
Time Hierarchies for Sampling Distributions

Thomas Watson∗

March 25, 2012

Abstract

We prove that for every constant k ≥ 2, every polynomial time bound t, and every polyno-
mially small ǫ, there exists a family of distributions on k elements that can be sampled exactly
in polynomial time but cannot be sampled within statistical distance 1− 1/k− ǫ in time t. Our
proof involves reducing the problem to a communication problem over a certain type of noisy
channel. We solve the latter problem by giving a construction of a new type of list-decodable
code, for a setting where there is no bound on the number of errors but each error gives more
information than an erasure.

1 Introduction

The most commonly studied computational problems in theoretical computer science are search
problems, where there is a relation specifying which outputs are acceptable, and the goal is to find
any acceptable output. Another important type of computational problem is sampling problems,
where the goal is for the output to be distributed according to (or at least statistically close to) a
specified probability distribution.

Sampling problems have received much attention in the algorithms community. For example,
there has been substantial work on algorithms for sampling graph colorings [FV07], independent sets
[LV99, Vig01], matchings [JS89, JSV04], lattice tilings [LRS01, Wil04], knapsack solutions [MS04],
linear extensions of partial orders [BD99, Wil04], factored numbers [Bac88, Kal03], DNF solutions
[KLM89], eulerian tours [CCM10], stable marriages [BGR08], contingency tables [KTV99, CDR10,
and references within], and spanning trees [PW98, Wil96, and references within]. In the complexity
community, historically most research has focused on search problems (and the special case of
decision problems). However, there has been a surge of interest in complexity-theoretic results that
accord sampling problems a status as first-class computational problems [GGN10, Vio12, Aar11,
LV11, DW12, Vio11].

In the context of sampling problems, we revisit the genesis of complexity theory. In their sem-
inal paper, Hartmanis and Stearns [HS65] proved a time hierarchy theorem for decision problems,
showing that there are decision problems that are solvable by deterministic algorithms running
in time t but not by deterministic algorithms running in time a little less than t. This is often
considered the first result in complexity theory. We study the corresponding question for sampling

∗Computer Science Division, University of California, Berkeley. This material is based upon work supported by
the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0946797 and by the National
Science Foundation under Grant No. CCF-1017403.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 26 (2012)

problems. First, observe that there is a trivial time hierarchy for exact sampling: In time t, an
algorithm can produce a certain output with probability 1/2t, which clearly cannot be done in time
less than t. The interesting question is whether a robust time hierarchy can be proved, showing
that there exists a distribution family that can be sampled in time t, but that algorithms running
in time a little less than t cannot even come close to sampling (in statistical distance). We suc-
ceed in proving such a hierarchy theorem for distributions on constant-size domains, showing that
algorithms running in a sufficiently smaller amount of time cannot sample the distribution much
better than the trivial statistical distance achieved by the uniform distribution.

There are several proofs of time hierarchy theorems for nondeterministic algorithms and other
models of computation [Coo73, SFM78, Žák83, FS11], but these proofs do not directly carry over
to our setting. On the surface, our setting may seem more closely related to the long-standing
open problem of proving a hierarchy for polynomial-time randomized algorithms solving decision
problems. The chief difficulty in the latter setting is that an algorithm must satisfy the “promise”
of having bounded error on every input, and it is not known how to guarantee this while diagonal-
izing against a randomized algorithm that may not have bounded error. There is a beautiful line
of research that circumvents this obstacle by working in slightly-nonuniform or average-case set-
tings [Bar02, FS04, GST11, FST05, Per05, GHP05, vMP07, Per07, KvM10, Its10]. Our setting is
intrinsically different because there is no “promise” that could be violated: Whatever algorithm we
consider, it is guaranteed to sample some family of distributions. We have fundamentally different
issues to address.

1.1 Result

We start with our definitions. We let [k] = {1, . . . , k} and let N denote the set of positive inte-
gers. For distributions D,D′ on [k], recall that the statistical distance is defined as |D − D′| =
maxS⊆[k]

∣

∣PrD(S)− PrD′(S)
∣

∣.
For a function k : N → N, we define a k-family to be a sequence D = (D1,D2,D3, . . .) where

Dn is a distribution on [k(n)]. For a function δ : N → [0, 1], we say a randomized algorithm A
δ-samples a k-family D if when given n as input, A outputs an element A(n) ∈ [k(n)] such that
the output distribution satisfies |A(n)−Dn| ≤ δ(n). For a function t : N → N, we say that A runs
in time t if for all n ∈ N, A always halts in at most t(n) steps when given n as input.1 Finally, we
define

SampTimek,δ(t)

to be the class of k-families δ-sampled by algorithms running in time t.2

Theorem 1. For every constant k ≥ 2 and every constant c ≥ 1,

SampTimek,0(poly(n)) 6⊆ SampTimek,1−1/k−ǫ(t)

where ǫ(n) = 1/nc and t(n) = nc.

We mention that our definition of k-families is “unary”, since there is one distribution for
each n. We could alternatively define a k-family to be a function mapping bit strings of length

1We measure the running time here as a function of the value of the input, not the bit length of the input.
2If we write something such as SampTimeO(logn),1/2−1/ poly(n)(poly(n)), we formally mean the union of

SampTimek,δ(t) over all functions of the form k = O(log n), δ = 1/2− 1/poly(n), and t = poly(n).

2

n to distributions on [k(n)] (for all n). This would more realistically model algorithmic sam-
pling problems, but Theorem 1 is stronger with the unary definition. We also mention that our
proof of Theorem 1 generalizes straightforwardly to show that for every constant k ≥ 2 and
all sufficiently constructible monotone functions t and ǫ such that 2t(n) ≤ t(2poly(n)), we have
SampTimek,0

(

poly
(

t(poly(n))/ǫ(poly(n))
))

6⊆ SampTimek,1−1/k−ǫ(t). Finally, we mention that
our proof of Theorem 1 relativizes, and that it carries through without change for quantum algo-
rithms instead of classical randomized algorithms.

We give the intuition for Theorem 1 in Section 2. We give the formal proof of Theorem 1 in
Section 3. One key ingredient in the proof is a certain type of code, which we construct in Section 4.
We conclude with open problems in Section 5.

