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Abstract

The central goal of data stream algorithms is to process massive streams of data using sublinear
storage space. Motivated by work in the database community on outsourcing database and data stream
processing, we ask whether the space usage of such algorithms can be further reduced by enlisting a more
powerful “helper” who can annotate the stream as it is read. We do not wish to blindly trust the helper,
so we require that the algorithm be convinced of having computed a correct answer. We show upper
bounds that achieve a non-trivial tradeoff between the amount of annotation used and the space required
to verify it. We also prove lower bounds on such tradeoffs, often nearly matching the upper bounds, via
notions related to Merlin-Arthur communication complexity. Our results cover the classic data stream
problems of selection, frequency moments, and fundamental graph problems such as triangle-freeness
and connectivity. Our work is also part of a growing trend — including recent studies of multi-pass
streaming, read/write streams and randomly ordered streams — of asking more complexity-theoretic
questions about data stream processing. It is a recognition that, in addition to practical relevance, the
data stream model raises many interesting theoretical questions in its own right.
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1 Introduction

The data stream model has become a popular abstraction when designing algorithms that process network
traffic and massive data sets [5, 37]. The computational restrictions that define this model are severe: algo-
rithms must use a relatively small amount of working memory and process the input in whatever order it
arrives. This captures constraints in high-throughput data processing settings. For example, network moni-
toring often requires (near) real-time response to anomalies and hence traffic must be processed as it arrives,
rather than being stored and processed offline. For massive data sets stored in external memory, being able to
process the data in any order avoids the I/O bottlenecks that may arise with algorithms that assume random
access. Unfortunately, while some problems admit efficient streaming algorithms, many others provably
require a lot of working memory or multiple passes over the data, which typically is not feasible.

This paper considers the potential for off-loading stream computation to a more powerful “helper” so
that single pass, small-space stream computation is possible even for such “hard” functions. The additional
power of the helper can arise in a variety of situations, e.g., multiple processing units, special purpose
hardware, or a third party who provides a commercial stream processing service. This last case has recently
garnered attention in the context of outsourcing database processing [44, 48, 56]. A key issue is that we
do not want to blindly trust the helper: hardware faults or outright deception by a third-party would lead
to incorrect results. So our protocols must have sufficient information contained in the help to allow the
“verifier” to be convinced that they have obtained the correct answer. We think of this help as annotations
augmenting the original stream. Our goal is to design protocols so that the verifier finds the correct answer
with an honest helper, and is likely not fooled by a dishonest helper. The primary metrics are the amount of
annotation provided by the helper and the amount of working space used by the verifier.

Our approach is naturally related to Interactive Proofs and Merlin-Arthur communication protocols [2,
7, 42] but differs in two important regards. Firstly, the verifier must process both the original data and the
advice provided by the helper under the usual restrictions of the data stream model. Secondly, we focus on
annotations that can be provided online, i.e., annotation that only depends on data that has arrived before the
annotation is written. Note that in Merlin-Arthur communication, it is assumed that the helper is omniscient
and that the advice he provides can take into account data held by any of the players. In the stream model,
this would correspond to prescience, where the annotation in the stream at any particular position may
depend on data that is yet to arrive. In contrast, we are primarily interested in designing algorithms with
online annotation; this corresponds to a helper who sees the data concurrently with the verifier.

1.1 Our Contributions

Our first contribution is to formally define the relevant models: traditional and online Merlin-Arthur com-
munication, and streaming models with either prescient or online annotations. We then investigate the com-
plexity of a range of problems in these models, including selection, frequency moments, and graph prob-
lems such as triangle-counting and connectivity. Estimating frequency moments in particular has become a
canonical problem when exploring variants of the data stream model such as random order streams [14] and
read/write streams [9].

We now give an overview of our results. We use the shorthand “(h,v)-scheme” for an O(v)-space
streaming algorithm that uses O(h) bits of annotation; a scheme could be either prescient or online. Here, h
corresponds to “help cost”, while v indicates the “verification cost”. In general, our streams have length m,
and consist of tokens from the universe [n] := {1,2, . . . ,n}; to simplify the statement of bounds, we assume
than m and n are polynomially related, and in particular that logm = Θ(logn). In the case of graph streams,
we consider tokens from the universe [n]× [n]. We use Z+ to denote the set of non-negative integers.
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Selection. The problem of finding the median of m values in the range [n] highlights the difference between
prescient and online annotation. For arbitrary positive integers h and v, with hv ≥ m, we present an online
(h logn,v logn)-scheme. Furthermore, we show that this trade-off is optimal up to polylogarithmic factors.
In contrast, a trivial O(logn)-space algorithm can verify O(logn) bits of prescient annotation, implying a
prescient (logn, logn)-scheme.

Frequency Moments and Frequent Items. We next consider properties of { fi}i∈[n] where fi is the fre-
quency of the token “i” in the stream. For arbitrary integers h and v, with hv ≥ n, we present an online
(φ−1 log2 n+ h logn,v logn)-scheme that computes the set of tokens whose frequency exceeds φm. Also,
for any 0 < ε < φ/2, we give an online (ε−1 log2 n, logn)-scheme that computes a set of tokens that in-
cludes {i : fi ≥ φm} and is disjoint from {i : fi ≤ (φ − ε)m}. This algorithm relies on a powerful way that
annotation can be used in conjunction with sketch-based algorithms.

We present an online (k2h logn,kv logn)-scheme that computes the kth frequency moment Fk := ∑i f k
i

exactly, where k is a positive integer. This trade-off is optimal up to polylogarithmic factors even if the algo-
rithm is allowed to use prescient annotation. To prove this, we present the first Merlin-Arthur communication
bounds for multi-party set-disjointness. Additionally, we generalize the scheme for Fk to any frequency-
based function, i.e., a function of the form ∑i∈[n] g( fi) for some g : Z+ → Z+. Assuming m = O(n), we
obtain a prescient (n2/3 logn,n2/3 logn)-scheme and an online (n2/3 log4/3 n,n2/3 log4/3 n)-scheme for this
important class of functions, as well as improved schemes for skewed data streams.

Graph Problems. For graphs defined by streams of m edges on n vertices, we show that only O(logn)
space is needed by the verifier to determine whether a graph is connected, is triangle-free, or is bipartite,
with online annotation proportional to the input size in each case. We show that our algorithms are optimal
in many cases.

For any h and v, with hv ≥ n3, we also present an online (h logn,v logn)-scheme for counting triangles
in the graph. Additionally, for any h and v, with hv ≥ n2, we present online (h logn,v logn)-schemes for
determining whether a graph is connected or bipartite. Finally, for any h and v, with hv≥ n2, we present on-
line (h logn,v logn)-schemes for solving bipartite perfect matching. This latter scheme achieves essentially
optimal tradeoffs between annotation length and space usage for the verifier.

1.2 Related Work

When multiple passes over the input are allowed, it is natural to consider annotations that can be written
to the “input tape” by the stream algorithm and which are then available to the algorithm in subsequent
passes [4, 18, 26, 27]. The read/write stream model, which provides both multiple passes and multiple
working tapes, can be viewed as a natural extension of the multi-pass annotation model [9,10,35]. However,
such annotations are of no use if only a single pass over the input is allowed.

Few examples of prior work have explicitly considered annotations that are provided by an (untrusted)
third party. Gertner et al. [33] showed that the set of languages recognized by a verifier with logarithmic
space, given annotation polynomial in the input size, is exactly NP. In contrast, our focus is on the case where
the annotation is (sub)linear in the input size and can be provided online; the distinction between prescient
and online annotation was not relevant in their results because with polynomial annotation, the entire input
could be repeated. Feigenbaum et al. [30] observe that a logarithmic space verifier can check a linear
space annotation for the disjointness problem. In communication complexity, the role of non-deterministic
advice has been studied more extensively: see, e.g., [7, 43]. The work of Aaronson and Wigderson [2]
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and Klauck [42] are particularly relevant: they resolve the MA complexity of two-party set disjointness.
We extend some of their techniques to our streaming model. Goldwasser et al. [34] consider the question
of which computations can be verified relatively efficiently while permitting multiple rounds of interaction
between the parties.

There has also been more applied work which implicitly defines annotation schemes. Tucker et al. [55]
considered stream punctuations, which, in our terminology, are simple prescient annotations, indicating
facts such as that there are no more tuples relevant to timestamp t in the remainder of the stream. Yi et
al. [56], in their work on stream outsourcing, study the problem of verifying that a claimed “grouping”
corresponds to the input data. They solve exact and approximate versions of the problem by using a linear
amount of annotation. Lastly, the work of Li et al. [44] on proof infused streams answers various selection
and aggregation queries (e.g. range sum) over sliding windows with logarithmic space and linear annota-
tion. However, a critical difference is that Li et al. require that the helper and verifier agree on a one-way
(cryptographic) hash function, for which it is assumed the helper cannot find collisions. Our results are in a
stronger model without this assumption.

Subsequent Work. The line of work described in this paper was begun when the first three authors pre-
sented a preliminary version of some of these results at ICALP 2009 [15]. Work subsequent to that paper
has further studied the protocols for graph computations in this model [20]. In particular, it is observed that
given any deterministic RAM algorithm with running time R, there exists an online ((m+R) logn, logn)-
scheme that simulates the algorithm in the annotation model. This implies alternate proofs for the existence
of online (m logn, logn)-schemes for bipartite perfect matchings, bipartiteness, and connectivity.

Other subsequent works have built upon the conference version of the present work. Cormode, Thaler
and Yi [24] have extended the model considered in this paper to allow for multiple rounds of interaction
between helper and verifier, and provided protocols achieving exponentially smaller space and commu-
nication costs than those possible in our annotation model. Most recently, Cormode, Mitzenmacher and
Thaler [22] have performed an empirical evaluation of many techniques in the literature on interactive
proofs, and demonstrated genuine scalability of several of the protocols put forth in the present work as
well as protocols from [20] and [24].

2 Models and Preliminaries

In this section, we first recall the definition of Merlin-Arthur communication and then present an online
variant which restricts the advice given by Merlin. These are vital, since they guide the construction of
corresponding definitions for the streaming case, and allow us to prove lower bounds in our setting. We then
present the formal definitions of the annotated data stream models and state some basic lemmas.

2.1 Background and History

Babai, Frankl, and Simon [7] introduced the communication complexity analogs of many fundamental Tur-
ing Machine complexity classes. Most relevant to us, they introduced the model of Merlin-Arthur (MA)
communication complexity. As mentioned in Section 1.2, Klauck [42] established a Ω(

√
n) lower bounds on

the MA-communication complexity of two-party set disjointness, and Aaronson and Wigderson [2] showed
this lower bound is tight up to logarithmic factors. Aaronson [1] studied the hardness of the INDEX problem
in a restricted version of the MA communication model, as well as in a quantum variant of this model. His
classical model is similar to the online MA communication model that we consider.
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Other existing results have primarily focused on quantum or multiparty variants of MA-communication
complexity. Klauck [41] proved an Ω(n1/3) lower bound on the quantum Merlin-Arthur communication
complexity of two-party set disjointness. Raz and Shpilka [49] gave a problem whose quantum commu-
nication complexity is exponentially smaller than its MA-communication complexity. Gavinsky and Sher-
stov [32] proved a separation between co-NP and MA in the setting of number-on-the-forehead multiparty
communication complexity, and their lower bound was further refined by Sherstov in [52, 53].

