
Inapproximability of the Shortest Vector Problem: Toward a

Deterministic Reduction

Daniele Micciancio

daniele@cs.ucsd.edu
University of California, San Diego

Abstract

We prove that the Shortest Vector Problem (SVP) on point lattices is NP-hard to approximate for
any constant factor under polynomial time reverse unfaithful random reductions. These are probabilistic
reductions with one-sided error that produce false negatives with small probability, but are guaranteed
not to produce false positives regardless of the value of the randomness used in the reduction process.
We also prove inapproximability for quasi-polynomial factors under the same kind of reductions running
in subexponential time. Previous hardness results for SVP either incurred 2-sided error, or only proved
hardness for some small constant approximation factors. Close similarities between our reduction and
recent results on the complexity of analogous problems on linear codes, make our new proof an attractive
target for derandomization, paving the road to a possible NP-hardness proof for SVP under deterministic
polynomial time reductions.

1 Introduction

Lattices are regular arrangements of points in n-dimensional Euclidean space that arise in several areas of
computer science and mathematics. Two central problems in the computational study of point lattices are
the Shortest Vector Problem (SVP) and the Closest Vector Problem (CVP). Informally, SVP asks to find
the shortest nonzero vector in a point lattice. CVP is the inhomogeneous counterpart of SVP, and asks to
find the lattice point closest to a given target. Both SVP and CVP are hard combinatorial problems, and
the asymptotically fastest known algorithm to solve them runs in time 2O(n) [16].

SVP is the most famous and widely studied problem of the two. It is also the problem for which
proving strong intractability results has been most challenging. The NP-hardness of SVP (in the Euclidean
norm) was conjectured by van Emde Boas in 1981 [18], but remained an outstanding open problem in
computational complexity for almost two decades. In 1998, Ajtai [1] gave a first answer to this problem,
proving that solving SVP exactly is NP-hard under randomized reductions. This should be contrasted with
the inhomogeneous problem, CVP, which admits much simpler NP-hardness proofs [13], has been known
to be NP-hard (even under deterministic polynomial time reductions) since the early 80s [18], and was
proved NP-hard to approximate (again under deterministic polynomial time reductions) for factors as large
as n1/O(log logn) [7]. Proving the NP-hardness of SVP under deterministic reductions is still an open problem,
even for the exact version of SVP.

Immediately following Ajtai’s breakthrough result, the complexity of SVP received renewed attention,
leading to several improvements, with the main goal of showing that the problem is hard even in its ap-
proximate version. In [1], Ajtai had already observed that hardness for the exact version also implies weak
inapproximability results for approximation factors of the form 1 + 1/2O(n) that rapidly approach 1 as the
lattice dimension n grows. This was slightly improved by Cai and Nerurkar [4] to factors 1 + 1/nO(1), still
approaching 1 in the limit, though at a lower rate. The first significant inapproximability result for factors
bounded away from 1 was shown by Micciancio [14], who proved NP-hardness for any constant factor smaller
than

√
2 (independent of the lattice dimension). A nice feature of Micciancio’s proof [14] is that it has a

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 20 (2012)

very simple and intuitive high level structure. Specifically, in [14] the NP-hardness of SVP is proved by
reduction from (a variant of) CVP, through what can be called a “homogenization process” [15]. The idea
is roughly the following: if the lattice vector v ∈ Λ is close to the target t, then t − v is a short vector
in the lattice generated by Λ and t. So, one can attempt to solve a CVP instance by means of an SVP
computation on an augmented lattice. This process, often used as a heuristics in cryptanalysis (e.g., see
[12]), does not work in general (see discussion in Section 3). However, [14] showed that a natural geometric
gadget (consisting essentially of a lattice coset in Euclidean space with large minimum distance and many
short vectors) can be used to turn this simple idea into a formal reduction. The reduction of [14] still admits
a nice geometric interpretation (see Sections 3 and 4 for details), and served as a starting point to obtain
similar results for the analogous Minimum Distance Problem (MDP) on linear codes. The history of coding
problems, MDP and its inhomogeneous counterpart the Nearest Codeword Problem (NCP), closely mirrors
that of SVP and CVP. The NP-hardness of the inhomogeneous problem, NCP, was already proved in the
late 70s [3] for the exact version of the problem, and improved to NP-hardness of approximation within
any constant factor in [2]. Proving the NP-hardness of the homogeneous problem, MDP, took much longer.
Hardness for the exact version of MDP was proved by Vardy [19], around the same time as Ajtai’s discovery
for SVP [1]. However, while Ajtai’s reduction was randomized, Vardy [19] could prove NP-hardness of MDP
under deterministic reductions. Building on [14], Dumer, Micciancio and Sudan [8] proved that MDP is
NP-hard even to approximate, for any constant approximation factor. However, [8] inherited from [14] the
use of randomization for the construction of the embedding gadget required by the reduction. Finally, in
a surprising development, Cheng and Wan [5] showed that the probabilistic construction of the embedding
gadget employed in the reduction of [8] can be derandomized, leading to the NP-hardness of approximating
MDP within any constant factor under deterministic reductions. (The result of Cheng and Wan [5] has also
been recently simplified by Khot and Austrin [11].)

Going back to lattices, the strongest inapproximability results for SVP known to date are Khot’s proof [10]
that SVP is NP-hard to approximate within any constant O(1) factor, and Haviv and Regev’s proof [9] that
SVP cannot be approximated within some factor n1/O(log logn) unless NP is in random subexponential time.
However, just like Ajtai’s original proof [1], all subsequent inapproximability results for SVP [4, 14, 10, 9]
employed randomization, and little progress has been made in proving NP-hardness under deterministic
reductions, even for the exact version of SVP. In fact, the most recent and quantitatively strongest results
[10, 9] achieve larger inapproximability factors than [14] at the cost of introducing even more randomness:
while the randomized reduction of Micciancio [14] had one-sided error, the hardness proofs of Khot [10] and
Haviv and Regev [9] incurred 2-sided error.1 The hardness proofs of [10, 9] depart from the geometrically
appealing homogenization framework of [14], and incorporate additional probabilistic techniques (namely,
the intersection of lattices with randomly chosen subspaces) that, beside introducing 2-sided errors, also
make the high level structure of the reduction more involved and harder to derandomize. In particular, the
use of randomization in [10, 9] is not restricted to the construction of a gadget with self-contained description
as in [14], but permeates the entire reduction process.

Our results: We present a new, simpler proof that SVP is NP-hard to approximate within any constant
factor, which goes back to the geometrically appealing approach of [14], and avoids the introduction of
additional probabilistic techniques from [10, 9]. In particular, we prove

• the NP-hardness of SVP for any constant approximation factor as in [10], and

• the hardness of SVP for subpolynomial factors n1/O(log logn) under the assumption that NP is not in
subexponential time as in [9],

thus matching the strongest known hardness results for SVP, but under probabilistic reductions with one-
sided error that may produce false negatives, but are guaranteed not to produce false positives. We regard our

1Technically, [14] proved NP-hardness of SVP under reverse unfaithful random reductions. These are reductions that may
produce false negatives (i.e., map yes instances to no instances) with small probability, but are guaranteed not to produce false
positives (i.e., map no instances to yes instances), regardless of the random string or nonuniform advice used by the reduction
process. By contrast, the use of randomness in [10, 9] can result in both false negatives an false positives.

2

results as a partial derandomization of the reductions [10, 9] with two-sided error, and a step toward an NP-
hardness proof for SVP under deterministic reductions. Randomness is used within our proof exclusively for
the construction of a geometric gadget with similar properties as the one originally introduced by Micciancio
in [14]. Beside the technical advantage of resulting in a reduction with one-sided error, we believe this takes
us closer to a possible NP-hardness proof for SVP under deterministic reductions for the following reasons:

• In [14], Micciancio showed that a lattice gadget similar to the one used in this paper can be constructed
in deterministic polynomial time, under a certain (plausible but unproven) number theoretic conjecture
on the distribution of smooth numbers.2 While proving the number theoretic conjecture of [14] may be
difficult, the result in [14] suggests that randomness is not essential for the construction of the lattice
gadget used in our proof.

