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0-1 payoffs, approximating the minmax value within an additive constant
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√
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2 ≈ 0.382, is not possible by a polynomial

time algorithm. This is based on assuming hardness of a version of the so-
called planted clique problem in Erdős-Rényi random graphs, namely that
of detecting a planted clique. Our results are stated as reductions from
a promise graph problem to the problem of approximating the minmax
value, and we use the detection problem for planted cliques to argue for its
hardness. We present two reductions: a randomized many-one reduction
and a deterministic Turing reduction. The latter, which may be seen as
a derandomization of the former, may be used to argue for hardness of
approximating the minmax value based on a hardness assumption about
deterministic algorithms. Our technique for derandomization is general
enough to also apply to related work about ε-Nash equilibria.
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1. Introduction

1. Introduction

We consider games in strategic form between 3 players. These are given by a finite
strategy space for each player, S1,S2, and S3 (also called the pure strategies), together
with utility functions u1, u2, u3 : S1 × S2 × S3 → R. We can identify the strategy
spaces with the sets [n1],[n2], and [n3], where ni = |Si|. We shall refer to this as a
n1 × n2 × n3 game. In this paper only the utilities for Player 1 are relevant.

Let ∆1,∆2, and ∆3 be the sets of probability distributions over S1,S2, and S3

respectively; these are also called mixed strategies. The minmax value (also known as
the threat value) for Player 1 is given by:

min
(σ2,σ3)∈∆2×∆3

max
σ1∈∆1

E
ai∼σi

[u1(a1, a2, a3)]

A strategy profile (σ2, σ3) for Player 2 and Player 3 for which this values is obtained
is called an optimal minmax profile. It is not hard to see that Player 1 may always
obtain the maximum by a pure strategy, i.e., the minmax value is equal to:

min
(σ2,σ3)∈∆2×∆3

max
a1∈S1

E
a2∼σ2
a3∼σ3

[u1(a1, a2, a3)] (1)

The corresponding notion of minmax value in finite two-player games is a fundamen-
tal notion of game theory. Minmax values have been studied much less in multi-player
player games, but are arguably also here of fundamental interest. In particular the
minmax value of such games is crucial for the statements as well as proofs of the
so-called folk theorems that characterize the Nash equilibria of repeated games. The
problem of computing the minmax value of a multi-player game was first considered
only recently by Borgs et al. [5], exactly in the context of studying computational
aspects of the folk theorem. In particular they show that approximating the minmax
value of a 3 player game within a specific inverse polynomial additive error is NP hard.

Here, to be able to talk meaningfully about approximation within an additive error,
we assume that all payoffs have been normalized to be in the interval between 0 and 1.
The question of approximating the minmax value was considered further by Hansen et
al. [12]. Using a “padding” construction it was observed that the NP hardness result of
Borgs et al. extends to any inverse polynomial additive error. This was complemented
by a quasipolynomial approximation algorithm obtaining an approximation to within
an arbitrary ε > 0, which was obtained using a result of Lipton and Young [18], stating
that in a n×n matrix game with payoffs between 0 and 1, each player can guarantee a
payoff within any ε > 0 of the value of the game using strategies that simply consist of
a uniform choice from a multiset of dlnn/(2ε2)e pure strategies. We summarize these
results by the following theorem.

Theorem 1 ([5, 12]). For any constant ε > 0 it is NP hard to approximate the minmax
value of an n× n× n game with 0-1 payoffs within additive error 1/nε. On the other
hand, there is an algorithm that, given ε > 0 and a n×n×n game with payoffs between
0 and 1, approximates the minmax value from above with additive error at most ε in
time nO(log(n)/ε2).
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1. Introduction

This naturally raises the question of whether it is possible to approximate the min-
max value within any constant ε > 0 in polynomial time, or even whether it is possible
to approximate the minmax value within some nontrivial additive constant 0 < ε < 1/2
in polynomial time. Due to the quasipolynomial time algorithm above, it is unlikely
that the theory of NP completeness can shed light on this question.

A similar situation is present for the problem of computing a Nash equilibrium in
two player bimatrix games. Celebrated recent results [8, 6] show that this problem
is complete for the complexity class PPAD. On the other hand several works provide
algorithms for computing an ε-Nash equilibrium. An ε-Nash equilibrium in a n × n
bimatrix game with payoffs between 0 and 1 can be computed in time nO(log(n)/ε2)

[17], by an algorithm similar to the one described above for the minmax value. As
for polynomial time algorithms, several algorithms have been devised for decreasing
additive error ε (see e.g. [20] for references).The current best such algorithm achieves
ε = 0.3393 [20]. How well a Nash equilibrium can be approximated in the sense
of ε-Nash equilibria is a major open question. Having a polynomial time algorithm,
polynomial also in 1/ε, or in other words having a fully polynomial time approximation
scheme (FPTAS), would imply that every problem in the class PPAD would be solvable
in polynomial time [6]. Currently there is no evidence for or against the existence of
a polynomial time algorithm for any fixed ε > 0, or in other words a polynomial time
approximation scheme (PTAS) for computing ε-Nash equilibria.

The planted clique problem

Our result depends on assuming hardness of the so-called planted clique problem (more
precisely, the detection variant). Let Gn,p denote the distribution of Erdős-Rényi ran-
dom graphs on n vertices where each potential edge is included in the graph indepen-
dently at random with probability p. Most frequently the case of p = 1/2 is considered,
but we will be interested in having p > 0 be a small constant. This choice is made in
order to get a conclusion as strong as possible from our proof (cf. Remark 11).

It is well known that in almost every graph from Gn,p the largest clique is of size
2 log1/p n−O(log log n) [4]. The hidden clique problem is defined using the distribution
Gn,p,k [14, 16] of graphs on n vertices defined as follows: A graph G is picked according
to Gn,p, then a set of k vertices are chosen uniformly at random and connected to form
a clique. Thus apart from the planted k-clique the graph is completely random. The
(search variant of the) planted clique problem is then defined as follows: Given a
graph G chosen at random from Gn,p,k, find a k-clique in the graph G. Note that
when the parameter k is significantly larger than 2 log1/p n, the planted clique is with
high probability the unique maximum clique in the graph, and thus it also makes sense
to talk about finding the planted clique, with high probability.

