
Time Hierarchies for Sampling Distributions

Thomas Watson∗

September 5, 2014

Abstract

We show that “a little more time gives a lot more power to sampling algorithms.” We prove
that for every constant k ≥ 2, every polynomial time bound t, and every polynomially small ǫ,
there exists a family of distributions on k elements that can be sampled exactly in polynomial
time but cannot be sampled within statistical distance 1 − 1/k − ǫ in time t. This implies the
following general time hierarchy for sampling distributions on arbitrary-size domains such as
{0, 1}n: For every polynomial time bound t and every constant ǫ > 0, there exists a family of
distributions that can be sampled exactly in polynomial time but cannot be sampled within
statistical distance 1− ǫ in time t.

Our proof involves reducing the problem to a communication problem over a certain type
of noisy channel. To solve the latter problem we use a type of list-decodable code for a setting
where there is no bound on the number of errors but each error gives more information than
an erasure. This type of code can be constructed using certain known traditional list-decodable
codes, but we give a new construction that is elementary, self-contained, and tailored to this
setting.

1 Introduction

The most commonly studied computational problems in theoretical computer science are search
problems, where there is a relation specifying which outputs are acceptable, and the goal is to find
any acceptable output. Another important type of computational problem is sampling problems,
where the goal is for the output to be distributed according to (or at least statistically close to) a
specified probability distribution.

Sampling problems have received much attention in the algorithms community. For example,
there has been substantial work on algorithms for sampling graph colorings [FV07], independent
sets [LV99, Vig01], matchings [JS89, JSV04], lattice tilings [LRS01, Wil04], knapsack solutions
[MS04], linear extensions of partial orders [BD99, Wil04], factored numbers [Bac88, Kal03], DNF
solutions [KLM89], Eulerian tours [CCM12], stable marriages [BGR08], words from context-free
languages [GJK+97], chemical isomers [GJ99], points on algebraic varieties [CS09], contingency
tables [KTV99, CDR10, and references within], and spanning trees [PW98, Wil96, KM09, and
references within]. In the complexity community, historically most research has focused on search
problems (and the special case of decision problems). However, there has been a surge of interest

∗Department of Computer Science, University of Toronto. Research conducted while at the University of California,
Berkeley. This material is based upon work supported by the National Science Foundation Graduate Research
Fellowship under Grant No. DGE-0946797 and by the National Science Foundation under Grant No. CCF-1017403.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 26 (2012)

in complexity-theoretic results that accord sampling problems a status as first-class computational
problems [GGN10, Vio12, Aar11, LV12, DW12, Vio14, BIL12]. Many of those works focus on
proving lower bounds for explicit sampling problems on restricted models of computation.

In the context of sampling problems, we revisit the genesis of complexity theory. In their sem-
inal paper, Hartmanis and Stearns [HS65] proved a time hierarchy theorem for decision problems,
showing that there are decision problems that are solvable by deterministic algorithms running
in time t but not by deterministic algorithms running in time a little less than t. This is often
considered the first result in complexity theory. We study the corresponding question for sampling
problems. First, observe that there is a trivial time hierarchy for exact sampling: In time t, an
algorithm can produce a particular output with probability 1/2t, which clearly cannot be done in
time less than t. The interesting question is whether a robust time hierarchy can be proved, showing
that there exists a distribution family that can be sampled in time t, but that algorithms running in
time a little less than t cannot even come close to sampling (in statistical distance). We succeed in
proving such a hierarchy theorem, showing that algorithms running in a sufficiently smaller amount
of time cannot sample the distribution within a statistical distance that is any constant less than 1.
This is a corollary to our main theorem, which is a quantitatively tight result for distributions on
constant-size domains, showing that algorithms running in a sufficiently smaller amount of time
cannot sample the distribution much better than the trivial statistical distance achieved by the
uniform distribution. Our results can be summarized as “a little more time gives a lot more power
to sampling algorithms.”

There are several proofs of time hierarchy theorems for nondeterministic algorithms and other
models of computation [Coo73, SFM78, Žák83, FS11], but these proofs do not directly carry over
to our setting. On the surface, our setting may seem more closely related to the long-standing
open problem of proving a hierarchy for polynomial-time randomized algorithms solving decision
problems. The chief difficulty in the latter setting is that an algorithm must satisfy the “promise”
of having bounded error on every input, and it is not known how to guarantee this while diagonal-
izing against a randomized algorithm that may not have bounded error. There is a beautiful line
of research that circumvents this obstacle by working in slightly-nonuniform or average-case set-
tings [Bar02, FS04, GST11, FST05, Per05, GHP05, vMP07, Per07, KvM10, Its10]. Our setting is
intrinsically different because there is no “promise” that could be violated: Whatever algorithm we
consider, it is guaranteed to sample some family of distributions. We have fundamentally different
issues to address.

1.1 Results

We start with our definitions. We let [k] = {1, . . . , k} and let N denote the set of positive inte-
gers. For distributions D,D′ on [k], recall that the statistical distance is defined as |D − D′| =
maxS⊆[k]

∣

∣PrD(S) − PrD′(S)
∣

∣. Our results hold for any reasonable uniform model of computation;
for concreteness we may assume the model is Turing machines with access to unbiased independent
coin flips.

For a function k : N → N, we define a k-family to be a sequence D = (D1,D2,D3, . . .) where
Dn is a distribution on [k(n)]. For a function δ : N → [0, 1], we say a randomized algorithm A
δ-samples a k-family D if when given n as input, A outputs an element A(n) ∈ [k(n)] such that
the output distribution satisfies |A(n)−Dn| ≤ δ(n). For a function t : N → N, we say that A runs

2

in time t if for all n ∈ N, A always halts in at most t(n) steps when given n as input.1 We define

SampTimek,δ(t)

to be the class of k-families δ-sampled by algorithms running in time t.2

Theorem 1. For every constant k ≥ 2 and every constant c ≥ 1,

SampTimek,0(poly(n)) 6⊆ SampTimek,1−1/k−ǫ(t)

where ǫ(n) = 1/nc and t(n) = nc.

Corollary 1. For every function k(n) ≥ ω(1) and every constant c ≥ 1,

SampTimek,0(poly(n)) 6⊆ SampTimek,1−ǫ(t)

where ǫ = 1/c and t(n) = nc.

