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Abstract

In the standard setting of communication complexity, two players each have an input and they wish
to compute some function of the joint inputs. This has been the object of much study and a wide
variety of lower bound methods have been introduced to address the problem of showing lower bounds
on communication. Recently, Jain and Klauck introduced the partition bound, which subsumes many of
the known methods, in particular factorization norm (72), discrepancy, and the rectangle (corruption)
bound.

Physicists have considered a closely related scenario where two players share a predefined entangled
state. Each is given a measurement as input, which they perform on their share of the system. The
outcomes of the measurements follow a distribution which is predicted by quantum mechanics. Physicists
want to rule out the possibility that there is a classical explanation for the distribution, through loopholes
such as communication or detector inefficiency. In an experimental setting, Bell inequalities [Bel64] are
used to distinguish truly quantum from classical behavior.

We present a new lower bound technique based on the notion of detector inefficiency (where some
runs are discarded by either of the players) for the extended setting of simulating distributions, and show
that it coincides with the partition bound in the special case of computing functions. As usual, the dual
form is more feasible to use, and we show that it amounts to constructing an explicit Bell inequality.
We also give a lower bound on quantum communication complexity which can be viewed as a quantum
extension of the rectangle bound, effectively overcoming the necessity of a quantum minmax theorem.

For one-way communication, we show that the quantum one-way partition bound is tight for classical
communication with shared entanglement up to arbitrarily small error.

Finally, an important goal in physics is to devise robust Bell experiments that are impervious to noise
and detector inefficiency. We make further progress towards this by giving a general tradeoff between
communication, Bell inequality violation, and detector efficiency.
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1 Introduction

1.1 Communication complexity and the partition bound

Recently, Jain and Klauck [JK10] proposed a new lower bound on randomized communication complexity
which subsumes two families of methods: the algebraic methods, including the nuclear norm and factoriza-
tion norm, and combinatorial methods, including discrepancy and the rectangle or corruption bound. The
algebraic methods and discrepancy give lower bounds on quantum communication complexity, whereas the
rectangle bound can show polynomial lower bounds on randomized communication complexity for problems
known to have logarithmic quantum protocols.

A longstanding open problem is whether there are total functions for which there is an exponen-
tial gap between classical and quantum communication complexities. Many partial results have been
given [NS96, BCWdWO01, BYJKO08, GKK™'08], most recently [KR11].  These strong randomized lower
bounds all use the distributional model, in which the randomness of the protocol is replaced by randomness
in the choice of inputs, which are sampled according to some hard distribution. The equivalence of the
randomized and distributional models, due to Yao’s minmax theorem [Yao83], comes from strong duality
of linear programming. This technique appears to be inherently non-applicable to quantum communication
complexity (see for instance [dGdW02] which considers a similar question in the setting of query complexity),
and the rectangle bound, as a result, is understood to be a strictly classical method for lower bounds.

Contrary to previous combinatorial type lower bounds, the partition bound is proven directly for random-
ized protocols, without first going to the distributional model. Although the partition bound re-introduces
LP duality, the dual variables can no longer be interpreted as a (hard) distribution on the inputs. By the
same token, it is harder to get intuition on how to obtain concrete lower bounds for explicit functions.

1.2 Bell experiments

Quantum information gives us a different viewpoint from which to consider lower bounds for communication
complexity. A fundamental question of quantum mechanics is to establish experimentally whether nature
is truly quantum, or whether there is a purely classical explanation to the quantum phenomena that have
been observed in the lab. In an experimental setting, two players share an entangled state and each player is
given a measurement to perform. The outcomes of the measurements are predicted by quantum mechanics
and follow some probability distribution p(a, b|z,y), where a is the outcome of Alice’s measurement x, and b
is the outcome of Bob’s measurement y. (We write p for the distribution, and p(a, bz, y) for the individual
probabilities.) A Bell test [Bel64] consists of estimating all the probabilities p(a, b|z,y) and computing a Bell
functional, or linear function, on these values. The Bell functional B(p) is chosen together with a threshold 7
so that any classical distribution p’ verifies B(p’) < 7, but the chosen distribution p violates this inequality:
B(p) > .

Although there have been numerous experiments that have validated the predictions of quantum me-
chanics, none has been totally “loophole-free”. A loophole can be introduced, for instance, when the state
preparation and the measurements are imperfect, or when the detectors are partially inefficient so that no
measurement is registered in some runs of the experiment, or if the entangled particles are so close that
communication may have taken place in the course of a run of the experiment. In such cases, there are
classical explanations for the results of the experiment. For instance, if the detectors were somehow coordi-
nating their behavior, they may choose to discard a run, and though the conditional probability (conditioned
on the run not having been discarded) may look quantum, the unconditional probability may very well be
classical. This is called the detection loophole. When an experiment aborts with probability §, we say that
the efficiency is n = 1 — §. (Here we assume that individual runs are independent of one another.) To close
the detection loophope, the efficiency has to be high enough so that the classical explanations are ruled out.

What can Bell tests tell us about communication complexity? Both are measures of how far a distribution
is from the set of local distributions (those requiring no communication), and one would expect that if a
Bell test shows a large violation for a distribution, it should require a lot of communication, and vice versa.
Degorre et al. showed that the factorization norm amounted to finding large Bell inequality violations for a



particular class of Bell inequalities [DKLR11]. Here, we show that the partition bound also corresponds to
a class of Bell inequalities.

1.3 Summary of results

We focus on detector efficiency and see that it is closely related to the partition bound. If we assume there is
a c-bit classical communication protocol where Alice and Bob output a,b with distribution p(a, b|z, y) when
Alice’s input is « and Bob’s input is y, then there is a protocol without communication that outputs according
to p (conditioned on the run not being discarded) that uses shared randomness and whose efficiency is 27¢:
both players guess a transcript, and if they disagree with the transcript, they abort. Otherwise they follow
the protocol using the transcript. As others have noticed [Mas02, BHMRO03], one can immediately derive
a lower bound: let 1 be the maximum efficiency of a protocol without communication that successfully
simulates p with shared randomness. We define eff(p) = 1/n, and log(eff(p)) is a lower bound on the
communication complexity of simulating p. Though this may sound naive, this gives a surprisingly strong
bound which coincides with the partition bound.