The planted clique problem is known as a difficult combinatorial problem. Indeed the
current best polynomial time algorithms for solving the planted clique problem [1, 10]
are only known to work when k = Ω(

√
n). We may compare this with the observation

due to Kučera [16] that for k ≥ C
√
n log n when C is a suitably large constant, the

vertices of the clique would almost surely be the vertices of largest degree, and hence
easy to find. The planted clique problem has also been proposed as a basis for a
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1. Introduction

cryptographic one-way function [15]. For this application, however, the size of the
planted clique is k = (1 + ε) log1/p n, which is smaller than the expected size of the
largest clique.

The planted clique detection problem is defined as follows: Given a graph G chosen
at random from either (i) Gn,p, or (ii) Gn,p,k, decide which is the case.

1.1. Our Results

We show a relationship between the task of approximating the minmax value in a
3-player game and the planted clique detection problem. Our result builds heavily on
the ideas of the work of Hazan and Krauthgamer in [13] (see also [19]). These are
described in the next section.

In our results we prove hardness of approximating the minmax value, and aim to
obtain a conclusion as strong as possible, while maintaining a reasonable hardness
assumption.

We will actually state our results using the following promise1 graph problem Gap-
DBS, parametrized by numbers 0 < c1 < c2 and η > 0. Let G = (V1, V2, E) be a
bipartite graph. For S ⊆ V1, T ⊆ V2 the density of the subgraph induced by S and T

is given by d(S, T ) = |E(S,T )|
|S||T | . Note that if we let A denote the adjacency matrix of

A and let uS and uT be the probability vectors that are uniform on the sets S and T ,
then we have d(S, T ) = uTSAuT .

Gap Dense Bipartite Subgraph (Gap-DBS)
Input: Bipartite graph G = (V1, V2, E), |V1| = |V2| = n

Promise: Either

(i) There exist S ⊆ V1, T ⊆ V2, |S| = |T | = c2 lnn, such
that d(S, T ) ≥ 1− η, or

(ii) For all S ⊆ V1, T ⊆ V2, |S| = |T | = c1 lnn, it holds that
d(S, T ) ≤ η.

Problem: Decide which of these is the case

We also introduce the following gap problem for the minmax value of 3-player games
with 0-1 payoffs, parametrized by numbers 0 ≤ α < β ≤ 1

1Clearly if there exist sets S and T with |S| = |T | = c2 lnn and d(S, T ) ≥ 1− η, there exist subsets
S′ ⊆ S and T ′ ⊆ T with |S′| = |T ′| = c1 lnn and d(S′, T ′) ≥ 1− η as well.
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1. Introduction

Gap 3 Player minmax (Gap-minmax)
Input: n× n× n game G with 0-1 payoffs

Promise: Either

(i) The minmax value for Player 1 in G is at most α, or

(ii) The minmax value for Player 1 in G is at least β.

Problem: Decide which of these is the case

We are now ready to state our main results. Throughout the paper ξ = 3−
√

5
2 ≈ 0.382

is the smaller of the two roots of x2− 3x+ 1 = 0, which is also known as 1−ϕ, where
ϕ is the conjugate golden ratio.

Theorem 2. There exist reductions from the Gap-DBS problem to the Gap-minmax
problem as follows.

1. For every 0 < η < 0.1 and 0 < c1 < c2 satisfying c2
c1

> 2 ln(1/η)
(1−η)η2 there is a

randomized many-one reduction from the Gap-DBS problem to the Gap-minmax
problem with parameters (η, ξ − η/5).

2. For every 0 < η < 0.1 and 0 < c1 < c2 satisfying c2
c1
> 1/η there is a deterministic

Turing reduction from the Gap-DBS problem to to the Gap-minmax problem with
parameters (η, ξ − η/5).

We prove the two parts of this theorem as two separate theorems, stated as The-
orem 9 and Theorem 15. We note that, interestingly, the constant ξ has previously
turned up as the additive error ξ+δ, for arbitrary δ > 0, obtained by an approximation
algorithm for computing ε-Nash equilibria [9].

One can view the second reduction in Theorem 2 as a derandomization of the first
reduction in Theorem 2. However, this derandomization comes at the cost of turning
the many-one reduction into a Turing reduction. On the other hand the required ratio
between c1 and c2 is actually much smaller.

We will use the planted clique problem to argue that the Gap-DBS problem is hard
for certain settings of parameters (c1, c2, η). For this we use similar arguments as in
[13, 19]. Given a graph H that is an input to the planted clique detection problem, we
let A be the adjacency matrix of H and let G be the bipartite graph that also has A
as adjacency matrix. We wish to have the following property: If H was chosen from
Gn,p,k, then with high probability G belongs to case (i) of the Gap-DBS problem, and
if H was instead chosen from Gn,p then with high probability G belongs to case (ii) of
the Gap-DBS problem. This can indeed be obtained with an appropriate assumption
about the clique detection problem. We have the following statement.

Proposition 3. For any η > 0 there exist p > 0 and c1 > 0 such that for k = c2 lnn,
with c2 > c1, Gap-DBS with parameters (c1, c2, η) is as hard as the hidden clique
detection problem for Gn,p,k.

5



1. Introduction

To prove this proposition we need the following basic lemma, whose proof is pre-
sented in Appendix A.

Lemma 4. Let η > 0 be arbitrary. Then there exists a choice of p > 0 and c1 > 0 such
that with high probability a graph G = (V,E) chosen from Gn,p satisfies the following:
Let A be the adjacency matrix of G, let S, T ⊆ V be of size |S| = |T | = c1 lnn. Then
uTSAuT ≤ η, where uS and uT are probability vectors uniform on S and T .

With this the proof is immediate:

Proof of Proposition 3. We choose p > 0 and c1 > 0 according to Lemma 4. This
ensures that with high probability graphs from Gn,p (when considered as the bipartite
graphs with the same adjacency matrix) satisfy case (ii) of Gap-DBS. Also, the choice
of k = c2 lnn automatically ensures that graphs from Gn,p,k (as bipartite graphs)
satisfy case (i) of Gap-DBS, since if S is the set of k nodes where the clique is placed,
we have d(S, S) = 1− 1/k.