Proof of Corollary 1. We explain how Theorem 1 implies Corollary 1 by the contrapositive. Sup-
posing k(n) and c are a counterexample to Corollary 1, we claim that some sufficiently large k′

and c′ are a counterexample to Theorem 1. A family D ∈ SampTimek′,0(poly(n)) can be viewed
as being in SampTimek,0(poly(n)) (since [k′] ⊆ [k(n)] for all but finitely many n) and so by as-
sumption also in SampTimek,1−1/c(n

c). Now to get a SampTimek′,1−1/k′−1/nc′ (nc′) algorithm for

D, we just run the SampTimek,1−1/c(n
c) algorithm except that if it outputs a value > k′ then

we output k′ instead (and also patch up the algorithm to work for the remaining finitely many
n). This modification does not cause the statistical distance to go up. The new algorithm runs in
time nc + O(1) ≤ nc′ (provided c′ is large enough), and for all n it samples a distribution within
statistical distance 1− 1/c ≤ 1− 1/k′ − 1/nc′ from Dn (provided k′ and c′ are large enough).

1.2 Discussion

Our definition of k-families is “unary”, since there is one distribution for each n. We could al-
ternatively define a k-family to be a function mapping bit strings of length n to distributions on
[k(n)] (for all n). This would more realistically model algorithmic sampling problems, but our
hierarchy results are stronger with the unary definition (since a “non-unary” hierarchy follows by
just ignoring all but one input of each length). Also, in average-case complexity (see [BT06]), unary
sampling arises naturally: The random input to an algorithm is often modeled as coming from an
efficiently samplable distribution on {0, 1}n (or [2n], in our notation) for all n. This can be viewed
as a secondary motivation for our results.

For Corollary 1 it may seem like it would be cleaner to omit the domain size k from the
complexity classes and just say, for example, that the domain is always {0, 1}∗. However, this
would make the corollary true for trivial reasons: A poly(n)-time samplable distribution could
be supported on bit strings of length > t(n), whereas a t-time samplable distribution must be

1We measure the running time here as a function of the value of the input, not the bit length of the input.
Alternatively, we could view the input as the string 1n and measure the running time as a function of the bit length.

2If we write something such as SampTimeO(logn),1/2−1/ poly(n)(poly(n)), we formally mean the union of
SampTimek,δ(t) over all functions of the form k = O(log n), δ = 1/2− 1/poly(n), and t = poly(n).

3

supported on bit strings of length ≤ t(n). Corollary 1 is only meaningful when the domain size is
at most 2t.

Note that in the 1 − 1/k − ǫ statistical distance bound in Theorem 1, the dependence on k is
tight since the theorem becomes false if ǫ = 0. This is because the uniform distribution (which is
samplable in constant time) is within statistical distance 1−1/k from every distribution on [k]. We
mention that our proof of Theorem 1 generalizes straightforwardly to show that for every constant
k ≥ 2 and all sufficiently constructible monotone functions t and ǫ such that 2t(n) ≤ t(2poly(n)), we
have SampTimek,0

(

poly
(

t(poly(n))/ǫ(poly(n))
))

6⊆ SampTimek,1−1/k−ǫ(t). Finally, we mention
that our proofs of Theorem 1 and Corollary 1 relativize, and that they carry through without
change for quantum algorithms instead of classical randomized algorithms.

We give the intuition for Theorem 1 in Section 2. We give the formal proof of Theorem 1 in
Section 3. One key ingredient in the proof is a certain type of code, which we construct in Section 4.
We conclude with open problems in Section 5.

2 Intuition for Theorem 1

Why standard techniques do not work. Recall that the original deterministic time hierarchy
of [HS65] is proved by diagonalization: A separate input length ni is reserved for each algorithm
Ai running in the smaller time bound, and an algorithm running in the larger time bound is
designed which, when given an input of length ni, simulates Ai and outputs the opposite answer.
In our setting, Brouwer’s fixed point theorem gives a barrier to using this “direct complementation”
strategy: Suppose we design an algorithm running in the larger time bound which takes ni and
simulates Ai(ni) any number of times (drawing samples from the distribution Ai(ni) as a black box)
and then performs some computation and produces an output. This algorithm would implement
a continuous function from distributions on [k] to distributions on [k],3 where the input to the
function represents the distribution Ai(ni). This function would have a fixed point, so there would
be some distribution, which Ai(ni) might sample, that would cause the diagonalizing algorithm to
produce exactly the same distribution. The trivial time hierarchy for exact sampling mentioned
in the introduction gets around this by exploiting the fact that Ai(ni) cannot be an arbitrary
distribution; it must be “discretized”. However, the latter observation cannot be used to get
a robust time hierarchy with a nonnegligible statistical distance gap. Another potential way to
bypass the fixed point barrier would be to argue that Ai cannot sample anything close to a fixed
point, but it is not clear how to make this approach work.

Since a straightforward direct complementation does not work, we take as a starting point the
delayed diagonalization technique introduced by Žák [Žák83]. This technique can be used to prove
a time hierarchy for solving decision problems with almost any uniform model of computation
that is syntactic (meaning there is no promise to be satisfied). The idea is to space out the ni’s
so that ni+1 is exponentially larger than ni, and use all the input lengths from ni to ni+1 − 1 to
diagonalize against the ith algorithm Ai. On inputs of length n ∈ {ni, . . . , ni+1−2} the diagonalizing
algorithm copies the behavior of Ai on inputs of length n+1, and on inputs of length n = ni+1− 1
the diagonalizing algorithm “does the opposite” of Ai on inputs of length ni (by brute force). Thus
Ai cannot agree with the diagonalizing algorithm for all n ∈ {ni, . . . , ni+1 − 1} or we would obtain
a contradiction.

3In general we would talk about [k(ni)], but recall that k is a constant in Theorem 1.

