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Abstract

The central goal of data stream algorithms is to processiveasgeams of data usingublinear
storage space. Motivated by work in the database communityutsourcing database and data stream
processing, we ask whether the space usage of such algsigdmbe further reduced by enlisting a more
powerful “helper” who carannotatethe stream as it is read. We do not wish to blindly trust theéel
so we require that the algorithm be convinced of having cdetpa correct answer. We show upper
bounds that achieve a non-trivial tradeoff between the arnouiannotation used and the space required
to verify it. We also prove lower bounds on such tradeofftgrohearly matching the upper bounds, via
notions related to Merlin-Arthur communication complgxiOur results cover the classic data stream
problems of selection, frequency moments, and fundamenagh problems such as triangle-freeness
and connectivity. Our work is also part of a growing trend —€liring recent studies of multi-pass
streaming, read/write streams and randomly ordered streanof asking more complexity-theoretic
questions about data stream processing. It is a recogrtfiatnin addition to practical relevance, the
data stream model raises many interesting theoreticatiqnesn its own right.
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1 Introduction

The data stream model has become a popular abstraction when desiguwiriidpailg that process network
traffic and massive data sets 2. The computational restrictions that define this model are severe: algo-
rithms must use a relatively small amount of working memory and process theimphatever order it
arrives. This captures constraints in high-throughput data progessitings. For example, network moni-
toring often requires (near) real-time response to anomalies and hefficeriiest be processed as it arrives,
rather than being stored and processed offline. For massive dattsetkiis external memory, being able to
process the data in any order avoids the I/O bottlenecks that may arise vathhatts that assume random
access. Unfortunately, while some problems admit efficient streaming algsritimany others provably
require a lot of working memory or multiple passes over the data, which typisatigt feasible.

This paper considers the potential for off-loading stream computation tora pweverful “helper” so
that single pass, small-space stream computation is possible even fohsudhftinctions. The additional
power of the helper can arise in a variety of situations, e.g., multiple progessits, special purpose
hardware, or a third party who provides a commercial stream processivige. This last case has recently
garnered attention in the context of outsourcing database proce88i,[46]. A key issue is that we
do not want to blindly trust the helper: hardware faults or outright deéaey a third-party would lead
to incorrect results. So our protocols must have sufficient informatiomagwed in the help to allow the
“verifier” to be convinced that they have obtained the correct answerthink of this help as annotations
augmenting the original stream. Our goal is to design protocols so that tfien@nds the correct answer
with an honest helper, and is likely not fooled by a dishonest helperpfiilmary metrics are the amount of
annotation provided by the helper and the amount of working space ysbd kerifier.

Our approach is naturally related to Interactive Proofs and Merlin-Artbmmunication protocolsl|
5,36] but differs in two important regards. Firstly, the verifier must procest lthe original data and the
advice provided by the helper under the usual restrictions of the datarstr®del. Secondly, we focus on
annotations that can be providedling i.e., annotation that only depends on data that has arrived before the
annotation is written. Note that in Merlin-Arthur communication, it is assumed tbediélper is omniscient
and that the advice he provides can take into account data held by arg/agfers. In the stream model,
this would correspond tprescience where the annotation in the stream at any particular position may
depend on data that is yet to arrive. In contrast, we are primarily inter@sigesigning algorithms with
online annotation; this corresponds to a helper who sees the data @nilyuwith the verifier.

1.1 Our Contributions

Our first contribution is to formally define the relevant models: traditional@mthe Merlin-Arthur com-
munication, and streaming models with either prescient or online annotatiortheWevestigate the com-
plexity of a range of problems in these models, including selection, freguaonments, and graph prob-
lems such as triangle-counting and connectivity. Estimating frequency momeyedicular has become a
canonical problem when exploring variants of the data stream modebsuegimdom order streamkl] and
read/write streams/].

We now give an overview of our results. We use the shorthdahgv)-scheme” for anO(v)-space
streaming algorithm that us&3(h) bits of annotation; a scheme could be either prescient or online. In
general, our streams have lengthand consist of tokens from the univerisé:= {1,2,...,n}; to simplify
the statement of bounds, we assume timeandn are polynomially related, and in particular that fog=
O(logn). In the case of graph streams, we consider tokens from the univérsé|. We useZ .. to denote
the set of non-negative integers.



Selection. The problem of finding the median ofvalues in the rangg] highlights the difference between
prescient and online annotation. For arbitrary positive integensdv, with hv > m, we present an online
(hlogn,vlogn)-scheme. Furthermore, we show that this trade-off is optimal up to polytbgac factors.
In contrast, a trivialO(logn)-space algorithm can verif@(logn) bits of prescient annotation, implying a
prescienilogn,logn)-scheme.

Frequency Moments and Frequent Items. We next consider properties ¢fi }icjy wheref; is the fre-
qguency of the tokeni" in the stream. For arbitrary integetsandv, with hv > n, we present an on-
line (¢~ *hlogn,viogn)-scheme that computes the set of tokens whose frequency expeedalso, for
any 0< € < @/2, we give an onIinQe—llog2 n,logn)-scheme that computes a set of tokens that includes
{i: fi > @m} and s disjoint from{i : f; < (¢—&)m}. This algorithm relies on a powerful way that annotation
can be used in conjunction with sketch-based algorithms.

We present an onlingk?hlogn, kvlogn)-scheme that computes tkth frequency momerf := ¥ X
exactly, wherek is a positive integer. This trade-off is optimal up to polylogarithmic factors évihe algo-
rithm is allowed to use prescient annotation. To prove this, we presentstilérlin-Arthur communication
bounds for multi-party set-disjointness. Additionally, we generalize thenseHer F, to anyfrequency-
based functioni.e., a function of the forny .y g(fi) for someg: Z; — Z,. Assumingm= O(n), we
obtain a prescientn?2logn,n?3logn)-scheme and an onlin@®“logn, n®“logn)-scheme for this impor-
tant class of functions, as well as improved schemes for functions lbaded frequencies and for skewed
data streams.

Graph Problems. For graphs defined by streamsrofedges om vertices, we show that oni@(logn)
space is needed by the verifier to determine whether a graph is connedigahgle-free, or is bipartite,
with online annotation proportional to the input size in each case. We showuhalgorithms are optimal
in many cases.

For anyh andv, with hv > n3, we also present an onlirfalogn, viogn)-scheme for counting triangles
in the graph. Additionally, for any andv, with hv > n?, we present onlin¢hlogn, viogn)-schemes for
determining whether a graph is connected or bipartite. Finally, fohamdv, with hv > n?, we present on-
line (hlogn,vlogn)-schemes for solving bipartite perfect matching. This latter scheme aclessestially
optimal tradeoffs between annotation length and space usage for therverifi

1.2 Related Work

When multiple passes over the input are allowed, it is natural to considetaioms that can be written
to the “input tape” by the stream algorithm and which are then available to tloeitalg in subsequent
passes 3, 15, 23, 24]. The read/write stream model, which provides both multiple passes and multiple
working tapes, can be viewed as a natural extension of the multi-pasgtonanodel 7,8, 31]. However,
such annotations are of no use if only a single pass over the input is allowed

Few examples of prior work have explicitly considered annotations thairakeded by an (untrusted)
third party. Gertner et al2B] showed that the set of languages recognized by a verifier with logarithmic
space, given annotation polynomial in the input size, is exactly NP. Inasthtiur focus is on the case where
the annotation is (sub)linear in the input size and can be provided onlindidtivection between prescient
and online annotation was not relevant in their results because with polylremmiatation, the entire input
could be repeated. Feigenbaum et al7][observe that a logarithmic space verifier can check a linear
space annotation for the disjointness problem. In communication complexitylthefmon-deterministic



advice has been studied more extensively: see, &3B7]. The work of Aaronson and Wigdersod][
and Klauck B6] are particularly relevant: they resolve the MA complexity of two-party sgjpihtness.
We extend some of their techniques to our streaming model. Goldwasser 2] alofsider the question
of which computations can be verified relatively efficiently while permitting multiplends of interaction
between the parties.

There has also been more applied work which implicitly defines annotatiomsshd&ucker et al4p]
consideredstream punctuationswhich, in our terminology, are simple prescient annotations, indicating
facts such as that there are no more tuples relevant to timestanmie remainder of the stream. Yi et
al. [46], in their work on stream outsourcing, study the problem of verifying thataimed “grouping”
corresponds to the input data. They solve exact and approximatengdithe problem by using a linear
amount of annotation. Lastly, the work of Li et aBf on proof infused streamanswers various selection
and aggregation queries over sliding windows with logarithmic space and kme@tation. However, a
critical difference is that Li et al. require that the helper and verifiee@agn a one-way hash function,
for which it is assumed the helper cannot find collisions. Our results arestimager model without this
assumption.

Subsequent Work. The line of work described in this paper was begun when the first thitbersupre-
sented a preliminary version of some of these results at ICALP 208]9 YWork subsequent to that paper
has further studied the protocols for graph computations in this madgllp particular, it is observed that
given any deterministic RAM algorithm with running tinfi¢ there exists an onlingm+ R)logn,logn)-
scheme that simulates the algorithm in the annotation model. This implies alterndtefprdbe existence
of online (mlogn,logn)-schemes for bipartite perfect matchings, bipartiteness, and connectivity

Other subsequent works have built upon the conference versioe pféisent work. Cormode, Thaler
and Yi [2]1] have extended the model considered in this paper to allow for multiple roafnidseraction
between helper and verifier, and provided protocols achieving erpiaiig smaller space and commu-
nication costs than those possible in our annotation model. Most recentiyjo@er Mitzenmacher and
Thaler [L9] have performed an empirical evaluation of many techniques in the literatuiateractive
proofs, and demonstrated genuine scalability of several of the protpaol®rth in the present work as
well as protocols from17] and [21].

2 Models and Preliminaries

In this section, we first recall the definition of Merlin-Arthur communicatiow &men present an online
variant which restricts the advice given by Merlin. We then present ttmedbdefinitions of the annotated
data stream models and state some basic lemmas.