As can be seen from the above summary, MA communication has attracted a moderate level of interest
over a number of years, perhaps because the model was considered somewhat esoteric [41]. However, the
relatively recent work of Aaronson and Wigderson [2] spurred a growth of interest in this model. That work
provided a new motivation for studying the communication complexity analog of any Turing Machine com-
plexity class, and MA in particular: they showed that if a communication complexity class C is not contained
within another communication complexity classD, then a certain class of proof techniques (called algebriz-
ing techniques) will not suffice to show that the Turing Machine analog of C is contained within the Turing
Machine analog of D. We view the connection between MA communication complexity and annotated data
stream models as another significant motivation for studying MA communication complexity.

2.2 Communication Models

Let f : X1× ·· · ×Xt → {0,1} be a function, where each Xi is a finite set. This naturally gives a t-player
number-in-hand communication problem, where Player i holds an input xi ∈ Xi and the players wish to
output f (x1, . . . ,xt) correctly, with high probability.

MA Communication. We first consider a variant of this communication model. A Merlin-Arthur protocol
(henceforth, “MA protocol”) for f is one that involves the usual t players, plus a “super-player,” called Mer-
lin, who knows the entire input x= (x1, . . . ,xt). The protocol works as follows: first Merlin deterministically
writes a help message h on the blackboard, and then Players 1 through t run a randomized protocol P , using
a public random string R, eventually outputting a bit out(P;x,R,h). To clarify, R is not known to Merlin at
the time he writes h. An MA protocol is δ -error if there exists a function h : X1× . . .×Xt → {0,1}∗, such
that:

1. If f (x) = 1 then PrR[out(P;x,R,h(x)) = 0]≤ δ .

2. If f (x) = 0 then ∀h′ ∈ {0,1}∗ : PrR[out(P;x,R,h′) = 1]≤ δ .

We define err(P) to be the minimum δ such that the above conditions are satisfied. We also define the
help cost hcost(P) to be the maximum length of h(x), over all x, and the verification cost vcost(P) to be the
maximum number of bits communicated by Players 1 through t over all x and R. To avoid boundary cases,
we insist that both of these costs are at least 1 for any protocol, i.e., we consider traditional protocols where
no explicit help is provided to have hcost = 1, rather than 0. We define the δ -error MA-complexity of f
as MAδ ( f ) = min{vcost(P)+hcost(P) : P is an MA protocol for f with err(P)≤ δ} . Further, we define
MA( f ) = MA1/3( f ).

Online MA Communication. We also consider a variant of the above model, specific to one-way proto-
cols (i.e., protocols where the players speak once each, in increasing order), where Merlin constructs t help
messages h1, . . . ,ht so that the ith message is a function of only the first i inputs. The message hi is revealed
privately to the ith player. To make this precise we need to amend the definition of δ -error: An online MA
protocol is δ -error if there exists a family of functions hi : X1× . . .×Xi→{0,1}∗, such that:
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1. If f (x) = 1 then PrR[out(P;x,R,h1(x1),h2(x1,x2), . . . ,ht(x1, . . . ,xt)) = 0]≤ δ .

2. If f (x) = 0 then ∀h′ = (h′1,h
′
2, . . . ,h

′
t) ∈ ({0,1}∗)t : PrR[out(P;x,R,h′) = 1]≤ δ .

We define the help cost, hcost(P), to be the maximum of ∑i∈[t] |hi(x1, . . . ,xi)|, over all x. We define
err(P), and vcost(P) as for MA. Define MA→

δ
( f ) =min{hcost(P)+vcost(P) :P is an online MA protocol

for f with err(P)≤ δ} and write MA→( f ) = MA→1/3( f ).

2.3 Data Stream Models

We now define our annotated data stream models. Recall that a (usual) data stream algorithm computes a
function f of an input sequence x ∈ Um, where U is some universe, such as {0,1} or [n]: the algorithm uses
a limited amount of working memory and has access to a random string. The function f may or may not be
Boolean: for non-Boolean f we often consider a notion of approximation: we say f is computed correctly
if the answer returned is in some pre-defined set C( f (x)), e.g., {a : |a− f (x)| ≤ ε| f (x)|}.

An annotated data stream algorithm, or a scheme, is a pair A = (h,B), consisting of a (deterministic)
help function h and a data stream algorithm B. We think of h as decomposed into (h1, . . . ,hm), where
hi : Um→ {0,1}∗; the function hi determines the annotation supplied to B after the ith token xi. That is, h
acts on x to create an annotated stream xh defined as follows:

xh := (x1,h1(x),x2,h2(x), . . . ,xm,hm(x)) .

Note that this is a stream over U ∪{0,1}, of length m+∑i |hi(x)|. The algorithm B, which uses w bits of
working memory and has oracle access to a random string R, then processes this annotated stream, eventually
giving an output out(B;xh,R).

Prescient Schemes. The scheme A= (h,B) is said to be a δ -error prescient scheme for the function f if
the following conditions hold:

1. For all x ∈ Um, we have PrR[out(B;xh,R) 6∈C( f (x))]≤ δ .

2. For all x ∈ Um, h′ = (h′1,h
′
2, . . . ,h

′
m) ∈ ({0,1}∗)m, we have PrR[out(B;xh′ ,R) 6∈C( f (x))∪{⊥}]≤ δ .

Two things are worth noting. First, this definition allows the annotation hi(x) to depend on the entire
stream x, thus modelling prescience. Second, it allows (but does not force) the protocol to output ⊥ if the
annotation does not agree with h.

We define err(A) to be the minimum δ such that the above conditions are satisfied. We define the
help cost hcost(A) := maxx ∑i |hi(x)|, and the verification cost vcost(A) = w. We say that A is a prescient
(h,v)-scheme if hcost(A) = O(h), vcost(A) = O(v) and err(A)≤ 1

3 .

Online Schemes. The scheme A= (h,B) is said to be a δ -error online scheme for f if, in addition to the
conditions in the previous definition, the function hi depends only on (x1, . . . ,xi). We define hcost and vcost
as above, and say that A is an online (h,v)-scheme if hcost(A) = O(h), vcost(A) = O(v), and err(A)≤ 1

3 .
In order to simplify the statements of bounds, we assume throughout that universe size and stream length

are polynomially related, and thus logm = Θ(logn). In a few cases, we use the stronger assumption that
m = O(n); in these cases, we state this assumption explicitly.
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2.4 Background Preliminaries

In multiple places we make use of basic fingerprinting techniques which enable a verifier to test whether
two large streams represent the same object, using small space. Let Fq denote the finite field with q elements
(whenever it exists). Let A = 〈a1, . . . ,am〉 denote a data stream, with each ai ∈ [n]. Then A implicitly defines
a frequency distribution f(A) := ( f1, . . . , fn), where f j = |{i ∈ [m] : ai = j}| is the frequency of the token “ j”
in A. We can then fingerprint this vector by computing the following quantity.

Definition 1 (Basic Fingerprint). Let f = ( f1, . . . , fn) ∈ Zn
+ be a vector, let q be a prime, and let r ∈ Fq. The

quantity BFq(r, f) := ∏
n
j=1(r− j) f j , computed over Fq, is called a basic fingerprint of f.

To compute basic fingerprints, we choose q based on an a priori bound m on ‖f‖1. The following
lemma collects the key properties of these fingerprints (see [56] for example, for more discussion of such
constructions).

Lemma 2.1. Let q≥ m be a prime, and choose r uniformly at random from Fq. Given an input stream A of
length m, the fingerprint BFq(r, f(A)) can be computed using O(logq) storage. Suppose f′ ∈ Zn

+ is a vector
with f′ 6= f(A) and ‖f′‖1 ≤ m. Then the “collision probability” Prr∈RFq [BFq(r, f′) = BFq(r, f(A))]≤ m/q.

Proof. To compute the fingerprint in streaming fashion, express BFq(r, f(A)) = ∏
m
i=1(r−ai). The bound on

the collision probability follows from the fact that for any f ∈ Zn
+, the polynomial BFq(X , f) ∈ Fq[X ] has

degree at most ‖f‖1.

Further, on several occasions, we use the standard technique of linear sketching. We define an integer
linear sketch broadly as any summary v ∈ Zs which can be computed as v = S f(A), where S ∈ Zs×n is
a “sketch matrix” with integral entries and s� n. Such sketches include instantiations of the Johnson-
Lindenstrauss transform [38], Count-Sketch [17], and Count-Min [23]. Each stream token j increments v
by Se j, where e j ∈Zn is the vector that is 1 in location j and 0 elsewhere. Typically, S has a compact implicit
representation.

In particular, the Count-Sketch [17] defines a basic sketch of length w via two pairwise independent hash
functions b` : [n]→ [w], and c` : [n]→ {−1,+1}. The sketch vector v is defined by v`, j = ∑i:b`(i)= j fic`(i).
A basic estimate of the frequency of item i is f̂i,` = c`(i)v`,b`(i). This satisfies | f̂i,`− fi|= O((F2(A)/w)1/2)
with constant probability. To reduce the error probability, one takes the median of the basic estimates from
d basic sketches with independent pairs of hash functions: f̂i = median1≤`≤d f̂i,`. Count-Min is essentially
Count-Sketch with c`(i) := 1 for all `. It promises | f̂i,`− fi| = O(F1(A)/w) [23]. Here, F1(A) and F2(A)
denote the first and second frequency moments of A, respectively.

3 Warm-Up: Index, Selection, and Frequent Items

3.1 Index and Selection

In this section, we present an online scheme for the SELECTION problem: Given desired rank ρ ∈ [m], output
an item ak from the stream A = 〈a1, . . . ,am〉 ∈ [n]m, such that |{i : ai < ak}|< ρ and |{i : ai > ak}| ≤m−ρ .
An easy prescient (logn, logn)-scheme is for the helper to give an answer s that is claimed to be ak, as
annotation at the start of the stream. The verifier need only count how many items in the stream are (a)
smaller than s and (b) greater than s. The verifier then outputs s if the rank of s satisfies the necessary
conditions, and outputs ⊥ otherwise.
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However, our goal is to present (almost) matching upper and lower bounds when only online annotation
is allowed. To do this, we first consider the online MA complexity of the communication problem of
INDEX: Alice holds a string x ∈ {0,1}N , Bob holds an integer i ∈ [N], and the goal is for Bob to output
INDEX(x, i) := xi. The lower bound for SELECTION will follow from the lower bound for INDEX and a key
idea for the SELECTION upper bound is taken from the communication protocol for INDEX seen in the proof
of the following theorem.

Theorem 3.1 (Online MA complexity of INDEX). Let h and v be integers such that hv ≥ N. There is an
online MA protocolP for INDEX, with hcost(P)≤ h and vcost(P) =O(v logh). Futhermore, any online MA
protocolQ for INDEX must have hcost(Q)vcost(Q) = Ω(N). Thus, in particular, MA→(INDEX) = Θ̃(

√
N).

Proof. For the lower bound, we use an online MA protocolQ to build a randomized one-way INDEX proto-
colQ′. Let h = hcost(Q). Let B(n, p) denote the binomial distribution with parameters n and p, and let k be
the smallest integer such that X ∼B(k, 1

3)⇒ Pr[X > k/2]≤ 2−h/3. A standard tail estimate gives k = Θ(h).
Let a(x,R) denote the message that Alice sends in Q when her random string is R, and let b(a, i,h) be the
bit Bob outputs upon receiving message a from Alice and h from Merlin. In the protocol Q′, Alice chooses
k independent random strings R1, . . . ,Rk and sends Bob a(x,R1), . . . ,a(x,Rk). Bob then outputs 1 iff there
exists a h-bit string h such that MAJORITY (b(a(x,R1), i,h), . . . ,b(a(x,Rk), i,h)) = 1. Let C be the number
of bits communicated in this protocol. Clearly, C≤ k ·vcost(Q) = O(hcost(Q)vcost(Q)). We claim thatQ′
is a 1

3 -error protocol for INDEX whence, by a standard lower bound (see, e.g., Ablayev [3]), C = Ω(N).
To prove the claim, consider the case when xi = 1. By the correctness of Q there exists a suitable help

message h from Merlin that causes Pr[b(a(x,R), i,h) = 0]≤ 1
3 . Thus, by construction and our choice of k, the

probability that Bob outputs 0 in Q′ is at most 2−h/3. Now suppose xi = 0. Then, every possible message
h from Merlin satisfies Pr[b(a(x,R), i,h) = 1] ≤ 1

3 . Arguing as before, and using a union bound over all 2h

possible messages h, we see that Bob outputs 1 with probability at most 2h ·2−h/3 = 1
3 .