The choice of c2 > c1 of interest for us will be dictated by the choice of reduction
we wish to use from Theorem 2, and in turn dictates the precise hardness assumption
for the planted clique detection problem needed. However we find it natural to assume
that the planted clique detection problem is hard for Gn,p,k for any p > 0 and any
k = c2 lnn, c2 > −2/ ln p, i.e., with k significantly greater than the largest clique in
Gn,p (with high probability). Thus our results can be stated as follows.

Theorem 5. For every ε > 0, there is no randomized polynomial time algorithm
that with high probability approximates the minmax value of a n × n × n game with
payoffs between 0 and 1 within an additive error ξ/2 − ε, unless there exist p > 0
and c2 > −2/ ln p and a randomized polynomial time algorithm that solves the planted
clique detection problem for Gn,p,k with high probability, for k = c2 lnn.

Theorem 6. For every ε > 0, there is no polynomial time algorithm approximating
the minmax value of a n×n×n game with payoffs between 0 and 1 within an additive
error ξ/2− ε, unless there exist 0 < c1 < c2 satisfying c2 > c1/η and a (deterministic)
polynomial time algorithm that solves the Gap-DBS problem with parameters (η, c1, c2),
for η = 5/3ε.

1.1.1. Further Results

Our technique for derandomization used for obtaining the second part of Theorem 2
(and the restatement of Theorem 6) is general enough to apply to the related work
about ε-Nash equilibria that is to be described in the next section. As an example
of this, we present in Section 3.1 a derandomization of a result by Minder and Vi-
lenchik [19]. For this we introduce another gap problem denoted Gap-ANE, reflecting
the problem of approximating the maximum social welfare of a ε-Nash equilibrium.
We then give a (deterministic) polynomial time Turing reduction from Gap-DBS to
Gap-ANE.
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1. Introduction

Given that our result on the minmax value as well these results about ε-Nash equi-
libria are in fact based on the same hardness assumption, it is natural to ask if one
can compare the hardness of these problems. We are not able to give an answer to
this, but we are able to give some evidence that computing the minmax value in three
player games is at least as hard as finding ε-Nash equilibria of high social welfare. We
present this in Section 3.2.

1.2. Related Work

The problem of computing a Nash equilibrium in a bimatrix is PPAD complete. How-
ever, there are many different properties such that asking for a Nash equilibrium that
satisfies the property is an NP hard problem [7, 11]. In particular it is NP hard to
compute a Nash equilibrium maximizing the social welfare, i.e. maximizing the sum
of the two players payoffs.

Hazan and Krauthgamer [13], motivated by the question of whether there is a PTAS
for computing ε-Nash equilibria, considered an “ε-Nash” variant of the problem of max-
imizing social welfare, namely that of computing an ε-Nash equilibrium whose social
welfare is no less than the maximal social welfare achievable by a Nash equilibrium,
minus ε. In order to describe all the results in the following, say that an ε-Nash equilib-
rium is δ-good if its social welfare is no less than the maximal social welfare achievable
by a Nash equilibrium, minus δ.

Remark 7. For the notion introduced by Hazan and Krauthgamer, Minder and
Vilkenchik [19] use the terminology “ε-best ε-Nash equilibrium”. However we feel
this is somewhat of a misnomer, since the social welfare is compared to the largest
achievable by a Nash equilibrium rather than an ε-Nash equilibrium. Indeed, a simple
example2 shows that for any ε > 0 one may have a game where the (unique) Nash
equilibrium has social welfare ε, but there exist an ε-Nash equilibrium of social wel-
fare 1. For this reason we will instead call it “ε-good”. In fact, we find it useful to
generalize the notion to an ε-Nash equilibrium being called δ-good as defined above.

Hazan and Krauthgamer gave a randomized polynomial time reduction from the
planted clique problem to the problem of computing an ε-good ε-Nash equilibrium.
More precisely, they show there are constants ε, c > 0 such that if there is a polyno-
mial time algorithm that computes in a two-player bimatrix game an ε-good ε-Nash
equilibrium, then there is a randomized polynomial time algorithm that solves the
planted clique problem in Gn,1/2 for k = c log2 n with high probability.

This result was sharpened by Minder and Vilenchik [19], making the constant c
smaller. In particular they obtain c = 3 + δ, for arbitrary δ > 0 (here δ > 0 dictates
an upper bound on ε), and for the similar problem of detecting a planted clique they
obtain c = 2 + δ. Essentially the goal of Minder and Vilenchik was the opposite of
ours. Namely, viewing their result as arguing for hardness, their goal was to obtain an
assumption as weak as possible, while maintaining a nontrivial conclusion.

2Consider just the bimatrix game given by the two 1 × 2 matrices
[
1 0

]
for the row player and[

0 ε
]

for the column player.
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1. Introduction

Austrin et al. [3] considered the other goal of obtaining strong hardness conclusions
for computing δ-good ε-Nash equilibria (as well as ε-Nash versions of computing second
equilibria and small support equilibria, and approximating pure Bayes Nash equilibria),
assuming hardness for the planted clique problem. For this reason this work is the
most relevant to use for comparing with our results. With the goal of obtaining strong
hardness conclusions for computing δ-good ε-Nash equilibria in mind, one now needs
to consider both of the parameters, ε and δ, and their relationship. Austrin et al.
consider the extreme cases for both of these parameters individually and obtain the
following results.

Theorem 8 (Austrin et al.). 1. For any η > 0 there exists δ = Ω(η2) such that
computing a δ-good ε-Nash equilibrium is as hard as the planted clique problem,
for ε = 1/2− η.

2. For any η > 0 there exists ε = Ω(η2) such that computing a δ-good ε-Nash
equilibrium is as hard as the planted clique problem, for δ = 2− η.

Furthermore Austrin et al. give a simple polynomial time algorithm that computes
a 1

2 -Nash equilibrium with social welfare at least as large as any Nash equilibrium,
showing that the first part of Theorem 8 is tight. Clearly the second part is tight as
well. On the other hand it appears that the tightness of these results were possible due
to the focus on a single parameter at a time, and the exact trade-off possible between
these two parameters still seems unclear.3

1.3. Techniques and comparison with related work

While Hazan and Krauthgamer [13] consider the specific setting of computing ε-good
ε-Nash equilibria, we can describe their approach in a general way for an unspecified
computational problem. Let A be an n×n matrix with entries belonging to the interval
[0, 1]. Let 0 < a < b < c < 1 and γ > 0 be constants to be discussed later. From
this matrix a particular instance for the problem in hand is constructed. By specifics
of the problem considered and by properties of the instance constructed, a solution
of the instance gives rise to probability distributions x, y satisfying the following two
properties:

1. xTAy ≥ 1− a.