• The probabilistic construction of a similar gadget for linear codes used in [8] to prove the NP-hardness
of MDP has been successfully derandomized [5]. This let us hope that a derandomization of the lattice
gadget employed in this paper may be within reach using current mathematical knowledge.

• The lattice gadget presented in this paper is constructed using techniques from the theory of linear
codes, rather than the number theoretic methods of [14]. So, the techniques in [5, 11] for the deran-
domization of the coding gadget of [8] may help to derandomize the construction of the lattice gadget
described in this paper.

While proving the NP-hardness of (approximating) SVP under deterministic polynomial time reductions is a
goal yet to be reached, we believe that our results offer a viable approach to the resolution of this outstanding
open problem.

Techniques A standard method to prove hardness results within large approximation factors for lattice
and coding problems is to first prove hardness for some fixed small constant factor, and then amplify the
constant using some polynomial time (or quasi-polynomial time) transformation. For example, the tensor
product of linear codes is used in [8] to amplify the NP-hardness of approximating MDP to arbitrarily large
constant factors. This suggests to use the tensor product of lattices to prove the NP-hardness of SVP within
large constant factors, starting from the inapproximability result of [14] for factors below

√
2. In fact, using

the tensor product is a common theme in the sequence of papers [14, 10, 9] proving hardness of approximation
results for SVP. Unfortunately, while the minimum distance of a linear code gets squared when one takes
the tensor product of the code with itself, the same is not true for the length of the shortest vector in a
lattice. The length of the shortest vector in the tensor product of a lattice with itself can be essentially the
same as the length of the shortest vector in the original lattice (e.g., see [9, Lemma 2.4]), and this is why
Micciancio [14] could not prove NP-hardness (under randomized reductions with one-sided error) of SVP
within any constant factor. Subsequent work [10, 9] went around this obstacle in various ways. Khot [10]
introduced a nonstandard notion of “augmented tensor product”, and used it to prove NP-hardness results
for any constant approximation factors starting from a new hardness result for small constants based on
BCH codes. Haviv and Regev [9] were able to prove that the lattices produced by the basic reduction of
[10] behave well with respect to the standard tensor product operation, leading to stronger hardness results
under superpolynomial time reductions. The proofs in [10, 9] that the (augmented) tensor product does
amplify the approximation factor are specific to the basic lattices of [10], and are not immediately applicable
to other lattices.

In this paper we revisit the general problem of amplifying the approximation factor for SVP by the
standard tensor product operation, and prove that tensoring works when applied to an appropriate variant
of SVP. Specifically, we introduce a new method to measure the length of the vectors in a lattice, which
can be seen as a hybrid between the Euclidean length typically used for lattices and the Hamming metric
used for linear codes. Specifically, the measure associated to an integer vector v is given by the product
of the largest power of 2 that divides v times the square root of the number of nonzero coordinates in

2Namely, [14] conjectured that for every ε > 0 there is a c ≥ 1 such that for all sufficiently large n the interval [n, n + nε]
contains a square-free smooth number, i.e., an integer whose prime factors are all distinct and bounded by logc n.

3

v. Using this measure, we define a variant of SVP, and prove that it behaves well with respect to the
tensor product. Then, we prove that our SVP variant is NP-hard to approximate within some constant
factor, under reductions with one-sided error. Tensoring immediately yields inapproximability results for
SVP within larger factors, still under reductions with one-sided error. Moreover, our basic NP-hardness
proof within small approximation factors is very similar to those in [14, 8], so, as explained in the previous
paragraphs, it may be more easily derandomized. We remark that the standard tensor product operation
amplifies the approximation factor for any instance of the SVP variant defined in this paper, and not just
for the output of our basic reduction. So, the amplification method proposed here is fairly general, and any
proof that the SVP variant is NP-hard to approximate within some constant factor (not necessarily obtained
by derandomizing the specific reduction given in this paper) would immediately yield similar deterministic
NP-hardness results for arbitrarily large constants.

Organization The rest of the paper is organized as follows. In Section 2 we give some standard background
about lattices, codes and some useful combinatorial tools. In Section 3 we describe our basic techniques and
a construction of very dense lattices with large minimum distance that behaves well with respect to the
tensor product operation. In Section 4 we give our main NP-hardness proof for SVP under nonuniform
reductions with one-sided error. We chose to first present our result as a nonuniform reduction to make the
reduction and analysis as simple as possible and self-contained. However, the non-uniformity of the advice
is not used in any essential way in our proof, and in Section 5 we use a combinatorial theorem of Micciancio
[14] to replace the nonuniform advice with a uniformly chosen random string, leading to NP-hardness results
under randomized reductions with one-sided error.

2 Background

We use R, Z and 2A to denote the set of the real numbers, the set of the integers, and the power-set of an
arbitrary set A. The m-dimensional Euclidean space is denoted Rm. A lattice in Rm is the set of all integer
combinations Λ = {

∑n
i=1 xibi:xi ∈ Z} of n linearly independent vectors b1, . . . ,bn in Rm (m ≥ n). The set

of vectors b1, . . . ,bn is called a lattice basis, and the integer n is the lattice rank. A basis can be compactly
represented by the matrix B = [b1| . . . |bn] ∈ Rm×n having the basis vectors as columns. The lattice
generated by B is denoted L(B). Notice that L(B) = {Bx: x ∈ Zn}, where Bx is the usual matrix-vector
multiplication. The determinant of a lattice L(B) is the volume of the parallelepiped spanned by the basis
vectors B and when B is a square matrix, it equals the absolute matrix determinant det(L(B)) = |det(B)|.
(More generally, for non-square bases, det(L(B)) =

√
det(BTB), where BT is the matrix transpose of B.)

Lattice problems can be defined with respect to any norm, but the Euclidean norm ‖x‖ =
√∑

i x
2
i is the

most common, and the one we focus on in this paper. We recall that the Euclidean norm is in a technical
sense the one for which lattice problems are algorithmically easiest, and hardness results for other norms can
be obtained via norm embedding [17]. The minimum distance of a lattice, λ(Λ), is the minimum distance
between any two distinct lattice points and equals the length of the shortest nonzero lattice vector:

λ(Λ) = min{‖x− y‖ : x 6= y ∈ Λ} = min{‖x‖ : x ∈ Λ,x 6= 0}.

For vector x ∈ Rn and real r, let B(v, r) = {w ∈ Rn : ‖v −w‖ ≤ r} be the ball of radius r centered in v.
When the ball is centered around the origin v = 0, we simply write B(r).

When discussing computational issues related to lattices, it is customary to assume that the lattices are
represented by a basis matrix B and that B has integer entries. We study the decisional (length/distance
estimation) variants of SVP and CVP as defined below.

Definition 1 The promise problem GapSVPγ is defined as follows. Instances are pairs (B, d), where B ∈
Zn×k is a lattice basis and d a positive number such that

1. (B, d) is a yes instance if λ(L(B)) ≤ d, i.e., ‖Bz‖ ≤ d for some z ∈ Zn \ {0};

4

2. (B, d) is a no instance if λ(L(B)) > γ · d, i.e., ‖Bz‖ > γ · d for all z ∈ Zn \ {0}.

Definition 2 The promise problem GapCVPγ is defined as follows. Instances are triples (B,y, d), where

B ∈ Zn×k is a lattice basis, y ∈ Zn a vector, and d a positive number such that

1. (B,y, d) is a yes instance if ‖Bz− y‖ ≤ d for some z ∈ Zn;

2. (B,y, d) is a no instance if ‖Bz− y‖ > γ · d for all z ∈ Zn.

We remark that any algorithm that solves SVP in its standard formulation (given a lattice, find an
approximately shortest nonzero lattice vector) can be used to immediately solve GapSVP as well. So,
proving hardness results for GapSVP implies hardness of the standard SVP as well. The same observation
applies to CVP and GapCVP. However we remark that the converse is not known to be true: giving a
reduction from approximate SVP to GapSVPγ is an important open problem in the complexity of lattice
problems.