The upper bound follows as a special case of the two-party set-disjointness protocol in [2, Theorem. 7.4]
since the protocol there is actually online. We give a more direct protocol which establishes intuition for our
SELECTION result. Write Alice’s input string x as x = y(1) · · ·y(v), where each y( j) is a string of at most h bits,
and fix a prime q with 3h < q < 6h. Let y(k) be the substring that contains the desired bit xi. Merlin sends
Bob a string z of length at most h, claiming that it equals y(k). Alice picks a random r ∈ Fq and sends Bob
r and the strings BFq(r,y(1)), . . . ,BFq(r,y(v)), thus communicating O(v logq) = O(v logh) bits. Bob checks
if BFq(r,z) = BFq(r,y(k)), outputting 0 if not. If the check passes, Bob assumes that z = y(k), and outputs xi

from z under this assumption. By Lemma 2.1, the error probability is at most h/q < 1/3.

It is worth making the following remarks on the above proof.

1. The above lower bound argument in fact shows that an online MA protocol P for an arbitrary two-
party communication problem f satisfies hcost(P)vcost(P) = Ω(R→( f )), where R→( f ) is the one-
way, randomized communication complexity of f . Thus, MA→( f ) = Ω(

√
R→( f )).

2. The upper bound for INDEX presented above works more or less unchanged when Alice’s input x is
a vector is in ZN

+. In our applications, x will typically be the frequency vector f(A) of a data stream
A. Alice works over a field of prime size q > max{M,3N}, where M is an upper bound on each
entry of f(A). As before, write Alice’s input string x as x = y(1) · · ·y(v), where each y( j) is a vector in
Zh
+. Let y(k) be the substring that contains the desired bit xi. Merlin sends Bob a string z of length

at most hdlogMe, claiming that it equals y(k). Alice picks a random r ∈ Fq and sends Bob r and
the strings BFq(r,y(1)), . . . ,BFq(r,y(v)), thus communicating O(v logq) = O(v log(N +M)) bits. Bob
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checks if BFq(r,z) = BFq(r,y(k)), outputting 0 if not. If the check passes, Bob assumes that z = y(k),
and outputs xi from z under this assumption.

Henceforth, we shall refer to this generalized protocol simply as “the INDEX protocol”.

3. The burden on the Alice (corresponding to the verifier in several of the subsequent schemes) is quite
light. In particular, when the input stream indicates an increment to a particular entry of the frequency
vector, the update to the corresponding fingerprint can be done in O(1) time.

Theorem 3.2. For all h,v such that hv ≥ n, there is an online (h logm,v logm)-scheme for SELECTION.
Furthermore, any online (h,v)-scheme for SELECTION must have hv = Ω(m).

Proof. Conceptually, the verifier builds a vector r = (r1, . . . ,rn) ∈ Zn
+ where rk = |{ j ∈ [m] : a j < k}|. This

is done by inducing a new stream A′ from the input stream A: each token a j in A causes virtual tokens
a j + 1,a j + 2, . . . ,n to be inserted into A′. Then r = f(A′); note that ‖r‖1 = O(m2). We apply the INDEX

protocol to this vector, with q = Θ(m2) to retrieve the ranks of elements surrounding the claimed median.
This information is sufficient to check that s has the claimed rank.

For the lower bound, we use a standard reduction from the INDEX problem. Take N = m. Given the
string x ∈ {0,1}m, Alice transforms it into the stream over [2m] whose jth token is a j = 2 j− x j, for each
j. Given the index i ∈ [m], Bob transforms it into a stream consisting of i copies of 2m and m− i copies of
1. Consequently, the median of the combined length-(2m) stream is 2i− xi, from which the value of xi can
be recovered. To complete the proof, observe that any online scheme to compute this median would imply
an online MA protocol for INDEX with the same cost; and that all players can perform this reduction online
without extra space or annotation.

Notice that in the above scheme the information computed by the verifier is independent of ρ , the rank
of the desired element. Therefore these algorithms work even when ρ is revealed at the end of the stream.

3.2 A First Result for Frequent Items

The φ -heavy hitters (also known as the frequent items) are those items whose frequency of occurrence
in the data stream exceeds a φ fraction of the total count. This problem has a long history in the data
streams literature. In the traditional data stream model exact computation of heavy hitters requires linear
space [47]. As a result, many algorithms that recover approximate heavy hitters from a data stream have
been developed [17, 23].

In order to identify the heavy hitters, a prescient helper can list the set of claimed frequent items, along
with their frequencies, for the verifier to check against the stream. But we must also ensure that the helper
is not able to omit any items whose frequencies exceed the threshold.

Theorem 3.3. For all h,v such that hv≥ n, there is an online (hφ−1 log2 n,v logn)-scheme and a prescient
(φ−1 log2 n,φ−1 log2 n)-scheme for demonstrating the φ -heavy hitters.

Proof. Given the threshold T = φm, the set of heavy hitters is { j : f j ≥ T}. We impose a binary tree T
over the data, whose leaves are the elements of the universe [n], and partition the (2n−1) nodes of T into v
groups G1, . . . ,Gv, with each |Gi| ≤ 2h. For each node w of T , let p(w) denote the parent of w, and let L(w)
denote the set of leaves of the subtree of T rooted at w. We define f̂ (w) = ∑i∈L(w) fi.

The f̂ -values for the nodes in each group Gi form a vector with entries in {0,1, . . . ,m}. As the verifier
processes the stream it maintains an O(logn)-bit basic fingerprint of each such vector; this is easy to do
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Figure 1: Illustration of the witness set introduced in the proof of Theorem 3.3.

since each token arrival simply causes a linear update to each vector. Once the end of the stream is reached,
the helper can then convince the verifier of any f̂ (w) value using the INDEX protocol: he simply supplies
the vector for the group Gi that contains w, using at most 2h log(m+1) = O(h logn) bits of annotation. In
particular, he can identify all the heavy hitters. But he must also convince the verifier that no heavy hitters
have been omitted.

To this end, we consider a witness set, W , of nodes of T which together cover the universe. The set W ,
given threshold T , consists of all leaves ` with f̂ (`)> T , plus all nodes u such that f̂ (u)≤ T but f̂ (p(u))> T .
Each node of the latter type is witness to the fact that no leaves j ∈ L(u) can have f j > T . The sets L(u) for
such u together with { j : f j > T} cover all of [n]. Further, because of the lower bound on f̂ (p(u)), there can
be at most 2φ−1 such nodes u at any level of T , as the sum of f̂ (w) over all nodes w at the parent level is
exactly m. Hence |W |= O(φ−1 logn).

This concept is illustrated in Figure 1. The figure shows a frequency distribution of [2,3,9,4,1,3,2,0].
Over these leaves, we impose a binary tree, and for each internal node w in the tree we show f̂ (w). With
a threshold of φ = 0.24, we seek to find all leaves of weight 6 or above. There is only one such leaf, with
weight 9. For the witness set, we also include the fourth leaf, since its parent exceeds the threshold. Other
nodes at higher levels in the tree are also included in the witness set when their parent exceeds the threshold
but they individually do not. Nodes in the witness set are indicated by a red fill.

The prover presents the verifier with each node u in W , in increasing order of minL(u), together with a
convincing proof of the value of f̂ (u). The verifier, besides checking the proofs using the stored fingerprints,
checks that the sets L(u) do cover all of [n] (outputting ⊥ if they do not) and outputs those u that are leaves
of T with f̂ (u) > T . In total, hcost = O(|W | · h logn) = O(hφ−1 log2 n) and vcost = O(v logn). Note that
the stated vcost does not explicitly account for the verifier storing the O(φ−1 logn) claimed heavy hitters, as
in some settings (e.g., Theorem 4.6, later in this paper) this is not required.

In the prescient case, the helper provides W upfront, which requires O(|W | logn) = O(φ−1 log2 n) bits
of annotation. The verifier stores it, and then computes all f̂ -values for nodes in W , checking that these
satisfy the requirements on a witness set. In this case, the stated vcost does account for the verifier storing
the O(φ−1 logn) claimed heavy hitters. The time taken by the verifier to process the stream is linear in its
size, while the time to process the annotation is correspondingly proportional to that size.

In Section 6, we return to this problem, and present more involved protocols with a lower cost, and
consider approximate variations. Specifically, Theorem 6.1 shows how the size of the witness set W can
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Figure 2: Example of the computation performed by the Fk scheme, with input defining a vector f(A) =
[3,7,1,2,0,8,5,9,1,1,1,0], and h = 3,v = 4.

be reduced, and Theorem 6.2 shows how the exact frequency vector can be replaced with a more compact
sketched vector.

4 Frequency Moments and Generalizations

In this section we continue the study of properties of the frequency distribution f(A) = ( f1, . . . , fn) of a given
stream A. In particular, we study the computation of frequency moments, which has a long history in the
data streams literature, like the frequent items problem discussed earlier.

Definition 2. The kth frequency moment of the stream A is defined as Fk = Fk(A) := ∑ j∈[n] f k
j = ‖f(A)‖k

k.
Slightly abusing notation, we also define Fk(v) := ‖v‖k

k for a vector v.

It is well known that in the traditional data stream model, exact computation of Fk (k 6= 1) requires Ω(n)
space. Even constant factor approximation requires Ω(n1−2/k) space for k ≥ 2 [16].

4.1 Schemes for Frequency Moments

We now show a family of algorithms that exhibit an optimal verification/annotation tradeoff for the exact
computation of Fk. Our algorithm is inspired by the “algebrization” results of Aaronson and Wigderson [2]
but the key idea can be traced back to classic interactive proof protocols of Lund et al. [46] and Shamir [51].

Theorem 4.1. Suppose h and v are positive integers with hv ≥ n. Then, for integers k ≥ 1, there exists an
online (k2h logm,kv logm)-scheme for computing Fk exactly.

Proof. Let A be the input stream. We map the n-vector f(A) into an h× v matrix ( f (x,y))x∈[h],y∈[v], using
any canonical bijection between [n] and [h]× [v]. Pick a prime q ≥ max{mk,3kh}; since m ≥ n, this can
be done while ensuring that logq = O(k logm). We shall work in the field Fq, which is safe because q
exceeds the maximum possible value of Fk(A). Let f̃ (X ,Y ) ∈ Fq[X ,Y ] be the unique polynomial satisfying
degX( f̃ ) = h−1, degY ( f̃ ) = v−1 and f̃ (x,y) = f (x,y) for all (x,y) ∈ [h]× [v]. The verifier picks a random
r ∈ Fq. As the stream is read, the verifier maintains a sketch consisting of the v quantities f̃ (r,1), . . . , f̃ (r,v).
Clearly, this sketch fits in O(v logq) bits of storage.

Figure 2 shows an example on a vector with n = 12. We consider the remapping of this vector with
v = 4,h = 3. This performs a canonical remapping of f, so that f (1,1) corresponds to the first entry of f
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(i.e. 3), and f (3,4) corresponds to the last entry (i.e. 0). The sketch maintained by the verifier is the set of
4 values that correspond to f evaluated at f (r,1), f (r,2), f (r,3), f (r,4).