4

The delayed diagonalization technique leads to a straightforward proof of the k = 2 case of
Theorem 1, as follows. Let us use D = (D1,D2, . . .) to denote the k-family 0-sampled by Ai

(the algorithm we are diagonalizing against) and D∗ = (D∗
1,D

∗
2 , . . .) to denote the k-family 0-

sampled by our diagonalizing algorithm. We can let D∗
ni+1−1 be concentrated entirely on the least

likely outcome of Dni , say M ∈ [2].4 (This is where delayed diagonalization has an advantage
over direct diagonalization: On input ni+1 − 1 the diagonalizing algorithm has enough time to
determine M with certainty by brute force, which breaks the “continuity barrier” that applies
to methods that merely sample Dni .) Now for n = (ni+1 − 2), . . . , ni, by induction we may
assume that PrD∗

n+1
(M) ≥ 1 − ǫ(n + 1)/2 and thus PrDn+1(M) ≥ 1/2 + ǫ(n + 1)/2 (assuming

|Dn+1 −D∗
n+1| ≤ 1/2 − ǫ(n + 1)).5 By sampling from Dn+1 many times and taking the majority

outcome, we can ensure that PrD∗

n
(M) ≥ 1− ǫ(n)/2. In the end we have PrD∗

ni
(M) ≥ 1− ǫ(ni)/2

while PrDni
(M) ≤ 1/2, which gives a contradiction if |Dni −D∗

ni
| ≤ 1/2− ǫ(ni).

This simple argument works for larger domain sizes k but with the same statistical distance
of 1/2 − ǫ. Since we are aiming for statistical distance 1 − 1/k − ǫ, the above argument breaks
down when k ≥ 3: Suppose we let D∗

ni+1−1 be concentrated on M ∈ [k], the least likely outcome
of Dni . We would like for the computation of D∗

ni+1−2 to “learn” the value of M by looking at
Dni+1−1. However, it may be impossible to uniquely determine M in this way. For example, if
Dni+1−1 is uniform on {1, . . . , k − 1} then this would be consistent with any M ∈ {1, . . . , k − 1},
since Dni+1−1 would simultaneously have statistical distance 1 − 1/(k − 1) ≪ 1 − 1/k from the
distributions concentrated on such M ’s. Note that it is impossible to have statistical distance
< 1− 1/k from the distributions concentrated on all possible M ’s, so Dni+1−1 would be forced to
reveal some information about the correct M , namely it must rule out at least one value.

Tree diagonalization via list-decoding. Here is the first idea we use to fix the above problem.
Instead of using a single input ni to “close the cycle” and obtain a contradiction, suppose we
reserve m inputs ni, ni + 1, . . . , ni + m − 1 and let Mα be the least likely outcome of Dni+α for
α ∈ {0, 1, . . . ,m − 1}. Suppose that on these inputs, our diagonalizing algorithm could somehow
obtain (with high probability) a list of m candidates for the sequence M0,M1, . . . ,Mm−1, where at
least one candidate is correct. Then we could have D∗

ni+α put most of its probability mass on the
αth value from the αth candidate sequence. If the αth candidate sequence is the correct one, then
we get PrD∗

ni+α
(Mα) ≥ 1 − ǫ(ni + α)/2 while PrDni+α(Mα) ≤ 1/k, which gives a contradiction if

∣

∣Dni+α −D∗
ni+α

∣

∣ ≤ 1− 1/k − ǫ(ni + α).
How do we get a small list of candidates? For some input n∗

i exponentially larger than ni,
suppose we encode the message M0,M1, . . . ,Mm−1 in some way as γ ∈ [k]ℓ and use a block of ℓ
inputs n∗

i , n
∗
i + 1, . . . , n∗

i + ℓ− 1 to “declare” the codeword γ, by having D∗
n∗

i+j−1 be concentrated

entirely on γj for j ∈ [ℓ].6 Then we are faced with the following communication problem over a noisy
channel: For some smaller inputs n < n∗

i , we would like to recover the original message so we can
“retransmit” it to even smaller inputs (until it eventually reaches the inputs ni, ni+1, . . . , ni+m−1).
Our only way to get information about the message is by sampling from the distributions Dn∗

i+j−1

(for j ∈ [ℓ]), which only weakly reflect the transmitted codeword (under the assumption that Ai

(1 − 1/k − ǫ)-samples D∗). Thus the algorithm Ai being diagonalized against serves as a noisy

4M might seem like unusual notation here, but it is convenient in the formal proof, and it stands for “message”.
5Note that ǫ(n+ 1) is not multiplication; it is the evaluation of the function ǫ on n+ 1.
6For notational reasons, it turns out to be more convenient for us to use 0-based indexing for the sequence of Mα’s

and 1-based indexing for the coordinates of the codeword γ.

5

channel for transmitting the message from larger inputs to smaller inputs.
As noted above, it is information-theoretically impossible to uniquely recover the original mes-

sage when k ≥ 3, but provided we use a suitable encoding we may be able to recover a small list
of candidates. Then for each candidate in the list we could use a disjoint block of ℓ inputs to
retransmit the encoding of that candidate message. More precisely, suppose there exists a small
set S of messages containing the correct one, such that by sampling from Dn∗

i+j−1 (for j ∈ [ℓ]) we
can discover S with high probability. Then for each message in S we could have a block of ℓ inputs
(that are polynomially smaller than n∗

i) “declare” the codeword corresponding to that message.
Then on even smaller inputs, the diagonalizing algorithm could sample from D on the inputs in a
particular block to recover a small list of candidates for the message encoded by that block. This
leads to a tree structure, illustrated in Figure 1. The paper [vMP07] uses a similar tree of input
lengths but for a different reason; still, the argument in [vMP07] serves as the primary inspiration
and starting point for our argument.

Each node in the tree attempts to transmit a codeword to its children, after attempting to
receive a codeword from its parent by simulating Ai to get samples from D, and running some sort
of list-decoder. Each node can see “which child it is” and interpret this as advice7 specifying which
message on the list it is responsible for encoding and transmitting (the hth child is responsible for
the lexicographically hth smallest message). The inputs ni, ni + 1, . . . , ni +m− 1 are the leaves of
the tree. The final overall list corresponds to these leaves; input ni + α would get the αth message
of the overall list. So α specifies a path down the tree, and there must be some path along which
the original message is faithfully transmitted. Provided the tree has height logarithmic in ni and
the list at each node has constant size, the overall list would have size polynomial in ni, and for
every input the diagonalizing algorithm would only need to get polynomially many samples from
D on polynomially larger inputs, and would thus run in polynomial time.