2.1 Communication Models

Let f: Xy x--- x X — {0,1} be a function, where eacX is a finite set. This naturally givestaplayer
number-in-hand communication problem, where Pldykolds an inputx; € X; and the players wish to
outputf (X, ...,%) correctly, with high probability.

MA Communication. We first consider a variant of this communication model. A Merlin-Arthur protoc
(henceforth, “MA protocol”) forf is one that involves the usuiaplayers, plus a “super-player,” called Mer-
lin, who knows the entire input= (X, ...,%). The protocol works as follows: first Merlin deterministically



writes a help messadgeon the blackboard, and then Players 1 througim a randomized protoc®!, using
a public random strin®, eventually outputting a bit o(P; x,R h). To clarify, Ris not known to Merlin at
the time he write$). An MA protocol is d-error if there exists a functioh: X3 x ... x X% — {0,1}*, such
that:

1. If f(x) =1 then Pg[out(P;x,R,h(x)) =0] < 4.
2. If f(x) =0thenvh’ € {0,1}*: Prrlout(P;x,Rb') = 1] < 0.

We define erfP) to be the minimun® such that the above conditions are satisfied. We also define the
help costhcostP) to be the maximum length &f(x), over allx, and theverification cosvcos{P) to be the
maximum number of bits communicated by Players 1 thrdugfer allx andR. To avoid boundary cases,
we insist that both of these costs are at least 1 for any protocol, i.e.,wg&deo traditional protocols where
no explicit help is provided to have hcostl, rather than 0. We define tleerror MA-complexity of f
as MA;s(f) = min{vcos(P) + hcostP) : P is an MA protocol forf with err(P) < &}. Further, we define
MA(f) = MAq/3(f).

Online MA Communication. We also consider a variant of the above model, specifaneway proto-
cols(i.e., protocols where the players speak once each, in increasing,avtiere Merlin constructshelp
messagess, . . ., ht so that théth message is a function of only the firshputs. The messadg is revealed
privately to theith player. To make this precise we need to amend the definitidnesfor: An online MA
protocol isd-error if there exists a family of functiorig : X x ... x X; — {0,1}*, such that:

1. If f(x) =1 then Pglout(P;x, R, h1(X1), b2(X1,X2), ..., bt (X1,..., %)) = 0] < d.
2. If f(x) =0 thenvh’ = (b}, b5,...,b}) € ({0,1})! : Prrlout(P;x,R,b') = 1] < &.

We define the help cost, hco#), to be the maximum of ;¢ |hi(Xs,- .., X)[, over allx. We define
er(P), and vcostP) as for MA. Define MA’ (f) = min{hcostP) +vcos(P) : P is an online MA protocol
for f with er(P) < 8} and write MA™ (f) = MA/5(f).

2.2 Data Stream Models

We now define our annotated data stream models. Recall that a (usuadfréara algorithm computes a
function f of an input sequencec U™, wherel{ is some universe, such 8,1} or [n]: the algorithm uses
a limited amount of working memory and has access to a random string. Tt¢teofufi may or may not be
Boolean: for non-Boolear we often consider a notion of approximation: we daig computed correctly
if the answer returned is in some pre-definedXdt(x)), e.g.,{a: |a— f(x)| < g[f(X)|}.

An annotated data stream algorithm, cscnemeis a pairA = (b, B), consisting of a (deterministic)
help functionh and a data stream algorithth We think of h as decomposed int(s,...,bm), where
hi : U™ — {0,1}*; the functionh; determines the annotation supplieddafter theith tokenx;. That is,
acts onx to create ammnnotated stream” defined as follows:

X = (x1,h1(X),%2,h2(X), ..., Xm, bm(X)) -

Note that this is a stream ovéfU {0, 1}, of lengthm+ ¥ |hi(x)|. The algorithm3, which usesw bits of
working memory and has oracle access to a random sRitigen processes this annotated stream, eventually
giving an output oyi3;x", R).



Prescient Schemes. The schemed = (h, B) is said to be &-error prescient scheme for the functibrif
the following conditions hold:

1. For allx € U™, we have Pglout(B;x",R) ¢ C(f(x))] < &.
2. Forallx e U™, b’ = (b, h5,...,hk) € ({0,1}")™, we have Rglout(B;x",R) ¢ C(f(x))U{L}] <3.

Two things are worth noting. First, this definition allows the annotakigr) to depend on the entire
streamx, thus modelling prescience. Second, it allows (but does not force)titeqol to outputl if the
annotation does not agree wih

We define erfA) to be the minimumd such that the above conditions are satisfied. We define the
help costhcost.A) := max, 5; |hi(X)|, and theverification costicos{.A) = w. We say thatA is a prescient
(h,v)-scheme if hcogt4) = O(h), vcost.A) = O(v) and erf.A) < 3.

Online Schemes. The schemed = (h, B) is said to be @-error online scheme fof if, in addition to the
conditions in the previous definition, the functipndepends only ofixy, .. .,%;). We define hcost and vcost
as above, and say thatis anonline (h,v)-scheméf hcost.A) = O(h), vcost.A) = O(v), and erfA) < 1.

In order to simplify the statements of bounds, we assume throughout thatsmsize and stream length
are polynomially related, and thus log= ©(logn). In a few cases, we use the stronger assumption that
m= O(n); in these cases, we state this assumption explicitly.

2.3 Background Preliminaries

In multiple places we make use of basic fingerprinting techniques which eaaldgfier to test whether
two large streams represent the same object, using small spad®, destote the finite field witly elements
(whenever it exists). LeA = (ay,...,am) denote a data stream, with eagle [n]. ThenA implicitly defines
a frequency distributiof(A) := (fq,..., fn), wheref; = [{i € [m] : & = j}| is the frequency of the tokerj™
in A. We can then fingerprint this vector by computing the following quantity.

Definition 1 (Basic Fingerprint) Letf = (f1,..., fy) € Z'] be a vector, leg be a prime, and lete Fq. The
quantity BRy(r,f) == []{_4(r — j)i, computed oveFy, is called abasic fingerprintof f.

To compute basic fingerprints, we choageased on aa priori boundmon ||f||1. The following lemma
collects the key properties of these fingerprints.

Lemma 2.1. Let > m be a prime, and choose r uniformly at random fig Given an input stream A of
length m, the fingerprinBFy(r,f(A)) can be computed using(@gq) storage. Supposé € Z" is a vector
with f* 7 f(A) and [|f’[|1 < m. Then the “collision probabilityPrcr,[BFq(r, ") = BFq(r,f(A))] < m/q.

Proof. To compute the fingerprint in streaming fashion, expresg BRA)) = [1"1(r —a;). The bound on
the collision probability follows from the fact that for arfiy= Z' , the polynomial Bg(X,f) € Fq[X] has
degree at modif||;. O

Further, on several occasions, we use the standard technique ofdketahing. We define ainteger
linear sketchbroadly as any summary € Z° which can be computed as= Sf(A), whereS e Z5" is
a “sketch matrix” with integral entries amgl< n. Such sketches include instantiations of the Johnson-
Lindenstrauss transforn38], Count-Sketch 14], and Count-Min RQ]. Each stream tokef increments/
by Sej, wheree; € Z" is the vector that is 1 in locatiopand O elsewhere. Typicall§fhas a compact implicit
representation.



In particular, the Count-Sketchi4] defines aasic sketclof lengthw via two pairwise independent hash
functionsby : [n] — [w], andc, : [n] — {—1,+1}. The sketch vectov is defined by, j = ¥i.p, i) fice(i).
A basic estimate of the frequency of itéris fj , = ¢/ (i)v.p,). This satisfiesf; , — ;| = O((F2(A) /w)¥/?)
with constant probability. To reduce the error probability, one takes théamed the basic estimates from
d basic sketches with independent pairs of hash functitﬁns:mediaqgfgd ﬁg Count-Min is essentially
Count-Sketch withe,(i) := 1 for all £. It promises|fi, — fi| = O(F1(A)/w) [20]. Here,Fi(A) andF>(A)
denote the first and second frequency momen#ts oéspectively.

3 Warm-Up: Index, Selection, and Frequent Items

3.1 Index and Selection

In this section, we present an online scheme forstieecTioNproblem: Given desired rarnke [m], output
an itemay from the stream\ = (ay, ..., am) € [n]™, such that{i : & < ac}| < p and|{i: & > a}| < m—p.
An easyprescient(logn,logn)-scheme is for the helper to give an answehat is claimed to bey, as
annotation at the start of the stream. The verifier need only count how iteany in the stream are (a)
smaller thans and (b) greater thas. The verifier then outputs if the rank of s satisfies the necessary
conditions, and outputs otherwise.

However, our goal is to present (almost) matching upper and lower lsomnen onlyonlineannotation
is allowed. To do this, we first consider the online MA complexity of the commtioicgoroblem of
INDEX: Alice holds a stringk € {0,1}N, Bob holds an integerc [N], and the goal is for Bob to output
INDEX(X,1) := . The lower bound foseLECTIONWill follow from the lower bound fonNDEX and a key
idea for theseLECTIONuUpper bound is taken from the communication protocolfmeX seen in the proof
of the following theorem.

Theorem 3.1(Online MA complexity ofINDEX). Let h and v be integers such that hvN. There is an
online MA protocolP for INDEX, withhcos{P) < h andvcos{P) = O(vlogh). Futhermore, any online MA
protocol Q for INDEX must havéacost Q) vcos{ Q) = Q(N). Thus, in particularMA ~ (INDEX ) = O(v/N).

Proof. For the lower bound, we use a online MA protogdto build a randomized one-wapDEX protocol
Q'. Leth=hcostQ). Let B(n, p) denote the binomial distribution with parameterand p, and letk be
the smallest integer such thét~ B(k, §) = Pr[X > k/2] < 271/3. A standard tail estimate givés= O(h).
Let a(x,R) denote the message that Alice send®imwhen her random string B, and letb(a,i,h) be the
bit Bob outputs upon receiving messagiom Alice andh from Merlin. In the protocok’, Alice chooses
k independent random stringg, . .., R and sends Bol(x,Ry),...,a(x,Rs). Bob then outputs 1 iff there
exists ah-bit string h such thatmaJoRITY (b(a(x,Ry),i,h),...,b(a(x,Rx),i,h)) = 1. LetC be the number
of bits communicated in this protocol. Cleay< k-vcos{Q) = O(hcost Q) vcos{ Q)). We claim that)’
is a%-error protocol fonNDEX whence, by a standard lower bound (see, e.g., Ablagigvg = Q(N).