When we turn to the dual formulation, we get a natural physical interpretation, that of Bell inequalities.
To prove a lower bound amounts to finding a good Bell inequality and proving a large violation. This is similar
to finding a hard distribution and proving a lower bound in the distributional model of communication; but
it is much stronger since the Bell functional is not required to have positive coefficients that sum to one.

Our approach leads naturally to a “quantum partition bound” which gives a lower bound on quantum
communication complexity. Let eff*(p) = 1/n*, where n* is the maximum efficiency of a protocol without
communication that successfully simulates p with shared entanglement. In the one-way setting, our quantum
partition bound is tight. To our knowledge this is the first quantum lower bound known to be tight.

Simulating distributions while allowing for runs to be discarded with some probability corresponds to a
zero-error randomized protocol. (Jain and Klauck [JK10] also introduce a Las Vegas partition bound for
zero-error protocols.) This is a stronger requirement than allowing a probability of error since the errors
are flagged. Lee and Shraibman give a proof of the factorization norm (v2) lower bound on (quantum)
communication complexity based on the best bias one can achieve with no communication [LS09a, Theorem
60] (attributed to Harry Buhrman; see also Degorre et al. [DKLR11]). In light of our formulation of the
(quantum) partition bound, it is an easy consequence that the (quantum) partition bound is an upper bound
on vys.

The following gives a brief summary of our main results. Full definitions and statements are given in the
main text. Let prt(p) be the partition bound for a distribution p (defined in Section 3.1). Ry(p) denote the
communication complexity of simulating p exactly using shared randomness and classical communication,
and Qo(p) denote the communication complexity of simulating p exactly using shared entanglement and
quantum communication. R?(p) and Q?(p) are defined similarly, except that the players are allowed to
abort the protocol with probability at most 1 — 7, and when none of them aborts, the distribution they
obtain should lie at distance at most € from p. One-way communication, where only Alice sends a message
to Bob, is denoted —. In the simultaneous messages model, each player sends a message to the referee, who
does not know the inputs of either player, and has to produce the output. This is denoted by the superscript
||. Shared entanglement is indicated by the superscript *. For any distribution p,

e Theorem 4: prt(p) = eff (p).

e Theorem 5: Q}(p) > 1 log(eff*(p))

e Theorem 6: v2(p) < 2eff*(p) and v(p) < 2eff(p) (for any non-signaling p).
e Theorem 8: R} (p) < O(eff*(p)) and R(p) < O(+/eff (p)).

In the case of one-way communication, the upper bounds are much tighter. The one-sided efficiency
measure, which we denote eff ™~ is given in Definition 7.

e Theorems 10, 11: log(eff™ ™ (p)) < Qg (p) and QY™ (p) < log(eff™ ™ (p)) + O(1).



We can use smoothing to handle e error, and demonstrate how this is done in practice in the examples
given in the appendices. For simplicity we have omitted these details in this summary. In the case of boolean
functions, this is equivalent to relaxing the exactness constraints in the linear programs.

1.4 Related work

The question of simulating quantum distributions in the presence of inefficient detectors has long been the
object of study, since the reality of the experimental setups is that whenever the detectors can be placed far
apart enough to prevent the communication loophole (typically in optics setups), the efficiency is extremely
small (on the order of 5%). Gisin and Gisin show that the EPR correlations can be reproduced classically
using only 75% detector efficiency [GG99].

Massar exhibits a Bell inequality that is more robust against detector inefficiency based on the distributed
Deutsch Josza game [Mas02]. The Bell inequality is derived from the lower bound on communication com-
plexity for this promise problem [BCW98, BCT99]. He shows an upper bound of eff (p) on expected com-
munication complexity of simulating p. He also states, but does not claim to prove, that a lower bound
can be obtained as the logarithm of the efficiency. Buhrman et al. [BHMR03, BHMRO06] show how to get
Bell inequalities with better resistance to detector inefficiency by considering multipartite scenarios where
players share GHZ type entangled states. The technique is based on the rectangle bound and they derive a
general tradeoff between monochromatic rectangle size, efficiency, and communication. They show a general
lower bound on multiparty communication complexity which is exactly as we describe above.

Buhrman et al. [BRSdW11] show gaps between quantum and classical winning probability for games
where the players are each given inputs and attempt, without communication, to produce outputs that
satisfy some predicate. In the classical case they can use shared randomness and in the quantum case,
they use shared entanglement. Winning probabilities are linear so these translate to large Bell inequality
violations.

Lower bounds for communication complexity of simulating distributions were first studied in a systematic
way by Degorre et al. [DKLR11]. These bounds are shown to be closely related to the nuclear norm and
factorization norm [LS09b], and the dual expressions are interpreted as Bell inequality violations.

2 Preliminaries

2.1 Classical partition bound

The partition bound of Jain and Klauck [JK10] is given as a linear program, following the approach that
was introduced by Lovész [Lov90] and studied in more depth by Karchmer et al. [KKN95]. It differs from
the rectangle and other combinatorial bounds in that it is formulated directly on the randomized protocol,
as opposed to first applying Yao’s minmax theorem to reduce to a deterministic protocol with distributional
inputs. From a c-bit, e-correct randomized protocol one can infer a distribution over rectangle partitions of
size at most 2¢, where each rectangle is assigned an output value z. Set weights wg , to be the probability
that that rectangle R occurs with label z (the same rectangle may occur in different partitions, with different
labels and different probabilities). This is a feasible solution to the following linear program.

Definition 1 (Partition bound [JK10]). Let f : X x ¥ — Z be any partial function whose domain we write
f~Y. Then prt.(f) is defined to be the optimal value of the LP:

prte (f) = min ZR,Z WR,z

wR,zZO
subject to ZR:(m,y)ER WR, f(ay) = 1 —€ Vr,y€ f!
Zz ZR:(Ly)ER WR,z = 1 vx’y eXx)y



Our feasible solution verifies all the constraints and the objective value is at most 2¢, therefore R.(f) >
log(prt (f)). Jain and Klauck show that the partition bound subsumes a large number of previously known
techniques, in particular the factorization norm [LS09b], rectangle or corruption bound [Yao83], and discrep-
ancy [CG85, BNS89].

2.2 Local and quantum distributions

Given a distribution p, how much communication is required if Alice is given x € X, Bob is given y € ),
and their goal is to output a,b € A x B with probability p(a, b|z,y)?