2 Intuition

Recall that the original deterministic time hierarchy of [HS65] is proved by diagonalization: A
separate input length ni is reserved for each algorithm Ai running in the smaller time bound,
and an algorithm running in the larger time bound is designed which, when given an input of
length ni, simulates Ai and outputs the opposite answer. This “direct complementation” strategy
cannot possibly work in our setting, because of Brouwer’s fixed point theorem: Suppose we design
an algorithm running in the larger time bound which takes ni and simulates Ai(ni) any number
of times (drawing samples from the distribution Ai(ni) as a black box) and then performs some
computation and produces an output. This algorithm would implement a continuous function
from distributions on [k] to distributions on [k],3 where the input to the function represents the
distribution Ai(ni). This function would have a fixed point, so there would be some distribution,
which Ai(ni) might sample, that would cause the diagonalizing algorithm to produce exactly the
same distribution. The trivial time hierarchy for exact sampling mentioned in the introduction
gets around this by exploiting the fact that Ai(ni) cannot be an arbitrary distribution; it must be
“discretized”. However, the latter observation cannot be used to get a robust time hierarchy with
a nonnegligible statistical distance gap.

Since direct complementation cannot work, we take as a starting point the delayed diagonaliza-
tion technique introduced by Žák [Žák83]. This technique can be used to prove a time hierarchy for
solving decision problems with almost any uniform model of computation that is syntactic (meaning
there is no promise to be satisfied). The idea is to space out the ni’s so that ni+1 is exponentially
larger than ni, and use all the input lengths from ni to ni+1 − 1 to diagonalize against the ith

algorithm Ai. On inputs of length n ∈ {ni, . . . , ni+1 − 2} the diagonalizing algorithm copies the
behavior of Ai on inputs of length n + 1, and on inputs of length n = ni+1 − 1 the diagonalizing
algorithm “does the opposite” of Ai on inputs of length ni (by brute force). Thus Ai cannot agree
with the diagonalizing algorithm for all n ∈ {ni, . . . , ni+1 − 1} or we would obtain a contradiction.

The delayed diagonalization technique leads to a straightforward proof of the k = 2 case of
Theorem 1, as follows. Let us use D = (D1,D2, . . .) to denote the k-family 0-sampled by Ai

(the algorithm we are diagonalizing against) and D∗ = (D∗
1,D

∗
2 , . . .) to denote the k-family 0-

sampled by our diagonalizing algorithm. We can let D∗
ni+1−1 be concentrated entirely on the

least likely outcome of Dni , say M ∈ [2].4 Now for n = (ni+1 − 2), . . . , ni, by induction we may
assume that PrD∗

n+1
(M) ≥ 1 − ǫ(n + 1)/2 and thus PrDn+1(M) ≥ 1/2 + ǫ(n + 1)/2 (assuming

3In general we would talk about [k(ni)], but recall that k is a constant in Theorem 1.
4M might seem like unusual notation here, but it is convenient in the formal proof, and it stands for “message”.

3

|Dn+1 − D∗
n+1| ≤ 1/2 − ǫ(n + 1)). By sampling from Dn+1 many times and taking the majority

outcome, we can ensure that PrD∗

n
(M) ≥ 1− ǫ(n)/2. In the end we have PrD∗

ni
(M) ≥ 1− ǫ(ni)/2

while PrDni
(M) ≤ 1/2, which gives a contradiction if |Dni −D∗

ni
| ≤ 1/2− ǫ(ni).

This simple argument breaks down when k ≥ 3. Suppose we let D∗
ni+1−1 be concentrated on

M ∈ [k], the least likely outcome of Dni . If Dni+1−1 is uniform on {1, . . . , k − 1} then this would
be consistent with any M ∈ {1, . . . , k − 1}, since Dni+1−1 would simultaneously have statistical
distance 1− 1/(k − 1) ≪ 1− 1/k from the distributions concentrated on such M ’s. Note that it is
impossible to have statistical distance < 1−1/k from the distributions concentrated on all possible
M ’s, so Dni+1−1 would be forced to reveal some information about the correct M , namely it must
rule out at least one value.

Here is the first idea we use to fix this problem. Instead of using a single input ni to “close the
cycle” and obtain a contradiction, suppose we reserve m inputs ni, ni + 1, . . . , ni +m − 1 and let
Mα be the least likely outcome of Dni+α for α ∈ {0, 1, . . . ,m − 1}. Suppose that on these inputs,
our diagonalizing algorithm could somehow obtain (with high probability) a list of m candidates
for the sequence M0,M1, . . . ,Mm−1, where at least one candidate is correct. Then we could have
D∗

ni+α put most of its probability mass on the αth value from the αth candidate sequence. If
the αth candidate sequence is the correct one, then we get PrD∗

ni+α
(Mα) ≥ 1 − ǫ(ni + α)/2 while

PrDni+α(Mα) ≤ 1/k, which gives a contradiction if
∣

∣Dni+α −D∗
ni+α

∣

∣ ≤ 1− 1/k − ǫ(ni + α).
How do we get a small list of candidates? For some input n∗

i exponentially larger than ni,
suppose we encode the message M0,M1, . . . ,Mm−1 in some way as γ ∈ [k]ℓ and use a block of ℓ
inputs n∗

i , n
∗
i + 1, . . . , n∗

i + ℓ− 1 to “declare” the codeword γ, by having D∗
n∗

i+j−1 be concentrated

entirely on γj for j ∈ [ℓ].5 Then we are faced with the following communication problem over a noisy
channel: For some smaller inputs n < n∗

i , we would like to recover the original message so we can
“retransmit” it to even smaller inputs (until it eventually reaches the inputs ni, ni+1, . . . , ni+m−1).
Our only way to get information about the message is by sampling from the distributions Dn∗

i+j−1

(for j ∈ [ℓ]), which only weakly reflect the transmitted codeword (under the assumption that Ai

(1 − 1/k − ǫ)-samples D∗). Thus the algorithm Ai being diagonalized against serves as a noisy
channel for transmitting the message from larger inputs to smaller inputs.

As noted above, it is information-theoretically impossible to uniquely recover the original mes-
sage when k ≥ 3, but provided we use a suitable encoding we may be able to recover a small list
of candidates. Then for each candidate in the list we could use a disjoint block of ℓ inputs to
retransmit the encoding of that candidate message. More precisely, suppose there exists a small
set S of messages containing the correct one, such that by sampling from Dn∗

i+j−1 (for j ∈ [ℓ]) we
can discover S with high probability. Then for each message in S we could have a block of ℓ inputs
(that are polynomially smaller than n∗

i) “declare” the codeword corresponding to that message.
Then on even smaller inputs, the diagonalizing algorithm could sample from D on the inputs in a
particular block to recover a small list of candidates for the message encoded by that block. This
leads to a tree structure, illustrated in Figure 1.6 Each node in the tree attempts to transmit a
codeword to its children, after attempting to receive a codeword from its parent by simulating Ai

to get samples from D, and running some sort of list-decoder. Each node can see “which child it
is” and interpret this as advice specifying which message on the list it is responsible for encoding
and transmitting (the hth child is responsible for the lexicographically hth smallest message). The

5For notational reasons, it turns out to be more convenient for us to use 0-based indexing for the sequence of Mα’s
and 1-based indexing for the coordinates of the codeword γ.