Dealing with random lists and random received words. There are complications with
implementing the above idea. We are not able to guarantee that when a codeword is transmitted
over the channel, we can recover a unique set S of candidate messages with high probability. To cut
to the chase, what we will be able to guarantee is that there exists a fixed set S of k− 1 messages8

(where S depends on the distributions of D on the block we are trying to receive from) such that we
can get a random set of messages T which, with high probability, contains the correct message and
is contained in S. We have no further control over the distribution of T . When k = 3 this is not a
problem: Suppose we use the advice to specify whether the correct message is lexicographically first
or last in S. The child corresponding to the correct advice will, with high probability, either get
T = S or get a singleton set T consisting of the correct message, and in either case the child knows
what the correct message is. The child corresponding to the wrong advice may output garbage,
but it does not matter.

The above argument does not generalize to k ≥ 4. For example, when k = 4 and the correct
message is the middle message in S, if we get |T | = 2 then we do not know whether the correct
message is the first or second message in T . We now describe the key idea to solve this problem.
For each message in S, consider the probability it is in T . Thus we have a list of k−1 probabilities,
and if we partition the range [0, 1] into at least k intervals then by the pigeonhole principle, at least

7Here, advice does not refer to nonuniformity; the hierarchy theorem is totally uniform. The advice is just encoded
in the input n itself (which can be thought of as the input length in a traditional unary setting).

8In the final argument, it is not necessary for S to have size k − 1, as long as its size is any constant depending
on k. However, the size k − 1 arises naturally in our list-decoding process.

6

one of the intervals will contain none of the k − 1 probabilities. In other words, using a constant
amount of advice we can identify a significant “gap” (one of the intervals), so that every message in
S has probability either above the gap or below the gap. Our next step is to “amplify” the gap so
that each of the k−1 probabilities becomes either very close to 1 or very close to 0. A clean way to
achieve this is as follows: By taking several independent samples of T and intersecting these sets,
each probability goes down exponentially in the number of samples. If the number of samples is
not too large and not too small, then probabilities close to 1 will stay close to 1, and probabilities
a little farther from 1 will become vanishingly small. By choosing the gap intervals appropriately
close to 1, and choosing the number of samples of T appropriately for each gap, we achieve the
desired amplification.

After the gap amplification step, by a union bound over the messages in S we find that with
high probability the intersection of our sampled sets T equals T ∗, the set of messages in S with
probabilities above the gap (which includes the correct message). As described above, since we get
the unique set T ∗ with high probability, we can retransmit the correct codeword provided we know
which message of T ∗ is the correct one. The branching factor of the tree becomes k(k− 1) because
the advice needs to specify which of k possible “gaps” to use (and thus how many samples of T to
take) as well as the lexicographic index of the correct message within T ∗. For simplicity we round
the branching factor up to k2 in the formal proof.

We now explain the decoding process in more detail, and describe where S comes from and
why T is random. Consider any particular node in the tree trying to receive the codeword γ ∈ [k]ℓ

transmitted by its parent node’s block of inputs n, . . . , n+ ℓ− 1. Then for j ∈ [ℓ], PrD∗

n+j−1
(γj) is

close to 1 (assuming we are on the “good” path down the tree) and thus PrDn+j−1(γj) is somewhat
larger than 1/k (since we are assuming for contradiction that Ai (1− 1/k− ǫ)-samples D∗). There
is some other value κj ∈ [k] such that PrDn+j−1(κj) < 1/k. Hence if we repeatedly sample from
Dn+j−1 and let ρj ⊆ [k] be the set of values that occur with frequency at least slightly greater
than 1/k in the empirical distribution, then with high probability we get γj ∈ ρj ⊆ [k]\κj . In
general we will not get a unique ρj with high probability, since under Dn+j−1 some symbols might
occur with probability very close to the threshold used in defining ρj . We view ρ = ρ1 · · · ρℓ as
the received word. There is no bound on the number of “errors” here, but each error is more
informative than an erasure (ρj = [k] would correspond to an erasure). We need a construction of
a list-decodable error-correcting code for this non-traditional setting (which is related to the notion
of “list-recovery” from the list-decoding literature). Our list-decoder is deterministic, but since ρ
is random, the list of messages T is also random. With high probability, T ⊆ S where S is the list
of messages for the received word [k]\κ1 · · · [k]\κℓ.

Constructing the code. By a fairly simple reduction to the traditional setting of list-decoding,
one can use certain known constructions (such as [GI03]) to handle our non-traditional setting. We
provide a direct, self-contained construction which is tailored to this setting and is much simpler
than the known traditional constructions.

We now discuss our code construction. The codeword for a message is defined by interpreting
the message as a bit string9 and evaluating all possible surjections f : {0, 1}k−1 → [k] on all possible
sets of k−1 coordinates of the bit string. It can be shown that this code is list-decodable in principle
(with list size k − 1) by using the following lemma: For every set of k distinct bit strings of the

9In the formal proof we actually use m to denote the bit length of the message, rather than the length of the
sequence over [k].

7

n i
d

2

n i
d n i

d
log 2 n i

n i

Figure 1: Tree of input blocks

same length greater than k − 1, there exist k − 1 coordinates on which they remain distinct. Our
polynomial-time list-decoder uses this lemma in an iterative way, building and pruning a set of
candidate strings of increasing lengths until it has arrived at the correct set of messages.

3 Proof of Theorem 1

As sketched in Section 2, the k = 2 case of Theorem 1 is a simple application of delayed diagonal-
ization and estimation by repeated sampling. Henceforth we assume k ≥ 3. We start by describing
a few ingredients we use in the proof.

We need a construction of a code for the following model of error-correction. Codewords are
length-ℓ strings over the alphabet [k], and each coordinate of a codeword can be corrupted to a
subset of [k] containing the correct symbol. More formally, we say a codeword γ ∈ [k]ℓ is consistent
with a received word10 ρ ∈ (P([k]))ℓ if γj ∈ ρj for all j ∈ [ℓ]. A traditional erasure corresponds to
the case ρj = [k], but in our model of error-correction that is forbidden: ρj must be a strict subset
of [k], so each coordinate of the received word is more informative than an erasure. The tradeoff
is that, unlike in traditional error-correction settings, we do not assume any upper bound on the
number of “errors”. We give an elementary construction of a list-decodable code for this setting.