Note that with probability 1− h/q it holds that r > h. Since q� h, it is almost certain that the f̃ (r, i)
values do not correspond to input values, but rather are a more complex function of the input. We must
therefore show that this sketch can be computed incrementally in O(v logq) space. To this end, for (a,b) ∈
[h]× [v], let pa,b denote the Lagrange polynomial

pa,b(X ,Y ) := ∏
i∈[h]\{a}

(X− i)(a− i)−1 · ∏
j∈[v]\{b}

(Y − j)(b− j)−1 .

Then we may write
f̃ (X ,Y ) = ∑

(a,b)∈[h]×[v]
f (a,b)pa,b(X ,Y ). (1)

Indeed, the right hand side of (1) is a polynomial of degree at most h− 1 in X and v− 1 in Y that agrees
with f (a,b) for all inputs (a,b) ∈ [h]× [v], and hence must equal f̃ . Eq. (1) implies that, to maintain each
f̃ (r,y) for y ∈ [v], upon reading a new token i ∈ [n] that maps to (a,b) ∈ [h]× [v], the necessary update is of
the form f̃ (r,y)← f̃ (r,y)+ pa,b(r,y).

Since pa,b(r,y) = 0 for any y ∈ [v]\{b}, the verifier need only update the single value f̃ (r,b), by adding
pa,b(r,b), upon reading this token. Using a table of O(v) appropriate precomputed values, this update can be
computed quickly. For h = v =

√
n, this takes a constant number of arithmetic operations per update without

affecting the asymptotic space cost. Hence, the time cost of the verifier to compute the f̃ (r, j) values can be
linear in the input size.

At the end of the stream, the helper provides a polynomial s′(X) ∈ Fq[X ] that is claimed to be equal to

s(X) := ∑
y∈[v]

f̃ (X ,y)k , (2)

which has degree at most k(h− 1), thus using O(kh logq) bits of annotation. The verifier evaluates s′(r)
from the supplied annotation and computes s(r) = ∑y∈[v] f̃ (r,y)k from his sketch, checks that s′(r) = s(r)
and outputs ⊥ if not. If the check passes, the verifier outputs ∑x∈[h] s′(x) as the final answer. Clearly, this
answer is correct if the annotation was honest. Further, the verifier is fooled only if s′ 6= s, but s′(r) = s(r);
the probability of this is at most k(h− 1)/q ≤ 1

3 , by choice of q. Returning to Figure 2, in this case the
prover’s message is the degree 2k polynomial s such that s(1) = 3k +7k +1k +2k, etc. The verifier checks
that s(r) = 12k +(−1)k +2k +(−90)k (using the stored values of f (r,y) to fill in the right hand side), and if
satisfied, outputs s(1)+ s(2)+ s(3) as the result.

Numerous problems such as computing Hamming distances and inner products, and approximating F2
and F∞, can be solved using Fk as a primitive or using related techniques. We proceed to outline the relevant
schemes and the results they provide.

Approximate F2. We can approximate F2 up to a (1+ ε) factor from an integer linear sketch of size
O(1/ε2) (see Section 2.4 for a discussion of sketches). In particular, if CSw(A) denotes a length-w Count-
Sketch vector of the stream A built using 4-wise independent hash functions, then F2(CSw(A)) estimates
F2(A) with relative error ε = w−1/2 with constant probability [54]. Thus, if the verifier and helper have
access to a source of public randomness to define the hash functions used by the sketch (or we extend the
model to allow the verifier to send the description of the randomly chosen hash functions to the helper at
the start of the protocol), the above F2 scheme yields an online (ε−2α logm,ε2α−2 logm)-scheme for any
α ∈ [0,1]. This follows from the combination of the algebrization approach with the observation that the
verifier can track linear updates to their sketch efficiently.
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Approximate F∞. Recall that F∞ =max j∈[n] f j and note that F t
∞≤Ft ≤ nF t

∞. Hence, if t = logn/ log(1+ε),
then (Ft)

1/t is at most a factor 1+ ε from F∞. This yields an online (( 1
ε

logn)2h logm, ( 1
ε

logn)v logm)-
scheme for approximating F∞ for any h,v such that hv≥ n. We make use of this scheme in Section 4.4.

Approximate Fk. The problem of approximating the frequency moments Fk for k > 2 has received much
attention in the traditional streaming literature. The problem is less significant here, as there is not much
room between between the upper bound of Theorem 4.1 above for exact computation of Fk, and the lower
bound for approximate computation of Fk of Theorem 4.3 below (see Section 4.2).

While it is possible to adapt approximation algorithms for high frequency moments from the streaming
literature, the gains are small, since constructions require poly(n) repetitions of a basic estimator, and this
cost cannot be naturally shifted away from the verifier. Obtaining better tradeoffs for this problem may be
of interest (see Section 8).

Inner Product and Hamming Distance. Consider a stream consisting of a string x ∈ {0,1}N followed
by a string y ∈ {0,1}N . Exact computation of F2 implies online schemes for certain functions of x and y.
For example, the inner product x · y is (F2(x+ y)−F2(x)−F2(y))/2 and the Hamming distance between
x and y is |{i : xi = 1}|+ |{i : yi = 1}|−2x ·y. Hence we get an online (Nα logN,N1−α logN)-scheme for
each of these functions, for every α ∈ [0,1]. More directly, the approach in the proof of Theorem 4.1 can be
used to generate schemes for these problems with the same bounds, as we formalize in the following general
corollary.

Corollary 4.2. Let f(1), . . . , f(`) denote the frequency vectors of ` data streams, each over the universe [n].
Let g be an `-variate polynomial of total degree d over the integers. Let F = ∑

n
i=1 g( f (1)i , . . . , f (`)i ), and

let u be an a priori upper bound on |F |. Then for positive integers h,v with hv ≥ n, there is an online
(dh(logn+ logu), `v(logn+ logu))-scheme for computing F.

Proof. We work over Fq, the finite field with q elements, for a suitably large prime q; the choice q >
2d(n+ u)2 suffices. The verifier treats each n-dimensional vector f( j) as a h× v array with entries in Fq,
using any canonical injection from [n] to [h]× [v], and interpreting integers as elements of Fq in the natural
way. Through interpolation, this defines a unique bivariate polynomial f̃ ( j)(X ,Y ) ∈ Fq[X ,Y ] of degree h−1
in X and v−1 in Y , such that for all x ∈ [h], y ∈ [v], f̃ ( j)(x,y) = f( j)(x,y). The verifier evaluates f( j)(r,y) for
all j ∈ [`] and y ∈ [v] using the same technique as in Theorem 4.1. This requires v logn bits of memory per
vector f( j).

Let g̃(Z1, . . . ,Z`) ∈ Fq[Z1, . . . ,Z`] be the polynomial of total degree d that agrees with g at all inputs in
F`

q. The prover then presents a polynomial p(X) of degree at most d(h−1) that is claimed to be identical to
∑y∈[v] g̃( f̃ (1)(X ,y), . . . , f̃ (`)(X ,y)). The verifier accepts if and only if p(r)=∑y∈[v] g̃

(
f̃ (1)(r,y), . . . , f̃ (`)(r,y)

)
.

The soundness analysis is exactly as in Theorem 4.1: If the prover sends a polynomial p(X) of degree h−1
that does not equal ∑y∈[v] g̃

(
f̃ (1)(r,y), . . . , f̃ (`)(r,y)

)
, the probability that the verifier’s check passes is at most

d(h−1)/q.

For example, Corollary 4.2 yields a protocol for inner product by setting `= 2, d = 2, f(1) = x, f(2) = y,
and g(Z1,Z2) = Z1Z2.

4.2 Lower Bounds on Frequency Moments

We now present lower bounds on the tradeoffs possible for the exact and approximate computation of the
nontrivial frequency moments Fk. The first part of the theorem below shows that the tradeoff given by
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Theorem 4.1 is nearly tight.

Theorem 4.3. Suppose k ≥ 0 and k 6= 1. Let A be an (h,v)-scheme (online or prescient) for computing Fk.

(1) If A computes Fk exactly, then it requires hv = Ω(n).

(2) If A approximates Fk up to a constant factor, then it requires hv = Ω(n1−5/k).

Proof. Both results follow from lower bounds on the MA complexity of DISJn,t : {0,1}nt → {0,1}, the t-
party set disjointness problem, which is defined as follows. The input is a t×n Boolean matrix, with Player
i holding the ith row, for i ∈ [t]. We call an input x = (xi j)i∈[t], j∈[n] valid if every column of x has weight
either 0 or 1 or t, and at most one column has weight t. The desired output is

DISJn,t(x) := ¬∨n
j=1∧t

i=1xi j ,

i.e., 1 iff the subsets of [n] represented by the rows of x are disjoint. Note that DISJn,t is naturally related to
frequency moments: for any valid input x, Fk(S)≥ tk if DISJn,t(x) = 0 and Fk(S)≤ n if DISJn,t(x) = 1 where
S is the multiset { j : xi j = 1}. Thus, reductions from DISJn,2 and DISJn,O(n1/k) establish the first and second
parts of the theorem, respectively, in a straightforward manner.

To complete the proof, we need a lower bound for DISJn,t itself. This is given in the next theorem, which
generalizes a result by Klauck [42] and also resolves a question of Feigenbaum et al. [30].

Theorem 4.4. Let P be an ε-error MA protocol for DISJn,t , where ε ≤ 1/3. Then hcost(P) ·vcost(P) =
Ω(n/t4). In particular, MA(DISJn,t) = Ω(

√
n/t2).

Proof. A rectangle is defined as a subset of inputs of the form X1×·· ·×Xt , where each Xi ⊆ {0,1}n is a
subset of the set of all possible inputs for Player i. A basic fact about deterministic communication protocols
is that the inverse image of any transcript of such a protocol must be a rectangle; this is usually called the
rectangle property. Let A = DISJ−1

n,t (1) and B = DISJ−1
n,t (0). The following lemma was proved by Alon,

Matias and Szegedy [5], generalizing a result due to Razborov [50].

Lemma 4.5 (Lemma 3.4 of [5]). There exists a distribution µ over valid inputs such that

(1) µ(A) = µ(B) = 1/2, and

(2) every rectangle T satisfies µ(T ∩B)≥ (2e)−1µ(T ∩A)− t2−n/2t4
.

Returning to our theorem, assume t =ω(n1/4) since otherwise the bound is trivial. Put h= hcost(P) and
v= vcost(P). An input x∈A is said to be covered by a message h from Merlin if PrR[out(P;x,R,h)= 0]≤ ε .
By correctness, every such input must be covered, so there exists a help message h∗ that covers every input
in a set G⊆ A, with µ(G)≥ 2−hµ(A) = 2−h−1. Fix Merlin’s message in P to h∗ and amplify the correctness
of the resulting randomized Merlin-free protocol by repeating it O(h) times and taking the majority of the
outputs. This gives us a randomized protocol P ′ for DISJn,t with communication cost c =O(hv) whose error,
on every input in G∪B, is at most 2−2h.

Let µ ′ denote the distribution µ conditioned on G∪B. Note that, by condition (1) of Lemma 4.5,

∀x ∈ {0,1}nt : either µ
′(x) = 0 or µ(x)≤ µ

′(x)≤ 2µ(x) . (3)

By fixing the random coins of P ′ we can obtain a deterministic protocol Q, for DISJn,t , that communicates
c bits and satisfies errµ ′(Q) ≤ 2−2h. By the rectangle property, there exist disjoint rectangles T1,T2, . . . ,T2c
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such that out(Q;x) = 1 iff x ∈
⋃2c

i=1 Ti. Therefore

2c

∑
i=1

µ
′(Ti∩B) ≤ 2−2h , and (4)

µ
′

(
A\

2c⋃
i=1

Ti

)
≤ 2−2h . (5)

By (3), we have µ ′(A) = µ ′(G)≥ µ(G)≥ 2−h−1. Using (3), and a rearrangement of (5):

2c

∑
i=1

µ(Ti∩A) ≥ 1
2

2c

∑
i=1

µ
′(Ti∩A) ≥ 1

2

(
µ
′(A)−2−2h

)
≥ 2−h−3 .