6The paper [vMP07] uses a similar tree of input lengths but for a different reason.

4

inputs ni, ni + 1, . . . , ni + m − 1 are the leaves of the tree. The final overall list corresponds to
these leaves; input ni +α would get the αth message of the overall list. So α specifies a path down
the tree, and there must be some path along which the original message is faithfully transmitted.
Provided the tree has height logarithmic in ni and the list at each node has constant size, the
overall list would have size polynomial in ni, and for every input the diagonalizing algorithm would
only need to get polynomially many samples from D on polynomially larger inputs, and would thus
run in polynomial time.

However, there are complications with implementing the above idea. It is too much to hope
that when a codeword is transmitted over the channel, we can recover a unique set S of candidate
messages with high probability. To cut to the chase, what we will be able to guarantee is that there
exists a fixed set S of k − 1 messages (where S depends on the distributions of D on the block
we are trying to receive from) such that we can get a random set of messages T which, with high
probability, contains the correct message and is contained in S. We have no further control over
the distribution of T . When k = 3 this is not a problem: Suppose we use the advice to specify
whether the correct message is lexicographically first or last in S. The child corresponding to the
correct advice will get T = S with some probability, and with the remaining probability T will
contain only the correct message, and in either case the child knows what the correct message is.
The child corresponding to the wrong advice may output garbage, but it does not matter.

The above argument does not generalize to k ≥ 4. For example, when k = 4 and the correct
message is the middle message in S, if we get |T | = 2 then we do not know whether the correct
message is the first or second message in T . We now describe the key idea to solve this problem.
For each message in S, consider the probability it is in T . By the pigeonhole principle, using a
constant amount of advice we can identify a significant “gap” in these probabilities, so that every
message in S has probability either above the gap or below the gap. By taking a certain number of
samples of T and intersecting these sets, the probabilities go down exponentially in the number of
samples, so the probabilities below the gap become vanishingly small while the probabilities above
the gap remain very close to 1. Then by a union bound over the messages in S, we find that with
high probability the intersection of our sampled sets T equals T ∗, the set of messages in S with
probabilities above the gap (which includes the correct message). As described above, since we get
the unique set T ∗ with high probability, we can retransmit the correct codeword provided we know
which message of T ∗ is the correct one. The branching factor of the tree becomes k2 because the
advice needs to specify which of k possible “gaps” to use (and thus how many samples of T to take)
as well as the lexicographic index of the correct message within T ∗.7

We now explain the decoding process in more detail. Suppose we are trying to receive the
codeword γ ∈ [k]ℓ transmitted by some block of inputs n, . . . , n+ℓ−1. Then for j ∈ [ℓ], PrD∗

n+j−1
(γj)

is close to 1 (assuming we are on the “good” path down the tree) and thus PrDn+j−1(γj) is somewhat
larger than 1/k (since we are assuming for contradiction that Ai (1− 1/k− ǫ)-samples D∗). There
is some other value κj ∈ [k] such that PrDn+j−1(κj) < 1/k. Hence if we repeatedly sample from
Dn+j−1 and let ρj ⊆ [k] be the set of values that occur with frequency at least slightly greater than
1/k in the empirical distribution, then with high probability we get γj ∈ ρj ⊆ [k]\κj . In general we
will not get a unique ρj with high probability, since under Dn+j−1 some symbols might occur with
probability very close to the threshold used in defining ρj. We view ρ = ρ1 · · · ρℓ as the received
word. There is no bound on the number of “errors” here, but each error is more informative than
an erasure (ρj = [k] would correspond to an erasure). We need to construct a list-decodable error-

7We actually only need a branching factor of (k − 1)2, but for simplicity we round it up to k2 in the proof.

5

correcting code for this (non-traditional) setting. The list-decoding is deterministic, but since ρ is
random, the list of messages T is also random. With high probability, T ⊆ S where S is the list of
messages for the received word [k]\κ1 · · · [k]\κℓ.

We now discuss our code construction. The codeword for a message is defined by interpreting
the message as a bit string8 and evaluating all possible surjections f : {0, 1}k−1 → [k] on all possible
sets of k−1 coordinates of the bit string. It can be shown that this code is list-decodable in principle
(with list size k − 1) by using the following lemma: For every set of k distinct bit strings of the
same length, there exist k − 1 coordinates on which they remain distinct. Our polynomial-time
list-decoder uses this lemma in an iterative way, building and pruning a set of candidate strings of
increasing lengths until it has arrived at the correct set of messages.

3 Proof of Theorem 1

In Section 3.1 we state a theorem giving an explicit construction of a certain type of code used in
the proof of Theorem 1. Then in Section 3.2 we give the proof of Theorem 1.

3.1 Code Construction

We need a construction of a code for a new model of error-correction. Codewords are length-ℓ
strings over the alphabet [k], and each coordinate of a codeword can be corrupted to a subset of
[k] containing the correct symbol. More formally, we say a codeword γ ∈ [k]ℓ is consistent with a
received word9 ρ ∈ (P([k]))ℓ if γj ∈ ρj for all j ∈ [ℓ]. A traditional erasure corresponds to the case
ρj = [k], but in our model of error-correction that is forbidden: ρj must be a strict subset of [k],
so each coordinate of the received word is more informative than an erasure. The tradeoff is that,
unlike in traditional error-correction settings, we do not assume any upper bound on the number
of “errors”.

Theorem 2. For every constant k ≥ 3 there exists a polynomial-time encodable code C : {0, 1}m →
[k]ℓ where ℓ = Θ(mk−1) such that the following holds. For every received word ρ ∈ (P([k]))ℓ with
ρj 6= [k] for all j ∈ [ℓ], there are at most k − 1 messages µ ∈ {0, 1}m whose codeword C(µ) is
consistent with ρ; moreover, the list of all such µ can be found in polynomial time given ρ.

We prove Theorem 2 in Section 4. A simple application of the probabilistic method shows that
such codes exist with ℓ = Θ(m) if we drop the requirement that the encoding and list-decoding
can be done in polynomial time.10 We are not aware of explicit constructions of such codes with
ℓ = Θ(m), but the polynomial length in Theorem 2 is good enough for our purpose. Also, our
construction for Theorem 2 is elementary.

We remark that in the error-correction model of Theorem 2, it can be assumed without loss
of generality that |ρj| = k − 1 for all j ∈ [ℓ] (since we can always enlarge each coordinate of the
received word to a set of size k− 1, then find all the relevant messages, and then output only those
messages whose codeword is consistent with the original received word). However, the way we have
described the code is more convenient for our application.