Theorem 2. For every constant k ≥ 3 there exists a polynomial-time encodable code C : {0, 1}m →
[k]ℓ where ℓ = Θk(m

k−1) such that the following holds. For every received word ρ ∈ (P([k]))ℓ with
ρj 6= [k] for all j ∈ [ℓ], there are at most k − 1 messages µ ∈ {0, 1}m whose codeword C(µ) is
consistent with ρ; moreover, the list of all such µ can be found in polynomial time given ρ.

Since k is always a constant, we henceforth suppress the k in Θk() and just write Θ(). As
mentioned in Section 2, an alternative version of Theorem 2 (that is adequate for our purpose) can
be derived from sophisticated off-the-shelf components (such as [GI03]). In Section 4 we give a
thorough discussion of the above model of error-correction, describe the alternative construction,
and give our self-contained proof of Theorem 2.

Now let A1, A2, A3, . . . be an enumeration of all randomized algorithms that run in time t and
always output an element of [k]. We use a procedure Estimate(Ai, n, ζ, η) which returns a vector
(π1, π2, . . . , πk) ∈ [0, 1]k such that

(i) with probability at least 1− η,
∣

∣πκ − Pr(Ai(n) = κ)
∣

∣ ≤ ζ for all κ ∈ [k], and

(ii) with probability 1, π1 + π2 + · · ·+ πk = 1.

10Recall that P([k]) denotes the power set of [k].

8

Define d =
⌈

max(2c, 3k log2 k)
⌉

For i ∈ N define:

ni =

{

a sufficiently large constant power of 2 if i = 1

nd(log2 ni−1)+1

i−1 if i > 1

mi =
⌈

log2 k
(k2)log2 ni

⌉

ℓi = Θ(mk−1
i), the codeword length from Theorem 2 for messages of length mi

Ci = {0, 1}mi → [k]ℓi , the code from Theorem 2
Deci = the list-decoder from Theorem 2

For i ∈ N, b ∈ {0, 1, . . . , log2 ni}, α ∈
{

0, 1, . . . , (k2)(log2 ni)−b − 1
}

, j ∈ [ℓi] define:

ni,b = ndb
i (start of bth level of tree)

ni,b,α =

{

ni,b + α if b = 0

ni,b + αℓi if b > 0
(start of block of αth node of bth level)

ni,b,α,j =

{

undefined if b = 0

ni,b,α + j − 1 if b > 0
(jth input of block of αth node of bth level)

Ni,b,α =

{

{ni,b,α} if b = 0

{ni,b,α,1, . . . , ni,b,α,ℓi} if b > 0
(whole block of αth node of bth level)

Figure 2: Notation for Algorithm 1

In other words, it returns a distribution that probably approximates the distribution of Ai(n). If
ζ, η > 0 then by a standard Chernoff bound, Estimate(Ai, n, ζ, η) can be implemented in time
O
(

t(n) · 1
ζ2

log 1
η

)

by simulating Ai(n) O
(

1
ζ2

log 1
η

)

times and taking the empirical distribution.11

Also, Estimate(Ai, n, 0, 0) can be implemented in time O(t(n) · 2t(n)).
Algorithm 1 0-samples a k-family D∗ = (D∗

1 ,D
∗
2, . . .), and we argue below that it runs in time

poly(n). Thus D∗ ∈ SampTimek,0(poly(n)). We claim that D∗ 6∈ SampTimek,1−1/k−ǫ(t). Suppose
for contradiction there exists an i such that Ai (1− 1/k− ǫ)-samples D∗. Let D = (D1,D2, . . .) be
the k-family that is 0-sampled by Ai. We have

|Dn −D∗
n| ≤ 1− 1/k − ǫ(n) (1)

for all n.
The parameters used in Algorithm 1 are defined in Figure 2. We use the inputs from ni through

ni+1 − 1 to diagonalize against Ai. The parameters create a tree structure out of the inputs,
illustrated in Figure 1. The tree is a full tree with branching factor k2 and depth log2 ni, with the
leaves at level b = 0 and the root at level b = log2 ni. Thus the number of leaves is (k2)log2 ni . Each
node of the tree has a contiguous block of inputs associated to it. Each leaf’s block only consists
of a single input, but each internal node’s block has ℓi inputs, which represent the coordinates of
codewords under the code Ci. Level b of the tree starts at input ni,b = ndb

i . There are (k2)(log2 ni)−b

nodes across level b, indexed by α ∈
{

0, 1, . . . , (k2)(log2 ni)−b − 1
}

, and their blocks of inputs Ni,b,α

are consecutive from left to right across the level. Writing α in base k2 allows us to interpret α as

11We are ignoring the logarithmic factor time overhead usually associated with simulating an algorithm using a
universal algorithm.

9

Algorithm 1: Diagonalizing algorithm for Theorem 1

Input: n ∈ N

Output: an element of [k]

1 find i, b, α such that n ∈ Ni,b,α

2 if such values do not exist then halt and output an arbitrary element of [k]

3 if b = log2 ni then // root
4 foreach α′ ∈

{

0, 1, . . . , (k2)log2 ni − 1
}

do

5 let (πα′

1 , . . . , πα′

k) = Estimate(Ai, ni,0,α′ , 0, 0)

6 let Mα′ = argminκ∈[k](π
α′

κ) (breaking ties arbitrarily)

7 end

8 convert the sequence M0,M1, . . . ,M(k2)log2 ni−1 to a bit string µ ∈ {0, 1}mi

9 else

10 write α in base k2: α =
∑(log2 ni)−b−1

τ=0 ατ (k
2)τ where ατ ∈ {0, 1, . . . , k2 − 1}

11 write α0 in base k: α0 = (q − 1)k + (h− 1) where q, h ∈ [k]