Suppose c≤ n/5t4 and n is large enough. Applying condition (2) of Lemma 4.5 to each term in the leftmost
sum above, we get

2c

∑
i=1

µ(Ti∩B) ≥ 2−h−3

2e
−2ct ·2−n/2t4 ≥ 2−h−6 .

However, by (3) and (4), we have ∑
2c

i=1 µ(Ti∩B)≤ 2−2h, a contradiction. Hence hv = Ω(c) = Ω(n/t4).

4.3 Frequency-Based Functions

It is natural to ask whether the Fk algorithm of Theorem 4.1 generalizes to more complicated functions. We
demonstrate that this is indeed the case by presenting non-trivial algorithms for the class of all frequency
based functions. A frequency based function is any function G on frequency vectors f = ( f1, . . . , fn) of the
form G(f) = ∑ j∈[n] g( f j) for some g : Z+ → Z+. We assume g(x) ≤ nc for some constant c, so that each
value in the range of g and G can be represented using O(logn) bits.

Frequency-based functions have a number of important special cases, including frequency moments, F0
(the number of distinct items in the stream), and point and range queries on the frequency distribution, and
can also be used to compute F∞, the highest frequency in the frequency vector. These functions occupy
an important place in the streaming world: Alon, Matias, and Szegedy asked for a precise characterization
of which frequency-based functions can be approximated efficiently in the standard streaming model in
their seminal paper [5]. Braverman and Ostrovsky [12] recently gave a zero-one law for approximating
monotonically increasing functions of frequencies that are zero at the origin. This can be contrasted with
our result that, in the annotation model, all frequency-based functions have non-trivial exact schemes. We
first present a natural generalization of the online scheme for Fk, which we call the polynomial-agreement
protocol. This protocol was first presented by Cormode, Mitzenmacher, and Thaler in [21]; we present the
details for completeness.

Polynomial-Agreement Protocol. Let A be the input stream. We wish to compute G(f(A)), where G(f) =
∑ j∈[n] g( f j). As in the Fk algorithm, we shall work in the field Fq for a sufficiently large prime q, and we
map the n-vector f(A) into an h× v matrix ( f (x,y))x∈[h],y∈[v], where h and v are adjustable parameters. As
before, we let f̃ (X ,Y ) ∈ Fq[X ,Y ] be the unique polynomial satisfying degX( f̃ ) = h− 1, degY ( f̃ ) = v− 1
and f̃ (x,y) = f (x,y) for all (x,y) ∈ [h]× [v]. The verifier picks a random r ∈ Fq, and maintains a sketch
consisting of the v quantities f̃ (r,1), . . . , f̃ (r,v) as the stream is read.
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Figure 3: Example to illustrate Theorem 4.6

Now the goal is to compute ∑x,y∈[h]×[v] g( f̃ (x,y)). The polynomial-agreement protocol generalizes the
Fk protocol, and has the helper send a polynomial to the verifier claimed to be

s1(X) := ∑
y∈[v]

g̃◦ f̃ (X ,y) , (6)

where g̃ is defined through interpolation as the unique degree-m polynomial that agrees with g on inputs
in the set {0,1, . . . ,m}, this being the set of possible values for each entry of f(A). Then the verifier can
compute G(f(A)) = ∑x∈[h] s1(x). To keep the helper honest, the verifier checks that s1(r) = ∑y∈[v] g̃( f̃ (r,y))
by computing the sum from his sketch.

One may compare Eq. (6) with the earlier Eq. (2), and observe that setting g(x) = xk indeed yields the
Fk scheme from Section 4.1.

Theorem 4.6. Suppose m = Θ(n). Let G be any frequency-based function. Then G has a prescient
(n2/3 logn,n2/3 logn)-scheme and an online (n2/3 log4/3 n,n2/3 log4/3 n)-scheme.

Proof. Prescient scheme. We first describe the prescient scheme. It is natural to attempt to directly apply
the polynomial-agreement protocol to the given function g. However, this does not yield a useful result. The
problem with this approach is that g̃◦ f̃ has degree m(h−1), and therefore s1(X), as defined in (6), requires
up to m(h− 1) words to represent—it would be more efficient for the helper to just repeat the stream in
sorted order!

The solution is to reduce the degree of g̃ by removing the heavy hitters from A with the aid of the helper.
That is, we run a prescient heavy hitters scheme to determine H := ∑ j∈S g( f j)− |S|g(0), where S := { j :
f j ≥ nβ} and β < 1 is a parameter we will fix later. Though one could use Theorem 3.3 for a heavy hitters
scheme, to obtain tighter bounds we use a more efficient scheme presented later in Theorem 6.1. Note that
this requires communication O((m/nβ ) logn) = O(n1−β logn) since m = Θ(n) by assumption. Intuitively,
H represents the contribution of the heavy hitters to the frequency-based function, and the verifier then
“removes” these items from the stream by setting f j = 0 for all j ∈ S. This ensures that the removed items
do not contribute to the sum R = ∑ j∈[n] g( f j). The verifier and helper then run the polynomial-agreement
protocol on the modified frequency vector, and the final result is given by H +R. From now on, let f denote
the modified vector with contributions from S removed.

Figure 3 gives an illustation of the central idea: the distribution is conceptually split into two pieces, the
set of heavy hitters S and the residual distribution f. The contributions of each piece are calculated as H and
R respectively, and summed to obtain the answer G.

When running the polynomial-agreement protocol, we exploit the fact that each entry of f lies in
{0,1, . . . ,nβ}. This lets us use a degree-nβ polynomial g̃ in (6). As a result, we have deg(s1) ≤ nβ (h−1),
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and so the helper requires only O(hnβ logn) bits to describe s1(X). For the 1
3 -error guarantee, the prime q

need only be as large as 3nβ (h− 1) = poly(n). All other details (such as the running time of the verifier)
remain unchanged, and are in line with the proof of Theorem 4.1.

It remains to show that we can set the parameters h, v, and β of the above protocol to achieve hcost =
vcost = O(n2/3 logn). The help cost is O(n1−β logn) bits for the heavy hitters scheme plus O(hnβ logn) bits
for the (modified) polynomial-agreement protocol. The respective verification costs are O(n1−β logn) and
O(v logn). Setting β = 1

3 , h = n1/3, and v = n2/3 achieves the desired costs.
A subtlety is that the verifier needs to compute the values g( f j) for all j ∈ S in order to compute the

contribution, H, of the heavy hitters. The verifier also needs to compute the values g(i) for i ∈ [nβ ] in order
to evaluate s1(r) = ∑y∈[v] g̃( f̃ (r,y)), because the polynomial g̃ is defined in terms of these values. Indeed,
g̃(x) = ∑i∈[nβ ] g(i)χi(x), where χi is the unique polynomial of degree at most nβ such that χi(i) = 1 and
χi(x) = 0 for all x ∈ {0, . . . ,nβ}\{i}. Thus, to give a space-bounded verifier, we must carefully account for
the cost of storing g. However, for most natural functions of interest, g has a succinct implicit description;
this is indeed the case for important examples such as F0, F∞, and point and range queries on the frequency
distribution that are described subsequently.

General online scheme. In order to achieve an online (n2/3 log4/3 n,n2/3 log4/3 n)-scheme, observe that
the only place where the above scheme used prescience was to identify heavy hitters. So we simply substitute
the online heavy hitters scheme of Theorem 6.1, with parameter α ∈ [0,1], in place of the prescient version.
In this case, the help cost is O(n1−β log2 n+nα logn) bits for the heavy hitters scheme and O(hnβ logn) bits
for the polynomial agreement protocol. The respective verification costs are O(n1−α logn) and O(v logn).
Balancing these costs by setting nβ = n1/3 log2/3 n, nα = n2/3, h = n1/3/ log1/3 n, and v = n2/3 log1/3 n gives
the desired overall costs.

We comment that while we can provide an online scheme with both annotation length and space usage
sublinear in the universe size n for the large class of frequency-based functions, it is not possible to give
such schemes for arbitrary functions, even if the schemes are prescient. Indeed, a counting argument of
Aaronson and Wigderson [2, Section 7.2] shows that there are dramatically more functions on n-bit inputs
than there are distinct MA-communication protocols that can be used. Hence, almost all functions have
MA-communication complexity Ω(n), ruling out the possibility of prescient schemes for these problems in
which both the annotation length and space usage are o(n).

Applications of Polynomial-Agreement. Theorem 4.6 provides annotation schemes for the problems
described below.

• We can compute F0, the number of items with non-zero count. This follows by observing that F0 is
equivalent to computing ∑i∈[u] g( fi) for the function g given by g(0) = 0 and g(x) = 1 for x > 0.

• More generally, we can compute functions on the inverse distribution, i.e., queries of the form “How
many items occur exactly k times in the stream?” For example, the case of k = 1 is known as rarity
[25]. We do this by setting g(k) = 1 and g(x) = 0 for x 6= k; here we think of k as being fixed. One can
build on this to compute, e.g., the number of items that occurred between k and k′ times, the median
of this distribution, etc.

• We obtain a protocol for F∞ = max j∈[n] f j, with a little more work. The helper first claims a lower
bound ` on F∞ by providing the index of an item with frequency F∞, which the verifier checks by
running the generalized INDEX protocol from Section 3.1 (see Remark 2 after Theorem 3.1). Then
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the verifer runs the above protocol with g(x) = 0 for x≤ ` and g(x) = 1 for i > `; if ∑ j∈[n] g( f j) = 0,
then the verifier is convinced that no item has frequency higher than `, and concludes that F∞ = `. We
therefore achieve a prescient (n2/3 logn,n2/3 logn)-scheme and an online (n2/3 log4/3 n,n2/3 log4/3 n)-
scheme for F∞.

4.4 Frequency-Based Functions for Skewed Streams

In practice, the frequency distributions of data streams are often skewed, in the sense that a small number of
frequent items make up a large portion of the stream. We observe that, if the stream is sufficiently skewed,
so that there are few heavy hitters, we can achieve more efficient schemes for frequency-based functions.
To see this, notice that in the scheme of Theorem 4.6, the verifier, after learning the heavy hitters from the
helper, only needs to know an approximate upper bound on F∞(A′), where A′ is the stream obtained from
the input stream A by deleting all the heavy hitters. That is, the helper only needs to convince the verifier
that he has presented “enough” of the true heavy hitters (and their exact frequencies) so that F∞(A′)≤ b for
some upper bound b = Θ(nβ )—then we may define g̃ to agree with g on [b], so that the degree of g̃ remains
O(nβ ).

Observe that if there are not many heavy items, the helper can send a list L of heavy hitters and their
frequencies (proving all of the frequencies are truthful via the online technique of Theorem 6.1) and then
appending a proof of an approximate upper bound (within factor 1+ ε) as per Section 4.1 on the quantity
F∞(A′).

It suffices to let ε be any positive constant in order to achieve b = O(nβ ). When there are fewer than
` items with frequency greater than nβ , the frequencies of all ` items in L can be verified with annotation
O(` logn+h logn) and space O(v logn) for the verifier, while the approximate F∞ scheme requires annotation
O(h log3 n) and space O(v log2 n). In what follows, we will choose ` to be polynomial in n, so we will obtain
an (` logn+h log3 n,v log2 n)-scheme for identifying the set of heavy hitters and an upper bound u on F∞(A′).