8In the formal proof we actually use m to denote the bit length of the message, rather than the length of the
sequence over [k].

9Recall that P([k]) denotes the power set of [k].
10Specifically, there exist codes with ℓ = Θ(m) such that for every set of k codewords there exists a coordinate on

which each element of [k] appears exactly once among the k codewords.

6

n i
d

2

n i
d n i

d
log 2 n i

n i

Figure 1: Tree of input blocks

3.2 The Diagonalization

We now prove Theorem 1. As sketched in Section 2, the k = 2 case of Theorem 1 is a simple
application of delayed diagonalization and estimation by repeated sampling. Henceforth we assume
k ≥ 3. Let A1, A2, A3, . . . be an enumeration of all randomized algorithms that run in time t and
always output an element of [k]. We use a procedure Estimate(Ai, n, ζ, η) which returns a vector
(π1, π2, . . . , πk) ∈ [0, 1]k such that

(i) with probability at least 1− η,
∣

∣πκ − Pr(Ai(n) = κ)
∣

∣ ≤ ζ for all κ ∈ [k], and

(ii) with probability 1, π1 + π2 + · · ·+ πk = 1.

In other words, it returns a distribution that probably approximates the distribution of Ai(n). If
ζ, η > 0 then by a standard Chernoff bound, Estimate(Ai, n, ζ, η) can be implemented in time
O
(

t(n) · 1
ζ2

log 1
η

)

by simulating Ai(n) O
(

1
ζ2

log 1
η

)

times and taking the empirical distribution.11

Also, Estimate(Ai, n, 0, 0) can be implemented in time O(t(n) · 2t(n)).
Algorithm 1 0-samples a k-family D∗ = (D∗

1,D
∗
2 , . . .), and we argue below that it runs in time

poly(n). Thus D∗ ∈ SampTimek,0(poly(n)). We claim that D∗ 6∈ SampTimek,1−1/k−ǫ(t). Suppose
for contradiction there exists an i such that Ai (1− 1/k− ǫ)-samples D∗. Let D = (D1,D2, . . .) be
the k-family that is 0-sampled by Ai. We have |Dn −D∗

n| ≤ 1− 1/k − ǫ(n) for all n.
The parameters used in Algorithm 1 are defined in Figure 2. We use the inputs from ni

through ni+1 − 1 to diagonalize against Ai. The parameters create a tree structure out of the
inputs, illustrated in Figure 1. The tree is a full tree with branching factor k2 and depth log2 ni,
with the leaves at level b = 0 and the root at level b = log2 ni. Thus the number of leaves is
(k2)log2 ni . Each node of the tree has a contiguous block of inputs associated to it. Each leaf’s
block only consists of a single input, but each internal node’s block has ℓi inputs, which represent
the coordinates of codewords under the code Ci. Level b of the tree starts at input ni,b = ndb

i .
There are (k2)(log2 ni)−b nodes across level b, indexed by α ∈

{

0, 1, . . . , (k2)(log2 ni)−b − 1
}

, and their
blocks of inputs Ni,b,α are consecutive from left to right across the level. Writing α in base k2

allows us to interpret α as specifying a path down the tree from the root to the current node. The
input n1 is an unspecified constant power of 2, which just needs to be large enough so the blocks
Ni,b,α are all disjoint and log2 n1 > 1. There exists such an n1 since d ≥ 3k log2 k. Hence line 1 of
Algorithm 1 will find unique values i, b, α (if they exist).

The reason we use message length mi =
⌈

log2 k
(k2)log2 ni

⌉

is because our messages represent
sequences of length (k2)log2 ni over the alphabet [k] (one symbol for each leaf of the tree). We

11We are ignoring the logarithmic factor time overhead usually associated with simulating an algorithm using a
universal algorithm.

7

Define d =
⌈

max(2c, 3k log2 k)
⌉

For i ∈ N define:

ni =

{

a sufficiently large constant power of 2 if i = 1

nd(log2 ni−1)+1

i−1 if i > 1

mi =
⌈

log2 k
(k2)log2 ni

⌉

ℓi = Θ(mk−1
i), the codeword length from Theorem 2 for messages of length mi

Ci = {0, 1}mi → [k]ℓi , the code from Theorem 2
Deci = the list-decoder from Theorem 2

For i ∈ N, b ∈ {0, 1, . . . , log2 ni}, α ∈
{

0, 1, . . . , (k2)(log2 ni)−b − 1
}

, j ∈ [ℓi] define:

ni,b = ndb
i

ni,b,α =

{

ni,b + α if b = 0

ni,b + αℓi if b > 0

ni,b,α,j =

{

undefined if b = 0

ni,b,α + j − 1 if b > 0

Ni,b,α =

{

{ni,b,α} if b = 0

{ni,b,α,1, . . . , ni,b,α,ℓi} if b > 0

Figure 2: Notation for Algorithm 1

assume there is a canonical way of interconverting between sequences of length (k2)log2 ni over [k]
and messages in {0, 1}mi . It is most convenient for us to use 0-based indexing for the sequences
M0,M1, . . . ,M(k2)log2 ni−1 and 1-based indexing for the messages µ = µ1 · · ·µmi , codewords C(µ) =
C(µ)1 · · ·C(µ)ℓi , and received words ρ = ρ1 · · · ρℓi .

In general, each block of inputs Ni,b,α attempts to “receive” an encoded message via a noisy
channel from its parent block and “send” the re-encoded message to its children blocks. Lines 3–24
are the receiving phase, and lines 25–32 are the sending phase. The receiving is different at the
root (b = log2 ni) because the algorithm generates the message directly without receiving it over
a noisy channel. The sending is different at the leaves (b = 0) because instead of sending, the
algorithm uses the message to attempt to deliver the coup de grâce and ensure that Ai fails to
(1− 1/k − ǫ)-sample D∗ if it has not already failed somewhere along the chain of “transmissions”.
The following claim is the heart of the analysis. It shows that there exists a path down the tree
along which the original message µ∗ (generated by the root) is faithfully transmitted.

Claim 1. For every b ∈ {0, 1, . . . , log2 ni} there exists an α ∈
{

0, 1, . . . , (k2)(log2 ni)−b − 1
}

such
that for every n ∈ Ni,b,α, with probability ≥ 1− ǫ(n)/2 Algorithm 1 reaches the sending phase (lines
25–32) and the µ computed in the receiving phase (lines 3–24) equals µ∗ (the message generated by
the root of the tree on line 8).

Claim 2. Algorithm 1 runs in time poly(n).