Some of our constructions rely on techniques from the study of linear codes. For any finite field F, and
finite dimensional vector space Fn over F, a linear code of block length n and dimension k is a k-dimensional
linear subspace of Fn. The difference n− k is called the co-dimension of the code. The Hamming weight of
a vector v ∈ Fn is the number ‖v‖H of nonzero coordinates of v. The minimum distance of a linear code
C ⊆ Fn is the smallest Hamming weight of a nonzero vector in the code min{‖v‖H : v ∈ C \ {0}}. In this
paper, we will be primarily interested in binary linear codes, i.e., linear codes over the field F2 = {0, 1} with
two elements. A binary linear code with block length n, dimension k and minimum distance d is usually
denoted C[n, k, d]2. In Section 3 we will build a very dense lattice starting from the family of binary linear
codes described in the next lemma.

Lemma 1 For any h = 2` and m = 2κ with m ≥ h2, there is a sequence {0, 1}m = C0 ⊇ C1 ⊇ · · · ⊆ C`
of binary linear codes Ci[m, ki, di]2 of common block length m, minimum distance di ≥ 4i and co-dimension
m− ki ≤ κ · (4i/2− 1) + 1.

Proof For i = 0, . . . , `, let Ci[m, ki, di] = EBCHm
4i be the extended narrow sense primitive binary BCH code

of block length m and designed distance di ≥ 4i. These codes form a chain {0, 1}m = C0 ⊇ C1 ⊇ · · · ⊇ C`
and have co-dimension m− ki ≤ κ · (4i/2− 1) + 1. (See Appendix C for details.) �

For any two matrices B(1) ∈ Rn1×k1 and B(2) ∈ Rn2×k2 , define the Kronecker product B = B(1)⊗B(2) ∈
Rn1n2×k1k2 as the matrix with entries bi,j = b

(1)
i1,j1
· b(2)i2,j2 where i = (i1 − 1) · n2 + i2 and j = (j1 − 1) · k2 + j2

for i1 = 1, . . . , n1, i2 = 1, . . . , n2, j1 = 1, . . . , k1 and j2 = 1, . . . , k2. Informally, B(1) ⊗ B(2) is the block

matrix obtained replacing each entry b
(1)
i1,j1

of B(1) with the matrix b
(1)
i1,j1
·B(2). The tensor product of lattices

L(B(1)) and L(B(2)) is the n1 ·n2 dimensional lattice L(B(1)⊗B(2)) of rank k1k2 generated by the Kronecker
product of the two basis matrices. Identifying the set Rn1n2 of n1n2-dimensional vectors with the set Rn1×n2

of n1×n2 matrices in the obvious way, the tensor product of two lattices can be conveniently defined as the
set of all matrices

L(B(1) ⊗B(2)) = {B(1)X(B(2))T | X ∈ Zk1×k2}

where (B(2))T is the matrix transpose of B(2). The tensor product of two linear codes is defined similarly.
As mentioned in the introduction, the tensor product operation can be used to amplify hardness results for
coding and certain lattice problems to large approximation factors. For example, if C is a linear code with
minimum distance d, then the product code C ⊗ C has minimum distance d2. So, if one can approximate
the minimum distance of C ⊗ C within a factor γ2, then one can also approximate the distance of C within a
factor γ. Similar amplification results are also possible for NCP and CVP. However, this method to amplify
the approximation factor of a problem does not work for SVP. It is easy to prove that for any two lattices
λ(Λ1⊗Λ2) ≤ λ(Λ1) ·λ(Λ2), and, in particular λ(Λ⊗Λ) ≤ λ(Λ)2. However, in general λ(Λ⊗Λ) can be much
smaller than λ(Λ)2. (E.g., see [9, Lemma 2.4].) Lattices Λ1 for which λ(Λ1 ⊗ Λ2) = λ(Λ1) · λ(Λ2) for every
lattice Λ2 are called “E-type” lattices, and are somehow special.

We will prove the NP-hardness of SVP by reduction from the following NP-hard variant of CVP.

5

Definition 3 (TensorCVPγ) Instances are triples (B,y, t) where B is an integer lattice, y an integer
vector, and t a positive number.

• (B,y, t) is a yes instance if ∃x ∈ {0, 1}k such that ‖y −Bx‖ ≤ t

• (B,y, t) is a no instance if ∀x ∈ Rk,
√
‖y −Bx‖H > γt.

TensorCVP differs from CVP as follows. In the yes instances, the target is required to be close to a
binary combination of the basis vectors. In the no instances, the target is required to be far in Hamming
distance from the entire linear space spanned by the lattice. The above problem is a fairly standard NP-hard
variant of CVP, similar to those used in many other previous works in computational complexity. We call this
CVP variant TensorCVP because we will use it to prove the NP-hardness of a variant of SVP (TensorSVP,
see Definition 5) closely related to the use of the tensor product to amplify the approximation factor. For
completeness, we prove the NP-hardness of approximating TensorCVPγ within any constant factor γ in
Appendix A.

Our reduction from TensorCVP to SVP uses a combinatorial result, typically referred to as Sauer’s
lemma. We recall Sauer’s lemma and its simple proof in Appendix B. In the context of this paper, it is
convenient to reformulate Sauer’s lemma in terms of matrices as follows.

Corollary 1 Let m be a positive integer, and Z ⊂ {0, 1}m an arbitrary set of m-dimensional binary vectors.

If |Z| ≥
∑k
i=0

(
m
i

)
, then there exists a matrix T ∈ {0, 1}k×m such that {0, 1}k ⊆ {Tz: z ∈ Z}.

Proof : Let M = {1, . . . ,m} and let φM : 2M → {0, 1}m be the bijection that sends each subset of M to its

characteristic vector. Define the set A = {A ⊆ M :φ(A) ∈ Z} ⊆ 2M . Since |A| = |Z| ≥
∑k
i=0

(
m
i

)
, by

Lemma 5 in Appendix B there is a set T ⊆ M such that {A ∩ T :A ∈ A} = 2T . Let T ∈ {0, 1}k×m be
the projection matrix such that T(φM (A)) = φT (T ∩ A) for any A ⊆M , where φT : 2T → {0, 1}k is defined
similarly to φM . Then, {Tz: z ∈ Z} = {T(φM (A)):A ∈ A} = {φT (A ∩ T) | A ∈ A} = φT (2T) = {0, 1}k. �

3 Techniques

We first recall the framework of [14] to prove hardness results for SVP. Let (B,y) be a CVP instance. A
common heuristic to find the lattice vector Bx closest to y is to search for a short vector in the augmented
lattice L([B,y]). However, this simple heuristic, often used in cryptanalysis, is not guaranteed to work, even
if one can solve SVP exactly. There are two different ways in which this approach may fail:

• The shortest nonzero vector in L([B,y]) may be of the form Bx + c · y with |c| ≥ 2. This yields a
lattice vector Bx close to a multiple of the original target y.

• The shortest nonzero vector in L([B,y]) is of the form Bx. This will be the case if the distance of the
target y from the lattice L(B) is bigger than λ(L(B)).

In the context of proving the NP-hardness of SVP, the first problem is easily solved by reducing from a
variant of CVP (like TensorCVP, see Definition 3) where either the target is close to the lattice, or all its
nonzero integer multiples are far from it. The second problem is more fundamental, and arises also in the
context of proving similar results for linear codes [8]. Building on techniques from [1], Micciancio [14] solved
this problem essentially by embedding B and y into a higher dimensional space in such a way that

• if y is close to the lattice L(B), then after the embedding the target y′ is still close to the lattice L(B′),
and

• the embedding operation increases the minimum distance of the lattice L(B), so that the distance of
y′ from L(B′) is strictly smaller than λ(L(B′)).