For concreteness, we will analyze the costs of our improved scheme under the assumption that the
frequencies of items in the stream follow a Zipf distribution, so that the ith largest frequency is (at most)
mi−z for parameter z.

Corollary 4.7. Assuming the input frequencies of the input items follow a Zipf distribution with parameter
z≤ 2, we obtain an online (n

2
2+z polylogn,n

2
2+z polylogn) scheme for frequency-based functions.

Proof. Setting the ith largest frequency mi−z equal to nβ and rearranging, we obtain that there are at most
(m/nβ )1/z heavy hitters to identify. Therefore, if m = Θ(n), we can reduce the cost of the heavy hitters
sub-protocol within the scheme of Theorem 4.6 to (n(1−β )/z logn+h polylog n,v polylog n). Adding in the
annotation cost of sending the polynomial g̃◦ f̃ , and the space cost to the verifier, the entire scheme therefore
requires Õ(n(1−β )/z + hnβ ) annotation and Õ(v) space, where the Õ notation hides factors polylogarithmic
in n. Assume z≤ 2. Balancing exponents by setting β = (2− z)/(2+ z), h = n

z
2+z , and v = n/h, we obtain

an (n
2

2+z polylog n,n
2

2+z polylog n)-scheme.

This strictly improves on Theorem 4.6 as long as z > 1. For example, if z = 2, we obtain an online
(n1/2 polylog n,n1/2 polylog n)-scheme for any frequency-based function, which essentially matches the
low cost of our online scheme for F2 from Theorem 4.1.
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5 Set and Multiset Inclusion

Building on some of the results and techniques in Section 4, we now address a family of abstract problems
that involve a helper proving a subset (inclusion) relation to a streaming verifier. Both sets and multisets
are of interest. For example, we may need to prove that A ⊆ B for two sets A and B, or we may need to
prove that a set A is exactly the support set of a multiset B. These abstract problems turn out to be common
subproblems arising in a number of applications that we shall consider later (see, e.g., Theorems 7.5, 7.6,
and 7.7).

Throughout this section, the size of a multiset is the number of elements in it, counting multiplicities. A
fingerprint of a multiset is a basic fingerprint, as in Definition 1, of its characteristic (frequency) vector.

Lemma 5.1. Let A ⊆ [n] be a set and B ⊆ [n] a multiset of size t. Let B′ be the set formed by removing
all duplicate elements from B. Then, given a stream which begins with the elements of A followed by the
elements of B, there is a prescient (t logn, logn)-scheme that establishes whether B′ = A.

Proof. As the elements of A are observed in the stream, the helper annotates each a∈A with the multiplicity,
fa, of a in B. Once A has been observed, the helper then lists each element b in the set difference B′ \A,
along with the corresponding multiplicity fb in B. Obviously there are no such elements iff B′ = A. From the
provided information, the verifier constructs a fingerprint of the multiset in which each a ∈ A∪B′ appears
with multiplicity fa.

Then, while observing the elements of the multiset B, the verifier incrementally constructs a fingerprint
of B, as in Lemma 2.1. The verifier accepts iff the two fingerprints match.

In the remainder of this section, we give three schemes achieving tradeoffs between hcost and vcost for
(multi)-set inclusion, in order of generality. First, we give an essentially optimal online (h logn,v logn)-
scheme, for any h and v with hv≥ n, for the special case when B is a set rather than a multiset.

Theorem 5.2. Let X ,Y ⊆ [n] be sets. Then given a stream with elements of X and Y arbitrarily interleaved,
there is an online (h logn,v logn)-scheme for determining whether X ⊆ Y for any h and v such that hv≥ n.
Moreover, any online (h,v)-scheme requires hv = Ω(n).

Proof. Let x,y ∈ {0,1}n be the characteristic vectors of X and Y respectively. Then X ⊆ Y if and only if
F2(y−x) = |Y |− |X |. Consequently, the helper can run the F2 scheme of Theorem 4.1 on the vector y−x to
determine if the above equality holds.

The lower bound follows from a straightforward reduction from INDEX. Take N = n. Given the string
x ∈ {0,1}n, Alice transforms it into the stream over [n] representing the set Y = { j : x j = 1}. Given the
index i ∈ [n], Bob transforms it into a stream representing the singleton set X = {i}. Then xi = 1 if and only
if X ⊆ Y .

We now show how to use the result for frequency-based functions to handle duplicated items; in this
case X and Y are multisets rather than sets. The next theorem lets us efficiently handle a small number of
duplicates.

Theorem 5.3. Let X ,Y ⊆ [n] be multisets. Assume k is a known upper bound on the maximum frequency of
any element in X or in Y . Then given a stream with elements of X and Y arbitrarily interleaved, there is a
online (kh logn,v logn)-scheme for determining whether X ⊆ Y , for any h and v with hv≥ n.
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Proof. Let x,y be the characteristic vectors of X and Y respectively. Then X ⊆ Y if and only if yi− xi ≥ 0
for all i. The bound on the maximum frequency implies that −k ≤ yi− xi ≤ k for all 1 ≤ i ≤ n. Let g̃ be
defined through interpolation as the polynomial of degree 2k over the finite field Fp such that g̃(x) = 0 for
x ∈ {0,1, . . . ,k}, and g̃(x) = 1 for x ∈ {−k,−k+ 1, . . . ,−1}. Then ∑i g̃(yi− xi) = 0 if and only if X ⊆ Y ;
intuitively, g̃ acts as an indicator function for the set of possible negative entries in the vector y−x. Applying
the polynomial-agreement protocol defined in the proof of Theorem 4.6 under this definition of g̃, we obtain
a (kh logn,v logn)-scheme for checking X ⊆ Y whenever hv≥ n.

Finally, we give an online (n3/4 logn,n3/4 logn)-scheme for the general multiset inclusion problem, as
long as t = O(n).

Theorem 5.4. Let X ,Y ⊆ [n] be multisets of size at most t. Then given a stream with elements of X and Y
arbitrarily interleaved, there is an online (n2/3 log4/3 n,n2/3 log4/3 n)-scheme for determining whether X ⊆Y
assuming t = O(n).

Proof. Let x,y be the characteristic vectors of X and Y respectively. It holds that X ⊆ Y if and only if
yi − xi ≥ 0 for all i. Define g : {−t,−t + 1, . . . ,0,1, . . . , t} → {0,1} by g(x) = 0 for x ∈ {0, . . . , t} and
g(x) = 1 for x ∈ {−t,−t +1, . . . ,−1}. The theorem holds by applying the protocol of Theorem 4.6 to G(f),
where f is the vector y− x and G is the frequency-based function defined by g. (As stated, the protocol of
Theorem 4.6 applies only to g : Z+→ Z+, but it applies without modification to any function g defined on
a suitably small domain, such as ours).

5.1 Application: Convex Hull on a 2D Grid

As a first illustration of the value of Theorems 5.2–5.4, consider an instance of the convex hull problem
where all input points P fall on the intersection points of a two-dimensional grid defining g possible point
locations. Let C be the convex hull of a stream of points. Then, for any 0 ≤ α ≤ 1, there exists an online
((|C|+gα) logg,(|C|+g1−α) logg)-scheme to report the convex hull. The helper provides the claimed hull
C′, which the verifier can store exactly verify that it is indeed convex. Define c(C) as the set of (grid)
points contained within a convex shape C, and observe that it is easy to enumerate (but not store) c(C) in
space O(|C|). The verifier then must establish that C′ ⊆ P, and that P ⊆ c(C′). Both these subset tests
can be verified efficiently using Theorem 5.2. As described, this protocol requires that P should contain
no duplicate points, however in the case where each point in P is duplicated at most a small number of
times k, we can instead use the protocol of Theorem 5.3 rather than Theorem 5.2. This yields an online
((|C|+ kgα) logg,(|C|+g1−α) logg)-scheme to report the convex hull. If points are duplicated up to O(n)
times, we may instead apply Theorem 5.4 to obtain an online ((|C|+g3/4) logg,(|C|+g3/4) logg)-scheme.

6 Frequent Items

In this section, we provide further results on finding exact frequent items. Our new results for frequent
items improve over Theorem 3.3 in two ways: Firstly, we show that in the online case, the frequencies of all
items in the witness set can be simultaneously checked with essentially the same cost as checking a single
frequency, thereby saving polynomial factors. Secondly, we show that in the prescient case it is possible to
use a more compact witness set relative to Theorem 3.3, thereby saving logarithmic factors.
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Theorem 6.1. Let T = φm. For every α ∈ [0,1], there is an online (φ−1 log2 n+nα logn, n1−α logn)-scheme
for finding { j : f j > T} in the strict turnstile update model, as well as a prescient (φ−1 logn,φ−1 logn)-
scheme. Any online or prescient (h,v)-scheme for this problem, even in the unit-update insert-only model,
must have hv = Ω(n).

Proof. We begin with the online scheme. Let W be the witness set from Theorem 3.3. Recall that W is a
subset of the nodes of a binary tree T imposed over the data universe, and in the scheme of Theorem 3.3, the
helper sends to the verifier a claimed value for f̂ (w) = ∑i∈L(w) fi, where L(w) denotes the set of all leaves in
the subtree rooted at W .

We show how the verifier can check that f̂ (w) is as claimed for all items w∈W . Let z denote the 2n−1-
dimensional vector such that zw = 1 if w ∈W , and zw = 0 otherwise. Let f ∗ denote the 2n−1-dimensional
vector such that f ∗w equals the claimed value of f̂ (w) if w ∈W , and f ∗w = 0 otherwise. Abusing notation, we
will also think of f̂ itself as a 2n−1-dimensional vector such that f̂w = f̂ (w). Then f̂ (w) = f ∗w for all w ∈W
if and only if 0 = ∑ j∈[2n−1] z j( f̂w− f ∗w)

2. Corollary 4.2 gives an online scheme for computing the quantity
∑ j∈[2n−1] z j( f̂w− f ∗w)

2: within the statement of Corollary 4.2, we let ` = 3, f(1) = f̂ , f(2) = f ∗, f(3) = z and
g(a,b,c) = abc. It is easy for the verifier to run the scheme of Corollary 4.2 on derived streams defining
these three vectors; for any non-negative integers h,v such that hv ≥ n, Corollary 4.2 yields a scheme with
hcost = O(h logn) and vcost = O(v logn).

Thus, the total hcost of our scheme is φ−1 log2 n+ h logn, where the φ−1 log2 n term is the annotation
required to specify the items in W and the claimed values for f̂w : w ∈W , while the h logn term is the
annotation required to check that the claimed f̂w values are correct. The verifier’s space usage is v logn,
yielding the claimed result.

For the prescient scheme, we specify a witness set that is more succinct than that of Theorem 3.3.
Consider a binary tree T whose leaves are the elements of the universe [n], as in Theorem 3.3. We will
specify a witness set W of size O(φ−1) to identify to identify all leaves j with f j > T ; we base W on the
concept of Hierarchical Heavy Hitters (HHHs) [19]. Below, we refer to the set of Hierarchical Heavy
Hitters as H.

We define H inductively, beginning with the leaves and working our way to the root. We include a
leaf in H if its frequency exceeds T . Let u be a node at distance l from the root (i.e., at level l of T ), and
assume inductively that we have determined all HHHs at levels greater than l. Let H(u) denote the set of
descendants of u that have been included in H, and let L(u) denote the set of leaves of the subtree rooted
at u. Finally, define S(u) := L(u) \

(
∪v∈H(u) L(v)

)
. Intuitively, S(u) is the set of leaves in L(u) that have

not already contributed their frequency to an HHH descendant of u. Define the conditioned count of u as
g(u) := ∑ j∈S(u) f j; we include u in H if g(u)> T . Observe there are at most φ−1 items in H since T = φm:
each leaf contributes its frequency to g(u) for exactly one u ∈ H, and therefore |H|T ≤ ∑u∈H g(u)≤ m.