Some classes of distributions are of interest and have been widely studied in quantum information theory
since the seminal paper of Bell [Bel64]. The local deterministic distributions, denoted ¢ € Lget, are the ones
where Alice outputs according to a deterministic strategy, i.e., a (deterministic) function of z, independently
of Bob, who outputs as a function of his input y. The local distributions £ are any distribution over the
local deterministic strategies. These correspond to taking convex combinations of the local deterministic
distributions, and operationally are interpreted as using shared randomness (“local hidden variables”) to
decide on a local deterministic strategy.

We will also consider local strategies that are allowed to output L when the players abort the protocol.
We will use the notation Ej-et and £+ to denote these strategies, where L is added to the possible outputs
for both players, and L & AUB. When £ € Ljet or L+, I(a,b|z,y) is not conditioned on a,b # 1.

The quantum distributions, denoted q € Q, are the ones that result from applying measurements to each
part of a shared entangled bipartite state. Each player outputs the measurement outcome. If the players
are allowed to abort, then the corresponding set of distributions is denoted Q.

Consider a boolean function f : X x ¥ — {0,1} whose communication complexity we wish to study.
First, we split the output so that if f(z,y) = 0, Alice and Bob are required to output the same bit, and if
f(z,y) = 1, Alice and Bob output different bits. Let us further require Alice’s marginal distribution to be
uniform, likewise for Bob. Call the resulting distribution ps. If py were local, f could be computed with
one bit of communication using shared randomness: Alice sends her output to Bob, and Bob XORs it with
his output. If py were quantum, there would again be a 1-bit protocol with shared entanglement for f. We
are usually interested in distributions requiring nontrivial communication complexity, and lie well beyond
these sets.

2.3 Communication complexity measures

R.(p) is the minimum amount of communication necessary to reproduce the distribution p in the worst case,
up to € in total variation distance for each x,y. We will use the notation |p — p’|; < € to mean that for any
.Y, Dap P(@ 0|z, y) — p(a,b]z,y)| < e

R{(p) is the amount of communication needed to reproduce p exactly with a protocol which may abort
with probability at most 7 for any input x,y (the probability that it aborts may depend on z,y). The
probability produced by the protocol is conditioned on the event that neither player aborts. When the
player aborts it outputs L.

For quantum communication, we use @ to denote quantum communication, and we use the superscript *
to denote the presence of shared entanglement. We use superscripts — for one-way communication (i.e, when
only Alice can send a message to Bob), and || for simultaneous messages (i.e., when Alice and Bob cannot
communicate to each other, but are only allowed to send a message to a third party who should produce
the final output of the protocol). The usual relation Q7(p) < R?(p) holds for any ¢,n, p. Moreover, since
one can always output at random instead of aborting, which introduces at most 1 — n error for each x,y, we
have the following relation between R.(p) and R?(p).

Lemma 1. For any €,n and any distribution p, we have Ry (1_p) (p) < RY(p).

For all the models of randomized communication, we assume shared randomness between the players.
Except in the case of simultaneous messages, this is the same as private randomness up to a logarithmic
additive term [New91].



3 Partition bound and detector inefficiency

3.1 The partition bound for distributions

We now give our extension of the partition bound to the setting where we wish to simulate a distribution
p(a,b|z,y) instead of computing a function. In this setting, protocols with shared randomness also lead
to a distribution over rectangle partitions; however, since each player ouputs a value, the label associated
with each rectangle is a local deterministic distribution, which we denote by ¢. Here we give a more general
definition, for protocols that use communication and allow the players to abort a run with some fixed
probability 1—7. The partition bound corresponds to the case = 1 and the Las Vegas partition bound [JK10]
is closely related to the case n = 1/2.

Definition 2. For any distribution p = p(a,b|z,y), over inputs x € X,y € Y and outputs a € Ab € B,
define prt"(p) to be the optimal value of the following linear program. The variables of the program are wr e,
where R ranges over all the rectangles from X x Y and £ ranges over all the local deterministic distributions,
with outputs in A x B.

prt”(p) = min Z WR, ¢

wR >
® R0EL e

subject to Z wr.e - U(a,blz,y) = pla,blz,y) - 1y Va,y,a,b € XXYxAXB
RELyer:x,yER

77§77z,y§1 Ve,y e X x ).
When n = 1 we write prt(p) = prt!(p). In this case the linear program simplifies:

prt(p min Z WR,¢

wr,e>0

subject to Z wrye - la,blz,y) = p(a,blz,y) Va,y,a,b € XXYXAXB
Rl:x,yER

For randomized communication with error, we define prt!(p) = minj, _p|, <. prt”(p’).
Theorem 2. For any distribution p, R?(p) > log(prt?(p)).

We have included a direct proof of the theorem in Appendix A, which for n = 1 is essentially the same
as the original partition bound, sketched above, where output values z are replaced with local deterministic
strategies £. We will now turn to an alternative, arguably simpler, proof by introducing the efficiency bound.

3.2 The efficiency bound

For any distribution p, we define eff (p) in terms of the maximum efficiency sufficient to simulate it classically
with shared randomness and without communication.

Definition 3. For any distribution p with inputs in X x Y and outputs in A x B, define eff(p) = 1/(opt,
where Cops 15 the optimal value of the following linear program. The variables are ¢ and q¢, where ¢ ranges
over local deterministic protocols with inputs taken from X x Y and outputs in AU{L} x BU{L}.

Copt = Imax C

¢,q020
subject to Z qel(a,blx,y) = (p(a,blz,y) Vz,y,a,b € XXYXAxB
ltely,
> a=1
ey

det

For randomized communication with error, we define eff(p) = min, _,|, <. eff(p’).



The first constraint expresses the fact that the local distribution, conditioned on both outputs differing
from 1, equals the target distribution, and the second is a normalization constraint. Note here that the
efficiency ( is the same for every input z,y. We could relax to (;,, > ¢ to get another useful lower bound.
However, this bound does not appear to coincide with the partition bound so we do not consider it in detail
here.

Theorem 3. [Mas02, BHMR03] R.(p) > logeff(p).