To prove the claim, consider the case whegs- 1. By the correctness @ there exists a suitable help
messagé from Merlin that causes By(a(x,R),i,h) =0] < % Thus, by construction and our choicekpthe
probability that Bob outputs 0 i@’ is at most 2"/3. Now suppose; = 0. Then,everypossible message
h from Merlin satisfies Hb(a(x,R),i,h) =1] < % Arguing as before, and using a union bound over all 2
possible messagés we see that Bob outputs 1 with probability at most2"/3 = 1.

The upper bound follows as a special case of the two-party set-disjsgnpnetocol in I, Theorem. 7.4]
since the protocol there is actually online. We give a more direct protdaichnestablishes intuition for our
SELECTIONresult. Write Alice’s input stringcasx = y\V - - .y where eacly}) is a string of at most bits,



and fix a primeg with 3h < q < 6h. Let y¥) be the substring that contains the desiredbiMerlin sends
Bob a stringz of length at mosh, claiming that it equalg®. Alice picks a randomm € F, and sends Bob
r and the strings B§fr,yY), ..., BFq(r,y), thus communicatin@(vlogq) = O(vlogh) bits. Bob checks
if BFq(r,2) = BFy(r,y¥), outputting 0 if not. If the check passes, Bob assumeszthag), and outputs;
from z under this assumption. By Lemnal, the error probability is at mos$t/q < 1/3. O

It is worth making the following two remarks on the above proof.

1. The above lower bound argument in fact shows that an online MA @ubi® for an arbitrary two-
party communication problerfi satisfies hco$P)vcos(P) = Q(R™(f)), where R?(f) is the one-
way, randomized communication complexity fof Thus, MA™ (f) = Q(\/R~(f)).

2. The upper bound fanDEX presented above works more or less unchanged when Alice’s string is in
>N, for an arbitrary finite alphabét. In view of Lemma2.1, one simply needs to choose the prime
g such that &|h < q < 6/Z|h to bound the error probability below/3. This leads to a protocol
P with hcostP) < hlog|Z| and vcostP) = O(v(log|Z| +logh)). Henceforth, we shall refer to this
generalized protocol simply as “theDEX protocol” — the alphabeX will usually be clear from the
context.

Theorem 3.2. For all h,v such that hv> n, there is an onling€hlogm,vlogm)-scheme foISELECTION
Furthermore, any onlinéh, v)-scheme fosELECTIONmMust have hv= Q(m).

Proof. Conceptually, the verifier builds a vectoe= (ry,...,r,) € Z1 wherery = |{j € [m] : a; <k}|. This
is done by inducing a new streafi from the input streanf: each tokerg; in A causes virtual tokens
aj+1,a; +2,...,nto be inserted int&\. Thenr = f(A’); note that||r||; = O(m?). We apply theNDEX
protocol to this vector, witly = ©(mP) to retrieve the ranks of elements surrounding the claimed median.
This information is sufficient to check thahas the claimed rank.

For the lower bound, we use a standard reduction fromNb&EX problem. TakeN = m. Given the
stringx € {0,1}™, Alice transforms it into the stream ovg@m| whosejth token isa; = 2j — x;, for each
j. Given the index € [m], Bob transforms it into a stream consistingi @opies of 2nandm— i copies of
1. Consequently, the median of the combined ler{@th} stream is 2— x;, from which the value ok; can
be recovered. To complete the proof, observe that any online scherompute this median would imply
an online MA protocol foiNDEX with the same cost; and that all players can perform this reduction online
without extra space or annotation. O

Notice that in the above scheme the information computed by the verifier is indiepeofp, the rank
of the desired element. Therefore these algorithms work even pierevealed at the end of the stream.

3.2 A First Result for Frequent Items

The @-heavy hitters (also known as the frequent items) are those items whoserii®/ of occurrence in
the data stream exceedgdraction of the total count. This problem has a long history in the data streams
literature. In the traditional data stream model exact computation of heawsshigguires linear spacé(.
As a result, many algorithms have been developed which recover appteximaavy hitters from a data
stream [L4,20].

In order to identify the heavy hitters, a prescient helper can list the sgdiofied frequent items, along
with their frequencies, for the verifier to check against the stream. Bumwust also ensure that the helper
is not able to omit any items whose frequencies exceed the threshold.
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Theorem 3.3. For all h,v such that hy> n, there is an onlineeh(p‘llog2 n,vlogn)-scheme and a prescient
(¢~ tlog?n, ¢~ 1log?n)-scheme for demonstrating tigeheavy hitters.

Proof. Given the threshold = ¢m, the set of heavy hitters i§j : f; > T}. We impose a binary tre§
over the data, whose leaves are the elements of the univiérsad partition th€2n— 1) nodes of7 into v
groups G, ..., Gy, with each|Gj| < 2h. For each nodev of T, let p(w) denote the parent of, and letL(w)
denote the set of leaves of the subtre§ aboted atw. We definef (w) = YieLw) fi-

The f-values for the nodes in each groGpform a vector with entries if0,1,...,m}. As the verifier
processes the stream it maintains@flogn)-bit basic fingerprint of each such vector; this is easy to do
since each token arrival simply causes a linear update to each vectar ti@nend of the stream is reached,
the helper can then convince the verifier of a‘?(yv) value using theNDEX protocol: he simply supplies
the vector for the grouf®; that containsv, using at most Blog(m+ 1) = O(hlogn) bits of annotation. In
particular, he can identify all the heavy hitters. But he must also convirecedtifier that no heavy hitters
have been omitted.

To this end, we considerwitness se\W, of nodes of/” which together cover the universe. The8&t
given threshold’, consists of all leaveswith f(¢) > T, plus all nodesi such thatf (u) < T but f(p(u)) > T.
Each node of the latter type is witness to the fact that no lepeels(u) can havef; > T. The setd (u) for
suchu together with{ j : f; > T} cover all of[n]. Further, because of the lower bound fm(u)), there can
be at most ! such nodes at any level of7, as the sum of(w) over all nodesv at the parent level is
exactlym. Hence/W| = O(¢tlogn).

The prover presents the verifier with each nade W, in increasing order of mib(u), together with a
convincing proof of the value of(u). The verifier, besides checking the proofs using the stored fingesprin
checks that the setgu) do cover all of[n] (outputting_L if they do not) and outputs thosethat are leaves
of 7 with f(u) > T. In total, hcost= O(|W| - hlogn) = O(hglog?n) and vcost= O(vlogn). Note that
the stated vcost does not explicitly account for the verifier storin@{lge *logn) claimed heavy hitters, as
in some settings (e.g., Theorehd, later in this paper) this is not required.

In the prescient case, the helper provitié¢sipfront, which require©(|W|logn) = O(¢~tlog?n) bits
of annotation. The verifier stores it, and then computesfafdalues for nodes iW, checking that these
satisfy the requirements on a witness set. In this case, the stated vcoscdoant for the verifier storing
the O(@~1logn) claimed heavy hitters. OJ

In Section6, we return to this problem, and present more involved protocols with a loestr and
consider approximate variations. Specifically, Theo&fshows how the size of the withess ¥étcan
be reduced, and Theoretn2 shows how the exact frequency vector can be replaced with a more compa
sketched vector.

4 Frequency Moments and Generalizations

In this section we continue the study of properties of the frequency distibigA) = (f4,..., f,) of a given
streamA. In particular, we study the computation of frequency moments, which hasgahistory in the
data streams literature, like the frequent items problem discussed earlier.

Definition 2. Thekth frequency moment of the streaiis defined agy = F(A) 1= Y jein fjk = [[f(A) k.
Slightly abusing notation, we also defifgv) := ||v||{ for a vectorv.

It is well known that in the traditional data stream model, exact computatiép @@~ 1) requires(n)
space. Even constant factor approximation requirgs /) space fok > 2 [13).
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4.1 Schemes for Frequency Moments

We now show a family of algorithms that exhibit an optimal verification/annotatiaietfi for the exact
computation of. Our algorithm is inspired by the “algebrization” results of Aaronson angidéfson ]
but the key idea can be traced back to classic interactive proof protfdalsd et al. B9] and Shamir43].

Theorem 4.1. Suppose h and v are positive integers with>ha. Then, for integers k 1, there exists an
online (k?hlogm, kvlogm)-scheme for computing,exactly.

Proof. Let A be the input stream. We map thevectorf(A) into anh x v matrix (f(X,Y))xe[n yey» USING
any canonical bijection betweén| and [h] x [v]. Pick a primeq > max{m, 3kh}; sincem > n, this can
be done while ensuring that lgg= O(klogm). We shall work in the fieldfq, which is safe becausg
exceeds the maximum possible valuégfA). Let f(X,Y) e F4[X,Y] be the unique polynomial satisfying
deg (f) =h—1, deg(f) =v—1andf(xy) = f(x,y) forall (x,y) € [h] x [v]. The verifier picks a random
r € Fy. As the stream is read, the verifier maintains a sketch consisting wighentitiesf (r, 1), ..., f(r,v).
Clearly, this sketch fits i©(vlogQq) bits of storage.

At the end of the stream, the helper provides a polynog\jl) € IF4[X] that is claimed to be equal to

s(X) = Y fX.yk, (1)
ye]

which has degree at mokth — 1), thus usingO(khlogq) bits of annotation. The verifier evaluatgér)
from the supplied annotation and compuses) = 3 ¢y f(r,y)¥ from his sketch, checks thaft(r) = s(r)
and outputsl if not. If the check passes, the verifier outp§its. 1, S (x) as the final answer. Clearly, this
answer is correct if the annotation was honest. Further, the verifieolisd@nly ifs' # s, buts'(r) = s(r);
the probability of this is at most(h— 1) /q < % by choice ofg.