6

This transformation ensures that the shortest vectors in L([B′,y′]) are not in L(B′), and therefore must
necessarily make use of the target vector y′. In [14], it is shown that such a transformation can be easily
carried out using a geometric gadget consisting of a lattice coset L(L) − s with large minimum distance
λ(L(L)) and many short vectors (L(L)− s)∩B(r). (Specifically, the length bound r on these vectors should
be strictly smaller than the minimum distance of L(L) by a constant factor.) Moreover, if L(L) is sufficiently
dense (i.e., if its determinant is not too big), then an appropriate coset is guaranteed to exist and can be
probabilistically found choosing s as a random short vector.

In [14] a gadget of this type is constructed using techniques from elementary number theory, which are less
“combinatorial” than the coding theory tools used in the NP-hardness proof of [10], and arguably harder to
derandomize. In this section we give an alternative and more refined construction of Micciancio’s geometric
gadget. Similarly to the proofs in [10, 9], we rely on tools from coding theory, namely the construction of
BCH codes as those satisfying Lemma 1, rather than number theoretic methods. Beside its potential for
easier derandomization, the new construction, which combines lattice and coding elements, has the advantage
of behaving well with respect to the tensor product of lattices. Central to our construction and hardness
results is new method to measure the length of a vector which is in a sense a hybrid between the Euclidean
norm and the Hamming metric. The definition is parametrized by an integer q which we will later set to
q = 2.

Definition 4 For any integer vector x, let powq(x) be the largest power of q that evenly divides x, and ‖x‖H
the Hamming weight of x, i.e., the number of nonzero coordinates of x. For any integer lattice Λ, define the
quantity

τq(Λ) = min{τq(x): x ∈ L(Λ) \ {0}},

where τq(x) = powq(x) ·
√
‖x‖H .

Notice that τq is not a norm because it satisfies neither the linearity property ‖c · x‖ = c · ‖x‖, nor the
triangle inequality ‖x + y‖ ≤ ‖x‖+ ‖y‖ required to be a norm. Still, the quantity τq(B) is useful to study
SVP because it gives a lower bound on the norm of integer vectors, and it behaves well with respect to the
tensor product of lattices, as shown below.

Lemma 2 For any integer vector x ∈ Zn, τq(x) ≤ ‖x‖.

Proof. The vector x has ‖x‖H nonzero entries, and each of them is at least powq(x) in absolute value.

Therefore ‖x‖ ≥ powq(x) ·
√
‖x‖H = τq(x). �

Lemma 3 For any integer lattice Λ and (arbitrary) lattice Λ′,

τq(Λ) · λ(Λ′) ≤ λ(Λ⊗ Λ′) ≤ λ(Λ) · λ(Λ′).

Proof. Let Λ = L(B) and Λ′ = L(B′). For the upper bound, simply observe that for any two lattice vectors
Bx and B′y, the product lattice Λ⊗ Λ′ contains a vector Bx(B′y)T of length ‖Bx‖ · ‖B′y‖. Choosing Bx
and B′y as the shortest nonzero vectors in Λ and Λ′ yields a vector in Λ ⊗ Λ′ of length λ(Λ) · λ(Λ′). In
order to prove the lower bound we consider an arbitrary nonzero vector v = BX(B′)T in the tensor product
lattice Λ⊗Λ′, and show that ‖v‖ ≥ τq(Λ) · λ(Λ′). Let h be the number of nonzero rows in BX. Clearly, all

columns c ∈ BX have Hamming weight at most ‖c‖H ≤ h, and therefore τq(c) ≤ powq(c) ·
√
h. It follows

that all nonzero columns c satisfy powq(c) ≥ τq(c)/
√
h ≥ τq(B)/

√
h. In particular, the largest power qi

that divides the entire matrix BX satisfies qi ≥ τq(Λ)/
√
h. Notice that v = (BX) · (B′)T contains exactly

h nonzero rows, and each of them is a nonzero vector in qiΛ′. Therefore, ‖v‖ ≥
√
hqiλ(Λ′) ≥ τq(Λ)λ(Λ′). �

We use the quantity τq(Λ) to define a variant of SVP that behaves well with respect to the tensor
product of lattices. Our variant of SVP is defined using the Euclidean norm for the yes instances, and our
new measure τq for the no instances.

7

Definition 5 TensorSVPγ instances are pairs (B, d) where B is an integer lattice basis and d a positive
number.

• (B, d) is a yes instance if λ(L(B)) ≤ d.

• (B, d) is a no instance if τq(L(B)) > γd.

Notice that TensorSVPγ is a special case of the standard GapSVPγ problem because the defining condition
for yes instances is the same, and in the no instances τq(L(B)) is a lower bound on λ(L(B)). So, in order
to establish NP-hardness results for SVPγ it is enough to prove the NP-hardness of TensorSVPγ . Moreover,
TensorSVP behaves well with respect to the tensor product of lattices, as described in the next theorem.

Theorem 1 For any positive integer c, the map (B, d) 7→ (B⊗c, dc) is a reduction from TensorSVPγ to
GapSVPγc , where B⊗c denotes the iterated tensor product of c copies of B.

Proof: Let (B, d) be an instance of TensorSVPγ . If (B, d) is a yes instance, then λ(L(B)) ≤ d, and by
Lemma 3, λ(L(B⊗c)) ≤ dc. So, (B⊗c, d) is a yes instance of GapSVPγd . Conversely, if (B, d) is a no
instance, then λ(L(L)) ≥ τq(L(B)) > γd, and by Lemma 3, λ(L(B⊗c)) > dc. So, (B⊗c, d) is a no instance
of GapSVPγd . �

Notice that for any constant c, the transformation in Theorem 1 runs in polynomial time. So, if
TensorSVPγ is NP-hard for some constant γ > 1, then GapSVPγ is NP-hard for any constant γ′ = γc > 1.
Similarly, using reductions that run in superpolynomial time, one obtains inapproximability results for even
larger factors. (See Corollary 2.)

So, we want to prove the NP-hardness of TensorSVP. We will use the framework of [14] and construct
a gadget consisting of a dense lattice L(L) with large minimum distance, as outlined at the beginning of
this section. However, since we want to prove the NP-hardness of TensorSVP (rather than just GapSVP
as in [14]), we will need a lattice L(L) such that not only λ(L(L)), but also τq(L(L)) is large. Here q can
be arbitrary, and for simplicity we fix q to 2. Our methods can be easily adapted (using appropriate q-ary
codes,) to any value of q, but this is not needed to prove the hardness of GapSVP. The following theorem
gives a construction of dense lattices with large τ2 minimum based on binary codes. This is essentially
“construction D” of [6] instantiated with the binary codes of Lemma 1.

Theorem 2 For any m = 2κ and h = 2` with h ≤
√
m, there is an m-dimensional full rank integer lattice

L such that τ2(L(L)) ≥ h and det(L(L)) < m(h2/1.5)−`.

Theorem 2 essentially follows from Lemma 1 and [6, Chapter 8, Theorem 13], the only differences being
that here we use a scaled copy of the lattice so that L is an integer matrix, and we express the bound in
terms of τ2(L(L)) rather than λ(L(B)). For completeness, a proof of Theorem 2 is given in Appendix D.
Theorem 2 is used in the next section to prove the hardness of TensorSVP. We conclude this section with
some remarks and observations.

Remark 1 The orthogonal lattice hZm satisfies τ2(hZm) = h and det(hZm) = hm. Our lattice achieves the

same τ2(L(L)) ≥ h, but it has much smaller determinant det(L(L)) = hm/2
∑`
i=1 ki , where k1, . . . , k` are the

dimensions of the codes Ci used in the construction. The higher the dimension of the codes Ci, the denser
the lattice L.

Remark 2 Another way to get a sense of how dense lattice L(L) is, is to compare the lower bound λ(L(L)) ≥
τs(L(L)) on the minimum distance with Minkowski’s upper bound λ(L(L)) ≤ O(

√
m) · det(L(L))1/m. Con-

sider for example the setting κ = 2` + log `, so that m = h2`. Then, Minkowski’s bound on the minimum
distance of the lattice is O(

√
m det(L)1/m) ≤ O(

√
m · mh2/m) = O(

√
m · 2(2`+log `)/`) = O(

√
m). On the

other hand, the minimum distance of the lattice is at least τ2(L) ≥ h = O(
√
m/ logm). So, the minimum

distance is within a polylogarithmic factor O(
√

logm) from Minkowski’s upper bound.