We now show how to finish the proof of Theorem 1 given these claims. By Claim 2, D∗ is indeed
in SampTimek,0(poly(n)). Consider the good α from Claim 1 for b = 0. On input n = ni,0,α, with
probability ≥ 1−ǫ(n)/2 Algorithm 1 reaches the sending phase and the µ computed in the receiving

8

Algorithm 1: Diagonalizing algorithm for Theorem 1

Input: n ∈ N

Output: an element of [k]

1 find i, b, α such that n ∈ Ni,b,α

2 if such values do not exist then halt and output an arbitrary element of [k]

3 if b = log2 ni then

4 foreach α′ ∈
{

0, 1, . . . , (k2)log2 ni − 1
}

do

5 let (πα′

1 , . . . , πα′

k) = Estimate(Ai, ni,0,α′ , 0, 0)

6 let Mα′ = argminκ∈[k](π
α′

κ) (breaking ties arbitrarily)

7 end

8 convert the sequence M0,M1, . . . ,M(k2)log2 ni−1 to a bit string µ ∈ {0, 1}mi

9 else

10 write α in base k2: α =
∑(log2 ni)−b−1

τ=0 ατ (k
2)τ where ατ ∈ {0, 1, . . . , k2 − 1}

11 write α0 in base k: α0 = (q − 1)k + (h− 1) where q, h ∈ [k]

12 let α′ =
∑(log2 ni)−b−2

τ=0 ατ+1(k
2)τ

13 let Q =
(

1/ǫ(ni,b+1)
)4q+2

14 foreach r ∈ [Q] do
15 foreach j′ ∈ [ℓi] do
16 let n′ = ni,b+1,α′,j′

17 let (πj′

1 , . . . , π
j′

k) = Estimate(Ai, n
′, ǫ(n′)/4, η) where η = ǫ(ni,b+1)/4ℓiQ

18 let ρj′ =
{

κ ∈ [k] : πj′
κ ≥ 1/k + ǫ(n′)/4

}

19 end

20 let Tr = Deci(ρ) ⊆ {0, 1}mi where ρ = ρ1 · · · ρℓi ∈ (P([k]))ℓi

21 end

22 if
∣

∣T1 ∩ · · · ∩ TQ

∣

∣ < h then halt and output an arbitrary element of [k]

23 let µ be the lexicographically hth smallest element of T1 ∩ · · · ∩ TQ

24 end

25 if b = 0 then

26 convert µ to a sequence M0,M1, . . . ,M(k2)log2 ni−1 over [k]

27 halt and output Mα

28 else

29 compute Ci(µ)
30 find j such that n = ni,b,α,j

31 halt and output Ci(µ)j
32 end

9

phase equals µ∗. Thus the sequence M0,M1, . . . ,M(k2)log2 ni−1 found on line 26 is the same as the

sequence generated by the root of the tree on lines 4–7. Hence Mα = argminκ∈[k]
(

PrDn(κ)
)

and
in particular PrDn(Mα) ≤ 1/k. Since PrD∗

n
(Mα) ≥ 1 − ǫ(n)/2, this contradicts the fact that

|Dn −D∗
n| ≤ 1 − 1/k − ǫ(n) (which follows from our contradiction assumption). This finishes the

proof of Theorem 1. All that remains is to prove Claim 1 and Claim 2.

Proof of Claim 1. By induction on b = log2 ni, . . . , 0. The base case b = log2 ni is trivial by the
definition of µ∗ (with α = 0 and with probability 1, in fact). Now assume b < log2 ni and the claim
holds for b+1. Let α′ ∈

{

0, 1, . . . , (k2)(log2 ni)−b−1−1
}

be the good α from the induction hypothesis.
For each n′ ∈ Ni,b+1,α′ , say n′ = ni,b+1,α′,j′, the induction hypothesis says that on input n′, with
probability ≥ 1−ǫ(n′)/2 Algorithm 1 reaches the sending phase and the µ computed in the receiving
phase equals µ∗. Since b+1 > 0, by lines 28–32 this implies that D∗

n′ puts ≥ 1− ǫ(n′)/2 probability
mass on Ci(µ

∗)j′ . Since |Dn′ − D∗
n′ | ≤ 1 − 1/k − ǫ(n′), we find that Dn′ puts ≥ 1/k + ǫ(n′)/2

probability mass on Ci(µ
∗)j′ .

We show that there exist q, h ∈ [k] such that α = (k2)α′ + α0 satisfies the desired properties,
where α0 = (q − 1)k + (h − 1). For any such α, suppose n ∈ Ni,b,α and consider Algorithm 1 on
input n. Note that α′ computed on line 12 is indeed the α′ from the induction hypothesis, and the
block Ni,b+1,α′ is the parent of the block Ni,b,α in the tree (see Figure 1).

Now consider lines 15–19. For any j′ ∈ [ℓi], let us denote n′ = ni,b+1,α′,j′, and let us define κj′

to be the least likely outcome of Dn′ (breaking ties arbitrarily). Then Dn′ puts ≥ 1/k + ǫ(n′)/2
probability mass on Ci(µ

∗)j′ and < 1/k probability mass on κj′ . Hence with probability ≥ 1 − η
over the estimation on line 17,

πj′

Ci(µ∗)j′
≥

(

1/k + ǫ(n′)/2
)

− ǫ(n′)/4 = 1/k + ǫ(n′)/4

and πj′
κj′

< 1/k + ǫ(n′)/4 and thus

Ci(µ
∗)j′ ∈ ρj′ ⊆ [k]\κj′ . (1)

Note that with probability 1 we have ρj′ 6= [k] for all j′ and thus ρ is a valid received word. For
any r ∈ [Q], let Er be the event (depending on the randomness of lines 15–19) that Equation (1)
holds for all j′ (in the rth iteration of the loop on line 14). We have

Pr(Er) ≥ (1− η)ℓi ≥ 1− ηℓi. (2)

Now define
S = Deci

(

[k]\κ1 · · · [k]\κℓi
)

⊆ {0, 1}mi

and note that |S| ≤ k − 1. Conditioned on Er, we have µ∗ ∈ Tr ⊆ S (since Ci(µ
∗) is consistent

with ρ, and all codewords consistent with ρ are also consistent with [k]\κ1 · · · [k]\κℓi). Note that
for different r’s, Tr conditioned on Er are independent and identically distributed. For each σ ∈ S
let us define pσ to be the probability that σ ∈ Tr conditioned on Er. Note that pµ∗ = 1 and since
|S| ≤ k − 1, by the pigeonhole principle there exists a q ∈ [k] such that for every σ ∈ S, either
pσ ≥ exp

