a factor of poly(d). We construct a probabilistic oracle
circuit IP : {0, 1}d × {0, 1}d → {0, 1} which, on input (x, y), tries to compute 〈π−1(x), y〉.
IPA,π(x, y) performs the following steps:

1. chooses a random string z ∈ {0, 1}ℓ−2d and a random bit b ∈ {0, 1}

2. constructs the (ℓ+ 1)-bit string w defined by w|[ℓ+1]\T = x ◦ b, w|T = z ◦ y

3. computes CA,π(w) and outputs CA,π(w)⊕ 1⊕ b

We clearly have |IP | ≤ |C| · poly(d) ≤ 2d/30 · poly(d). Consider the behavior of IPA,π on a
uniformly random input (x, y). It is easy to see that the string w is distributed according
to Uℓ+1. If we condition on the chosen bit b being equal to 〈π−1(x), y〉 (which happens with
probability 1/2), then w is distributed according to G(Uℓ). For brevity, let EIP denote the
event IPA,π(x, y) = 〈π−1(x), y〉, and let Eb denote the event b = 〈π−1(x), y〉. Then,

Pr[EIP ] =
1

2

(
Pr[EIP | Eb] + Pr[EIP | Eb]

)

=
1

2

(
Pr[CA,π(w) = 1 | Eb] +

(
1− Pr[CA,π(w) = 1 | Eb]

))

= 1/2 + Pr[CA,π(w) = 1 | Eb]− Pr[CA,π(w) = 1]

= 1/2 + Pr[CA,π(G(Uℓ)) = 1]− Pr[CA,π(Uℓ+1) = 1]

≥ 1/2 + 2−d/30.

The probabilities are over both (x, y) and the internal randomness of IP ; by a standard
averaging argument, we can fix the internal randomness of IP to get a deterministic circuit
which computes 〈π−1(x), y〉 on a random (x, y) with the same success probability. Then
for sufficiently large d, Theorem 5.1 gives an oracle circuit of size at most 2d/30 · poly(d) ·
O(d2 · 22d/30) ≤ 2d/5 that, when given access to A and π, inverts π with probability at least
2−3d/30/8d ≥ 2−d/5 over its input, contradicting the hardness of π.
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