2. For any subset S ⊆ [n] with |S| ≤ c1 lnn we have Prx[S] ≤ γ and Pry[S] ≤ γ.

Define T = {i | xTAei ≥ 1−b}. Using Markov’s inequality one gets Pry[T ] ≥ 1−a/b.
Assuming a/b < 1− γ one concludes |T | ≥ c1 lnn. Further, define S = {i | eiTAuT ≥
1 − c}, where uT is the uniform distribution on the set T . Again using Markov’s
inequality one gets Prx[S] ≥ 1 − b/c, and assuming b/c < 1 − γ one concludes |S| ≥
c1 lnn. The conclusion of this argument is that assuming the inequalities a/b < 1− γ
3While the statements of Theorem 8 are given using asymptotic notation, the proofs provide concrete

(albeit not particularly optimized) constants. For instance the proof of the first part gives δ =
1/288 for ε = 1/4, and the proof of the second part gives ε = 1/288 for δ = 3/2.
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and b/c < 1−γ we may find sets S and T of size at least c1 lnn such that uTSAuT ≥ 1−c.
Now if A is the adjacency matrix of a random graph G picked according to Gn,p and
if 1 − c > p and c1 is a sufficently large constant, such sets S and T would not exist
with high probability. Alternatively if G was chosen at random from Gn,p,k where
k = c2 lnn for a sufficently large constant c2 > c1, such sets S and T can be used to
recover the hidden k-clique with high probability in polynomial time.

Consider now the setting of 2-player games [13, 19, 3]. The idea above is implemented
by taking the adjacency matrix A as the payoff matrix for both players, and then
augmenting these with additional pure strategies for both players. The new payoffs
are constructed in such a way that in any ε-Nash equilibrium of sufficiently large social
welfare, both players must place most of their probability mass on the pure strategies
corresponding to A. The additional pure strategies are then meant to enable a player
the possibility of achieving a payoff at least ε larger than the current by switching to
an appropriate pure strategy if his opponent places probability more than probability
mass γ on a set of c1 lnn vertices. The probability distributions x and y above are
obtained by first restricting the support of the strategies of the two players to those
pure strategies corresponding to A and then normalizing.

In our setting we let the matrix A with 0 entries and 1 entries exchanged give the
payoffs to player 1, corresponding to a single of his pure strategies. We may also
think of the matrix A as giving penalties for player 1 rather than rewards. The pure
strategies of player 2 and player 3 correspond exactly to rows and columns of A, and
thus the probability distributions x and y directly corresponds to strategies (of player
2 and player 3) in the game we construct. This fact makes our reduction and analysis
technically simpler compared to the 2-player setting. To implement the idea above we
provide a number of new strategies for player 1, such that if either player 2 or player 3
places probability mass γ on a set of c1 lnn vertices, switching to an appropriate pure
strategy may ensure him a payoff of γ. Note here that in our setting we have only one
parameter available, namely the minmax value. Because of this fact we must perform
the analysis of our reduction in a tight way in order to obtain best possible results.

2. The Reductions

We collect the utilities for Player 1 in matrices, one for each pure strategy. Thus we

define n2 × n3 matrices A(1), . . . , A(n1) by a
(i)
j,k = u1(i, j, k). In this notation, if Player

1 plays the pure strategy i and Player 2 and Player 3 play by mixed strategies x and
y, the expected payoff to Player 1 is given by xTA(i)y.

2.1. The randomized reduction

In this section we present a randomized reduction from approximate planted clique to
minmax-value in three player games. To be precise, we prove the following result:

Theorem 9. Let 0 < η < 0.1 and 0 < c1 < c2 and such that c2
c1
> 2 ln(1/η)

(1−η)η2 . Then

there is a randomized polynomial time many-one reduction which, given as input the
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2. The Reductions

adjacency matrix A ∈ {0, 1}n×n of a bipartite graph G, outputs a three-player game
GA such that with high probability

• if there are subsets S, T ⊆ [n] of size at least c2 lnn such that d(S, T ) ≥ 1 − η,
then minmax1GA ≤ η.

• if d(S, T ) < η for every S, T ⊆ [n] of size at least c1 lnn, then minmax1GA >
ξ − η

5 .

We will need the following lemma.

Lemma 10. Let 0 < δ < 1, and k1 = c1 lnn, k2 = c2 lnn, where 0 < c1 < c2 satisfy

c2 > 2 ln(1/δ)
(1−δ)δ2 · c1. Let D ⊆ [n] be a fixed subset of size |D| = k2. Then there is a

constant c such that if we we choose at random m = nc subsets S1, . . . , Sm ⊆ [n], by
letting j ∈ Si with probability 1 − δ, independently for every i and j, with probability
at least 1− n−Ω(1) the sets satisfy the following properties.

(a) For all i, |Si ∩D| ≥ (1− δ)2k2.

(b) For every set S ⊆ [n] of size |S| = k1, there exists i such that Si ∩ S = ∅.

Proof. By assumption we can pick c such that

c1 · ln(1/δ) < c <
(1− δ)δ2

2
· c2 .

We first prove property (a) holds with the claimed probability. We have E[|Si∩D|] =
(1− δ)k2. By the Chernoff bound for the lower tail we have

Pr[|Si ∩D| < (1− δ)2k2] < exp(−(1− δ)δ2k2/2) = n−
(1−δ)δ2

2 ·c2

Hence

Pr[∃i : |Si ∩D| < (1− δ)2k2] < m · n−
(1−δ)δ2

2 ·c2 = n−Ω(1) .

We next prove property (b) also holds with the claimed probability. Consider S ⊆ [n]
of size |S| = k1. Then Pr[Si ∩ S 6= ∅] = 1− δk1 , and

Pr[∀i : Si ∩ S 6= ∅] = (1− δk1)m < exp(−δk1m) = exp(−nc−c1 ln(1/δ))

Hence

Pr[∃S ⊆ [n], |S| = k1 : ∀i : Si ∩ S 6= ∅] <
(
n

k1

)
exp(−δk1m)

≤ exp(c1 ln2(n)− nc−c1 ln(1/δ)) < exp(−nΩ(1)) .