We now define our witness set W as all leaves j in H in addition to all nodes u such that u’s parent is in
H but u is not in H. Observe that each node u ∈W is witness to the fact that no leaves j ∈ S(u) can have
f j > T . We also include the root r in W to account for any leaves that are not descendants of any node in H.
The sets S(u) for u ∈W form a partition of [n]. Notice that |W |= O(φ−1) since |H| ≤ φ−1.

In the prescient scheme, the helper lists all nodes u ∈W sorted by the natural order on nodes, and the
verifier remembers this information. The verifier may then compute the conditioned count of each u ∈W
using space O(|W | logn) = O(φ−1 logn): each time an item j appears in the stream, the verifier determines
the unique u∈W such that j ∈ S(u) (u is simply the ancestor of j in W farthest from the root), and increments
g(u). The verifier checks that g( j)> T for all leaf nodes j ∈W , and that g(u)≤ T for all internal nodes in
W and outputs ⊥ otherwise. Since the sets S(u) partition [n], this latter check ensures that the helper does
not omit any leaves j with f j > T .
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We prove the lower bound by an easy reduction from two-party set-disjointness, DISJn,2. Consider Alice
and Bob with respective inputs x,y ∈ {0,1}n. Alice’s input x induces a stream A by placing one copy of
token j in the stream if x j = 1. Then Bob places one copy of item j in the stream if y j = 1. We may assume
Bob knows |{ j : x j = 1}|, and hence knows the stream length m; if not Alice can tell Bob |{ j : x j = 1}| at an
additive cost of logarithmically many bits. Now x and y are disjoint if and only if the set { j : f j > 1 = φm}
for φ = 1/m is non-empty. Thus, determining the frequent items for T = 1 solves two-party set disjointness,
proving the bound by Theorem 4.4.

6.1 Approximate Frequent Items

In many cases, it suffices to find a set of approximate frequent items: these include all items with f j > φm
and no items with f j < (φ − ε)m for parameters ε,φ . Solutions to this problem in the traditional streaming
model are often based on “sketch” algorithms, as described in Section 2.4. Since a sketch v is a linear
transform of the input, v = Sv(A), a sketch can be fingerprinted: each update multiplies the fingerprint by
BFq(r,Sei). This observation means that the helper can annotate (parts of) v at the end of the stream, for
verification. However, to define an efficient scheme, we also need to show: (1) the verifier can compute
Sei in small space, so S must have a compact representation; and (2) the verifier must be able to extract the
result from v in a streaming fashion, in space sublinear in the size of the sketch.

We use ideas from verifying exact frequent items to build a scheme for verifying approximate frequent
items via sketching.

Theorem 6.2. For s > φ−1, there exists an online (s logn logm, logm)-scheme to verify the approximate
frequent items found by Count-Sketch or Count-Min sketches of size s.

Proof. Our proof proceeds by extending Theorem 3.3 to the case of sketching. The main difference is
that exact counts are replaced by estimated counts drawn from the sketch, which requires a little more
effort to handle. We consider an expanded set of items that includes the set of tree nodes u in T and
their corresponding unconditioned counts f (u) (recall f (u) is the sum of the frequencies of all leaves in
L(u), the subtree rooted at u). The helper and verifier now keep a sketch vk for each level k of the tree,
to obtain estimated unconditioned counts f̂ (u) for each node u in the tree. We henceforth assume that
f̂ (u) = f (u)± εm; when using sketches with d = O(logn), this holds for each i with probability at least
1−1/16n, and so it holds over all 2n frequencies with probability at least 7/8.

As in Theorem 3.3, the witness set W , given threshold T , consists of all leaves j with f̂ j > T in addition
to pairs of nodes (u,v) such that u is the child of v, and f̂ (u) ≤ T but f̂ (v) > T . Now, there can be at most
φ−1 such nodes v at any level of the binary tree, as the sum of f̂ (v) is at most (1+ε)m. This bounds the size
of this witness set to |W ′|= O(φ−1 logn) if ε < φ

2 .
The verifier can validate this witness set W over the full set of nodes and their estimated unconditioned

counts as follows. By presenting the set of nodes v in W in order of minL(v), the verifier can ensure that the
nodes identified do cover all of [n] as required (and hence that no high frequency items are omitted). If the
helper provides for each node v∈W the information about v contained in the sketch, as (v, f̂v, f̂v,1, . . . f̂v,d) the
verifier can check that f̂v is above or below T as appropriate. The verifier ensures that f̂v is derived correctly
from the d values of f̂v,` (using O(d) working space). The verifier also incrementally builds a fingerprint of
the set B = {(v, `, f̂v,`)}. At the end of the annotation, the helper lists the entries of each sketch vk

`, j in order
and tags each entry with the set of v’s for which it has been used to make an estimate. The verifier builds a
fingerprint of the tuples (v, `,c`(v)vk

`,b`(v)
), and checks that it matches the fingerprint of B (this is essentially

an instance of the multiset equality protocol in Lemma 5.1). The verifier fingerprints also the (untagged)
sketch to check it matches the verifier’s fingerprinted sketch built from the input stream.
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The total amount of annotation is O(s logn) sketch entries, from the logn sketches of size s. The verifier
needs to remember d estimated frequencies (to verify their median) and O(logn) fingerprinted sketches (one
for each level).

We mention that if φ � ε , then the verifier only needs to inspect a small fraction of the sketch entries to
verify the frequent items. In this case, one can obtain a tradeoff via the generalized protocol (Section 3.1):
write the sketch as an array of h× v entries, so that hv≥ s. The verifier can create v fingerprints each sum-
marizing h entries of the sketch. To verify, the helper modifies the above algorithm to only present those
blocks of h entries which include a value that needs to be seen by the verifier. In total, to verify O(|W ′|) ap-
proximate frequencies requires verifying O(φ−1d logn) entries, giving an (φ−1h logm log2 n,v logm) online
scheme.

Other algorithms find all items j such that f̂ j ≥ φF1/2
2 . These can also be adapted to our setting using

similar ideas, and verified in logarithmic space with annotation proportional to the sketch size.

7 Graph Problems

In this section we consider computing properties of graphs on n nodes, determined by a stream of m
edges [28, 37]. We present tight results for testing connectivity of sparse graphs, determining bipartite-
ness, determining if a bipartite graph has a perfect matching, and counting triangles. Our bipartite perfect
matching result achieves optimal tradeoffs up to logarithmic factors.

7.1 Counting Triangles via Matrix Multiplication

Estimating the number of triangles in a graph has received significant attention because of its relevance to
database query optimization—knowing the degree of transitivity of a relation is useful when estimating the
cost of evaluation plans for certain relational queries—and investigating structural properties of the web-
graph and social graphs [8, 13, 39]. In the absence of annotation, any single-pass algorithm to determine if
there is a non-zero number of triangles requires Ω(n2) bits of space [8]. In contrast, we show that the exact
number of triangles can be verified in logarithmic space, with the help of O(n2 logn) bits of annotation. The
following theorem, proved using ideas from Bar-Yossef et al. [8] coupled with Theorem 4.4, shows that this
amount of annotation is nearly optimal, for a log-space verifier.

Theorem 7.1. Any (h,v)-scheme for counting triangles must have hv = Ω(n2).

Proof. We show a reduction from DISJ(n2/9),2. We represent an instance of DISJ as a pair of (n/3)× (n/3)
Boolean matrices X ,Y in the natural way. We proceed to construct a graph that has a triangle iff Xi j =Yi j = 1
for some i, j ∈ [n/3]. The nodes are partitioned into sets U,V,W so that |U |= |V |= |W |= n/3. Insert edges
{(ui,wi) : i∈ [n/3]}∪{(ui,v j) : Xi j = 1}∪{(wi,v j) : Yi j = 1}. There is a triangle (ui,v j,wi) iff Xi j =Yi j = 1,
and there is no other way to form a triangle. The result follows from Theorem 4.4.

We now outline an online scheme with vcost = O(logn) and hcost = O(n2 logn). A major subroutine of
our algorithm is the verification of (integer) matrix multiplication in our model. That is, given n×n matrices
A,B and C with integer entries, verify that AB =C. Our technique extends the classic result of Frievalds [31]
by showing that if the helper presents the results in an appropriate order, the verifier needs only O(logn) bits
to check the claim. Note that this much annotation is necessary if the helper is to provide C in his stream.

Theorem 7.2. There exists an online (n2 logn, logn)-scheme for verifying integer matrix multiplication.
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Proof. Let q be a prime larger than 2nm2 +1, where m is an a priori upper bound on the absolute values of
all entries of A and B. By the result of Kimbrel and Sinha [40], the verifier can check AB =C by picking r
uniformly from Fq and checking that A(BrT) = CrT, in the field Fq, for vector r = (r0,r1, . . . ,rn−1). This
fails to identify an incorrect product with probability at most n/q. Rather than computing A(BrT) and CrT
explicitly, the verifier will compare fingerprints of CrT and ABrT. These are computed as sCrT and sABrT,
for a vector s = (s0,s1, . . . ,sn−1) where s is picked uniformly from Fq. This fingerprinting fails to distinguish
distinct vectors with probability at most n/q.

We observe that (1) sCrT = ∑i, j sir jCi j can be computed easily whatever order the entries of C are
presented in. (2) sABrT = (sA)(BrT) is the inner product of two n-dimensional vectors, and that (sA)i =

∑ j s jAi j and (BrT)i = ∑ j r jB ji. Therefore, if the helper presents the ith column of A followed by the ith row
of B for each i in turn, the verifier can easily compute sABrT in O(logq) space. Picking q≥ 6n ensures that
the verifier is fooled with probability at most 1/3, and the total space used by the verifier to store r, s and
intermediate values is O(logn).

With this primitive, arbitrary matrix products A`A`−1 · · ·A2A1 are verified with O(`n2 logn) annotation
by verifying A(2) := A2A1, then A(3) := A3A(2), etc. Matrix powers A` are verified with O(n2 log` logn)
annotation, using repeated squaring. Here, we assume that the entries computed do not grow too large, and
so can be represented within O(logn) bits.

Theorem 7.3. There is an online (n2 logn, logn)-scheme for counting triangles.

Proof. Denote the graph adjacency matrix by A, with Aii := 0. The helper lists Avw and A2
vw for all pairs

(v,w) in some canonical order. The verifier computes ∑v,w AvwA2
vw as the number of triangles. The verifier

uses fingerprints to check that A matches the original set of edges, and the scheme in Theorem 7.2 to ensure
that A2 is as claimed.

We also show that it is possible to trade off the computation with the helper in a “smooth” manner. The
approach is based on the following observation of Bar-Yossef et al. [8].

From the given stream of edges of a graph, we can create a derived stream, of length m(n− 2), by
replacing each edge (u,v) with the set of triples {(u,v,w) : w 6= u,v}. The frequency moments of this
derived stream can be expressed in terms of the numbers of triples of nodes with exactly zero, one, two and
three edges between them. It follows that the number of triangles can be expressed in terms of the frequency
moments of this derived stream, as (F3−3F2 +2F1)/6. By using the scheme of Theorem 4.1, we obtain the
following theorem.

Theorem 7.4. There is an online (n3α logn,n3−3α logn)-scheme for counting triangles for each α ∈ [0,1].