8

Remark 3 We gave a construction of dense lattices with large τ2(L(L)), using certain binary BCH codes
from Lemma 1 as a building block. What makes BCH codes useful in this setting is the fact that, for
appropriate choice of parameters, they are denser than random codes. As a historical note, the use of BCH
codes in the context of proving NP-hardness results for homogeneous lattice and coding problems was first
suggested in [8]. More specifically, [8] proves that codes beating the Gilbert-Varshamov bound can be used to
build geometric gadgets similar to the one of [14], and mentions Reed-Solomon, Algebraic-Geometry and BCH
codes as examples of codes beating this bound. BCH codes where later used by [10, 9] to prove the hardness of
SVP for any constant approximation factor and beyond, but in an ad-hoc manner, without connecting them
to previous work [14, 8]. Our work explains why BCH codes are useful in proving inapproximability results
for SVP for large factors: they have the density properties required by the geometric construction of [14, 8],
and as linear codes they behave well with respect to the tensor product operation.

4 The main reduction

In this section we prove that TensorSVP is NP-hard to approximate within some constant factor under
nonuniform polynomial time reductions with one-sided error. In Section 5 we show how the nonuniform
advise required by our proof can be computed in probabilistic polynomial time. We present our main result
as a nonuniform reduction first in order to make the presentation as simple as possible. We remark that
the nonuniform reduction presented in this section is just as good a starting point for derandomization as
the probabilistic reduction presented in the next section. A randomized uniform reduction is presented in
Section 5 mostly to reassure the reader that here we are not using the non-uniformity of the advice in any
essential way.

Theorem 3 For any γ < λ <
√

3/2 and γ̃ = γ
√

1 + 4/((λ/γ)2 − 1) there is a nonuniform reduction from
TensorCVPγ̃ to TensorSVPγ . The (nonuniform) advice required by the reduction on input a TensorCVP
instance of rank k is a tuple (L, s,T, r) where

• L ∈ Zm×l is a lattice basis with τ(L) ≥ λ · r

• T ∈ Zk×m is a linear transformation such that T((L(L)− s) ∩ B(r)) ⊇ {0, 1}k

The reduction is reverse unfaithful, i.e., it has one-sided error and always maps no instances to no instances
regardless of the value of the (nonuniform) advice.

Proof. Let (B,y, t) be a TensorCVPγ̃ instance with B ∈ Zn×k and y ∈ Zn, and let (L, s,T, r) be as in
the statement of the theorem. We begin by scaling the input (B,y, t) and the gadget (L, s,T, r) so that
ε/2 ≤ t/r < ε, where ε =

√
(λ/γ)2 − 1. This is easily achieved as follows. If t/r ≥ ε, then simply multiply

L, s and r by an appropriate power of 2. If t/r < ε/2, then replace (B,y, t) with (1c2 ⊗ B,1c2 ⊗ y, c · t),
where 1c2 is the all ones vector in dimension c2 for an appropriately chosen integer c.

The output of the reduction is (V, d) where d =
√
t2 + r2 and

V =

[
BTL BTs + y

L s

]
.

We show that the reduction is correct. First, assume (B,y, t) is a no instance of TensorCVPγ̃ , and let
(L, s,T, r) be arbitrary, subject to the constraint ε/2 ≤ t/r < ε. Consider any nonzero lattice vector

v = V

[
z
w

]
=

[
BT(Lz + ws) + wy

Lz + ws

]
.

If w 6= 0, then the vector v satisfies

τ(v)2 ≥ ‖v‖H
≥ ‖BT(Lz + ws) + wy‖H
= ‖B(−T(Lz/w + s))− y‖H
> (γ̃t)2 = γ2(t2 + (2t/ε)2) ≥ γ2d2.

9

Otherwise, w = 0, z 6= 0 and

v =

[
BT(Lz)

Lz

]
is divisible by pow(Lz). Moreover, ‖v‖H ≥ ‖Lz‖H , and therefore

τ(v)2 ≥ pow(Lz)2 · ‖Lz‖H = τ(Lz)2 ≥ τ(L)2 ≥ λ2r2 > γ2 · d2.

This proves that τ(B) > γd, i.e., (B, d) is a no instance of TensorSVPγ .
Now assume the gadget (L, s,T, r) satisfies the condition in the theorem, and let (B,y, t) be a yes

instance of TensorCVP. By definition, there is a x ∈ {0, 1}k such that ‖Bx−y‖ ≤ t. By construction, there
is an integer vector z ∈ Zl such that T(Lz− s) = x and ‖Lz− s‖ ≤ r. So, the lattice vector

v = V

[
z
−1

]
=

[
BT(Lz− s)− y

Lz− s

]
=

[
Bx− y
Lz− s

]
has squared norm at most ‖v‖2 ≤ ‖Bx − y‖2 + ‖Lz − s‖2 = t2 + r2 = d2. This proves that if (L, s,T, r)
satisfies the conditions in the lemma, then (B, d) is a yes instance of TensorSVP.

In order to complete the proof we need to show that a nonuniform advise (L, s,T, r) as described in the
theorem exists. Define δ = 1 − 2λ2/3 > 0, and let h and m = hc be sufficiently large powers of 2 to be set
later. (We anticipate that we will set c to any constant strictly bigger than 2/δ, and h to a power of 2 at
least as big as λ

√
k/(δ − 2/c). We delay fixing c and h to these values in the proof because we will need

different settings in the proof of Theorem 5.) Define r =
√
b(h/λ)2c so that h ≥ λr, and

(r2)r
2

≤
(
h

λ

)2(h/λ)2

< h2h
2/λ2

. (1)

Let L ∈ Zm×m be the lattice described in Theorem 2 with τ(L) ≥ h ≥ λr and

det(L) < mh2/1.5−log h ≤ h(2c/3)h
2−ω(1). (2)

Let A be the set of all vectors in {0, 1}m of norm r. Notice that r2 is an integer, and A equals the set of all
binary vectors with precisely r2 ones. In particular, the size of A is

|A| =
(
m

r2

)
≥
(m
r2

)r2
≥ mr2

h2h2/λ2 ≥ h(c−2)h
2/λ2−O(1). (3)

Partition A according to the residue classes modulo L(L), i.e., into the sets A ∩ (L(L) − s) where s ∈ Zm.
Notice that L(L) has precisely det(L) cosets of the form L(L) − s with s ∈ Zm, so, on average, the size of
A ∩ (L(L)− s) is

E
s

[|A ∩ (L(L)− s)|] =
|A|

det(L(L))
≥ hh

2·(cδ−2)/λ2+ω(1). (4)

Therefore, there must exist a vector s ∈ Zm such that A∩ (L(L)−s) contains at least hh
2·(cδ−2)/λ2

elements.
Now fix c > 2/δ and h ≥ λ ·

√
k/(δ − 2/c), so that

|(L(L)− s) ∩ A| > hh
2(cδ−2)/λ2

> mk >

k∑
i=0

(
m

i

)
.

Using (4) and Corollary 1, we get a matrix T ∈ {0, 1}k×m such that T((L(L)− s) ∩ A) ⊇ {0, 1}k. �

It easily follows that GapSVP is NP-hard to approximate within any constant approximation factor under
polynomial time nonuniform reduction with one-sided error.

10

Corollary 2 GapSVPγ is NP-hard for any constant factor γ under polynomial time (reverse unfaithful)
nonuniform reductions with one-sided error. Moreover, for every ε > 0 there is a δ > 0 such that GapSVPγ
is NP-hard for γ(n) = nδ/ log logn under (reverse unfaithful) nonuniform reductions with one-sided error
running in subexponential time 2O(nε).