Proof of Thm. 9. We use Lemma 10 with c1 and c2 as in the problem description and
δ = 1 −

√
1− η = η/2 + O(η2). Let m be as in the lemma. The reduction first picks

2m subsets S
(r)
1 , . . . , S

(r)
m , S

(c)
1 , . . . , S

(c)
m at random as in the lemma. It then outputs a

3-player game GA as follows:
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2. The Reductions

• Players 2 and 3 have n strategies each.

• Player 1 has 2m + 1 strategies given by matrices B, R(1), . . . , R(m), and
S(1), . . . , S(m). The matrix B is defined as B = 1 − A, and R(k) and C(k)

for k = 1, . . . ,m, are given by

(R(k))ij =

{
1 if i 6∈ Sr

k

0 if i ∈ Sr
k

and (C(k))ij =

{
1 if j 6∈ Sc

k

0 if j ∈ Sc
k

We claim that this game satisfies our assumptions.
For the first part, let S, T ⊆ [n] be sets of size at least c2 log n such that d(S, T ) ≥

1 − η. By choosing appropriate subsets, we may assume that, in fact, |S| = |T | =
c2 log n. Furthermore, by Lemma 10, with high probability |Sr

i ∩ S| ≥ (1 − δ)2c2 lnn
and |Sc

i ∩ T | ≥ (1 − δ)2c2 lnn. Thus if players 2 and 3 play strategies uS and uT ,
respectively, by playing any of the strategies corresponding to R(k) and C(k) player 1
will receive payoff at most 1−(1−δ)2 = δ(2−δ) = (1−

√
1− η)(1+

√
1− η) = η, while

by playing the strategy corresponding to B will give player 1 payoff 1− d(S, T ) < η.
For the second part, we assume to the contrary that G has density d(S, T ) < η for

all sets S, T of size at least c1 lnn, but min maxGA ≤ a. Let (σ2, σ3) be an optimal
strategy profile, i.e., max

{
σT

2Bσ3, σ
T
2R

(k)σ3, σ
T
2C

(k)σ3

}
≤ a. We first show that on

any support of size at most k1 each of σ2 and σ3 places probability at most a: Suppose
S ⊆ [n] and |S| ≤ k1 with Prσ2 [S] = p. Then by switching to an appropriate set
action corresponding to R(k), player 1 might increase his payoff to at least p. Thus
p ≤ a. The proof for σ3 is the same, replacing R(k) with C(k). We set, with foresight,
a = ξ− η

5 , b = 1− ξ− η
2 , and c = 1− η. Direct calculations show that for 0 < η < 0.1,

these values satisfy

a < b < c < 1 (1− a)b > a and (1− a)c > b . (2)

We show that there exist sets S and T of size at least c1 lnn such that uTSAuT ≥ 1− c:
Define T = {i | σT

2Bei ≤ b}, and let p = Prσ3
[T ]. Then a ≥ σT

2Bσ3 ≥ (1 − p)b, and
therefore (1− p)b < a, which means 1− p < a/b. But we have 1− a > a/b, which then
implies p > a, and therefore |T | ≥ c1 lnn as argued above. Furthermore, by definition
of T we have σT

2BuT ≤ b. Next, define S = {i | eiTBuT ≤ c}, and let p = Prσ2 [S].
Similarly to before we then have b ≥ σT

2BuT ≥ (1 − p)c which means (1 − p)c < b,
and thus 1− p < b/c. But we have 1 − a > b/c, which then implies p > a, and again
we obtain that |S| ≥ c1 lnn. Furthermore, by definition of S and B = 1− A we have
uTSAuT ≥ 1− c = η.

Remark 11. We see in the above proof our reason for considering the planted clique
problem Gn,p,k in the setting of having p > 0 a small constant. In order to make a as
large as possible and still satisfy the inequalities (2), c = 1−η should be made as large
as possible. Since the conclusion uTSAuT ≥ η should not hold with high probability if
A is the adjacency matrix of a graph chosen at random from Gn,p this means we need
η > p. The argument of the proof could still be performed in the setting of p = 1

2 , but

that would then require us to have a < 2−
√

3 ≈ 0.268, instead of having a < ξ ≈ 0.382
as above.
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2. The Reductions

2.1.1. Tightness of the analysis

We will observe here that the above analysis is tight, namely that in the case when
d(S, T ) < η for every S, T ⊆ [n] of size at least c1 lnn, it is not possible to prove a
lower bound on the minmax value better than ξ in the game constructed.

Proposition 12. There is a n × n matrix A such that the game GA given by the
reduction of Theorem 9 satisfies the following:

• For all S, T ⊆ [n] of size at least c1 lnn we have d(S, T ) < 2/c1 lnn.

• With probability 1− 2Ω(−η2/n) we have minmax1GA ≤ ξ + η/2 +O(η2).

Proof. Define A to be the n× n matrix where (A)ij = 1 if either i = 1 or j = 1, and
(A)ij = 0 otherwise. The first claim about the densities is then obvious.

For the second claim, let ε = δ/3 and define σ2 = σ3 = (ξ − ε, 1−ξ+ε
n−1 , . . . , 1−ξ+ε

n−1 )T.
In other words σ2 and σ3 place probability ξ − ε on the first strategy, and distributes
the remaining probability mass uniformly on the remaining strategies.

By definition, the pair (σ2, σ3) establishes an upper bound on the minmax value.
First

σT
2Bσ3 = (1− ξ + ε)2 = (1− ξ)2 + 2ε(1− ξ) + ε2 ≤ ξ + 3ε = ξ + δ .

Next,

E[σT
2R

(k)σ3] = (1− δ)(ξ − ε) + δ(1− ξ + ε) ≤ ξ − ε+ δ = ξ + 2δ/3 ,

and by the Chernoff-Hoeffding bound we then have

Pr[σT
2R

(k)σ3 > ξ + δ] ≤ exp(−2(δ/3)2/n) .