It remains to show that the sketch can be computed incrementalipilogq) space. To maintain each
f(r,y) for y € [v], note that upon reading a new tokiea [n] that maps tda,b) € [h] x [v], the necessary
update is of the fornf (r,y) « f(r,y) + Pab(r,y), wherep,p is the Lagrange polynomial

pan(X.Y) =[] X-Da-i™* ] (v—ib-j™
ie[h\{a} jeV\{b}

Sincepap(r,y) = 0 for anyy € [v]\ {b}, the verifier need only update the single vali(g,b), by adding
Pab(r,b), upon reading this token. Using a tableQfv) appropriate precomputed values, this update can be
computed quickly. Fon =v=/n, this takes a constant number of arithmetic operations per update without
affecting the asymptotic space cost. O

Numerous problems such as computing Hamming distances and inner pr@ohutcegpproximatindr
andF,, can be solved using as a primitive or using related techniques. We proceed to outline the relevant
schemes and the results they provide.

Approximate F,. We can approximaté&, up to a(1+ ¢€) factor from an integer linear sketch of size
O(1/€?) (see Sectior2.3for a discussion of sketches). In particular, if &8) denotes a lengti+ Count-
Sketch vector of the streas built using 4-wise independent hash functions, tRefCSy(A)) estimates
F>(A) with relative errore = w12 with constant probability44]. Thus, if the verifier and helper have
access to a source of public randomness to define the hash functiachisyute sketch (or we extend the
model to allow the verifier to send the description of the randomly chosenfliastions to the helper at



the start of the protocol), the abofe scheme yields an onlinge =29 logm, £2?~?logm)-scheme for any
a € [0,1]. This follows from the combination of the algebrization approach with therghen that the
verifier can track linear updates to their sketch efficiently.

Approximate F.. Recall thaF, = maxc[y fj and note thael <R <nF!. Hence, it =logn/log(1+¢),
then (R)¥! is at most a factor % & from F.,. This yields an onling(%logn)2hlogm, (%logn)viogm)-
scheme for approximatinig, for anyh, v such thativ> n. We make use of this scheme in Sectibd

Inner Product and Hamming Distance. Consider a stream consisting of a string {0, 1}N followed

by a stringy € {0,1}N. Exact computation of, implies online schemes for certain functionsxofndy.
For example, the inner produgty is (Fx(Xx+Yy) — F2(X) — Fz(y))/2 and the Hamming distance between
x andyis |[{i :x = 1}| +[{i : yi = 1}| — 2x-y. Hence we get an onlindN® logN, N~ logN)-scheme for
each of these functions, for evesyc [0, 1]. Alternately, the approach in the proof of Theordrii can be
used to more directly generate schemes for these problems with the sams.béamelxample, in the case
of inner product, the verifier maintairfgr, 1) ... f(r,v) andgr,1)...§(r,v), wheref andgare polynomial
extensions ok andy, as above. The verifier then checks that these are consistent withea-befgplied
polynomials'(X), which is claimed to bg ¢y f(X,y)§(X,y), by evaluation aK = r. The analysis follows
the same lines as above.

4.2 Lower Bounds on Frequency Moments

We now present lower bounds on the tradeoffs possible for the erdc@proximate computation of the
nontrivial frequency moments,. The first part of the theorem below shows that the tradeoff given by
Theoremd.lis nearly tight.

Theorem 4.2. Suppose k 0 and k# 1. Let.A be an(h,v)-scheme (online or prescient) for computing F

(1) If A computes fexactly, then it requires he Q(n).
(2) If A approximates fup to a constant factor, then it requires BvQ(nt=5/k),

Proof. Both results follow from lower bounds on the MA complexity mfs,; : {0,1}™ — {0,1}, thet-
party set disjointness problem, which is defined as follows. The inputisreBoolean matrix, with Player
i holding theith row, fori € [t]. We call an inpux = (X;j)icfy,jeiny Vvalid if every column ofx has weight
either 0 or 1 ott, and at most one column has weighThe desired output is

DISht(X) = — \/’j‘:1 /\LlXij )

i.e., 1iff the subsets dh] represented by the rows rfare disjoint. Note thabiSJ,; is naturally related to
frequency moments: for any valid inpatF(S) > tXif DIk (x) = 0 andR(S) < nif DISh(X) = 1 where
Sis the multiset{j : x;j = 1}. Thus, reductions frorpisd, > andDbIsJ, ok establish the first and second
parts of the theorem, respectively, in a straightforward manner.

To complete the proof, we need a lower boundds J,; itself. This is given in the next theorem, which
generalizes a result by KlaucBf] and also resolves a question of Feigenbaum eRd]. [ O

Theorem 4.3. Let P be ang-error MA protocol forbisd,:, wheree < 1/3. ThenhcostP) -vcos(P) =
Q(n/t*). In particular, MA (DIS5h) = Q(/n/t?).
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Proof. A rectangle is defined as a subset of inputs of the fafnx --- x A;, where eacht; C {0,1}"is a
subset of the set of all possible inputs for Plalyek basic fact about deterministic communication protocols
is that the inverse image of any transcript of such a protocol must baangte; this is usually called the
rectangle property Let A = DIS\Htl(l) andB = DISJ&tl(O). The following lemma was proved by Alon,
Matias and Szegedyl], generalizing a result due to Razbora\2].

Lemma 4.4(Lemma 3.4 of §]). There exists a distributiop over valid inputs such that

(1) u(A)=p(B)=1/2 and
(2) every rectangle T satisfigg T NB) > (2e) 1u(T NA) —t2- /2", O

Returning to our theorem, assuine w(n/*) since otherwise the bound is trivial. Put hcostP) and
v=vcos(P). Aninputx € Ais said to becoveredby a messageg from Merlin if Prg[out(P;x,R ) =0] < €.
By correctness, every such input must be covered, so there exislis mbssagg™* that covers every input
ina setG C A, with u(G) > 2-"u(A) =2-"-1, Fix Merlin’s message ifP to h* and amplify the correctness
of the resulting randomized Merlin-free protocol by repeatin@(ih) times and taking the majority of the
outputs. This gives us a randomized proto6for DiIS,; with communication cost= O(hv) whose error,
on every input inGUB, is at most 22",

Let u’ denote the distributiop conditioned orGU B. Note that, by condition (1) of Lemmé&4,

vx € {0,1}™: eitherp’(x) =0 or u(x) < p'(x) < 2u(x). 2)

By fixing the random coins o’ we can obtain a deterministic protoo@| for DISJ,, that communicates
¢ bits and satisfies gi(Q) < 2-21 By the rectangle property, there exist disjoint rectangie®y, ..., Tac
such that oUtQ; x) = 1 iff x € J%, T;. Therefore

izlu’(mm <2  and (3)
2C

Ty (A\UTi> <2 4)
i=1

By (2), we haveu’ (A) = p'(G) > u(G) > 2-"-1. Using @), and a rearrangement af)(

iizciu(Ti NA) > ;iiﬂ'(ﬂ NA) > %(“'(A)—Zfzh) =2

Suppose < n/5t* andn s large enough. Applying condition (2) of Lemmatto each term in the leftmost
sum above, we get
27h73

2e

2C
Zu(TimB) > — 2. 272 5 ph6,
i=

However, by 2) and @), we havey? ; u(T,nB) < 22", a contradiction. Hendev= Q(c) = Q(n/t*). O
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4.3 Frequency-Based Functions

It is natural to ask whether thg algorithm of Theorend.1 generalizes to more complicated functions. We
demonstrate that this is indeed the case by presenting non-trivial algorithrtteefclass of alfrequency
based functionsA frequency based function is any functi@on frequency vectors= (fy,..., f,) of the
form G(f) = ¥ jcin 9(fj) for someg: Z, — Z.. We assumg(x) < n° for some constant, so that each
value in the range of andG can be represented usi@jflogn) bits. If there are constan@ andC, such
thatg(x) = C; for all x > C;, then we say tha® is based on low frequenciés

Frequency-based functions have a number of important special aadading frequency momentBp
(the number of distinct items in the stream), and point and range queries fredency distribution, and
can also be used to compufg, the highest frequency in the frequency vector. These functionspgcc
an important place in the streaming world: Alon, Matias, and Szgedy askeddieecise characterization
of which frequency-based functions can be approximated efficientlyerstiindard streaming model in
their seminal paperd]. Braverman and Ostrovskyd] recently gave a zero-one law for approximating
monotonically increasing functions of frequencies that are zero at thm.oiThis can be contrasted with
our result that, in the annotation modall frequency-based functions have non-trivial exact schemes. We
first present a natural generalization of the online schemggfowhich we call the polynomial-agreement
protocol. This protocol was first presented by Cormode, MitzenmaahdrThaler in 18]; we present the
details for completeness.

Polynomial-Agreement Protocol. LetAbe the input stream. We wish to comp@§& (A)), whereG(f) =
Yiem9(fj). As in theR algorithm, we shall work in the fielllq for a sufficiently large prime, and we
map then-vectorf(A) into anh x v matrix (f(X,y))xe[n yepj, Whereh andv are adjustable parameters. As
before, we letf (X,Y) € Fq[X,Y] be the unique polynomial satisfying dggf) =h—1, deg(f) =v—1
and f(x,y) = f(x,y) for all (x,y) € [h] x [v]. The verifier picks a randome Fq, and maintains a sketch
consisting of they quantitiesf (r,1),..., f~(r,v)~as the stream is read.

Now the goal is to computs ye v 9(f(X,y)). The polynomial-agreement protocgeneralizes the
Fx protocol, and has the helper send a polynomial to the verifier claimed to be

Sl(X) = Z gof(xay)? (5)
yeM

whered’is defined through interpolation as the unique degrgeslynomial that agrees with on inputs
in the set{0,1,...,m}, this being the set of possible values for each entrj{Aj. Then the verifier can
computeG(f(A)) = ¥ en S1(X). To keep the helper honest, the verifier checks shaf = 3.1, G( f(r,y)
by computing the sum from his sketch.