Proof (sketch). Let P be a randomized communication protocol for a distribution p’ with [p—p’|; < €, using
t bits of communication. We assume that the total number of bits exchanged is independent of the execution
of the protocol, introducing dummy bits at the end of the protocol if necessary. We construct a distribution
q; over local deterministic protocols ¢ as follows: Alice and Bob pick a random transcript 7' € {0,1}! using
shared randomness. If T is consistent with P, Alice outputs according to P, otherwise she outputs L;
similarly for Bob. Note that since only one transcript can be valid for Alice and Bob simultaneously, the
probability that neither player outputs L is exactly 27¢. Therefore, this satisfies the constraints of eff(p’)
with ¢ =271, O

We are now ready to show that the two bounds are equal.
Theorem 4. For any distribution p, eff(p) = prt(p).

Proof. In the partition bound, a pair (¢, R), where £ is a local distribution with outputs in A x B and R is
a rectangle, defines a local distribution 5 with outputs in (AU {L}) x (BU{L}), where Alice outputs as
in £ if x € R, and outputs L otherwise (similarly for Bob). We can transform the LP for prt(p) into the LP

-1
for eff(p) by making the change of variables: ¢ = (ZR’Z ’LUR)z) and ¢, = ¢ wre. O

We define eff”(p) which is equal to prt”(p). The details are given in Appendix B.

3.3 Lower bound for quantum communication complexity

By replacing the local distributions by quantum distributions we get a lower bound on quantum communi-
cation. Insomuch as the partition bound is an extension of the rectangle bound, this quantum analogue of
the partition bound can be thought of as a lower bound on quantum communication complexity using an
extension of the rectangle bound, effectively circumventing Yao’s minmax theorem.

Definition 4. For any distribution p with inputs in X x )Y and outputs A x B, define eff*(p) = 1/n*, where

*

n* is the optimal value of the following (non-linear) program.
max
C,qGQ*C
subject to q(a,blz,y) = C(p(a,b|z,y) Vz,y,a,b € XxYxAxB

As before, we let eff?(p) = miny, |, <. eff™(p’).
Theorem 5. Q*(p) > %1og eff; (p).

Proof (sketch). Let @ be a t qubit communication protocol for p’ with |p’ — p|;1 < e. We use teleportation
and classical communication to send every qubit, hence obtaining an entanglement-assisted protocol using
at most 2t bits of classical communication. We also introduce dummy bits so that the number of bits
exchanged is exactly 2t, independently of the execution of the protocol. Then proceed as before: guess a
classical transcript and abort if the transcript is not valid. Otherwise output according to the protocol.
The result is a protocol using zero communication and entanglement with efficiency 272¢, satisfying the
constraints of the program. O

Since the local distributions form a subset of the quantum distributions, eff*(p) < eff(p) for any p.



3.4 Upper bound for the factorization norm

Jain and Klauck have shown that the partition bound is an upper bound on 75 for boolean functions (in
fact they show that the weaker smooth rectangle bound is an upper bound on 7, as well) [JK10]. The lower
bounds v and 2 were extended to nonsignaling distributions by Degorre et al [DKLR11]. Nonsignaling
distributions are superset of quantum distributions for which the marginal distributions are independent of
the other player’s input.

Definition 5 (Non-signaling distributions). A bipartite, conditional distribution p is non-signaling if

Va,z,y,y', Y, p(ablz,y) =, pla,blz,y),
Vo, z, 'y, >, p(a,blr,y) =3, pla,blz’,y).

Definition 6 ([DKLRI11]). For any non-signaling distribution p,
e v(p)=min{}, [¢|: Ipi € L,qs e R,p =3, ¢;Pi},
e 72(p) =min{}>, |¢;|: Ip; € Q¢ €R,p =3, aipi},

It was shown that for any Boolean function f, the factorization norm v(f) = ©(v2(pys)), and similarly
for the nuclear norm, v(f) = O(v2(py)) [DKLR11]. (The definition of p; is given in Section 2.2.)

Theorem 6. For any nonsignaling p, v(p) < 2eff(p) and y2(p) < 2eff*(p).

Proof. We sketch the proof for v9 vs eff*. The proof for v vs. eff is similar.

Let ¢,q be an optimal solution for eff*(p). Then q(a,b|z,y) = (p(a,blz,y)Vr,y,a,b € XxYXAxB,
where q outputs | with probability 1 — ¢ for every z,y. Define q € Q as the distribution where the players
output according to q unless their outcome is 1, in which case they output independently from the other
player, uniformly at random from .4 or B. We can write ¢(a, b|z,y) = q(a, bz, y)+(1—)r(a, b|z, y) where r is
the distribution q conditioned on one of the players having output 1 when they ran q. Notice that r is local
(it is a distribution over product distributions). Therefore, on A Xx B, p = %q = %(:1— %r . This is an affine

combination of quantum distributions (that do not output L) so v2(p) < \%| +]- %| =2eff*(p) —1. O

For Boolean function, the gap between v and s is known to be at most a multiplicative constant (by
Grothendieck’s inequality). However there is no immediate way to conclude similarly for eff vs. eff*. Since
these are stronger bounds, determining the largest possible gap between these measures could lead to further
evidence towards the existence, or not, of exponential gaps between quantum and classical communication
complexity for total boolean functions.

3.5 Proving concrete lower bounds using the dual

To prove lower bounds on communication complexity, it is helpful to use the dual formulation, where it
suffices to give a feasible solution.

Lemma 7 (Dual formulation of the efficiency bounds). For any distribution p,

eﬂ(p) = lg,nax Z Babacyp(av b|JC, y)
abry a,b,x,y€EAXBXX XY
subject to Z Bapayl(ablzy) <1 Vi€ Ly,
a,b,x,y€EAXBXX XY
eft” (p) = gz?ji Z Babmyp(av b|£L’, y)

a,b,x,y€ AXBXX XY

subject to Z Bapayq(ablzy) <1 Vqe Ot
a,b,x,y€ AXBXX XY



The first part is shown using linear programming duality and the second can be shown using Lagrange
multipliers.

Concretely, how does one go about finding a feasible solution to the dual? Consider a distribution p for
which we would like to find a lower bound. We construct a Bell inequality B(p) = Za,b@',y Bpayp(a,blz,y)

such that B(p) is large, and B({) is small for every £ € L+. The goal is to balance the coefficients in such
a way that they correlate well with the distribution p and badly with local strategies. For B({) to be small
for local strategies, we can apply a small weight or even a penalty (negative weight) when the local strategy
is incorrect. For B(p) to be large, we can assign a positive coefficient when the outcome is correct, or if it
should occur with high probability. Weights can be zero when the input is not contributing to the hardness
of the problem.