We have the same bound for C(k) instead of R(k), and hence taking a union bound
over all these 2m matrices we have σT

2R
(k)σ3 ≤ ξ + δ and σT

2C
(k)σ3 ≤ ξ + δ, except

with probability 2−Ω(δ2/n).

2.2. Derandomization

In this section we derandomize our result in Theorem 9, at the price of turning our
many-one reduction into a Turing reduction.

Recall that randomness was needed by our reduction for the construction of the sets

S
(r)
i and S

(c)
i . We now show how these sets can be constructed explicitly, giving a

derandomized analogue of Lemma 10:

Lemma 13. Let 0 < k1 < k2 < n ∈ N. Then there are families A(1), . . . , A(r) of
subsets of [n] such that

• there are r = 2O(k2) log n families, and each family is of size s =
(
k2
k1

)
,

12



2. The Reductions

• for every set M ⊆ [n] of size k2, there is an index j ∈ [r] such that
∣∣∣A(j)

i ∩M
∣∣∣ =

k2 − k1, for all i ∈ [s] and

• for every set M ⊆ [n] of size k1 and every j ∈ [r], there is an index i ∈ [s] such

that A
(j)
i ∩M = ∅.

These sets can be constructed in time polynomial in n and r.

Proof. In [2], Alon et al. gave a construction of a family H = {f1, . . . , fr} of perfect
hash functions from [n] to [k2]. This means

• each fj is a function from [n] to [k2] and

• for each M ⊆ [n] of size k2, at least one of the fj is injective on M .

Moreover, r = 2O(k2) log n and the functions can be constructed in time polynomial in
n and r.

Let s =
(
k2
k1

)
≤ 2k2 and let M1, . . . ,Ms be an enumeration of the subsets of [k2] of

size k1. Define A
(j)
i := {x ∈ [n] | fj(x) 6∈Mi}. These subsets meet the size restrictions

claimed in the lemma and are readily seen to be constructable in time poly(n, r).

Now, let M ⊆ [n] be of size k2, and suppose fj is injective on M . Then A
(j)
i ∩M =

{x ∈ M | fj(x) 6∈ Mi}, and because fj is a bijection between M and [k2], this set has
size k2 − k1 for all i ∈ [s].

Furthermore, if M ⊆ [n] is of size k1, then |fj(M)| ≤ k1 for all j ∈ [r]. Thus for

each j there is an i such that fj(M) ⊆Mi, which implies A
(j)
i ∩M = ∅.

Corollary 14. If k2 = O(log n) then both r and s are polynomial in n, and the families
of subsets can be constructed in time polynomial in n.

Our derandomized reduction now looks as follows:

Theorem 15. For 0 < η < 0.1 and 0 < c1 < c2 and such that c2
c1
> 1

η , there is a

polynomial-time Turing reduction from Gap-DBS to Gap-Minmax with a gap (η, ξ −
η/5).

Proof. The reduction works as in the randomized case, the main difference being that

instead of picking sets S
(r)
i and S

(c)
i at random, we construct (polynomially many)

set families A(1), . . . , A(r) using the construction in Lemma 13 with k1/2 = c1/2 lnn.

We then use each pair of such families to construct a game G
(j1,j2)
A as in the proof

of Theorem 9; using the family A(j1) for the row strategies and A(j2) for the column
strategies. We show that

• if d(S, T ) ≥ 1−η for some sets S, T of size at least c2 lnn, then minmax1G
(j1,j2)
A ≤

η, for some j1 and j2, and

• if d(S, T ) ≤ η for all sets S, T of size at least c1 lnn, then minmax1G
(j1,j2)
A ≥

ξ − η/5, for all j1, j2.

13



3. Further Reductions

The proof works as in the randomized case: For the first part, we note that by

Lemma 13, for some j1, j2 and all i we have
∣∣∣A(j1)

i ∩ S
∣∣∣ = k2 − k1 ≥ (1 − η)k2 and∣∣∣A(j2)

i ∩ T
∣∣∣ = k2−k1 ≥ (1−η)k2, and therefore minmax1G

(j1,j2)
A ≤ η in this case. The

second part is unchanged from the randomized case.

3. Further Reductions

3.1. A Turing-Reduction from Gap-DBS to approximate
Nash-Equilibrium

In [19], Minder and Vilenchik show how a polynomial time algorithm computing an
ε-good ε-equilibrium in a two player game can be used to obtain a randomised algo-
rithm which distinguishes, with high probability, between a random graph drawn from
the distribution Gn,1/2 from a graph with a clique of size at least (2 + 28ε1/8) log n.
Specifically, they obtain a randomised algorithm which, on input a random graph from
Gn,1/2, rejects with high probability (over the random choices of the algorithm and
over the input), and which will accept any particular graph containing a clique of size
(2 + 28ε1/8) log n with high probability over its internal random choices.

The distinguishing algorithm which Minder and Valenchik construct actually rejects
with high probability any graph which does not contain a dense subgraph of size slightly
larger than 2 log n but still smaller than the planted clique. With high probability, the
random graph Gn,1/2 does not contain such a subgraph. In turns out that we may
also introduce some slack in the planted clique and just plant a dense subgraph of
appropriate size. Finally, to avoid reducing a decision problem to a search problem,
we introduce the following promise-problem for Nash Equilibria:

Gap Approximate Nash Equilibrium (Gap-ANE)
Input: a bimatrix game represented by two (n × n)-payoff-matrices

with payoffs in [−2, 2]
Promise: Either

(i) there is a δ-approximate Nash Equilibrium with average
payoff ≥ 1− δ or

(ii) there is no δ-approximate Nash Equilibrium with average
payoff ≥ 1− 2δ.

Problem: Decide which of these is the case

With these preliminaries, we can now state our derandomisation:

Theorem 16. For sufficiently small η > 0 there are c1 < c2 and δ > 0 such that there
is a (deterministic) polynomial time Turing reduction from Gap-DBS to Gap-ANE

14



3. Further Reductions

with these parameters. In particular, one possible choice of c1 and c2 is

c1 := 2 + 6
√

2(2η)1/4 and c2 := 2 + 7
√

2(2η)1/4.

The payoff matrices of the games which our reduction produces contain only three
distinct values, which only depend on η (and not on n). Therefore we may assume
these values to be specified up to some arbitrary accuracy.