One may compare Eqg5) with the earlier Eq. 1), and observe that settirgfx) = X indeed yields the

F scheme from Sectioh. 1

Theorem 4.5. Suppose m= O(n). Let G be any frequency-based function. Then G has a prescient
(n?2logn,n?3logn)-scheme and an onling®*logn,n®“logn)-scheme. Additionally, if G is based on
low-frequencies, then G has an onlif@/3logn, n?/3logn)-scheme.

Proof. We first describe the prescient scheme. It is natural to attempt to diregily #e polynomial-
agreement protocol to the given functignHowever, this does not yield a useful result. The problem with

Lin full generality, we can obtain improved schemes for functions wigre o(n%/12).
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this approach is thats'f has degreen(h— 1), and therefore; (X), as defined ing), requires up ton(h— 1)
words to represent—it would be more efficient for the helper to just tepeastream in sorted order!

The solution is to reduce the degree by removing theheavy hittersfrom A with the aid of the
helper. That is, we run a prescient heavy hitters scheme to detetiirey ;sg(fj) —[S9(0), where
S:={j: f; >nP} andp < 1 is a parameter we will fix later. Though one could use Theoedror a
heavy hitters scheme, to obtain tighter bounds we use a more efficient spheseated later in Theorem
6.1 Note that this requires communicati®f(m/nf)logn) = O(n'~# logn) sincem= ©(n) by assumption.
Intuitively, H represents the contribution of the heavy hitters to the frequency-basetibin, and the verifier
then “removes” these items from the stream by setfing O for all j € S. This ensures that the removed
items do not contribute to the sufiy¢y 9(fj). The verifier and helper then run the polynomial-agreement
protocol on themodifiedfrequency vector, and the final result is giveniyt- 3 j<n 9(fj). From now on,
let f denote this modified vector.

When running the polynomial-agreement protocol, we exploit the fact thelt entry off lies in
{0,1,...,nP}. This lets us use a degre@é-polynomiald’in (5). As a result, we have dégj) < nf(h—1),
and so the helper requires or®(hrf logn) bits to describes; (X). For the%—error guarantee, the primge
need only be as large as®h— 1) = poly(n). All other details remain unchanged, and are in line with the
proof of Theoremd. 1

It remains to show that we can set the paramétevs and 3 of the above protocol to achieve hcest
vcost= O(n?3logn). The help cost i©(n*#logn) bits for the heavy hitters scheme pldghr? logn) bits
for the (modified) polynomial-agreement protocol. The respective vatidic costs ar®©(n*~Flogn) and
O(vlogn). SettingB = 3, h=n!/3, andv = n?2 achieves the desired costs.

A subtlety is that the verifier needs to compute the valyds) for all j € Sin order to compute the
contribution,H, of the heavy hitters. The verifier also needs to compute the vgliletor i € [n?] in order

to evaluates; (r) = Yy G(f(r,y)), because the polynomigli§ defined in terms of these values. Indeed,
G(X) = Yicpme 9(i) i (), where; is the unique polynomial of degree at maét such thaty;(i) = 1 and
Xi(x) =0forallxe {0,...,nf}\ {i}. Thus, to give a space-bounded verifier, we must carefully acdount
the cost of storing. However, for most natural functions of interegthas a succinct implicit description;
this is indeed the case for important examples sudkyas.,, and point and range queries on the frequency
distribution that are described subsequently.

In order to achieve an onlin@®“logn, n®“logn)-scheme folG, observe that the only place where the
above scheme used prescience was to identify heavy hitters. So we sifgtiyjuga the online heavy hitters
scheme of Theorer.1, with parametenr € [0,1], in place of the prescient version. In this case, the help
cost isO(n*~An%logn) bits for the heavy hitters scheme aBthr? logn) bits for the polynomial-agreement
protocol. The respective verification costs @@~ logn) andO(vlogn). Balancing these costs by setting
B =1 a=1 h=nY4 andv=n%*gives the desired overall costs.

Finally, we describe how to achieve an onliti#/3logn, n?/3logn)-scheme ifG is based on low-
frequencies. Then, as described above, there are con€aatslC, such thatg(x) = C; for all x > C;.
This obviates the need for a heavy hitters scheme entirely: while obserargjrdam, the verifier keeps
a buffer of then?’2 most recent items observed, and “collapses down” any items appearirgtnamC,
times in the buffer to an instance of the item that occurs ex&gtlimes. It is easy to see th@is the same
for the collapsed stream as for the original stream, stBég based on low frequencies. As a result of the
collapsing, no item in the filtered stream has frequency higher @(a®'’3). Therefore we can obtain the
desired bounds using a method similar to the polynomial-agreement protocol. O
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Applications of Polynomial-Agreement. Theorem4.5 provides annotation schemes for the problems
described below.

e We can computé&y, the number of items with non-zero count. This follows by observing Fhés
equivalent to computing;cy 9( fi) for the functiong given byg(0) = 0 andg(x) = 1 forx > 0. Since
Fo is based on low frequencies, we achieve an onfité€*logn, n?3logn)-scheme.

e More generally, we can compute functions on the inverse distribution, i.erieguof the form “How
many items occur exactly times in the stream?” We do this by settigtk) = 1 andg(x) = O for
x # k; here we think ok as being fixed. One can build on this to compute, e.g., the number of items
which occurred betweekandk’ times, the median of this distribution, etc kifs a constant, as in the
case ofrarity (wherek = 1) [22] we achieve an onlinén?3logn,n?3logn)-scheme. Otherwise, we
achieve a prescierih?2logn, n?/3logn)-scheme and an onlin@®“logn, n®“logn)-scheme.

e We obtain a protocol foF., = maxjy fj, with a little more work. The helper first claims a lower
bound? on F, by providing the index of an item with frequené&y, which the verifier checks by
running the generalizesNDEX protocol from Sectior8.1 (see Remark 2 after Theorednl). Then
the verifer runs the above protocol wigix) = 0 for x < ¢ andg(x) =1 fori > £;if ¥ ;i 9(fj) =0,
then the verifier is convinced that no item has frequency higher thand concludes thdt, = /.
We therefore achieve a prescign/3logn,n?2logn)-scheme and an onling®“logn,n®“logn)-
scheme foF,, (or an online(n?3logn, n?3logn)-scheme in the case th&t is at most a constant).

4.4 Frequency-Based Functions for Skewed Streams

In practice, the frequency distributions of data streams are often skewtbe sense that a small number of
frequent items make up a large portion of the stream. We observe that, ifélaenss sufficiently skewed,
so that there are few heavy hitters, we can achieve more efficient sstienfeequency-based functions.
To see this, notice that in the scheme of Theodekthe verifier, after learning the heavy hitters from the
helper, only needs to know approximateupper bound o, (A'), whereA' is the stream obtained from
the input streanA by deleting all the heavy hitters. That is, the helper only needs to convieoeetifier
that he has presented “enough” of the true heavy hitters (and theirfexqaencies) so thdt,(A’) < b for
some upper bound= ©(nf)—then we may defing fo agree withg on [b], so that the degree gfrémains
O(nP).

Observe that if there are not many heavy items, the helper can send.afisteavy hitters and their
frequencies (proving the frequencies are truthfullvigaralleINDEX protocols) and then appending a proof
of an approximate upper bound (within facto# k) as per Sectiod.10on the quantityFe (A').

It suffices to lets be any positive constant in order to achiéve O(nf). When there are fewer than
items with frequency greater thaf, the INDEX queries, if they are online, require annotat@(rhlogn)
and spaceD(vlogn) for the verifer, while the approximatg, scheme requires annotati@ hlog®n)
and spaceéD(vlog?n). In what follows, we will choose to be polynomial inn, so we will obtain an
(¢hlogn,vlog?n) scheme for identifying the set of heavy hitters and an upper bawmdF, (A').

For concreteness, we will analyze the costs of our improved scheme thedassumption that the
frequencies of items in the stream follow a Zipfian distribution, so thaitthkargest frequency is (at most)
mi~Z for parameter. Setting this equal to® and rearranging, we obtain that there are at njogn?)1/2
heavy hitters to identify.

Therefore, ifm= ©(n), we can reduce the cost of the heavy hitters sub-protocol within thereché
Theorend.5to (n1=B)/2hpolylogn, vpolylogn). Adding in the annotation cost of sending the polynomial
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go f, and the space cost of storing the verifier's sketch, the entire schereéotieerequire®O(n~#)/zh

hr?) annotation ancﬁ(v) space, where th® notation hides factors polylogarithmic im Balancing expo-
1

nents by setting = 1/(z+ 1), h=n?"225, andv=n/h, we obtain arfn? " 229 polylogn, n®* 27 polylogn)
scheme.

For example, ifz= 2, we obtain an onlingn?3polylogn, n?/3polylogn)-scheme, which essentially
matches the cost of our online scheme for functions based on low-freiggebut applies to any frequency-
based function. Iz = 3, we obtain an onlinén®®polylogn, n® poly logn)-scheme.

Finally, we present a more efficient prescient scheme. If we useipnégeDEX protocols rather than
online ones, our heavy hitters scheme only requires annotéljb& hi) and spacef)(l + Vi), provided
hiv; > n. Hence, the entire scheme has annotation©¢st#)/S+ h; 4+ h,nf) and space co€d(n(~F)/s +
V1 +Vz), wherehyvy = hpv, = n. Assume 1< s< 2. Then settingd = 52, hy = vy = n/2, hy = n?/(22),
andv, = n?(2+2 we obtain an(n?(?+2 polylogn,n?(?*? polylogn) scheme. For example, = 2, we
obtain a prescier(n'/2 poly logn, n/2 poly logn)-scheme. Foz > 2, schemes with the same costs follow by
settingB =0, hi=hy=vi=wn= n1/2.

5 Set and Multiset Inclusion

Building on some of the results and techniques in Sectjome now address a family of abstract problems
that involve a helper proving a subset (inclusion) relation to a streamirfieveBoth sets and multisets
are of interest. For example, we may need to prove AhatB for two setsA andB, or we may need to
prove that a seA is exactly the support set of a multidggt These abstract problems turn out to be common
subproblems arising in a number of applications that we shall consider $ardé.g., Theoren¥b, 7.6,
and7.7).