12 let α′ =
∑(log2 ni)−b−2

τ=0 ατ+1(k
2)τ

13 let Q =
(

1/ǫ(ni,b+1)
)4q+2

14 foreach r ∈ [Q] do
15 foreach j′ ∈ [ℓi] do
16 let n′ = ni,b+1,α′,j′

17 let (πj′

1 , . . . , π
j′

k) = Estimate(Ai, n
′, ǫ(n′)/4, η) where η = ǫ(ni,b+1)/4ℓiQ

18 let ρj′ =
{

κ ∈ [k] : πj′
κ ≥ 1/k + ǫ(n′)/4

}

19 end

20 let Tr = Deci(ρ) ⊆ {0, 1}mi where ρ = ρ1 · · · ρℓi ∈ (P([k]))ℓi

21 end

22 if
∣

∣T1 ∩ · · · ∩ TQ

∣

∣ < h then halt and output an arbitrary element of [k]

23 let µ be the lexicographically hth smallest element of T1 ∩ · · · ∩ TQ

24 end

25 if b = 0 then // leaf
26 convert µ to a sequence M0,M1, . . . ,M(k2)log2 ni−1 over [k]

27 halt and output Mα

28 else

29 compute Ci(µ)
30 find j such that n = ni,b,α,j

31 halt and output Ci(µ)j
32 end

10

specifying a path down the tree from the root to the current node. The input n1 is an unspecified
constant power of 2, which just needs to be large enough so the blocks Ni,b,α are all disjoint and
log2 n1 > 1. There exists such an n1 since d ≥ 3k log2 k. Hence line 1 of Algorithm 1 will find
unique values i, b, α (if they exist).

The reason we use message length mi =
⌈

log2 k
(k2)log2 ni

⌉

is because our messages represent
sequences of length (k2)log2 ni over the alphabet [k] (one symbol for each leaf of the tree). We
assume there is a canonical way of interconverting between sequences of length (k2)log2 ni over [k]
and messages in {0, 1}mi . It is most convenient for us to use 0-based indexing for the sequences
M0,M1, . . . ,M(k2)log2 ni−1 and 1-based indexing for the messages µ = µ1 · · ·µmi , codewords C(µ) =
C(µ)1 · · ·C(µ)ℓi , and received words ρ = ρ1 · · · ρℓi .

In general, each block of inputs Ni,b,α attempts to “receive” an encoded message via a noisy
channel from its parent block and “send” the re-encoded message to its children blocks. Lines 3–24
are the receiving phase, and lines 25–32 are the sending phase. The receiving is different at the
root (b = log2 ni) because the algorithm generates the message directly without receiving it over
a noisy channel. The sending is different at the leaves (b = 0) because instead of sending, the
algorithm uses the message to attempt to deliver the coup de grâce and ensure that Ai fails to
(1− 1/k − ǫ)-sample D∗ if it has not already failed somewhere along the chain of “transmissions”.
The following claim is the heart of the analysis. It shows that there exists a path down the tree
along which the original message µ∗ (generated by the root) is faithfully transmitted.

Claim 1. For every b ∈ {0, 1, . . . , log2 ni} there exists an α ∈
{

0, 1, . . . , (k2)(log2 ni)−b − 1
}

such
that for every n ∈ Ni,b,α, with probability ≥ 1−ǫ(n)/2, Algorithm 1 reaches the sending phase (lines
25–32) and the µ computed in the receiving phase (lines 3–24) equals µ∗ (the message generated by
the root of the tree on line 8).

Claim 2. Algorithm 1 runs in time poly(n).

We now show how to finish the proof of Theorem 1 given these claims. By Claim 2, D∗ is indeed
in SampTimek,0(poly(n)). Consider the good α from Claim 1 for b = 0. On input n = ni,0,α, with
probability ≥ 1−ǫ(n)/2, Algorithm 1 reaches the sending phase and the µ computed in the receiving
phase equals µ∗. Thus the sequence M0,M1, . . . ,M(k2)log2 ni−1 found on line 26 is the same as the

sequence generated by the root of the tree on lines 4–7. Hence Mα = argminκ∈[k]
(

PrDn(κ)
)

and
in particular PrDn(Mα) ≤ 1/k. Since PrD∗

n
(Mα) ≥ 1 − ǫ(n)/2, this contradicts the fact that

|Dn−D∗
n| ≤ 1−1/k− ǫ(n) (which follows from our contradiction assumption, Inequality (1)). This

finishes the proof of Theorem 1. All that remains is to prove Claim 1 and Claim 2.

Proof of Claim 1. By induction on b = log2 ni, . . . , 0. The base case b = log2 ni is trivial by the
definition of µ∗ (with α = 0 and with probability 1, in fact). Now assume b < log2 ni and the claim
holds for b+1. Let α′ ∈

{

0, 1, . . . , (k2)(log2 ni)−b−1−1
}

be the good α from the induction hypothesis.
For each n′ ∈ Ni,b+1,α′ , say n′ = ni,b+1,α′,j′, the induction hypothesis says that on input n′, with
probability≥ 1−ǫ(n′)/2, Algorithm 1 reaches the sending phase and the µ computed in the receiving
phase equals µ∗. Since b+1 > 0, by lines 28–32 this implies that D∗

n′ puts ≥ 1− ǫ(n′)/2 probability
mass on Ci(µ

∗)j′ . Since |Dn′ − D∗
n′ | ≤ 1 − 1/k − ǫ(n′), we find that Dn′ puts ≥ 1/k + ǫ(n′)/2

probability mass on Ci(µ
∗)j′ .

We show that there exist q, h ∈ [k] such that α = (k2)α′ + α0 satisfies the desired properties,
where α0 = (q − 1)k + (h − 1). For any such α, suppose n ∈ Ni,b,α and consider Algorithm 1 on
input n. Note that α′ computed on line 12 is indeed the α′ from the induction hypothesis, and the

11

block Ni,b+1,α′ is the parent of the block Ni,b,α in the tree (see Figure 1). So here α′ indicates the
parent, α0 indicates “which child”, q determines the location of the “gap” (as in Section 2) and
hence the number Q of samples of T to intersect, and h indicates which is the correct message in
the intersection.