(

− (ǫ∗)4q+4
)

or pσ < exp
(

− (ǫ∗)4q
)

where ǫ∗ = ǫ(ni,b+1). We fix this value of q and the
corresponding value Q = (1/ǫ∗)4q+2. For each σ ∈ S, we have

Pr
(

σ ∈ T1 ∩ · · · ∩ TQ

∣

∣ E1 ∩ · · · ∩ EQ

)

= (pσ)
Q

10

and we have either
(pσ)

Q ≥ exp
(

− (ǫ∗)2
)

≥ 1− ǫ(n)/4k

or
(pσ)

Q < exp
(

− (1/ǫ∗)2
)

≤ ǫ(n)/4k

regardless of which n ∈ Ni,b,α we are considering.12 Defining

T ∗ =
{

σ ∈ S : (pσ)
Q > 1/2

}

,

by a union bound over σ ∈ S we find that

Pr
(

(T1 ∩ · · · ∩ TQ) = T ∗
∣

∣ E1 ∩ · · · ∩ EQ

)

≥ 1− ǫ(n)/4. (3)

Since (pµ∗)Q = 1 > 1/2, we have µ∗ ∈ T ∗. Now we fix h ∈ [k] to be such that µ∗ is the
lexicographically hth smallest element of T ∗. Then when (T1∩· · ·∩TQ) = T ∗, we have

∣

∣T1∩· · ·∩TQ

∣

∣ ≥
h and so Algorithm 1 reaches the sending phase, and the µ computed in the receiving phase equals
µ∗, as desired. Thus for every n ∈ Ni,b,α where α = (k2)α′ + (q − 1)k + (h− 1) we have

Pr
(

Algorithm 1 reaches the sending phase with µ = µ∗
)

≥ Pr
(

(T1 ∩ · · · ∩ TQ) = T ∗
)

≥ Pr
(

E1 ∩ · · · ∩ EQ

)

· Pr
(

(T1 ∩ · · · ∩ TQ) = T ∗
∣

∣ E1 ∩ · · · ∩ EQ

)

≥
(

1− ηℓiQ
)

·
(

1− ǫ(n)/4
)

≥ 1− ǫ(n)/2

where the fourth line follows by Inequality (2) and Inequality (3), and the fifth line follows by
ηℓiQ = ǫ(ni,b+1)/4 ≤ ǫ(n)/4 (where η is as on line 17 of Algorithm 1). This finishes the proof of
Claim 1.

Proof of Claim 2. Line 1 can be done in poly(n) time by direct computation. If b = log2 ni then

n ≥ ndlog2 ni

i = 2n
log2 d
i log2 ni ≥ 2n

c
i log2 ni

since d ≥ 2c, and so the number of iterations on line 4 is polylog(n) and the computation on line
5 takes time O(t(ni) · 2

t(ni)) = O(nc
i · 2

nc
i) ≤ poly(n). Suppose b < log2 ni. Lines 10–13 are simple

calculations, and we have Q ≤
(

1/ǫ(nd)
)4k+2

≤ poly(n) since ni,b+1 = nd
i,b ≤ nd. We also have

mi, ℓi ≤ poly(ni) ≤ poly(n) and so the loops on lines 14 and 15 have poly(n) iterations. For lines
16 and 17, we have n′ ≤ nd2

i,b ≤ nd2 and ǫ(n′)/4 ≥ 1/poly(n) and η ≥ 1/poly(n) ≥ 1/ exp(poly(n))
so the Estimate procedure takes time poly(n). The list-decoding on line 20 takes time poly(mi) ≤
poly(n). The sending phase (lines 25–32) trivially takes time poly(n) since Ci is polynomial-time
encodable. Overall, the running time is poly(n).

4 Proof of Theorem 2

Before giving our construction of a code C satisfying the properties in Theorem 2, we give a key
lemma.

12We can assume without loss of generality that c is large enough in terms of k for these inequalities to hold (recall
that ǫ(n) = 1/nc).

11

4.1 A Combinatorial Lemma

For a set S and number a, we let
(

S
a

)

denote the set of all subsets of S of size a. For a string
σ ∈ {0, 1}b and i ∈ [b] and I ⊆ [b], we let σi denote the ith bit of σ, and we let σI denote the
length-|I| string consisting of the bits of σ indexed by I.

Lemma 1. For all 1 ≤ a ≤ b and every set of distinct strings σ1, . . . , σa ∈ {0, 1}b, there exists an
I ∈

([b]
a−1

)

such that σ1
I , . . . , σ

a
I ∈ {0, 1}a−1 are distinct.

Proof. By induction on a, with a = 1 and a = 2 being trivial. Suppose a ≥ 3. By the induction
hypothesis there exists an I ′ ∈

([b]
a−2

)

such that σ1
I′ , . . . , σ

a−1
I′ are distinct. If σa

I′ is different from

each of σ1
I′ , . . . , σ

a−1
I′ then we can take an arbitrary I ⊇ I ′ of size a − 1. Otherwise, σa

I′ = σh
I′ for

exactly one h ∈ [a − 1]. Since σa 6= σh, there exists an i ∈ [b]\I ′ such that σa
i 6= σh

i , and we can
take I = I ′ ∪ {i}.

It is not difficult to see that the a−1 bound in Lemma 1 is tight (there do not always exist a−2
coordinates on which a distinct bit strings remain distinct). We remark in passing that Lemma 1
can be viewed in terms of a certain “dual” of VC-dimension: While the VC-dimension of a set of
bit strings is the size of a largest set of coordinates on which every pattern appears at least once,
we are interested in the size of a smallest set of coordinates on which every pattern appears at most
once.

4.2 Code Construction

We now give our construction of the code C for an arbitrary constant k ≥ 3 and message length
m ≥ k. By convention we use the notation µ ∈ {0, 1}m for messages, γ ∈ [k]ℓ for codewords, and
ρ ∈ (P([k]))ℓ for received words.

We define Surjk to be the set of all surjections f : {0, 1}k−1 → [k]. The coordinates of a

codeword are indexed by
([m]
k−1

)

× Surjk, in other words by pairs I, f where I is a subset of [m] of

size k − 1 and f : {0, 1}k−1 → [k] is a surjection. We let ℓ =
∣

∣

([m]
k−1

)

× Surjk
∣

∣ = Θ(mk−1), and we

define the code C : {0, 1}m → [k]ℓ by

C(µ) =
(

f(µI)
)

I∈([m]
k−1), f∈Surjk

.

In other words, the I, f coordinate of the codeword is the evaluation of f on the bits of the message
indexed by I. Encoding can clearly be done in polynomial time.