Throughout this section, thezeof a multiset is the number of elements in it, counting multiplicities. A
fingerprint of a multiset is a basic fingerprint, as in Definitigrof its characteristic (frequency) vector.

Lemma 5.1. Let AC [n] be a set and BC [n] a multiset of size t. Let’Boe the set formed by removing
all duplicate elements from B. Then, given a stream which begins with thergkenfeA followed by the
elements of B, there is a presci€hlogn,logn)-scheme that establishes whethéeRA.

Proof. As the elements o are observed in the stream, the helper annotatesseadwith the multiplicity,
fa, of aiin B. OnceA has been observed, the helper then lists each elemienthe set differenc®’ \ A,
along with the corresponding multiplicitfg in B. Obviously there are no such element®if= A. From the
provided information, the verifier constructs a fingerprint of the multisethiciwveacha € AUB' appears
with multiplicity f,.

Then, while observing the elements of the multBgthe verifier incrementally constructs a fingerprint
of B, as in Lemma&.1 The verifier accepts iff the two fingerprints match. O

In the remainder of this section, we give three schemes achieving tradedifeen hcost and vcost for
(multi)-set inclusion, in order of generality. First, we give an essentialtymag online (hlogn,viogn)-
scheme, for anj andv with hv > n, for the special case whdahis a set rather than a multiset.

Theorem 5.2. Let XY C [n] be sets. Then given a stream with elements of X and Y arbitrarily interleaved,
there is an onlinghlogn, vilogn)-scheme for determining whetherXY for any h and v such that hw n.
Moreover, any onlingh, v)-scheme requires hy Q(n).
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Proof. Let x,y € {0,1}" be the characteristic vectors ¥fandY respectively. TheiX CY if and only if
F(y—Xx) = Y] —|X|. Consequently, the helper can run thescheme of Theoredh.10n the vectoy — x to
determine if the above equality holds.

The lower bound follows from a straightforward reduction frompex. TakeN = n. Given the string
x € {0,1}", Alice transforms it into the stream ovén] representing the s&t = {j : x; = 1}. Given the
indexi € [n], Bob transforms it into a stream representing the singletoX sefi}. Thenx = 1 if and only
if XCY. O

We now show how to use the result for frequency-based functionsndldauplicated items; in this
caseX andY are multisets rather than sets. The next theorem lets us efficiently handldl agsmiaer of
duplicates.

Theorem 5.3. Let XY C [n] be multisets. Assume k is a known upper bound on the maximum freqdiency o
any elementin X or in Y. Then given a stream with elements of X and Y ailpitirderleaved, there is a
online (khlogn,vlogn)-scheme for determining whethercXY , for any h and v with hi n.

Proof. Let X,y be the characteristic vectors X¥fandY respectively. TheiX CY if and only ify;, —x >0
for all i. The bound on the maximum frequency implies th&t<y;, —x < kforall 1 <i <n. Letgbe
defined through interpolation as the polynomial of degriee\&r the finite fieldf, such thaig(x) = 0 for
xe {0,1,....k}, andg(x) =1 forxe {—k,—k+1,...,—1}. Theny;§(yi—x)=0ifand only if X CY;

intuitively, § acts as an indicator function for the set of possible negative entries iethery— x. Applying
the polynomial-agreement protocol defined in the proof of Theagt&mnder this definition of,"we obtain
a(khlogn,vlogn)-scheme for checkin¥ CY whenevehv > n. O

Finally, we give an onlingn®“logn,n®“logn)-scheme for the general multiset inclusion problem, as
long ast = O(n).

Theorem 5.4. Let XY C [n] be multisets of size at most t. Then given a stream with elements of X and
Y arbitrarily interleaved, there is there is an onlirie®*logn, n®#logn)-scheme for determining whether
X CY assuming & O(n).

Proof. Let x,y be the characteristic vectors ¥f andY respectively. It holds thaX C Y if and only if
yi —% >0 for all i. Defineg: {-t,—t+1,...,0,1,...,t} — {0,1} by g(x) = 0 for x € {0,...,t} and
g(x)=1forxe {—t,—t+1,...,—1}. The theorem holds by applying the protocol of Theoeebto G(f),
wheref is the vectoly — x andG is the frequency-based function defineddy(As stated, the protocol of
Theoremd.5applies only tag : Z. — Z, but it applies without modification to any functigndefined on
a suitably small domain, such as ours). O]

5.1 Application: Convex Hull on a 2D Grid

As a first illustration of the value of Theoremds2-5.4, consider an instance of the convex hull problem
where all input point$ fall on the intersection points of a two-dimensional grid definjngossible point
locations. LetC be the convex hull of a stream of points. Then, for any @ < 1, there exists an online
((IC|+g%)logg, (IC| +g*~“)logg)-scheme to report the convex hull. The helper provides the claimed hull
C’, which the verifier can store exactly, and verify that it is indeed conBetinec(C) as the set of (grid)
points contained within a convex shaPeand observe that it is easy to enumerate (but not stje)in
spaceO(|C|). The verifier then must establish that C P, and thatP C c(C’). Both these subset tests
can be verified efficiently using Theorebn2. As described, this protocol requires thashould contain
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no duplicate points, however in the case where each poiRti;iduplicated at most a small number of
timesk, we can instead use the protocol of Theorg@rather than Theorerf.2 This yields an online
((IC| +kg¥) logg, (IC| + g*~%)logg)-scheme to report the convex hull. If points are duplicated up(to
times, we may instead apply Theor&m to obtain an onling(|C| 4+ g*4)logg, (|C| + g¥*)logg)-scheme.

6 Frequent Iltems

In this section, we provide further results on finding exact and apprd&ifmrequent items. Our new results
improve over Theorer8.3by logarithmic factors by showing a more compact witness set for the exset ¢
which leads to improved online schemes for the exact and approximatengedithe problem.

Theorem 6.1. Let T = @m. There exists a prescief@'logm, ¢ tlogm)-scheme and, for every € [0, 1],
an online(¢~n%logm, n'~®logm)-scheme for findingj : f; > T}. Any online or prescienth, v)-scheme
for this problem must have hv Q(n).

Proof. For the upper bound, consider a binary tfeevhose leaves are the elements of the univénses
in Theorem3.3. We will specify a witness sat/ of size O(¢~1) to identify to identify all leaves with
f; > T, we baseéV on the concept oflierarchical Heavy Hitter{HHHSs) [16]. Below, we refer to the set
of Hierarchical Heavy Hitters ad.

We defineH inductively, beginning with the leaves and working our way to the root. Weidleca
leaf in H if its frequency exceed$. Letu be a node at distandefrom the root (i.e., at levdl of 7), and
assume inductively that we have determined#tiHs at levels greater thdn Let H (u) denote the set of
descendants af that have been included i, and letL(u) denote the set of leaves of the subtree rooted
atu. Finally, defineS(u) := L(u) \ (Uyen) L(V)). Intuitively, S(u) is the set of leaves ih(u) that have
not already contributed their frequency toldiMH descendant aof. Define theconditioned counof u as
g(u) == Y jegy) fj; we includeuin H if g(u) > T. Observe there are at magt? items inH sinceT = gm:
each leaf contributes its frequencyg@u) for exactly oneu € H, and thereforéH |T < 5, g(u) <m.

We now define our withess sét as all leaveg in H in addition to all nodesl such thau’s parent is in
H butuis not inH. Observe that each nodec W is witness to the fact that no leavgs S(u) can have
fj > T. We also include the roatin W to account for any leaves that are not descendants of any nétle in
The setsS(u) for u € W form a partition of[n]. Notice thatW| = O(¢~1) since|H| < ¢~ 2.

This leads to two schemes for the problem. In the first, prescient schembeliier lists all nodes
u € W sorted by the natural order on nodes, and the verifier remembers thisiatfon. The verifier may
then compute the conditioned count of each W using spac®(|W|logn) = O(¢~tlogn): each time an
item j appears in the stream, the verifier determines the unige®/ such thatj € S(u) (u is simply the
ancestor of in W farthest from the root), and incremersi). The verifier checks thaf(j) > T for all leaf
nodesj € W, and thatg(u) < T for all internal nodes iW and outputsL otherwise. Since the segu)
partition[n], this latter check ensures that the helper does not omit any Igavigéls f; > T.

The second, online scheme is more involved. In the online setting, it is norlpogsible for the verifier
to track the conditioned count of each nod&\inwhile observing the stream. However, it is possible for the
verifier to track (fingerprints of) a related quantity for each nedsalled theunconditioned countf v.

For each node in T, recall thatL(u) denotes the leaves of the subtree rooted, @ndH (u) denotes
the descendants ofthat are inH. Define the unconditioned count ofas f (u) = ¥ jc () fj. Observe that
there is a simple relationship between the conditioned and unconditioned cbuntemelyg(u) = f(u) —
Yverw 9(v). The verifier may exploit this relationship to force the helper to provide thee¢anditioned
counts for each nodee W.
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In more detail, the @— 1 nodes in the tree are divided imtayroups ofh such thatv > 2n, as in the
generalizedNDEX protocol (see Remark 2 after Theoréhi). While observing the stream, the verifier
keeps a basic fingerprint of the vector of unconditioned counts of gamip. This is easily accomplished
by treating each entryin the stream as an update to the unconditioned counts of timedlogestors of in
T.

After the stream is seen, the helper provides the witnesg/sdteginning with the leaves W and
working level-by-level towards the root. For each internal nedeW, the helper also presents the (claimed)
conditioned coung; (u) for u, as well as the conditioned count@$ parent, who is claimed to be i by
definition of W.

When processingh, g1 (h)) for any node claimed to be i, the verifier modifies the basic fingerprints
by treating this as a deletion gf(h) occurrences of each ancestothofMore formally, for any node, let
v(v) denote the vector correspondingute group. For each ancesteof h, the verifier updates

BFq(r,V(V)) < BFg(r,v(v)) (r —v) 9

where (r —v)‘gl(h) denotes the multiplicative inverse (Jrf—v)gl(h) in the field[Fq. As a result, if each
claimed conditioned coumg (h) is truthful, then when each nodec W is presented by the helper, the entry
corresponding taiin v(u) is equal tof (U) — 3 yep () f(V) =g(u). All that remains is to ensure that the(h)
values are as claimed.