We give an example in Appendix C for a distribution based on the Hidden Matching problem [BYJKO08,
GKK™'08, BRSdW11]. In Appendix D, we study the Khot Vishnoi game for which there is a large Bell
inequality violation [KV05, BRSdAW11]. We reformulate it as a distribution which can be simulated with
shared entanglement and no communication, and give a randomized communication lower bound of log(n)
for this distribution. The proofs use many of the techniques Burhman et al. used to establish large Bell
inequality violations [BRSAW11].

4 Upper bounds for one- and two-way communication

The efficiency and partition bounds subsume many known lower bound techniques for randomized commu-
nication complexity. How close are they to being tight? An upper bound on randomized communication
is proven by Massar [Mas02]. We give a similar bound for quantum communication complexity in terms of
eff*.

Theorem 8. For any distribution p with outputs in A, B,
o [Mas02] R (p) < log(11;)eff(p) log(#(A x B))

o R*"ll(p) < %bg(ﬁ)eﬂ?*(p) log(#(A x B))

e B(p) < O (y/lon(1)ef" (b))

Proof. For the first item, let P be a zero-error, zero-communication protocol with shared randomness for
p which has efficiency ¢ = ﬁﬁ#(m' Alice and Bob run the protocol N = ﬂog(ﬁ)%} times and send their
outcome to the referee in each run. If the referee finds a valid run (neither player aborts), he produces the
corresponding outputs; otherwise he aborts. Since each run has a probability n of producing a valid run, the
probability that the referee aborts is (1 — )V < e SN <1 —n.

For the second item, the proof is the same but the players share entanglement to run the protocol with
shared entanglement and efficiency ﬁ.

If multiple rounds of communication are allowed, then a quadratic speedup is possible in the quantum
case by using a protocol for disjointness [BCW98, HAW02, AA05] on the input u,v of length N, where w; is

0 if Alice aborts in the ¢th run and 0 otherwise, similarly for v with Bob. O

The partition and efficiency bounds can easily be tailored to the case of one-way communication proto-
cols. In the case of the partition bound, we consider only rectangles of the form X x Y with Y = Y. In
the case of the efficiency bound, this amounts to only letting Alice abort the protocol. We give the results
for quantum communication since the rectangle bound is already known to be tight for randomized commu-
nication complexity [JKNO8]. The set of local (resp. quantum) distributions where only Alice can abort is
denoted L34 (resp. Q+4).



Definition 7. Define eff ~ and eff ™ as

(eff 7 (p)) ™" = max ¢

¢,q¢2>0
subject to Z qel(a,blz,y) = (p(a,blz,y) Vae A,be Bx,ye X xY
LeLta
=1
teLyy
eff ™ 1= max
(" () = _max ¢
subject to q(a,blz,y) = (p(a,blz,y) Vae A,be B,z,ye X x ).

The dual can also be interpreted as violations of Bell inequalities.

Lemma 9 (Dual formulation for one-way efficiency). For any p,

off ~(p) = max > Babzyp(a, bz, y)
abey a,b,z,y AXBXX XY
subject to Z Bapayl(a, blz,y) <1 Ve L34
a€AbEB,x,yc X XY

Theorem 10. Ry (p) > logefl " (p) and Q5 (p) > logeff™ ™ (p).

The proof is similar to the two-way case. Here we show that the quantum partition bound is tight, up
to arbitrarily small inefficiency.

Theorem 11. For any distribution p and efficiency n < 1, Q5™ (p) < log(eff*~ (p)) + loglog(1/(1 —n)).

Proof. Let ((,q) be an optimal solution for eff® " (p). For any z,y, if we sample a,b according to q,
Prqla # L|z] = ¢ and Pryla, blz, y] = (p(a,blx,y) for all a,b # L and all z,y. Let Alice and Bob simulate
this quantum distribution N = flog(ﬁ)%l times, keeping a record of the outputs (a;,b;) for ¢ € [N].
Since this distribution is quantum, this requires no communication (only shared entanglement). Alice then
communicates an index i € [N] such that a; # L, if such an index exists, or just a random index if a; = L
for all ¢ € [N]. Alice and Bob output (a;, b;) corresponding to this index.

The correctness of the protocol follows from the fact that Pryla; = L(Vi)] = (1 — )N <e N <1—n.

The protocol then requires log N = —log { + log log(ﬁ) bits of communication. O

Finally, we show that R]"™ depends on n by at most an additive constant. The same is also true in the
quantum model.

Lemma 12. For any distribution p and efficiencies 0 < n <n' <1, Rl (p) < Rg/’ﬂ(p) <RI (p) —
logn + loglog(1/(1 — 7).

Proof (sketch). The proof is as above, except that we start from a protocol for p with efficiency 7 instead of
a quantum distribution. Note that Alice only needs to send the communication corresponding to the original
protocol for the successful attempt. O

As an application, we show in Appendix C that R (HM) = Q(y/n). for a quantum distribution HM
based on the Hidden Matching problem. Vértesi et al. show that there is a distribution with boolean outputs
p € Q, based on partially entangled states, such that (in our language) eff 7 (p) = Q(2") [VPB10]. Therefore,
Ry (p) = n. Since the states are nearly separable, however R_*(p) = 0 for small enough e.



5 Conclusion and open problems

There are many questions to explore. In experimental setups, in particular with optics, one is faced with
the very real problem that in most runs of an experiment, no outcome is recorded. The frequency with
which apparatus don’t yield an outcome is called detector inefficiency. Can we find explicit Bell inequalities
for quantum distributions that are very resistant to detector inefficiency? For experimental purposes, it is
also important for the distribution be feasible to implement. One way to achieve this could be to prove
stronger bounds for the inequalities based on the GHZ paradox given by Buhrman et al. [BHMRO06]. Their
analysis is based on a tradeoff derived from the rectangle bound. It may be possible to give sharper bounds
with our techniques. Another is to consider asymmetric Bell inequalities and dimension witnesses [BPA108,
VPBI10]. Here, Alice prepares a state and Bob makes a measurement. The goal is to have a Bell inequality
demonstrating that Alice’s system has to be large. The dimension is exponential in the size of Alice’s
message to Bob, so proving a lower bound on communication gives a lower bound on the dimension. For the
detection loophole, one can also consider more realistic models of inefficiency. The inefficiency might depend
on the measurements, or we might assume that the players abort independently. (The latter is a standard
assumption among experimentalists, who do not tend to view inefficiency as adversarial.)