Now consider lines 15–19. For any j′ ∈ [ℓi], let us denote n′ = ni,b+1,α′,j′, and let us define κj′

to be the least likely outcome of Dn′ (breaking ties arbitrarily). Then Dn′ puts ≥ 1/k + ǫ(n′)/2
probability mass on Ci(µ

∗)j′ and < 1/k probability mass on κj′ . Hence with probability ≥ 1 − η
over the estimation on line 17,

πj′

Ci(µ∗)j′
≥

(

1/k + ǫ(n′)/2
)

− ǫ(n′)/4 = 1/k + ǫ(n′)/4

and πj′
κj′

< 1/k + ǫ(n′)/4 and thus

Ci(µ
∗)j′ ∈ ρj′ ⊆ [k]\κj′ . (2)

Note that with probability 1 we have ρj′ 6= [k] for all j′ and thus ρ is a valid received word. For
any r ∈ [Q], let Er be the event (depending on the randomness of lines 15–19) that Equation (2)
holds for all j′ (in the rth iteration of the loop on line 14). We have

Pr(Er) ≥ (1− η)ℓi ≥ 1− ηℓi. (3)

Now define
S = Deci

(

[k]\κ1 · · · [k]\κℓi
)

⊆ {0, 1}mi

and note that |S| ≤ k − 1. Conditioned on Er, we have µ∗ ∈ Tr ⊆ S (since Ci(µ
∗) is consistent

with ρ, and all codewords consistent with ρ are also consistent with [k]\κ1 · · · [k]\κℓi). Note that
for different r’s, the Tr conditioned on Er are independent and identically distributed. For each
σ ∈ S let us define pσ to be the probability that σ ∈ Tr conditioned on Er. Note that pµ∗ = 1 and
since |S| ≤ k− 1, by the pigeonhole principle there exists a q ∈ [k] such that for every σ ∈ S, either
pσ ≥ exp

(

− (ǫ∗)4q+4
)

or pσ < exp
(

− (ǫ∗)4q
)

, where ǫ∗ = ǫ(ni,b+1) (this is because among the k
intervals

[

exp
(

− (ǫ∗)4q
)

, exp
(

− (ǫ∗)4q+4
))

for q ∈ [k], at least one contains none of the values pσ
for σ ∈ S). We fix this value of q and the corresponding value Q = (1/ǫ∗)4q+2. For each σ ∈ S, we
have

Pr
(

σ ∈ T1 ∩ · · · ∩ TQ

∣

∣ E1 ∩ · · · ∩ EQ

)

= (pσ)
Q

and we have either

(pσ)
Q ≥ exp

(

− (ǫ∗)4q+4 ·Q
)

= exp
(

− (ǫ∗)2
)

≥ 1− ǫ(n)/4k

or
(pσ)

Q < exp
(

− (ǫ∗)4q ·Q
)

= exp
(

− (1/ǫ∗)2
)

≤ ǫ(n)/4k

regardless of which n ∈ Ni,b,α we are considering.12 Defining

T ∗ =
{

σ ∈ S : (pσ)
Q > 1/2

}

,

12We can assume without loss of generality that c is large enough in terms of k for these inequalities to hold (recall
that ǫ(n) = 1/nc).

12

by a union bound over σ ∈ S we find that

Pr
(

(T1 ∩ · · · ∩ TQ) = T ∗
∣

∣ E1 ∩ · · · ∩ EQ

)

≥ 1− ǫ(n)/4. (4)

Since (pµ∗)Q = 1 > 1/2, we have µ∗ ∈ T ∗. Now we fix h ∈ [k] to be such that µ∗ is the
lexicographically hth smallest element of T ∗. Then when (T1∩· · ·∩TQ) = T ∗, we have

∣

∣T1∩· · ·∩TQ

∣

∣ ≥
h and so Algorithm 1 reaches the sending phase, and the µ computed in the receiving phase equals
µ∗, as desired. Thus for every n ∈ Ni,b,α where α = (k2)α′ + (q − 1)k + (h− 1) we have

Pr
(

Algorithm 1 reaches the sending phase with µ = µ∗
)

≥ Pr
(

(T1 ∩ · · · ∩ TQ) = T ∗
)

≥ Pr
(

E1 ∩ · · · ∩ EQ

)

· Pr
(

(T1 ∩ · · · ∩ TQ) = T ∗
∣

∣ E1 ∩ · · · ∩ EQ

)

≥
(

1− ηℓiQ
)

·
(

1− ǫ(n)/4
)

≥ 1− ǫ(n)/2

where the fourth line follows by Inequality (3) and Inequality (4), and the fifth line follows by
ηℓiQ = ǫ(ni,b+1)/4 ≤ ǫ(n)/4 (where η is as on line 17 of Algorithm 1). This finishes the proof of
Claim 1.

Proof of Claim 2. Line 1 can be done in poly(n) time by direct computation. If b = log2 ni then

n ≥ ndlog2 ni

i = 2n
log2 d
i log2 ni ≥ 2n

c
i log2 ni

since d ≥ 2c, and so the number of iterations on line 4 is polylog(n) and the computation on line
5 takes time O(t(ni) · 2

t(ni)) = O(nc
i · 2

nc
i) ≤ poly(n). Suppose b < log2 ni. Lines 10–13 are simple

calculations, and we have Q ≤
(

1/ǫ(nd)
)4k+2

≤ poly(n) since ni,b+1 = nd
i,b ≤ nd. We also have

mi, ℓi ≤ poly(ni) ≤ poly(n) and so the loops on lines 14 and 15 have poly(n) iterations. For lines
16 and 17, we have n′ ≤ nd2

i,b ≤ nd2 and ǫ(n′)/4 ≥ 1/poly(n) and η ≥ 1/poly(n) ≥ 1/ exp(poly(n))
so the Estimate procedure takes time poly(n). The list-decoding on line 20 takes time poly(mi) ≤
poly(n). The sending phase (lines 25–32) trivially takes time poly(n) since Ci is polynomial-time
encodable. Overall, the running time is poly(n).

4 List-Decoding from Ubiquitous Informative Errors

In Section 4.1 we discuss the model of error-correction used in the proof of Theorem 1. Then in
Section 4.2 we give our self-contained proof of Theorem 2.

4.1 Discussion of the Model of Error-Correction

Recall that in our model of error-correction, the received word is ρ ∈ (P([k]))ℓ where each ρj 6= [k],
and the goal is to find the list of all messages whose codeword γ ∈ [k]ℓ is consistent with ρ in the
sense that γj ∈ ρj for all j ∈ [ℓ].

We first remark that in this setting, it can be assumed without loss of generality that |ρj | = k−1
for all j ∈ [ℓ] (since we can always enlarge each coordinate of the received word to a superset of size
k− 1, then find all the relevant messages, and then output only those messages whose codeword is

13

consistent with the original received word). However, the way we have described the code is more
convenient for our application.