Proof. By Theorem 6 in Appendix A, TensorCVPγ̃ is NP-hard (under deterministic polynomial time reduc-
tions) for any constant factor γ̃. If follows from Theorem 3 that TensorSVPγ0 is NP-hard for some constant
γ0 > 1 under reverse unfaithful nonuniform reductions. Finally, for any constant γ, applying Theorem 1
with c = dlog γ/ log γ0e, we get that GapSVPγ is NP-hard under the same kind of reductions. (Notice that
for any constant γ, c is a constant and the reduction in Theorem 1 runs in polynomial time.)

In general, the reduction runs in time polynomial in N = nc, and produces GapSVPγ instances in
dimension N that are hard to approximate within a factor γ = γc0. For any ε > 0 let δ = ε · log γ0 and set
c = nε/ log n, so that N = nc = 2n

ε

and the reduction runs in subexponential time NO(1) = 2O(nε). The
resulting inapproximability factor is γ(N) = γc0 = Nδ/ log logN . �

5 A probabilistic reduction

The nonuniform reduction presented in Section 4 needs as an advise a tuple (L, s,T, r) such that

1. the lattice coset L(L)− s contains many (in fact, at least 2k) vectors of norm at most r,

2. the image of this set of short vectors under the linear transformation T includes all binary strings
{0, 1}k.

In Theorem 3 we proved that an advice (L, s,T, r) with these properties exists, leading to a nonuniform
reduction. In this section we show that non-uniformity is not essential, and an advise (L, s,T, r) with the
desired properties can be efficiently found in probabilistic polynomial time. The idea is simple, and follows
the same path as previous work [1, 14, 8]. First we find a coset L(L) − s containing a lot of short vectors.
Since the lattice L(L) has small determinant, the average number of short vectors in a random coset L(L)−s
is large, and choosing s at random will give with high probability a coset containing many short vectors.
More specifically, we use a slight generalization of [8, Lemma 13]. The difference between Lemma 4 below
and [8, Lemma 13] (beside minor syntactical differences like our use of additive group notation and lattice
cosets) is that [8, Lemma 13] assumes the groups Z,L are finite (as in their contexts they are linear codes)
while here we only require the quotient Z/L to be finite, as our groups are lattices and have infinite size.

Lemma 4 (Lemma 13 of [8], variant) Let (Z,+) be an additive group, L ⊂ Z a subgroup such that the
quotient group Z/L is finite, and B ⊂ Z an arbitrary subset of Z. Let µ = |B|/|Z/L| the average number of
B elements in a uniformly chosen random coset L+ s. Then, for any ε > 0

Pr
s∈B
{|(L+ s) ∩B| ≤ εµ} ≤ ε.

Proof Let S = {s ∈ Z/L: |(L + s) ∩ B| ≤ εµ} be the set of cosets L + s such that (L + s) ∩ B is small.
Clearly, there are at most |S| ≤ |Z/L| such cosets, and each one is selected with probability Pr s ∈ B{s +
L} = |(L + s) ∩ B|/|B| ≤ εµ/|B| = ε/|Z/L|. So, the probability of selecting a small coset is at most
Prs∈B{s ∈ S + L} ≤

∑
s∈S ε/|Z/L| = ε. �

After using Lemma 4 to find a coset L(L) − s that contains many short vectors, we use the following
combinatorial theorem from [14], which can be interpreted as a constructive (probabilistic) variant of Sauer’s
lemma.

Theorem 4 (Theorem 5.9 of [14]) Let Z ⊆ {0, 1}m be a set of vectors containing exactly u ones. For

any k and ε > 0, if |Z| ≥ u!m
4
√
uk
ε , and T ∈ {0, 1}k×m is chosen setting each entry to 1 independently

at random with probability p = 1
4uk , then the probability that all binary vectors {0, 1}k are contained in

T(Z) = {Tz : z ∈ Z} is at least 1− 6ε.

11

With these tools in our hands, we can prove a probabilistic variant of Theorem 3.

Theorem 5 For any γ < λ <
√

3/2 and γ̃ = γ
√

1 + 4/((λ/γ)2 − 1) there is a probabilistic polynomial time
reduction from TensorCVPγ̃ to TensorSVPγ . The reduction is reverse unfaithful, i.e., it has one-sided error
and always maps no instances to no instances regardless of the value of the randomness.

Proof. By Theorem 3, there is a nonuniform reduction satisfying the statement of this theorem. Moreover,
all that is needed to turn the nonuniform reduction into a randomized one is a probabilistic construction of
an advise string (L, s,T, r) satisfying the properties stated in Theorem 3, namely

• L ∈ Zm×l is a lattice basis with τ(L) ≥ λ · r, and

• T ∈ Zk×m is a linear transformation such that T((L(L)− s) ∩ B(r)) ⊇ {0, 1}k.

We give a probabilistic polynomial time construction of (L, s,T, r) satisfying these properties. The gadget
is constructed using the same approach as in the proof of Theorem 3, but for different values of c > 4/(λ2δ)
and h ≥ 4λ/(ε(δ − 4/c)) · k = O(k). Let m = hc, r =

√
b(h/λ)2c, δ = 1 − 2λ2/3 > 0, L ∈ Zm×m and

A ⊆ {0, 1}m be as defined in the proof of Theorem 3, so that h ≥ λr and (1) and (4) hold true. We recall
that A is the set of all vectors in {0, 1}m of norm r, and L ∈ Zm×m is a basis for the lattice described in
Theorem 2 with τ(L) ≥ h ≥ λr.

Now choose s ∈ −A at random and let Z = (L(L)− s) ∩ A. By (4) and Lemma 4, we have

|Z| ≥ hh
2(cδ−2)/λ2

(5)

except with negligible probability h−ω(1) < ε. By (1) and our choice of k ≤ hε(δ − 4/c)/(4λ), we have

(r2)!m4rk/ε ≤ (r2)r
2

h4chk/(λε) ≤ h2h
2/λ2

· hh
2(cδ−4)/λ2

= hh
2(cδ−2)/λ2

≤ |Z|.

So, a matrix T chosen at random as in Theorem 4 (with u = r2) satisfies T(Z) ⊇ {0, 1}k with probability
at least 1 − 6ε. So, by union bound, the probabilistic construction produces a gadget (L, s,T, r) satisfying
all required properties except with probability at most 7ε. �

As in the previous section, the inapproximability factor can be amplified using the tensor product. The
proof is identical to that of Corollary 2.

Corollary 3 GapSVPγ is NP-hard for any constant factor γ under polynomial time (reverse unfaithful)
nonuniform reductions with one-sided error. Moreover, for every ε > 0 there is a δ > 0 such that GapSVPγ
is NP-hard for γ(n) = nδ/ log logn under (reverse unfaithful) nonuniform reductions with one-sided error
running in subexponential time 2O(nε).

6 Conclusion

We proved hardness of approximation results for the Shortest Vector Problem with approximation factors
matching the best currently known results [10, 9], but under probabilistic reduction with one-sided error.
In particular, our reductions make more restricted use of randomness than [10, 9] and may be easier to
derandomize. Randomness in our reduction is used only to produce a lattice coset L(L) − s with large
minimum (τ) distance and still containing a large number of short vectors, which maps via an integer
linear transformation T onto the set of all binary vectors {0, 1}k. We gave a deterministic polynomial time
construction of the lattice L(L), and randomness is used only for the selection of s and T. In fact, matrix
T is chosen at random mostly as a byproduct of the fact that the selection of s is probabilistic: intuitively,
no matrix T is good for every s, so if s is chosen at random, then T must be chosen at random as well. We
believe that all that is needed in order to derandomize our proof is an explicit description of a vector s such
that L(L) − s contains many short vectors. With such a vector s (and a proof that s is good), finding a
matrix T that maps all short vectors in L(L)− s to {0, 1}k is likely to be easy.

12

7 Acknowledgments

This work was supported in part by NSF grants CNS-1117936. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author and do not necessarily reflect the views
of the National Science Foundation.