We would like to see more applications. For the Khot Vishnoi distribution, we are not aware of any
nontrivial upper bound so there is a gap there to be improved.

A family of lower bound techniques still not subsumed by the partition bound are the information theoretic
bounds such as information complexity [CSWYO01]. It was recently shown that information complexity is
an upper bound on discrepancy [BW11]. We would like to see connections one way or the other between
information complexity and the partition bound (also an upper bound on discrepancy).

Finally, the quantum partition bound is of particular interest. It is hard to apply since it is not linear, and
it amounts to finding a Tsirelson inequality, a harder task to be sure than finding a good Bell inequality, that
can nevertheless be approached via semidefinite programming relaxations [NPA08, DLTW08]. On the other
hand, it is a very strong bound and one can hope to get a better upper bound on quantum communication
complexity. Finding tight bounds complexity would be an important step to proving the existence, or not,
of exponential gaps for total functions.
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From this we construct a feasible solution to the linear program for prt”(p’). For any rectangle R C X XY
and any local distribution ! defined over inputs R and outputs in AU {1} x BU{L}, we set

WR.e = Z q(7).
i,j:R:Ri)j and Z:éi,j

Intuitively, wg ¢ is the probability of finding rectangle R paired together with local strategy ¢ when choosing
a deterministic protocol from P. Each pair R,[ might appear in several of the deterministic protocols in P,
so we take the sum of the probabilities where this pair occurs.

First we claim that the objective function is 2°.

S wre = > q(i)
Rt

R,é ’L‘,j:R:RiJ and Zif,;’j

= > > q0)

1, Rijli;

= 2°) q()

?

= 2°

Now, we claim that all the constraints are verified. For the first constraint, fix any a,b, z,y € AXBXX x ).
By assumption, P outputs according to p’(a, b|z,y), conditioned on having output a value in A x B. Let us
explicitly calculate the (unconditional) probability that P outputs a,b on input z,y. With probability wg, g,
‘P outputs according to the local strategy [ applied on a rectangle R containing x,y. So the probability of
outputting a, b is ZR:w,yeR,z wrye - l(a,blz,y). The conditional probability is obtained by dividing by the
probability of outputting some a’, b’ € A x B on input z,y. This is precisely the quantity 7 ,.
The second constraint follows from the efficiency of P. This completes the proof.
O

B Efficiency bound for protocols with 7 efficiency

In order to prove lower bounds on simulating p with efficiency n < 1, we define the following generalization
of eff(p).

Definition 8. For any distribution p with inputs in X X Y and outputs A x B, define eff"(p) = 1/Copt,
where Copt 5 the optimal value of the following linear program. The variables are (,(yy and qp, where £
ranges over all local deterministic protocols with inputs taken from X x Y and outputs in AU{L} x BU{L}.

= max
Copt = s
subject to Z gel(a,blz,y) = (myp(a, blz,y) Vr,y,a,b € XXxYXAxB
teLy,
> w=1
el

. o . N n
For randomized communication with error, we define eff!(p) = min, _,|, < eff"(p’).

This provides a lower bound for R?(p), which is equivalent to the lower bound obtained from prt?(p)
(we omit the proofs of these statements as they closely follow the lines of the special case n = 1).

Lemma 13. For any distribution p, we have R?(p) > logeff?(p).
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Theorem 14. For any distribution p, eff! (p) = prt?(p).

We can also study the maximum 7 such that p can be simulated with efficiency 7., > n on input z,y,
without any communication. We denote the inverse of this quantity by eff"*(p).

Definition 9. For any distribution p with inputs in X XY and outputs A X B, define eff"*(p) = 1/n, where
n s the mazimum n such that R"(p) = 0.

This quantity can be seen as a relaxation of eff(p), where we no longer require the inefficiency to be the
same for all inputs. Indeed, it can be rewritten as follows.

Lemma 15. For any distribution p, we have eff"*(p) = 1/(opt, where (opy is the optimal value of the
following linear program.

= max
Copt = e
subject to Z qel(a,blz,y) = (myp(a, blz,y) Vr,y,a,b € XXYXAxB
tely,
> a=1
LeLy,,
¢ < Cay Vo, y € Xx).

By comparing the linear programs for the different quantities, we immediately obtain the following
relations:

Lemma 16. For any distribution p, we have n - eff"(p) < eff(p) < n - eff(p).

C Lower bound for a Hidden Matching distribution

We apply the partition bound method on the Hidden Matching probability distribution that we define here.
The Hidden Matching distribution is based on the Hidden Matching problem of [BYJKO08] adapted to the
setting of distributions by Buhrman et al [BRSdW11]. We use many of the ideas and techniques from the
latter to give this “proof of concept” of the partition bound. Some added tricks are needed to get the
partition lower bound to go through.

Definition 10 (Hidden Matching distribution). Alice receives x € {0,1}™ and Bob receives a matching M
over vertices {1,...,n}. Alice has to output a € {0,1}°¢(") and Bob has to output d € {0,1} and (i,5) € M
according to the following distribution, which we call the Hidden Matching distribution:

= if(ei®))ed=1, 0

HM(a, d, 3, j|z, M) = { 6 otherwise.

Theorem 17 ([BRSdW11]). HM € Q, that is, Qo(HM) = 0.

Theorem 18. There exists a constant C > 0 such that, for any 0 < € < %, we have R (HM) > ¥ ggl —
log(n) + log(3 — €).
From the one-way version of Lemma 1, we obtain as a corollary:

Corollary 19. There exists a constant C > 0 such that, for any 0 < n < 1 and 0 < € < 1 — %, we have

27
R (HM) > Y2T _log(n) + log(n — € — 3).
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We give a bound on eff " (HM) = min .,y —nwmp, <e} (eff 7 (p")). To give an upper bound on the Bell value
of local deterministic strategies that may output L, we will use the fact that the larger the rectangle where
neither player aborts, the smaller the success probability of a local deterministic strategy.