Proof. Let A be the adjacency matrix of a bipartite graph satisfying the promise of
Gap-DBS. We proceed as in section 3 of [19]. Let

δ := 2η

β := 2δ1/4,

k1 := (2 + 6
√
β) log n,

k2 :=
⌈
(2 + 7

√
β)
⌉

log n.

By lemma 13 there are families A(1), . . . , A(r) of subsets of [n], with s sets in each
family, such that

1. For every subset S ⊆ [n] of size k2, there is an index i ∈ [r] such that∣∣∣S ∩A(i)
j

∣∣∣ = k2 − k1

for all j ∈ [s],

2. For every subset S ⊂ [n] of size k1 and every i ∈ [r] there is a j ∈ [s] such that

S ∩A(i)
j = ∅.

Furthermore, r, s ≤ nO(1) and these set families can be constructed deterministically
in polynomial time. Our reduction outputs one instance Gi,j of Gap-ANE for each pair
of indices i, j ∈ [r] such that

• if there are no sets S and T with |S| , |T | ≥ k1 such that

d(S, T ) > 1− β = 1− 2(2η)1/4

(i.e., A has no dense subgraph), then none of the games Gi,j has a δ-approximate
Nash Equilibrium of value ≥ 1− 2δ and

• if there are sets S and T with |S| , |T | ≥ k2 such that

d(S, T ) > 1− η

(i.e., A does have a dense subgraph), then at least one of the games Gi,j has a
δ-approximate Nash Equilibrium of value ≥ 1− δ.
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3. Further Reductions

Note that, in particular, in the first case all games Gi,j satisfy the promise of Gap-
ANE. In the second case, this is not necessarily true, but there is guaranteed to be at
least one pair (i, j) for which Gi,j is a yes-instance satisfying the promise.

We define the payoff-matrices for the row and column player in the game Gi,j as
follows:

Ri,j :=

(
A −BT

j

Bi 0

)
Ci,j :=

(
A BT

j

−Bi 0

)
.

is zero-sum outside the upper left block corresponding to the matrix A. Each matrix
Bi is an (s× n)-matrix with entries

(Bi)a,b :=

{
0 if b ∈ A(i)

a

1 + 18β if b 6∈ A(i)
a

First, assume there are subsets S, T of size k2 such that d(S, T ) > 1 − η. Then
playing the uniform strategies on S and T will give each of the players a payoff of at
least 1 − η. Furthermore, for at least one combination of indices i and j this is an
η-approximate Nash Equilibrium. In fact, there is a tuple (i, j) such that no player
can increase his profit to more than

k1

k2
(1 + 18β),

and, setting α :=
√
β, this is at most one if

(1 + 18α2)(2 + 6α) ≤ 2 + 7α

⇔ −α+O(α2) < 0,

which is the case for small enough values of α =
√

2(2η)1/8. This proves the first part
of our claim.

For the second part we show that if there is a δ-equilibrium with payoff least 1− 2δ,
then there are subsets S and T of size at least k1 such that d(S, T ) > η. Our arguments
are the same as those in Propositions 3–6 of [19].

We write a strategy x as xA + xĀ, where xA is the part of the strategy played on
A and xĀ is the rest. In particular, ‖xA‖1 is the probability that the player choses a
strategy from A.

Claim 17. If (x, y) is a pair of strategies with average payoff ≥ 1 − 2δ, then each of
the players puts probability at least 1− 2δ on A.

Proof. We have

1− 2δ ≤ 1

2
xT(R+ C)y

= xT
(
A 0
0 0

)
y

≤ xT
(
J 0
0 0

)
y

= ‖xA‖1 · ‖yA‖1 ,
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3. Further Reductions

and the claim follows because ‖xA‖1 , ‖yA‖1 ∈ [0, 1].

Claim 18. If (x, y) is a δ-approximate Nash Equilibrium with average payoff ≥ 1−2δ,
then

x̃ :=
1

‖xA‖1
xA and ỹ :=

1

‖yA‖1
yA

define a 16δ-approximate Nash Equilibrium with average payoff ≥ 1− 2δ.

Proof. For the average payoff, we note that

1− 2δ ≤ 1

2
xT(R+ C)y

=
1

2
xTA(R+ C)yA

≤ 1

2 ‖xA‖1 ‖yA‖1
xTA(R+ C)yA

=
1

2
x̃T(R+ C)ỹ.

We now show that (x̃, ỹ) is a 16δ-approximate Nash Equilibrium. In fact for every
pure strategy ei,

eTi Rỹ =
1

‖yA‖1
eTi RyA

≤ 1

‖yA‖1

(
eTi Ry + 4δ

)
because ‖yĀ‖1 < 2

≤ 1

‖yA‖1

(
xTRy + 5δ

)
=

1

‖yA‖1

(
‖xA‖1 ‖yA‖1 x̃

TRỹ + xTĀByA − x
T
AB

TyĀ + 5δ
)

≤ (1 + 2δ)(x̃TRỹ + 13δ)

≤ x̃TRỹ + 16δ

The proof for the column player is similar.

Claim 19. Let G = Gi,j be any of the games generated by our reduction from the
matrix A, and assume that β ∈ [δ, 1/18]. Let (x, y) by a 16δ-approximate Nash
Equilibrium of G played entirely on A, i.e., xĀ = yĀ = 0. Then if M is a set of rows
such that Prx(M) ≥ 1− β, then |M | > k1, and similarly for y.

Proof. Assume that M is a subset of rows such that |M | ≤ k1. Me may assume that
M contains only rows correspdonding to strategies in A. By our construction of B
there is a column of Ci,j such that all entries of this column corresponding to rows in
M have value 1 + 18β. By defecting to this column, the column player will receive a
payoff of at least

(1 + 18β)(1− β) = 1 + 17β − 18β2 ≥ 1 + 16δ
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3. Further Reductions

by our assumption on β. Because the column player’s expected payoff when playing y
can not exceed 1, the pair (x, y) can not be a Nash Equilibrium.

Claim 20. Given a 16δ-approximate Nash Equilibrium (x, y) of average payoff ≥ 1−2δ
which is played entirely on A in one of the games Gi,j generated by our reduction, one
can efficiently find two sets of vertices S and T such that

• |S| , |T | > k1 and

• d(S, T ) > 1− β.