It just remains to exhibit a polynomial-time list-decoder for C. Let us fix an arbitrary received
word ρ ∈ (P([k]))ℓ with ρI,f 6= [k] for all I, f . We need to show that there are at most k − 1
messages whose codewords are consistent with ρ, and that moreover, these messages can be found
in polynomial time given ρ.

For each I ∈
([m]
k−1

)

we define List(ρ, I) to be the set of all σ ∈ {0, 1}k−1 such that f(σ) ∈ ρI,f
for all f ∈ Surjk. Note that the set List(ρ, I) can be found efficiently given ρ and I by trying all
possibilities.

Observation 1. If µ ∈ {0, 1}m is such that C(µ) is consistent with ρ, then for all I ∈
([m]
k−1

)

,
µI ∈ List(ρ, I).

Lemma 2. For all I ∈
([m]
k−1

)

, |List(ρ, I)| ≤ k − 1.

12

Algorithm 2: List-decoder for Theorem 2

Input: ρ ∈ (P([k]))ℓ with ρI,f 6= [k] for all I, f
Output: set of all µ ∈ {0, 1}m such that C(µ) is consistent with ρ

1 let Sk−1 = List(ρ, [k − 1])
2 foreach n = k, . . . ,m do

3 suppose Sn−1 =
{

σ1, . . . , σ|Sn−1|
}

⊆ {0, 1}n−1

4 find an I ∈
([n−1]
k−2

)

such that σ1
I , . . . , σ

|Sn−1|
I are distinct

5 let Sn =
{

s ∈ {0, 1}n : s[n−1] ∈ Sn−1 and sI∪{n} ∈ List(ρ, I ∪ {n})
}

6 end

7 output the set of all µ ∈ Sm such that C(µ) is consistent with ρ

Proof. Consider any set of k distinct strings σ1, . . . , σk ∈ {0, 1}k−1. There exists an f ∈ Surjk
such that

{

f(σ1), . . . , f(σk)
}

= [k].13 Therefore since ρI,f 6= [k] there exists an h ∈ [k] such that
f(σh) 6∈ ρI,f , which implies that σh 6∈ List(ρ, I).

Now to see that C is list-decodable in principle, suppose for contradiction that there are k
distinct messages µ1, . . . , µk whose codewords are all consistent with ρ. Applying Lemma 1 with
a = k and b = m, there exists an I ∈

([m]
k−1

)

such that µ1
I , . . . , µ

k
I are distinct. But for all h ∈ [k],

we have µh
I ∈ List(ρ, I) by Observation 1. Thus List(ρ, I) ≥ k, which contradicts Lemma 2. Hence

for our arbitrary received word ρ, there are at most k− 1 messages whose codewords are consistent
with ρ. Algorithm 2 finds this list of messages in polynomial time given ρ. The correctness of the
algorithm follows immediately from the following claim and line 7 of the algorithm.

Claim 3. For all n = (k−1), . . . ,m, the following three properties hold: Sn ⊆ {0, 1}n, |Sn| ≤ k−1,
and for every µ ∈ {0, 1}m such that C(µ) is consistent with ρ we have µ[n] ∈ Sn.

Proof. By induction on n. The base case n = k−1 is immediate from Lemma 2 and Observation 1,
so assume n ≥ k and the claim holds for n − 1. By the induction hypothesis, |Sn−1| ≤ k − 1 and
so line 4 of the algorithm will succeed by Lemma 1 (with a = |Sn−1| and b = n− 1).

We now verify the three properties of Sn. The property Sn ⊆ {0, 1}n is immediate. To see
that |Sn| ≤ k − 1, suppose for contradiction that there are k distinct strings s1, . . . , sk ∈ Sn. Then
since |List(ρ, I ∪ {n})| ≤ k − 1 (by Lemma 2) and shI∪{n} ∈ List(ρ, I ∪ {n}) for all h ∈ [k], there

must exist h1 6= h2 such that sh1

I∪{n} = sh2

I∪{n}. Since sh1

[n−1], s
h2

[n−1] ∈ Sn−1 and sh1
I = sh2

I , we must

have sh1

[n−1] = sh2

[n−1] = σh for some h. But now sh1

[n−1] = sh2

[n−1] and sh1
n = sh2

n , which contradicts

our assumption that sh1 and sh2 are distinct. Thus we have verified that |Sn| ≤ k − 1. To verify
the third property, consider an arbitrary µ ∈ {0, 1}m such that C(µ) is consistent with ρ. By the
induction hypothesis, µ[n−1] ∈ Sn−1, and by Observation 1, µI∪{n} ∈ List(ρ, I ∪ {n}). By line 5 of
the algorithm, this means that µ[n] ∈ Sn.

We now discuss the running time of the algorithm. Line 4 can be implemented in polynomial
time since an efficient algorithm for finding I can be gleaned from the proof of Lemma 1 (or less

13Because of this, we do not actually need to use all possible surjections in the definition of the code C. We can
instead use any collection of functions with the property that for every set of k distinct strings in {0, 1}k−1, there
exists a function in the collection that assigns each of the k strings a different value.

13

elegantly, since k is a constant, we can just try all possible subsets of size k − 2). Line 5 can be
implemented efficiently by looking at each string in Sn−1 and considering extending it with each
possible symbol in [k] and checking whether the I∪{n} coordinates form a string in List(ρ, I∪{n}).
Line 7 runs in polynomial time since C is efficiently encodable and consistency is easy to check.

Since our list-decoding algorithm is correct and runs in polynomial time, this completes the
proof of Theorem 2.

5 Open Problems

A natural open problem is to prove a robust hierarchy theorem for sampling distributions on
superconstant-size domains within polynomial time. It is also open to prove an “almost-everywhere”
robust hierarchy for sampling non-unary families of distributions, where the algorithms running in
the smaller time bound are required to fail on all but finitely many input lengths, instead of just
on infinitely many input lengths.

Another open problem is to obtain explicit constructions of list-decodable codes as in Theorem 2
with constant rate instead of polynomially small rate. More generally, it would be interesting to
obtain further results about codes with “errors” that are even more useful than erasures.

Another open problem is to find applications of our hierarchy theorem. A standard technique
in complexity theory is “indirect diagonalization”, where a separation is proved by assuming the
separation does not hold and deriving a contradiction with a known diagonalization-based result
such as a hierarchy theorem. It would be interesting to use our hierarchy theorem in an indirect
diagonalization.

Most generally, we advocate further study of sampling problems from a complexity theory
perspective.

References

[Aar11] Scott Aaronson. The equivalence of sampling and searching. In Proceedings of the 6th
International Computer Science Symposium in Russia, pages 1–14, 2011.

[Bac88] Eric Bach. How to generate factored random numbers. SIAM Journal on Computing,
17(2):179–193, 1988.