References

[1] M. Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions (extended abstract).
In Proceedings of STOC ’98, pages 10–19. ACM, May 1998.

[2] S. Arora, L. Babai, J. Stern, and E. Z. Sweedyk. The hardness of approximate optima in lattices, codes,
and systems of linear equations. Journal of Computer and System Sciences, 54(2):317–331, Apr. 1997.
Preliminary version in FOCS’93.

[3] E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability of certain coding
problems. IEEE Transactions on Information Theory, 24(3):384–386, 1978.

[4] J.-Y. Cai and A. P. Nerurkar. Approximating the SVP to within a factor (1 + 1/dimε) is NP-hard
under randomized reductions. Journal of Computer and System Sciences, 59(2):221–239, Oct. 1999.
Preliminary version in CCC 1998.

[5] Q. Cheng and D. Wan. A deterministic reduction for the gap minimum distance problem: [extended
abstract]. In M. Mitzenmacher, editor, STOC, pages 33–38. ACM, 2009.

[6] J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups. Springer Verlag, 3rd edition,
1998.

[7] I. Dinur, G. Kindler, R. Raz, and S. Safra. Approximating CVP to within almost-polynomial factors is
NP-hard. Combinatorica, 23(2):205–243, 2003. Preliminary version in FOCS 1998.

[8] I. Dumer, D. Micciancio, and M. Sudan. Hardness of approximating the minimum distance of a linear
code. IEEE Transactions on Information Theory, 49(1):22–37, Jan. 2003. Preliminary version in FOCS
1999.

[9] I. Haviv and O. Regev. Tensor-based hardness of the shortest vector problem to within almost polyno-
mial factors. In Proceedings of STOC, pages 469–477. ACM, June 2007.

[10] S. Khot. Hardness of approximating the shortest vector problem in lattices. Journal of the ACM,
52(5):789–808, Sept. 2005. Preliminary version in FOCS 2004.

[11] S. Khot and P. Austrin. A simple deterministic reduction for the gap minimum distance of code problem.
In ICALP, Proceedings, 2011. To appear.

[12] J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems. Journal of the ACM,
32(1):229–246, Jan. 1985.

[13] D. Micciancio. The hardness of the closest vector problem with preprocessing. IEEE Transactions on
Information Theory, 47(3):1212–1215, Mar. 2001.

[14] D. Micciancio. The shortest vector problem is NP-hard to approximate to within some constant. SIAM
Journal on Computing, 30(6):2008–2035, Mar. 2001. Preliminary version in FOCS 1998.

[15] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: a cryptographic perspective, vol-
ume 671 of The Kluwer International Series in Engineering and Computer Science. Kluwer Academic
Publishers, Boston, Massachusetts, Mar. 2002.

13

[16] D. Micciancio and P. Voulgaris. A deterministic single exponential time algorithm for most lattice
problems based on voronoi cell computations. In Proceedings of STOC, pages 351–358, 2010.

[17] O. Regev and R. Rosen. Lattice problems and norm embeddings. In Proceedings of STOC, pages
447–456. ACM, June 2006.

[18] P. van Emde Boas. Another NP-complete problem and the complexity of computing short vectors in
a lattice. Technical Report 81-04, Mathematische Instituut, Universiry of Amsterdam, 1981. Available
on-line at URL http://turing.wins.uva.nl/~peter/.

[19] A. Vardy. The intractability of computing the minimum distance of a code. IEEE Trans. on Information
Theory, 43(6):1757–1766, 1997.

A NP-hardness of TensorCVP

The NP-hardness of TensorCVP is proved by reduction from exact set cover. This result is well known, and
has been used in many previous works on the complexity of lattice problems. Here we give a slightly simpler
proof than the one typically found in the literature, that avoids the introduction of auxiliary variables and
large constants.

Remember that an instance of exact set cover consists of a collection of sets S1, . . . , Sn ⊆ {1, . . . , u} and
an integer t ≤ n. A cover is a subcollection C ⊆ {1, . . . , n} such that

⋃
i∈C Si = {1, . . . , u}. A cover is

exact if the sets Si (i ∈ C) in the cover are disjoint, i.e., {Si}i∈C is a partition of {1, . . . , u}. When reducing
set cover problems to lattice problems it is convenient to represent the collection {S1, . . . , Sn} as a matrix
S = [s1, . . . , sn] ∈ {0, 1}u×n where the columns si are the indicator vectors of the sets Si. Using matrix
notation, a cover of size t is represented by a binary vector c ∈ {0, 1}n with t ones such that Sc ≥ 1, where
1 is the all-ones vector and the inequality holds component-wise. The cover is exact if Sc = 1.

Definition 6 For any γ ≥ 1, an instance of the γ-approximate exact set cover problem is a pair (S, t) where
S ∈ {0, 1}u×n and t ∈ {1, . . . , n}.

• (S, t) is a yes instance if there is an exact cover of size at most t, i.e., a binary vector c ∈ {0, 1}n
such that ‖c‖H ≤ t and Sc = 1.

• (S, t) is a no instance if all covers have size bigger than γt, i.e., all binary vectors c ∈ {0, 1}n such
that Sc ≥ 1 have Hamming weight ‖c‖H > γt.

Theorem 6 For any constant γ ≥ 1, TensorCVPγ is NP-hard.

Proof. We use the fact that Exact Set Cover is NP-hard for any constant approximation factor γ, and
we reduce it to TensorCVP√γ . On input an exact set cover instance (S, t), the reduction produces a

TensorCVP√γ instance (B,y,
√
t) where B ∈ Zn×k and y ∈ Zn. Let B be a basis for the lattice of all integer

vectors v such that Sv = 0, and let y be an arbitrary integer solution to Sy = 1. (Both B and y can be
efficiently computed using linear algebra. If no solution y exists, then (S, t) is necessarily a no instance, and
the reduction can output an arbitrary no instance of TensorCVP.) We need to prove that the reduction is
correct.

If (S, t) is a yes instance, then there is an exact cover of size t, i.e., a vector c ∈ {0, 1}n with at most t
ones such that Sc = 1. It follows that S(y−c) = 0, i.e., y−c is a lattice vector. Moreover this lattice vector
is within distance ‖y− (y−c)‖ = ‖c‖ ≤

√
t from y, proving that (B,y,

√
t) is a yes instance of TensorCVP.

Now assume (S, t) is a no instance. Notice that for any v in the linear span of B, S(y− v) = Sy−Sv = 1.
So, the nonzero coordinates of y−v form a set cover. It follows that y−v must have more than γt nonzero
coordinates, i.e.,

√
‖y − v‖H >

√
γt. �

14

B Sauer’s lemma

In this section we state and prove Sauer’s lemma. The proof is well known and it is reported here just to
make the paper self contained.

Lemma 5 (Sauer’s Lemma) Let M be a set of size m, and A ⊂ 2M be an arbitrary collection of subsets

of M . For any integer k such that |A| ≥
∑k
i=0

(
m
i

)
, there exists a subset T ⊂ M of size |T | = k which is

shattered by A, i.e., {A ∩ T :A ∈ A} = 2T .

Proof For any m and k, let [m, k] =
∑k
i=0

(
m
k

)
be the number of subsets of M = {1, . . . ,m} of size at most

k. For any T ⊆ M , define the restriction of A to T as A|T = {A ∩ T : A ∈ A}. We prove, by induction on
m+ k, that

(|A| ≥ [m, k])⇒ ∃T ⊆M.|T | = k ∧ A|T = 2T .

The base case of the induction (m + k = 0) is trivial. So, consider the inductive step |A| ≥ [m, k] > 0.
Pick an element a from M and define M ′ = M \ {a} and the following two collections of subsets of M ′:

A0 = {A ⊆M ′ : A ∈ A}

A1 = {A ⊆M ′ : A ∪ {a} ∈ A}.

If |A0 ∪A1| ≥ [m′, k], then by inductive hypothesis there exists a set T ⊆M ′ ⊂M of size |T | = k such that
(A0 ∪ A1)|K = 2T . Since a 6∈ T , we have A|T = (A0 ∪ A1)|T = 2T and we are done.