To express the success probability of ¢, we will use B-coefficients which will be positive when the ¢-answer
is good and negative if it is not. Normalizing these coefficients, we will obtain an expression of the form : the
size of the rectangle times the difference between the probability that the answer is good and the probability
that it is not. We can bound this value using the fact that each local and deterministic strategy can only
win with a small probability.

However, this idea is not sufficient because even if the success probability decreases when the rectangle
size increases, the rectangle size appears as a multiplicative factor in our expression, and if R is very large,
our expression can be too large. To fix this, we subtract from the Bs some constant that we will call p. It
will be useful just for the large rectangles.

We first recall an application of KKL inequality as explained in [dWO08] which we use in the proof.

Lemma 20. Let A be a subset of {0,1}". Let S be a subset of {1...n}. We define Bs = Ezea ((—1)57)
where S-x =), gx;. Let Sy be the set of subsets of {1...n} of size 2. There exists an absolute constant

C such that
2\ 2
> BE<Clog (A) :
SeSs | |

We now prove the theorem.

Proof. Let p’ be such that [p’ — HM|; < e. We lower bound eff " (p’) using the dual of eff ~ (Lemma 7).

off T(p) = max Y Boaraaigp(a,dijle, M)
= M,a,d,i,3 z,M,a,d,i,j

SUbjeCt to Z B:c,M,(l,d,’L',j ’ l(”‘? d, ’L',j|1‘, M) <1 Vi e E(Ji_e?’
z€X(L),M,a,d,i,j

where we let X (£) be the set of inputs for which Alice does not abort when following the local deterministic
strategy £.

We exhibit coefficients that satisfy the constraints and give us a good lower bound for the objective
function for each p’ close to p.

Vn—1
27 2c
7n2"+1|/\/ln|

N
, 2;c

z,M,a,d,i,j — n2n|Mn|5(1])eM ’

Mz, M =

(,1)<a,i®j>®d@zi@zj

BeMadig = o nadg T e
where ¢ is the Kronecker function, and M,, is the set of matchings over edges {1,...n}.
Verifying the constraints. Let ¢ € Lg; and X = X(¢). The strategy ¢ partitions the set X into
U, Xa where Alice outputs a, and M,, into Ud’i’j Ry, ; where Bob outputs (d,1,j) because ¢ is local and

deterministic.
First, we want to bound from above the value:

Z (D;,M,a,d,i,j ’ l(a,d,i,j|z,M) = Z Z Z Z (I);:,M,a,d,i,j'

z€X,M,a,d,i,j a x€Xqij,d MER; ;.4

Let us first see what happens on small rectangles.
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-V
Claim 1. If|X | <2n then ZZGX Zz]dZMGledq)rkladZJ S%

!
YD D e

zeX, 1,5,d MERiyj,d

95 (—1)%:®7;DdD{a,i®])

E ,J)EM
n2n N Z / M| (4.7)
z€EXo,MeEMy \d,i,jll(a,d,ijle,M)=1
=
2 3c
= n2m Xl

So, if | X,| < 2"~ * then this sum is less than L <. This conlcudes the claim.
Now let us conblder the case of the large rectangles.

vVn—1
_7\/ 27 2c |Xa
Claim 2. If |X,| > 2" then erx Zm dZMeRU a q)T Madij S “ham ‘ 2 g

/
E § E q)z,J\/[,a,d,i,j

rze€Xy i,7,d MER;, d.d

22c

(_1)1i®$1@d€9(a,i@j>

D IDIDINDS M| O(i.)eM
ij v€Xa d MER4;
ai@j)@d
= non Z\X \ﬁf] Z Z Tfs(i,j)ejw
d MERy, ;
< F Zwm me
_1){ei®i)ed

where 3¢, = Ezex, ((—1)%%%) and ¢f; = 3", > arer, . ; (\Wa(m)eM and the last line follows from
the Cauchy-Schwarz inequality. '

Furthermore,
a G, j)eMm
aftal < > > T
d MERd,i’j
= Probyem, (I outputs(i,j) € M)
1
< .
- n-1
and

Dol <1
07

SO

}:MWP
\/7
On the other hand, the KKL inequality gives us (with A = X,,):

277,
g;m P<beg<X>
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Hence,

N

Lot on .
S S Gy < gl (G ) <

2€X, i,j,d MER; ;.a

2% 1
n2n | “|2’
because |X,| > 273~ implies that Clog (‘)2(" I) 7371 <1

From Claims 1 and 2, we obtain:

Z Br,M'l(avd7ivja|7‘r7M)
zeX,M,a,d,i,j

= > temt+ Y M adig X La,dyi, jlz, M)

rzeX,M rzeX,M,a,d,i,j
V=1
< M E — E =
Ha n n2n 19
z€EX,M o /=1 VT
al| X, <2" e al|Xa|>2"~ Y52
Vn—1 Vn—1
2 3aC 1 2 2C
S AT R DENEE S D=
a  Vn—1  Vn—1
al| Xa|<2m™ Vi al|Xq|22"" Yie
V=1
1 272¢ 1 1
< E -+ E " 7|Xa|_7|Xa|
n n2 2 2
n—¥Yn—1 _Vn—-1
al| Xq|<2"7 T 2e al|Xa|>2"" 2
1
< > .
n
V=1
al|Xq|<2"7 2
< 1.