[Bar02] Boaz Barak. A probabilistic-time hierarchy theorem for slightly non-uniform algorithms.
In Proceedings of the 6th International Workshop on Randomization and Computation,
pages 194–208, 2002.

[BD99] Russ Bubley and Martin Dyer. Faster random generation of linear extensions. Discrete
Mathematics, 201(1-3):81–88, 1999.

[BGR08] Nayantara Bhatnagar, Sam Greenberg, and Dana Randall. Sampling stable marriages:
Why spouse-swapping won’t work. In Proceedings of the 19th ACM Symposium on Dis-
crete Algorithms, pages 1223–1232, 2008.

[CCM10] Prasad Chebolu, Mary Cryan, and Russell Martin. Exact counting of Euler tours for
generalized series-parallel graphs. CoRR, abs/1005.3477, 2010.

14

[CDR10] Mary Cryan, Martin Dyer, and Dana Randall. Approximately counting integral flows
and cell-bounded contingency tables. SIAM Journal on Computing, 39(7):2683–2703,
2010.

[Coo73] Stephen Cook. A hierarchy for nondeterministic time complexity. Journal of Computer
and System Sciences, 7(4):343–353, 1973.

[DW12] Anindya De and Thomas Watson. Extractors and lower bounds for locally samplable
sources. ACM Transactions on Computation Theory, 4(1), 2012.

[FS04] Lance Fortnow and Rahul Santhanam. Hierarchy theorems for probabilistic polynomial
time. In Proceedings of the 45th IEEE Symposium on Foundations of Computer Science,
pages 316–324, 2004.

[FS11] Lance Fortnow and Rahul Santhanam. Robust simulations and significant separations.
In Proceedings of the 38th International Colloquium on Automata, Languages and Pro-
gramming, pages 569–580, 2011.

[FST05] Lance Fortnow, Rahul Santhanam, and Luca Trevisan. Hierarchies for semantic classes.
In Proceedings of the 37th ACM Symposium on Theory of Computing, pages 348–355,
2005.

[FV07] Alan Frieze and Eric Vigoda. A survey on the use of Markov chains to randomly sample
colorings. In Combinatorics, Complexity, and Chance. Oxford University Press, 2007.

[GGN10] Oded Goldreich, Shafi Goldwasser, and Asaf Nussboim. On the implementation of huge
random objects. SIAM Journal on Computing, 39(7):2761–2822, 2010.

[GHP05] Dima Grigoriev, Edward Hirsch, and Konstantin Pervyshev. Time hierarchies for cryp-
tographic function inversion with advice. Technical Report TR05-076, Electronic Collo-
quium on Computational Complexity, 2005.

[GST11] Oded Goldreich, Madhu Sudan, and Luca Trevisan. From logarithmic advice to single-bit
advice. Studies in Complexity and Cryptography, pages 109–113, 2011.

[HS65] Juris Hartmanis and Richard Stearns. On the computational complexity of algorithms.
Transactions of the American Mathematical Society, 117:285–306, 1965.

[Its10] Dmitry Itsykson. Structural complexity of AvgBPP. Annals of Pure and Applied Logic,
162(3):213–223, 2010.

[JS89] Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM Journal on
Computing, 18(6):1149–1178, 1989.

[JSV04] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation
algorithm for the permanent of a matrix with nonnegative entries. Journal of the ACM,
51(4):671–697, 2004.

[Kal03] Adam Kalai. Generating random factored numbers, easily. Journal of Cryptology,
16(4):287–289, 2003.

15

[KLM89] Richard Karp, Michael Luby, and Neal Madras. Monte-Carlo approximation algorithms
for enumeration problems. Journal of Algorithms, 10(3):429–448, 1989.

[KTV99] Ravi Kannan, Prasad Tetali, and Santosh Vempala. Simple Markov-chain algorithms
for generating bipartite graphs and tournaments. Random Structures and Algorithms,
14(4):293–308, 1999.

[KvM10] Jeff Kinne and Dieter van Melkebeek. Space hierarchy results for randomized and other
semantic models. Computational Complexity, 19(3):423–475, 2010.

[LRS01] Michael Luby, Dana Randall, and Alistair Sinclair. Markov chain algorithms for planar
lattice structures. SIAM Journal on Computing, 31(1):167–192, 2001.

[LV99] Michael Luby and Eric Vigoda. Fast convergence of the Glauber dynamics for sampling
independent sets. Random Structures and Algorithms, 15(3-4):229–241, 1999.

[LV11] Shachar Lovett and Emanuele Viola. Bounded-depth circuits cannot sample good codes.
In Proceedings of the 26th IEEE Conference on Computational Complexity, pages 243–
251, 2011.

[MS04] Ben Morris and Alistair Sinclair. Random walks on truncated cubes and sampling 0-1
knapsack solutions. SIAM Journal on Computing, 34(1):195–226, 2004.

[Per05] Konstantin Pervyshev. Time hierarchies for computations with a bit of advice. Technical
Report TR05-054, Electronic Colloquium on Computational Complexity, 2005.

[Per07] Konstantin Pervyshev. On heuristic time hierarchies. In Proceedings of the 22nd IEEE
Conference on Computational Complexity, pages 347–358, 2007.

[PW98] James Propp and David Wilson. How to get a perfectly random sample from a generic
Markov chain and generate a random spanning tree of a directed graph. Journal of
Algorithms, 27(2):170–217, 1998.

[SFM78] Joel Seiferas, Michael Fischer, and Albert Meyer. Separating nondeterministic time
complexity classes. Journal of the ACM, 25(1):146–167, 1978.

[Vig01] Eric Vigoda. A note on the Glauber dynamics for sampling independent sets. Electronic
Journal of Combinatorics, 8(1), 2001.

[Vio11] Emanuele Viola. Extractors for circuit sources. In Proceedings of the 52nd IEEE Sym-
posium on Foundations of Computer Science, pages 220–229, 2011.

[Vio12] Emanuele Viola. The complexity of distributions. SIAM Journal on Computing,
41(1):191–218, 2012.

[vMP07] Dieter van Melkebeek and Konstantin Pervyshev. A generic time hierarchy with one bit
of advice. Computational Complexity, 16(2):139–179, 2007.

[Wil96] David Wilson. Generating random spanning trees more quickly than the cover time. In
Proceedings of the 28th ACM Symposium on Theory of Computing, pages 296–303, 1996.

16

[Wil04] David Wilson. Mixing times of lozenge tiling and card shuffling Markov chains. Annals
of Applied Probability, 14(1):274–325, 2004.

[Žák83] Stanislav Žák. A Turing machine time hierarchy. Theoretical Computer Science, 26:327–
333, 1983.

17

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