7.2 Bipartite Perfect Matching

We present two online schemes for determining whether a bipartite graph has a perfect matching. Our
first scheme is efficient for sparse graphs, while our second achieves optimal tradeoffs between hcost and
vcost for dense graphs, up to logarithmic factors. Graph matchings have been considered in the stream
model [28, 57] and it can be shown that any single-pass algorithm for determining the exact size of the
maximum matching requires Ω(n2) space. We show that we can off-load this computation to the helper
such that, with only O(n1+α logn) annotation, the answer can be verified in O(n1−α logn) space, for each
α ∈ [0,1]. This is shown to be best possible by combining a reduction from [28] coupled with Theorem 3.1.
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Theorem 7.5. There exists an online (m logn, logn)-scheme for bipartite perfect matching, as well as an
online (n1+α logn,n1−α logn)-scheme for each α ∈ [0,1]. Any online (h,v)-scheme for bipartite perfect
matching requires hv = Ω(n2).

Proof. We begin by presenting the (m logn, logn)-scheme. We consider the general case, where there may
be nodes in [n] with no incident edges, which are to be ignored for the matching. If there is a perfect
matching M, the annotation lists all edges in M, and the degree of all nodes in [n]. Let x be the characteristic
vector that has 1 in the vth coordinate if and only if the degree of v is non-zero, and let y be the vector
of node frequencies in M. The verifier can use fingerprints to ensure that the claimed degree sequence is
correct, and that x matches y.

If the graph does not have a perfect matching, Hall’s Theorem provides a witness. Let (L,R) be a
bipartition of the graph. Then there exists L′ ⊆ L such that |L′|> |Γ(L′)|, where Γ(L′) is the set of neighbors
of L′. The helper lists, for each node, the following information: its degree; whether it is in L or in R;
and whether it is in L′, Γ(L′), or neither. Then the helper presents each edge (u,v), along with the same
information on each node. By Lemma 5.1, the verifier can ensure that the sets are consistent, using a
constant number of fingerprints. It remains to check that each edge is allowable and that |L′|> |Γ(L′)|.

Our (n1+α logn,n1−α logn)-scheme follows the same conceptual outline as the above: if G has a perfect
matching, the helper provides the matching, while if G has no perfect matching, the helper demonstrates
this via Hall’s Theorem. The details follow.

If there is a perfect matching M, the annotation lists all edges in M, followed by a proof that M ⊆ E.
More specifically, for any hv ≥ n2, Theorem 5.2 describes how to obtain an online (h logn,v logn)-scheme
for showing M ⊆ E, assuming no duplicate edges. This can be extended to a (kh logn,v logn)-scheme if
edges may be duplicated up to k times by Theorem 5.3. The helper uses this scheme to demonstrate M ⊆ E,
and the verifier checks that M is a matching by comparing a fingerprint of M to one of the set {1,2, . . . ,n}.

If the graph does not have a perfect matching, let (L,R) be a bipartition, as before, and let L′ ⊆ L be such
that |L′| > |Γ(L′)|. We will use the online (n1+α logn,n1−α logn)-scheme for integer n× n matrix-vector
multiplication described in [20, Theorem 4]. The verifier must check that (1) L is a bipartition of n; (2)
L′ ⊆ L; and (3) |L′|> |Γ(L′)|. Let x ∈ {0,1}n be the indicator vector of L, and let A be the adjacency matrix
of G, i.e., Ai j = 1 if there is an edge between i and j in G and Ai j = 0 otherwise. Condition (1) is equivalent
to xTAx = 0, which can be checked using integer matrix-vector multiplication to verify Ax, followed by an
inner-product scheme to verify xTAx. Condition (2) can be checked trivially while the helper specifies L by
requiring the nodes of L′ to be marked. To check (3), notice that |Γ(L′)| is equal to the number of non-zero
entries in the vector Ax. This can be computed while the verifier checks (1), and that |Γ(L′)|< |L′|.

The result is an online (kn1+α logn,nα logn)-scheme for 0≤ α ≤ 1, where k is an a priori upper bound
on the number of times each edge may be duplicated.

7.3 Bipartiteness

The problem of determining if a graph is bipartite was considered in the standard stream model [28,29], and
it can be shown that any one-pass algorithm without annotations needs Ω(n) bits of space. In our model,
the helper can convince a verifier with O(logn) space whether a graph is bipartite, using only O(m logn)
annotation, and we show that this is essentially the best possible for sparse graphs where m = O(n) using a
reduction from DISJn,2 to bipartiteness. We also achieve tradeoffs between hcost and vcost for dense graphs,
obtaining an online (n1+α logn,n1−α logn)-scheme for each α ∈ [0,1].
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Theorem 7.6. There exists an online (m logn, logn)-scheme for determining whether a graph is bipartite, as
well as an online (n1+α logn,n1−α logn)-scheme for each α ∈ [0,1]. Any (h,v)-scheme (online or prescient)
for bipartiteness requires hv = Ω(n) even when m = O(n).

Proof. In both the (m logn, logn)-scheme and the (n1+α logn,n1−α logn)-scheme, the helper proves that
a graph is non-bipartite by providing an odd cycle C. The verifier must check that the number of edges
in C is odd, that C is a cycle, and that C ⊆ E. The verifier can easily perform the first two checks in
logarithmic space. In the (m logn, logn)-scheme, the verifier checks that C ⊆ E using Lemma 5.1, and in
the (n1+α logn,n1−α logn)-scheme, the verifier checks that C ⊆ E using Theorem 5.2.

In both schemes, the helper proves that a graph is bipartite by specifying all nodes L in the left set of a
bipartition. Checking that L is indeed a bipartition of G can be done exactly as in Theorem 7.5.

For the lower bound, we reduce an instance (x,y) ∈ {0,1}n×{0,1}n of DISJn,2 to an instance of bipar-
titeness on a graph with O(n) edges over nodes (vi j)i∈[3], j∈[n]. For each j ∈ [n], create edges (v1 j,v2 j); if
x j = 1, add the edge (v1 j,v3 j), and if y j = 1, add the edge (v2 j,v3 j). The resulting graph contains an odd
cycle if and only if x and y are not disjoint.

7.4 Connectivity

The problem of determining if a graph is connected was considered in the standard stream model [28, 37]
and the multi-pass W-stream model [27]. In both models, it can be shown that any constant-pass algorithm
without annotations needs Ω(n) bits of space. Similar to bipartiteness, in our model the helper can convince
a verifier with O(logn) space whether a graph is connected, using only O(m logn) annotation. This is
essentially the best possible for sparse graphs where m = O(n) by combining a reduction from [28] with
Theorem 3.1. We also achieve tradeoffs between hcost and vcost for dense graphs, obtaining an online
(n1+α logn,n1−α logn)-scheme.

Theorem 7.7. There exists an online (m logn, logn)-scheme for graph connectivity, as well as an online
(n1+α logn,n1−α logn)-scheme for each α ∈ [0,1]. Any (h,v)-scheme (online or prescient) for connectivity
requires hv = Ω(n) even when m = O(n).

Proof. We begin with the (m logn, logn)-scheme. If the graph is connected then there exists a spanning tree
T directed towards the root and an injective labeling of the nodes f : V → [n] such that each non-root node
with label j is linked to exactly one node with label greater than j. The helper outputs such a function f , and
the verifier ensures that it is an injection. Then each (directed) edge (u,v) in T and its labels f (u)< f (v) is
presented in decreasing order of f (u). The verifier checks this order, and ensures that it is consistent with f
via fingerprinting (as per Lemma 5.1). The helper must also list all edges, so that the verifier can ensure that
all T edges are from the input.

If the graph is not connected then the helper presents a connected component L of the graph. Each node
is presented in lexicographic order, along with its label indicating whether or not it is in L, and each edge
is presented along with the corresponding node labels. The verifier checks that L 6= V , uses fingerprinting
to ensure no edge is omitted, and uses the multiset scheme of Lemma 5.1 to ensure that the node labels are
consistent.

The (n1+α logn,n1−α logn)-scheme follows the same conceptual outline as above: if G is connected, the
helper demonstrates this by providing a spanning tree; if G is disconnected, the helper identifies a connected
component of the graph. In the first case, the helper provides a set of edges T claimed to be a spanning tree,
and the verifier must check that (1) T is spanning and that (2) T ⊆ E. Checking (1) is accomplished as in
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the (m logn,1) case, by appropriate labelling of the O(n) edges, with O(n) annotation. By Theorem 5.2,
condition (2) can be checked with space O(n1−α logn) and annotation O(n1+α logn).

If G is disconnected, the helper presents a set L⊂V , L 6=V , and claims that L is disconnected from V \L.
Let A be the adjacency matrix of G, and let x ∈ {0,1}n be the indicator vector of L. To check that L is as
claimed, it suffices for the verifier to compute Ax, and check that the each non-zero entry of Ax corresponds
to vertices in L (intuitively, this means the set L′ of vertices at distance one from L is contained in L). The
first step uses the integer matrix-vector multiplication scheme of [20, Theorem 4]. This allows the verifier
to ensure that the set {i : (Ax)i 6= 0} matches L, via fingerprints.

For the lower bound, we reduce an instance of DISJn,2 to connectivity of a graph with O(n) edges over
nodes v0,0 . . .v3,n: create edges (v j,0,v j,i) for j ∈ {0,2,3} and i ∈ [n]. Then if xi = 1, add edge (v0,i,v1,i),
else add edge (v1,i,v2,i); and if yi = 1, add edge (v1,i,v3,i) else add edge (v2,i,v3,i). The resulting graph is
connected only if x and y are not disjoint. The result follows from Theorem 4.4.

8 Open Problems

Up to logarithmic factors, we have resolved the cost of annotated data streaming protocols for a number of
fundamental streaming problems, including exact computation of INDEX, frequency moments, and bipartite
perfect matching. However, we have also presented several non-trivial annotated data streaming protocols
whose optimality we cannot yet establish. In particular, the following problems remain open.

• Although we achieved essentially optimal tradeoffs for exact computation of the kth frequency mo-
ment, Fk, for constant k, the complexity of approximate computation of frequency moments remains
unresolved. Theorem 4.3 proves that any (h,v) scheme (online or prescient) that approximates Fk up
to a constant factor requires hv = Ω(n1−5/k). It is not possible to prove a lower bound better than
hv = Ω̃(n1−2/k) since there exist standard (Merlin-less) streaming algorithms for computing Fk that
use O(n1−2/k logn) space [6,11]. We clarify that it is not known how to achieve a (h,v)-scheme for all
h · v≥ n1−2/k, only for h = O(1), v = Θ̃(n1−2/k). It would be interesting to close the gap between the
Õ(n1−2/k) upper bound and the Ω(n1−5/k) lower bound, and to determine if smooth tradeoffs between
h and v are possible.

• Assume m = O(n). Determine whether there is an (h,v) scheme (online or prescient) for exactly
computing F0 for which h and v are both O(n2/3−δ ) for some constant δ > 0. A negative answer
to this question would prove the optimality of Theorem 4.6. Note Gur and Raz have recently given
an (
√

n polylog (n),
√

n polylog n) scheme for F0 in the more powerful model where the helper and
verifier have access to a public random string.

• Determine whether there is an (online or standard) MA communication protocol for counting triangles
of cost O(n3/2−δ ) for some constant δ > 0 (cf. [45]). A negative answer to this question would prove
the optimality of Theorem 7.4 and resolve the (online or standard) MA communication complexity of
counting triangles.

• Determine whether there is an (online or standard) MA communication protocol for connectivity or
bipartiteness of cost n1−δ for some constant δ > 0. A negative answer to this question would resolve
the (online or standard) MA communication complexity of connectivity and bipartiteness. Such a
protocol would be interesting even if it only works under the promise that the graph is sparse, that is,
that the graph contains m = O(n) edges.
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