Value of the objective function. Let p’ be a distribution such that |p’'—HM|; < e. For any z, M, a,d, i, j,
we define €; ar,0.44,510 (@, d, i, jlz, M) — HM(a, d, 4, j|z, M)| and for any =, M, we have

E €x,M,a,d,i,j S €.

a,d,i,j
We have:
T Nt
’ .. 272 2-3C
E Mm,M'p(a,dJ?ﬂ%M): E 'uI’M:_n2n+12 = - m
z,M,a,d,i,j z, M

Then, we have:
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Z q’;,M,a,d,i,j 'p/(a7d7i7.ja |1‘7M)

M,a,d,i,j
Jr—1 (_1)xi@x1@d@<aai@j> o
= 2 =2c Z Z n2n|Mn| 6(i7j)€Mp/(a,d,Z,j|$,M)
x,M a,d,i,j
2¥5c
2
> onlAA | Z( Z 5(i,j)€M(HM(aad77ﬂj‘maM) - 6I,M,a,d,i,j)
z,M a,di,j:x;®c;=dH(a,iPBj)
+ Z 6(i’j)€M(_HM(a7d>i’j‘xaM) — €o,Madij))
a,d,i,j:x: 0z ; #dD(a,iD])
2Vt 9Vt 5 5
= - €x,M,a,d,i,j9(i,j)eM
n n2n|Mn| z,M,a,d,i,j
205t 9Yaet
> - €.
- n n

Finally we have,

/ .. 2% 1
Z By Ma,dijg-p(a,d,,jle, M) > ” (ifg).

z,M,a,d,i,j

We obtain ¥55 L _log(n)+ log(3 —€) as a lower bound for the Hidden Matching probability distribution.
O

D Lower bound for the Khot Vishnoi game

Buhrman et al. introduce the Khot Vishnoi game to exhibit a Bell inequality violation [KV05, BRSdW11].
They present a quantum protocol without any communication that wins the game with a good probabil-
ity whereas for any classical protocol the winning probability is small. Here, we define the probability
distribution that is exactly simulated by their quantum protocol and we show that it requires at least
25 log(n) + log((1 — 26)% — €) bits of communication to be simulated classically with e error, for any
0<46< 3.

=0=3

Definition 11. Let {0,1}"™ be the group of all n-bit strings with @, let H be the subgroup containing the
n Hadamard codewords. For a € {0,1}" we define v® = ((_\}% - )icin] which corresponds to the following

quantum state: ﬁ(—l)aﬂz} Alice and Bob, each receive a coset of H and they have to output an element

(a,b) of their coset with probability % Then

KV(a,b|U,V) = % ifacU andbeV
T 0 otherwise
Theorem 21 ([BRSAW11]). KV € Q, that is, Qo(KV) = 1.
Theorem 22. For any 0 <6 < 1 and 0 < e < (1—26)2, we have R.(KV) > % log(n) + log((1 — 26)2 —¢).

By applying Lemma 1, we get the following bound on communication with 7 efficiency.

Corollary 23. For any 0 <6 < %, efficiency 0 <n < 1, and error ¢ < (1 —26)2 — (1 —n),

RI(KV) > log(n) 4 log((1 — 20)% — e — (1 —n)).

)
1-6
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Proof. As in the proof of Theorem 18, we will use the dual version of the efficiency bound (Lemma 7). Recall
that eff (KV) is defined as the solution of:

! B '(a,b|U,V
il K< 2 vvabp (a,0U, V)
(U, V)ep'—1,(a,b)

subject to > > Buvas-Uab|U,V) | <1 Ve € Ly,
(UV)EP—INR(0) \ ab

where R(¢) is the rectangle on which neither of the players abort when they follow the local deterministic
strategy £.

Fix 6 < % For z € {0,1}", we denote by 0(x) the probability of generating x where each bit of x is set
to 1 with probability ¢ independently of the other bits. For each coset U, we fix arbitrarily a representative
ug. Let k, = nT5 . The coefficients of the Bell inequality are defined as:

(5(UO D ’Uo)

on 6a€U§b€V(5a@uo:b@vo

BU,V,a,b = kn

Verifying the constraints. We need to show that for any local deterministic distribution ¢ € £3, with
R = R(¢), we have

S 1D Bovas xlabU, V)] < 1

(U,V)ER \ a)b

Let ¢ be a deterministic strategy for Alice and Bob which outputs elements of the cosets. From Alice’s
point of view, the strategy is just a choice of an element in each coset that we can represent by A : {0,1}" —
{0, 1} such that A(z) =1 if x is the chosen element of the coset he belongs to. Similarly, we represent Bob’s
strategy by B. With this notation, our constraint is:

VA, B:{0,1}" — {0,1},VR,

Z(uo,vo)GR (Za,b 5(“%??“0) X A(a)B(b)éaequrH(st'qurHéa@uo:b@'uo) < ﬁ
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Since all the coefficients are positive,

>

(uo,v0)ER

<

(uo, vo)E{O 1}

(uo Vo E{O 1}” (he

n X

nxo Y

Z O(ug ® Uo) «

on
a,b

(uo,vo)E{O n

(u0,20)€{0,1}

b
H

Z(SUO@UO

(o, UO)G{O 13n (%

UQ @ 110)

U() D ’Uo)

n

x A(ug)B(vo)

X A(uo)B(uo @ 20)

NEuquni f,z0~6 (A(to) B(uo @ 20))
As shown in [BRSdAW11, Thm?7], this value is bounded from above by ﬁ

Value of the objective function.

€ug,vo,u,v

We have

k, Z (S(UO D Uo)

= |KV(u, v|ug, vo)

2n

UQ,V0, U,V

Y%

Y

kn D D

uo,vo0 h,h'€H

x A(up @ h)B(vy & h))

Let p’ be such that |p’ — KV|; < e.

- p/(uv ’U"LL(), U(])|, Where vuOv Vo, Zu,v euoﬁvg,u,v <e.

A(a)B(b)6a€u0+H(5b€vo+H6a€Buo =bPvg

A(a’)B(b)§a€u0+H6b€vg+H5a®ug:b®vo

5(
Z “O@“O) x A(uo @& h)B(vo & h')n_p
h'YeH

Then Yug, vg, u,v, we define

/
6u®uo:v®vo 6u€ua+H6v€vo+Hp (u7 U‘U(), UO)

uo

@’UO

——————6h=nD (uo ® h,v9 B h'|ug, vo)

uoﬂah’ UvoéBh>2

O(ug ® vo v
SIS N

uo,v0 h

n

d(uo®h,vodh) )2

hn 3 37 T

ug,v0 h

><(1—2 7

1— 2d(“0@277)0@h) )2

k. Z Z 5(”02? vo) (

n

uo,v0 h n
kn Z 6(Z0) Qd(zza 0))2 _ kn€
ko <Z 5(z0)(1 — 282002 e)

K (Z 8(20)(1

kn ((1—26) —

).

20,
n

2d(0))> — kne

20

Uo,v0

- 6“0;”07“0@]17”0@]1)

— €ug,v0,uo @hﬂ)o@h)

—knez

d(uo B vo)

27L



We conclude that R (KV) > log((1 — 26)% — €) + 125 log(n). O
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