To this end, the helper is further required to follow each paig;(u)) with all the entries of the vector
v(u), accounting for all deletions that the verifier has simulated so far. If tigeheloes not faithfully
provide the vector(u), a fingerprint of the claimed vector will fail to match the verifier’s fingerpvirth
high probability. Consequently, the helper is forced to provide the truditoned counts of each noddn
W.

Then as in the prescient protocol, the verifier can ensure that forileadl, the conditioned count of
g(u) is belowT, indicating that the helper did not omit any leayjes S(u) with f; > T.

In total, the verifier requires spasgogn to maintainv fingerprints, and the helper needs to provide
min{O(|W|h),n} items and (conditioned) counts, yielding an onlifrein{nlogm, h¢—tlogm},viogm)-
scheme. A subtlety here is that the output size can exceed the verifier's ypemtne verifier may output
a partial result before returning.

We prove the lower bound by an easy reduction from two-party set-disgEamis, . Consider Alice
and Bob with respective inputsy € {0,1}". Alice’s inputx induces a stream by placing one copy of
tokenj in the stream ik; = 1. Then Bob places one copy of itghin the stream if/; = 1. We may assume
Bob knows|{j : xj = 1}|, and hence knows the stream lengthf not Alice can tell Bob|{j : x; = 1}| atan
additive cost of logarithmically many bits. Nowandy are disjoint if and only if the sefj : f; > 1= gm}
for @ = 1/mis non-empty. Thus, determining the frequent itemslfet 1 solves two-party set disjointness,
proving the bound by Theoreth3. O]

6.1 Approximate Frequent Items

In many cases, it suffices to find a setapiproximatefrequent items: these include all items with> ¢m

and no items withf; < (¢ — &)mfor parameters, ¢. Solutions to this problem in the traditional streaming
model are often based on “sketch” algorithms, as described in S&&BonSince a sketclv is a linear
transform of the inputy = Sv(A), a sketch can be fingerprinted: each update multiplies the fingerprint by
BFq(r,Se). This observation means that the helper can annotate (pansadfihe end of the stream, for
verification. However, to define an efficient scheme, we also need t@: 419 the verifier can compute
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Sg in small space, s8 must have a compact representation; and (2) the verifier must be ablgact ¢lxe
result fromv in a streaming fashion, in space sublinear in the size o$lde¢éch

We use ideas from verifying exact frequent items to build a scheme fdyiwmer approximate frequent
items via sketching.

Theorem 6.2. For s > @1, there exists an onlingslognlogm,logm)-scheme to verify the approximate
frequent items found by Count-Sketch or Count-Min sketches of size s.

Proof. Our proof proceeds by extending Theor@&3 to the case of sketching. The main difference is
that exact counts are replaced by estimated counts drawn from the ,sketich requires a little more
effort to handle. We consider an expanded set of items that includesthe see nodes in 7 and
their corresponding unconditioned courita) (recall f(u) is the sum of the frequencies of all leaves in
L(u), the subtree rooted af). The helper and verifier now keep a sket¢hfor each levek of the tree,

to obtainestimatedunconditioned count$(u) for each nodau in the tree. We henceforth assume that
f(u) = f(u) £ em; when using sketches witth= O(logn), this holds for eachi with probability at least
1—1/16n, and so it holds oveaill 2n frequencies with probability at least 8.

As in Theoren®.3, the witness satV, given threshold’, consists of all leavegwith ﬂ- > T in addition
to pairs of nodesu,v) such thau is the child ofv, and f (u) < T but f(v) > T. Now, there can be at most
¢! such nodes at any level of the binary tree, as the sumf¢f) is at most(1+&)m. This bounds the size
of this witness set toV'| = O(¢~tlogn) if £ < 9.

The verifier can validate this witness $®tover the full set of nodes and their estimated unconditioned
counts as follows. By presenting the set of nodasW in order of mirL(v), the verifier can ensure that the
nodes identified do cover all &f] as required (and hence that no high frequency items are omitted). If the
helper provides for each noge W the information about contained in the sketch, &g fy, f,1, ... fuq) the
verifier can check that, is above or belovl as appropriate. The verifier ensures thas derived correctly
from thed values offAM (usingO(d) working space). The verifier also incrementally builds a fingerprint of
the seB = {(v,, fs)}. Atthe end of the annotation, the helper lists the entries of each svﬁjtcth order
and tags each entry with the setwsd for which it has been used to make an estimate. The verifier builds a
fingerprint of the tuplesv, /,c, (V)Vzb[(w)’ and checks that it matches the fingerprinBdthis is essentially
an instance of the multiset equality protocol in Lem&d). The verifier fingerprints also the (untagged)
sketch to check it matches the verifier's fingerprinted sketch built fronmiing stream.

The total amount of annotation @(slogn) sketch entries, from the lagsketches of size. The verifier
needs to rememberestimated frequencies (to verify their median) &itbgn) fingerprinted sketches (one
for each level). O

We mention that ifp > ¢, then the verifier only needs to inspect a small fraction of the sketch etdries
verify the frequent items. In this case, one can obtain a tradeoff via therglezed protocol (SectioB.1):
write the sketch as an array bix v entries, so thatv > s. The verifier can createfingerprints each sum-
marizing h entries of the sketch. To verify, the helper modifies the above algorithmlyopoesent those
blocks ofh entries which include a value that needs to be seen by the verifier. In totakifp O(|W'|) ap-
proximate frequencies requires verifyijo—1dlogn) entries, giving ari@~*hlogmlog?n,viogm) online
scheme.

Other algorithms find all item$ such thatﬂ- > (szl/Z. These can also be adapted to our setting using
similar ideas, and verified in logarithmic space with annotation proportional tekisteh size.
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7 Graph Problems

In this section we consider computing properties of graphs erodes, determined by a stream rof
edges 25,32]. We present tight results for testing connectivity of sparse grapfigrmining bipartite-
ness, determining if a bipartite graph has a perfect matching, and cournginglés. Our bipartite perfect
matching result achieves optimal tradeoffs up to logarithmic factors.

7.1 Counting Triangles via Matrix Multiplication

Estimating the number of triangles in a graph has received significant attéeii@ause of its relevance to
database query optimization—knowing the degree of transitivity of a relatioseitil when estimating the
cost of evaluation plans for certain relational queries—and investigatiingtsral properties of the web-
graph and social graph§,[10,34]. In the absence of annotation, any single-pass algorithm to determine if
there is a non-zero number of triangles requiés?) bits of spaced]. In contrast, we show that the exact
number of triangles can be verified in logarithmic space, with the he@intlogn) bits of annotation. The
following theorem, proved using ideas from Bar-Yossef et@lcpupled with Theorem.3, shows that this
amount of annotation is nearly optimal, for a log-space verifier.

Theorem 7.1. Any (h,v)-scheme for counting triangles must have-h@(n?).

Proof. We show a reduction fromisj;z/g) ». We represent an instancemfsJj as a pair of(n/3) x (n/3)
Boolean matriceX,Y in the natural way. We proceed to construct a graph that has a triangle=HfY;; = 1
for somei, j € [n/3]. The nodes are partitioned into sets/,W so thatU | = [V| = |W| =n/3. Insert edges
{(ui,w) i e n/3FU{(u,vj): Xij = 1}U{(wi,V;) : Yij = 1}. There is a triangléu;, vj,w;) iff Xi; =Yi; =1,
and there is no other way to form a triangle. The result follows from Téredr.3. O

We now outline an online scheme with vcesO(logn) and hcost= O(n?logn). A major subroutine of
our algorithm is the verification of (integer) matrix multiplication in our model. Thagiigenn x n matrices
A, B andC with integer entries, verify thaiB = C. Our technique extends the classic result of Frievald [
by showing that if the helper presents the results in an appropriate tirdegrifier needs onl@(logn) bits
to check the claim. Note that this much annotation is necessary if the helper @/tdgd in his stream.

Theorem 7.2. There exists an onling?logn, logn)-scheme for verifying integer matrix multiplication.

Proof. Let g be a prime larger thami2r? + 1, wheremis ana priori upper bound on the absolute values of
all entries ofA andB. By the result of Kimbrel and Sinh&¥], the verifier can checlRB = C by pickingr
uniformly from Fq and checking tha\(Br ) = Cr T, in the fieldFq, for vectorr = (r%r,... r"1). This
fails to identify an incorrect product with probability at mesty. Rather than computing(BrT) andCr "
explicitly, the verifier will compare fingerprints @r T andABr . These are computed &8r " andsABr T,
for avectors= (s, s!,...,s71) wheresis picked uniformly fromF,. This fingerprinting fails to distinguish
distinct vectors with probability at most/q.

We observe that (13CrT = zh'éerij can be computed easily whatever order the entrie€ afe
presented in. (23ABr T = (sA)(BﬂJ) is the inner product of twa-dimensional vectors, and thédA); =
ys'Aj and(BrT); = 3;r!Bji. Therefore, if the helper presents itie column ofA followed by theith row
of B for eachi in turn, the verifier can easily compuaBr T in O(logq) space. Picking) > 6n ensures that
the verifier is fooled with probability at most/3, and the total space used by the verifier to stoseand
intermediate values ©(logn). O

20



With this primitive, arbitrary matrix productd,A,_; ---AxA; are verified withO(Enzlogn) annotation
by verifying A? := A)A;, thenA® := AzAP) | etc. Matrix powersA! are verified withO(n?log/logn)
annotation, using repeated squaring. Here, we assume that the entnj@sted do not grow too large, and
so can be represented witi@{logn) bits.

Theorem 7.3. There is an onlinén?logn, logn)-scheme for counting triangles.