Proof. Since we assume that both players play entirely on A and each player’s max-
imum payoff on A is 1, we note that each of the players must receive a payoff of at
least 1 − 4δ. Let T be the set of actions on A for which the column player receives
payoff at least 1− 4

√
δ, i.e.,

T :=
{
i | xTAei ≥ 1− 4

√
δ
}
.

Let p := Pry(T ). Then

1− 4δ ≤ xTAy

≤ p+ (1− p)
(

1− 4
√
δ
)

= 1− 4
√
δ(1− p),

and p ≥ 1−
√
δ. Let uT be the uniform strategy for the column player on the columns

in T , and define
S :=

{
i | eTi AuT ≥ 1− β

}
.

Let q := Prx(T ). Then

1− 4
√
δ ≤ xTAuT
≤ q + (1− q)(1− β)

= 1− β(1− q),

and, recalling that β = 2δ1/4,

q ≥ 1− 4
√
δ

β
= 1− β.

In particular,
d(S, T ) = uTSAuT ≥ 1− β

and Prx(S),Pry(T ) ≥ 1− β, so |S| , |T | > k1 by the previous claim.

This concludes the proof of Theorem 16. Note that the condition β ≥ δ in Claim 19
is always satisfied by our choice of β, while the upper bound β ≥ 1/18 is satisfied if
η < (1/36)4/2 ≈ 3 · 10−7.

It is possible to derandomise the other algorithms in [13] and [19] using Lemma 13
as well, but we do not give details here.
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3. Further Reductions

3.2. A reduction from optimal NE to Minmax

The following reduction gives evidence to the fact that computing the minmax-value
in three player games is at least as hard as finding ε-Nash equilibria with high average
payoff (note that the statement involves both ε-Nash equilibria and 2ε-Nash equilibria).

Theorem 21. There is a polynomial time reduction which, given payoff-matrices
R,C ∈ [0, 1]m×n specifying a game G in which the players have m and n strategies
respectively, and α ∈ [0, 1], ε > 0, outputs payoff matrices for player 1 in a three
player game H such that:

• If G has an ε-Nash equilibrium with average payoff > 1−α, then minmax1H ≤ α.

• If G has no 2ε-Nash equilibrium with average payoff > 1−α−ε, then minmax1H >
α+ ε.

Proof. Player one has m + n + 1 strategies, player two has m strategies and player
three has n strategies. We group player one’s strategies into three categories:

1. one strategy called v which has payoff-matrix

1− 1

2
(R+ C)

2. for each ı̃ ∈ [m] a strategy aı̃ with payoff-matrix

α− ε+ (Rı̃j −Rij)i,j

3. for each ̃ ∈ [n] a strategy b̃ with payoff-matrix

α− ε+ (Cĩ − Cij)i,j

Let σ2 ∈ ∆m and σ3 ∈ ∆n be mixed strategies for players 2 and 3. Then

1. the expected payoff for player one when playing strategy v is one minus the
social welfare of the game specified by R and C if players two and three play the
strategy profile (σ2, σ3),

2. the expected payoff when playing aı̃ is α− ε plus player 2’s gain when defecting
to strategy ı̃,

3. the expected payoff when playing b̃ is α− ε plus player 3’s gain when defecting
to strategy ̃.

In particular, if σ2 ∈ ∆m and σ3 ∈ ∆n are an ε-Nash equilibrium with average payoff
> 1−α, then no strategy for player 1 in H will have expected payoff > α, if players 2
and 3 play according to σ2 and σ3. Thus, minmax1H ≤ α in this case.

On the other hand, suppose that G has no 2ε-Nash equilibrium with average payoff
> 1− α − ε. Let σ2 and σ3 be strategies for player 2 and 3 in H. If player 1 receives
payoff < α+ ε when responding to σ2 and σ3 with strategy v, then the average payoff
of (σ2, σ3), as a pair of strategies in G, will be at least 1 − α − ε. By our assumption
on G, (σ2, σ3) can not be an 2ε-Nash equilibrium, i.e., one of the players can gain
more than 2ε by deviating. But then one of the strategies aı̃, b̃ will give player 1 an
expected payoff of at least α+ ε in H. Therefore minmax1H > α+ ε in this case.
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4. Conclusion

4. Conclusion

We have considered a promise graph problem, which is hard assuming standard hard-
ness assumptions on detecting planted cliques in random graphs. We have shown that
the problem of approximating the minmax value in 3-player games with 0-1 payoffs
is at least as hard as this promise graph problem. To this end we have given both a
randomized many-one reduction and a deterministic Turing reduction. In doing this
we believe we have given a satisfactory answer (in the negative) to the question of
whether the minmax value in 3-player games can be approximated in polynomial time
within any additive error ε > 0. We leave open the problem of whether the minmax
value of 3-player games can be approximated within some nontrivial additive error
0 < ε < 1/2 in polynomial time.
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A. Proof of Lemma 4

A. Proof of Lemma 4

In this section we give a proof of Lemma 4. Here we do not attempt to optimize
parameters. We let p = η/2e, and let c1 be a constant to be specified later.

Consider fixed sets S, T ⊆ V of size |S| = |T | = c1 lnn. We will estimate the
probability that uTSAuT ≤ η, and after that take a union bound over all such sets S
and T .

The number of potential edges between S and T in G is exactly given by ` =
|S| |T | −

(|S∩T |
2

)
− |S ∩ T | ≥ (c1 lnn)2/3 for large enough n. Letting X be a random

variable denoting the number of edges between S and T we have E[X] = p`. Note that
if X ≤ η/2 · ` then we have

uTSAuT ≤ η ·
l

|S| |T |
≤ η,

because each edge is counted at most twice on the left hand side. By the Chernoff
bound for the upper tail we have

Pr[X ≥ η/2 · `] = Pr[X ≥ eE[X]] ≤
(
ee−1

ee

)E[X]

= exp(−E[X]) = exp(−p`) ≤ exp(−p
3
· (c1 lnn)2) .

We then wish to take a union over all choices of sets S and T . We have at most(
n

c1 lnn

)2 ≤ exp(2c1(lnn)2) such sets. We can thus obtain the statement of the lemma,
by letting c1 > 6/p = 12e/η.
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