So, assume |A0 ∪ A1| < [m′, k], and notice that

|A0 ∪ A1|+ |A0 ∩ A1| = |A0|+ |A1| = |A| ≥ [m, k] = [m′, k] + [m′, k − 1].

Since |A0 ∪ A1| < [m′, k], it must be |A0 ∩ A1| ≥ [m − 1, k − 1], and, by inductive hypothesis, there exists
a set T ′ ⊆ M ′ ⊂ M of size |T ′| = k − 1 such that (A0 ∩ A1)|T ′ = 2T

′
. We show that A|K = 2K where

K = K ′∪{a} is a set of size |T | = |T ′|+1 = k. The inclusion A|T ⊆ 2T is obvious. So, let’s prove 2T ⊆ A|T .
Notice that for any A ∈ 2T , the set A \ {a} belongs to both A0|T ′ and A1|T ′ . Therefore A \ {a} ∈ AT and
A ∪ {a} ∈ AT . Since A equals either A \ {a} or A ∪ {a}, we conclude that A ∈ AT . �

C The Extended BCH codes

In this section we briefly recall the construction of extended primitive narrow sense binary BCH codes, and
their most basic properties as used in Lemma 1. For brevity, we refer to these codes just as “extended
BCH codes”. Extended BCH codes can be defined for any block length m = 2κ that is a power of 2, and
are obtained by appending a parity check bit to a BCH code of block length n = m − 1. BCH codes are
polynomial codes, i.e., they can be described algebraically as the set of all (coefficient vectors of) polynomials
of degree less than n that are divisible by a given generating polynomial g(X) ∈ F2[X]. The co-dimension
of a polynomial code equals the degree n−k = deg(g) of the generating polynomial. Let α be a generator of
the multiplicative group of F2m , the finite field with 2m elements. A basic fact in the theory of polynomial
codes is that if g(αi) = 0 for t consecutive powers of α, then the polynomial code generated by g(X) has
minimum distance at least t+ 1.

For any even h ≤ m, the BCH code with designed minimum distance h−1 ≤ m−1 is the polynomial code
generated by the least common multiple gh(X) of the minimal polynomials p1(X), p3(X), . . . , ph−3(X) of
the first h/2−1 odd powers α1, α3, . . . , αh−3 of the primitive element α. Notice that for any even power α2j ,
gh(α2j) = (gh(αj))2 because squaring is a linear operation over Fm. So, gh(αj) = 0 for all j = 1, . . . , h− 2,
and the minimum distance of the BCH code is at least h − 1. The extended BCH code EBCHm

h [m, k, d]2
is obtained by appending a parity check bit to the cyclic code generated by gh(X). Since h − 1 is odd,
appending a parity check bit increases the (designed) minimum distance of the code to d ≥ h. The block
length and co-dimension also increase by 1, while the dimension of the code remains the same. Since the

15

degree of each minimal polynomial hj is at most κ, the degree of gh is bounded by κ · (h/2 − 1), and the
co-dimension of EBCHm

h [m, k, d] is at most m − k ≤ κ(h/2 − 1) + 1. Notice that for any h ≤ h′, gh′ is a
multiple of gh, and therefore EBCHm

h ⊇ EBCHm
h′ .

In summary, for any even h, the extended BCH code EBCHm
h [m, k, d] of block length m = 2κ and

minimum distance d ≥ h has co-dimension m − k ≤ κ(h/2 − 1) + 1. Moreover, the codes satisfy {0, 1}m =
EBCHm

0 ⊇ EBCHm
2 ⊇ · · · ⊇ EBCHm

m.

D Proof of Theorem 2

In this Section we prove Theorem 2. We need to prove that for any m = 2κ and h = 2` with h ≤
√
m, there

is an m-dimensional full rank integer lattice L such that τ2(L(L)) ≥ h and det(L(L)) < m(h2/1.5)−`.
Let C0 ⊇ C1 ⊇ · · · ⊇ C` be the sequence of binary linear codes Ci[m, ki, di]2 from Lemma 1. We recall

that these are codes of common block length m, minimum distance di ≥ 4i, and co-dimension m − ki ≤
κ(4i/2 − 1) + 1, and C0[m,m, 1]2 = Zm2 . We combine these codes into a lattice using “construction D”
from [6, Chapter 8]. More specifically, we define the m-dimensional integer lattice L(L) generated by the
columns of 2`−iCi for all i = 0, . . . , `. Of course, the vectors in 2`C0, 2

`−1C1, . . . ,C` are not linearly
independent, but a basis for the lattice they generate can be easily obtained as follows. Using the inclusions
C0 ⊇ · · · ⊇ C`, we may assume that each generating matrix Ci equals the last ki columns of C0. In other
words, C0 = [K0, . . . ,K`], and each generating matrix Ci = [Ki,Ci+1] is obtained extending the generating
matrix of the next code in the sequence Ci+1 with k′i = ki − ki+1 more columns Ki. (For convenience, we
also define k`+1 = 0 and k′` = k` − k`+1 = k`.) By properly choosing the order of the coordinates, and
performing elementary column operations, we may further assume that each Ki has the form

Ki =

 K′i
I
O


where K′i ∈ F2

(m−ki)×k′i , I is the k′i × k′i identity matrix, and O is the ki+1 × k′i all-zero matrix.
Consider the m×m integer matrix

L = [2`K0, 2
`−1K1, . . . ,K`].

The columns of L are a subset of C0, 2C1, . . . , 2
`C`. Moreover, all vectors in 2`C0, 2

`−1C1, . . . ,C` can be
obtained by multiplying the columns of L by appropriate powers of 2. Therefore L(L) is precisely the lattice
generated by 2`C0, 2

`−1C1, . . . ,C`.
Consider an arbitrary nonzero lattice vector v =

∑
i(2

i ·Ki)xi =
∑
i Kiyi, where yi = 2ixi. We want

to prove that τ2(v) ≥ h. Let 2P = pow2(y0, . . . ,yk) be the largest power of 2 that divides all yi’s. Clearly,
2P also divides v. If P ≥ `, then we immediately get τ2(v) ≥ pow2(v) ≥ 2` = h. So, assume P < ` and let
p = min{i: yi 6= 0,pow2(yi) = 2P } be the smallest index such that yp is divisible precisely by 2P . Notice
that P ≥ ` − p because 2P = pow2(yp) = pow2(2`−pxp) ≥ 2`−p. By definition of p and P , all yi/2

P are
integer vectors, yp/2

P 6= 0 (mod 2) and yi/2
P = 0 (mod 2) for all i < p. So,

‖v‖H = ‖v/2P ‖H ≥ ‖(v/2P) mod 2‖H = ‖
∑
i≥p

Ki(yi/2
P) mod 2‖H ≥ dp ≥ 4p

where we have used the fact that
∑
i≥p Ki(yi/2

P) mod 2 is a nonzero codeword in Cp. It follows that

τ2(v) = pow2(v)
√
‖v‖H ≥ 2P ·

√
4p ≥ 2`−p · 2p = 2`.

This proves that τ2(L) ≥ 2` = h.
In order to bound the determinant of the lattice, we notice that, by our choice of Ki, the matrix C0

is upper triangular. It follows that L is also a triangular matrix with k′i diagonal entries equal to 2`−i for

16

i = 0, . . . , `. So, the determinant satisfies

log2 det(L) =
∑
i≤`

(`− i)k′i =
∑̀
i=1

(m− ki).

Finally, using the bound on the co-dimension m− ki ≤ κ · (4i/2− 1) + 1 from Lemma 1 we get

∑̀
i=1

(m− ki) ≤
∑̀
i=1

(
κ · 4i

2
− (κ− 1)

)
= κ

4` − 1

1.5
− (κ− 1)` < k

(
h2

1.5
− `
)
,

which, substituted into the expression for the determinant gives det(L) ≤ m h2

1.5−`. �

17

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