Proof. Denote the graph adjacency matrix Bywith A; := 0. The helper list#\,, and A2, for all pairs
(v,w) in some canonical order. The verifier compujgs, AwAZ, as the number of triangles. The verifier
uses fingerprints to check thatmatches the original set of edges, and the scheme in Theb&mensure
thatA? is as claimed. O

We also show that it is possible to trade off the computation with the helper in aothinmanner. The
approach is based on the following observation of Bar-Yossef é]al. [

From the given stream of edges of a graph, we can cred&rigedstream, of lengtm(n— 2), by
replacing each edggu,v) with the set of triples{(u,v,w) : w # u,v}. The frequency moments of this
derived stream can be expressed in terms of the numbers of tripleses naith exactly zero, one, two and
three edges between them. It follows that the number of triangles can tesegd in terms of the frequency
moments of this derived stream, @ — 3F, + 2F;) /6. By using the scheme of Theorehd, we obtain the
following theorem.

Theorem 7.4. There is an onlinén® logn, n®~3 logn)-scheme for counting triangles for eaahe [0, 1].

7.2 Bipartite Perfect Matching

We present two online schemes for determining whether a bipartite grapa pesect matching. Our
first scheme is efficient for sparse graphs, while our second ashogtenal tradeoffs between hcost and
vcost for dense graphs, up to logarithmic factors. Graph matchingsbeare considered in the stream
model P5,47] and it can be shown that any single-pass algorithm for determining ttet siz& of the
maximum matching require(n?) space. We show that we can off-load this computation to the helper
such that, with onlyO(n'*%logn) annotation, the answer can be verifieddn'~logn) space, for each

a € [0,1]. This is shown to be best possible by combining a reduction f@spdoupled with Theoren3.1

Theorem 7.5. There exists an onlinémlogn,logn)-scheme for bipartite perfect matching, as well as an
online (n**%logn,n*~%logn)-scheme for eaclr € [0,1]. Any online(h,v)-scheme for bipartite perfect
matching requires hv Q(n?).

Proof. We begin by presenting thenlogn,logn)-scheme. We consider the general case, where there may
be nodes inn] with no incident edges, which are to be ignored for the matching. If therepisrfect
matchingM, the annotation lists all edgeshh, and the degree of all nodes|im. Letx be the characteristic
vector that has 1 in theth coordinate if and only if the degree wfis non-zero, and ley be the vector
of node frequencies iM. The verifier can use fingerprints to ensure that the claimed degreersagis
correct, and that matchesy.

If the graph does not have a perfect matching, Hall's Theorem prevadeitness. LefL,R) be a
bipartition of the graph. Then there exi&tsC L such thafL’| > | (L")|, wherel (L") is the set of neighbors
of L’. The helper lists, for each node, the following information: its degreethvenet is inL or in R;
and whether itis irl/, [' (L"), or neither. Then the helper presents each €dge, along with the same
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information on each node. By Lemntal, the verifier can ensure that the sets are consistent, using a
constant number of fingerprints. It remains to check that each edgewsal®and thafl’| > |I(L")|.

Our (n**logn, n'~%logn)-scheme follows the same conceptual outline as the aboGhdls a perfect
matching, the helper provides the matching, whil&ihas no perfect matching, the helper demonstrates
this via Hall’s Theorem. The details follow.

If there is a perfect matchiniyl, the annotation lists all edges M, followed by a proof thaM C E.
More specifically, for anjwv > n?, Theoremb.2 describes how to obtain an onlilelogn, viogn)-scheme
for showingM C E, assuming no duplicate edges. This can be extended kblagn,vlogn)-scheme if
edges may be duplicated upkdimes by Theoren.3. The helper uses this scheme to demonstvhate E,
and the verifier checks th is a matching by comparing a fingerprintMfto one of the sef1,2,...,n}.

If the graph does not have a perfect matching(lleR) be a bipartition, as before, and I€tC L be such
that|L’| > [F(L")|. We will use the onlingn**®logn,n'~logn)-scheme for integen x n matrix-vector
multiplication described in1[7, Theorem 4]. The verifier must check that (1)s a bipartition ofn; (2)

L’ CL; and (3)|L'| > |F(L")]. Letx € {0,1}" be the indicator vector df, and letA be the adjacency matrix
of G, i.e.,Aj = 1ifthere is an edge betweeandj in G andA;; = 0 otherwise. Condition (1) is equivalent
to xT Ax = 0, which can be checked using integer matrix-vector multiplication to véifyfollowed by an
inner-product scheme to veri/ Ax. Condition (2) can be checked trivially while the helper specifiby
requiring the nodes df’ to be marked. To check (3), notice tHB{L')| is equal to the number of non-zero
entries in the vectoAx. This can be computed while the verifier checks (1), and|fh@at)| < |L].

The result is an onlinékn**® logn, n® logn)-scheme for &< a < 1, wherek is ana priori upper bound
on the number of times each edge may be duplicated. O

7.3 Bipartiteness

The problem of determining if a graph is bipartite was considered in the sthataam modelZ5,26], and
it can be shown that any one-pass algorithm without annotations 8¥gdits of space. In our model,
the helper can convince a verifier wi@(logn) space whether a graph is bipartite, using oBlynlogn)
annotation, and we show that this is essentially the best possible for gpaptes wheren= O(n) using a
reduction frombisJ, » to bipartiteness. We also achieve tradeoffs between hcost and vecdstige graphs,
obtaining an onlingn**®logn, n'~% logn)-scheme for eachr < [0, 1].

Theorem 7.6. There exists an onlingnlogn,logn)-scheme for determining whether a graph is bipartite, as
well as an onlingn**%logn, n'~? logn)-scheme for each < [0,1]. Any(h,v)-scheme (online or prescient)
for bipartiteness requires h¥ Q(n) even when = O(n).

Proof. In both the(mlogn,logn)-scheme and thén**?logn, n'~%logn)-scheme, the helper proves that
a graph isnon-bipartite by providing an odd cycl€. The verifier must check that the number of edges
in C is odd, thatC is a cycle, and tha€ C E. The verifier can easily perform the first two checks in
logarithmic space. In thémlogn,logn)-scheme, the verifier checks thatC E using Lemmab.1, and in
the (n**?logn, n'~% logn)-scheme, the verifier checks ti@LC E using Theoren®.2

In both schemes, the helper proves that a giiajipartite by specifying all nodes in the left set of a
bipartition. Checking thalt is indeed a bipartition o5 can be done exactly as in Theor@nb.

For the lower bound, we reduce an instafeg) € {0,1}" x {0,1}" of DIS3, 2 to an instance of bipar-
titeness on a graph wit®(n) edges over node@ij)ic(3)jein- FOr eachj € [n], create edgedvyj, vzj); if
Xj = 1, add the edgév,j,vsj), and ify; = 1, add the edgév,j,vsj). The resulting graph contains an odd
cycle if and only ifx andy are not disjoint. O
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7.4 Connectivity

The problem of determining if a graph is connected was considered in thgastastream modeRp, 32]

and the multi-pass W-stream mod2H]. In both models, it can be shown that any constant-pass algorithm
without annotations need3¥(n) bits of space. Similar to bipartiteness, in our model the helper can convince
a verifier with O(logn) space whether a graph is connected, using @i{ylogn) annotation. This is
essentially the best possible for sparse graphs wimereO(n) by combining a reduction from2p] with
Theorem3.1 We also achieve tradeoffs between hcost and vcost for denshksgrajptaining an online
(n**%logn,n'~%logn)-scheme.

Theorem 7.7. There exists an onlinémlogn,logn)-scheme for graph connectivity, as well as an online
(n**%logn, n'~%logn)-scheme for eaclr € [0,1]. Any(h,v)-scheme (online or prescient) for connectivity
requires hv= Q(n) even when m= O(n).

Proof. We begin with thgmlogn,logn)-scheme. If the graph is connected then there exists a spanning tree
T directed towards the root and an injective labeling of the ndde$ — [n| such that each non-root node
with label j is linked to exactly one node with label greater thaihe helper outputs such a functiénand

the verifier ensures that it is an injection. Then each (directed) @dggin T and its labels (u) < f(v) is
presented in decreasing orderfdfi). The verifier checks this order, and ensures that it is consistentfwith
via fingerprinting (as per Lemmnal). The helper must also list all edges, so that the verifier can ensure that
all T edges are from the input.

If the graph is not connected then the helper presents a connectedreemtipof the graph. Each node
is presented in lexicographic order, along with its label indicating whetheobit is inL, and each edge
is presented along with the corresponding node labels. The verifieksieatl -~ V, uses fingerprinting
to ensure no edge is omitted, and uses the multiset scheme of LBriitiwaensure that the node labels are
consistent.

The (n**?logn, n'~%logn)-scheme follows the same conceptual outline as aboisiconnected, the
helper demonstrates this by providing a spanning tre&gjsfdisconnected, the helper identifies a connected
component of the graph. In the first case, the helper provides asdyesl claimed to be a spanning tree,
and the verifier must check that (I)is spanning and that (4) C E. Checking (1) is accomplished as in
the (mlogn, 1) case, by appropriate labelling of ti&n) edges, withO(n) annotation. By Theorerb.2,
condition (2) can be checked with spa@én'~“logn) and annotatio®(n*logn).

If Gis disconnected, the helper presents d seV/, L #V, and claims thalt is disconnected frond \ L.
Let A be the adjacency matrix @, and letx € {0,1}" be the indicator vector df. To check that is as
claimed, it suffices for the verifier to comput&, and check that the each non-zero entnAntorresponds
to vertices inL (intuitively, this means the sé&f of vertices at distance one froimis contained irL). The
first step uses the integer matrix-vector multiplication schem@gfTheorem 4]. This allows the verifier
to ensure that the sét : (Ax); # 0} matched., via fingerprints.

For the lower bound, we reduce an instanc®sfJ, » to connectivity of a graph witkd(n) edges over
nodesvpo...V3n: create edgesvjo,vj;) for j € {0,2,3} andi € [n]. Then ifx =1, add edgévg;, V1),
else add edgévyj,v2i); and ify; = 1, add edgévy,vs;) else add edgév,;,vs;). The resulting graph is
connected only ik andy are not disjoint. The result follows from Theoreh8. O
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