Our setting is related to the notion of “list-recoverable” codes which has been studied in the
list-decoding literature (e.g., [TSZ04, GI01, GI03, GR08, GR09, GR10]). In list-recovery, each
coordinate of the received word is a set of symbols, but there are several differences from our
setting. We allow each coordinate of the received word to be as large as possible without becoming
an erasure, whereas in list-recovery each coordinate is usually restricted to be a fairly small set.
Also, sometimes in list-recovery a small fraction of coordinates of the received word are allowed
to violate the size restriction and become erasures. Also, in list-recovery the correct codeword
is sometimes only guaranteed to agree with many coordinates of the received word, whereas we
assume it agrees with all coordinates.

We also mention that our model turns out to be equivalent to the “families of perfect hash
functions” and “zero error list-decoding for the q/(q− 1) channel” models studied in [Eli88, FK84,
Kör86, CRRS06]. However, those works are not directly helpful for us, because they do not con-
sider the computational efficiency of encoding and list-decoding, and because they are primarily
concerned with the relationship between the alphabet size and the rate of the code (which is im-
material for us since we use constant-size alphabets and do not care about constant factors in
codeword length).

A simple application of the probabilistic method shows that if we drop the requirement that the
encoding and list-decoding can be done in polynomial time, then there exist codes for our model
with list size k − 1 (where k is the alphabet size) and codeword length ℓ = Θ(m) (where m is the
message length and the hidden constant depends on k). In other words, there exist codes with
ℓ = Θ(m) such that for every set of k codewords, there exists a coordinate on which each element
of [k] appears exactly once among the k codewords. To see the equivalence of these two properties
of a code, first suppose for every set of k codewords there exists a coordinate on which each element
of [k] appears exactly once; then for any received word there cannot exist k codewords that are
consistent with it. Conversely, if there exist k codewords such that on every coordinate, not all
symbols of [k] appear, then we can form a received word that all k codewords are consistent with,
by letting each coordinate be the set of symbols seen in that coordinate of the k codewords (so this
received word cannot be decoded with list size k− 1). Similarly, this argument shows that list size
k − 2 is never achievable, since given any k − 1 distinct codewords we can always form a received
word that they are all consistent with. We are not aware of explicit constructions of such codes
with optimal list size k − 1 and length ℓ = Θ(m), but the polynomial length in Theorem 2 is good
enough for our purpose.

For our application in Theorem 1, we do not need the list size to be k − 1, as long as it is a
constant depending on k. Such codes for our setting follow from certain known constructions of
traditional list-decodable codes. Recall that a code is said to be (β,L)-list-decodable if for every
received word in [k]ℓ, there are at most L codewords at relative Hamming distance ≤ β, and the list
of all such codewords can be found in polynomial time. Every (1−1/(k−1), L)-list-decodable code
is also list-decodable under our model with list size (k − 1)L: Given a received word ρ ∈ (P([k]))ℓ

where each |ρj| = k − 1, we can form new “received words” ρ(1), . . . , ρ(k−1) by letting ρ(g) ∈ [k]ℓ

consist of the gth smallest symbol in each coordinate of ρ. Since a codeword consistent with ρ must
have relative Hamming distance ≤ 1−1/(k−1) from some ρ(g), running the traditional list-decoder
on each ρ(g) will reveal all the codewords consistent with ρ.

For a traditional list-decodable code construction to be used for our application via the above

14

connection, there are several properties it should satisfy: (i) It should work for constant-size alpha-
bets (some constructions only work for large alphabets). (ii) It should work for every constant-size
alphabet (some constructions require the alphabet to be a finite field). (iii) The list size should
be a constant depending on the alphabet size (some constructions have list size polynomial in the
message length). Property (iii) is crucial, but in some cases violations of (i) and (ii) may be fixable
by concatenation with a brute-force code.

The construction of Guruswami and Indyk [GI03], which uses expanders and spectral techniques,
satisfies all these properties and is (β,L)-list-decodable with L = O

(

1/(1 − 1/k − β)3
)

assuming
β < 1− 1/k. Taking β = 1− 1/(k − 1), the list size is O(k6), which becomes O(k7) after applying
the reduction from our setting. The list-decoder is randomized, but that is not a problem for our
application in the proof of Theorem 1. Thus the result of [GI03] yields an alternative version of
Theorem 2 that is sufficient for our application. This alternative construction has the following
advantages: The codeword length is Θ(m), and the encoding and list-decoding can be done in
linear time. But it has the following disadvantages: The list size is O(k7) rather than the optimal
k − 1, the list-decoder is randomized, and the proof is much more complicated than our proof of
Theorem 2. Although it is convenient to use this off-the-shelf machinery, our code construction
demonstrates that such machinery is overkill and that elementary techniques suffice.

We now mention an interesting contrast between our setting and the traditional error-correction
setting. In the traditional setting, many code constructions are linear (assuming the alphabet is a
finite field). In our model of error-correction, there exists an alphabet size k for which linear codes
cannot achieve the optimal list size of k−1. Here is a counterexample. Recall that the property for
achieving optimal list size is that for every set of k codewords, there exists a coordinate on which
all k symbols appear among those codewords. Suppose the alphabet is GF (5), and let x1, x2, x3, x4
be any linearly independent message vectors, and let x5 = 3 × x1 + x2 + x3 + x4. Then for any
given coordinate of the codewords, if y1, ..., y5 ∈ GF (5) are the symbols of the codewords in that
coordinate, then they must satisfy y5 = 3× y1 + y2 + y3 + y4 if the code is linear. It can be verified
by brute force that this particular relation over GF (5) forces two of the yi’s to be equal.

4.2 Proof of Theorem 2

We now give our construction of a code C satisfying the properties in Theorem 2. Recall we
are trying to ensure that for every set of k codewords, there exists a coordinate on which all k
symbols appear among those codewords. A trivial way to ensure this is to reserve a separate
codeword coordinate for each set of k messages and explicitly make those k codewords differ on
that coordinate. This would lead to exponentially long codewords. To do better, we start by
giving a key combinatorial lemma which shows that each set of k messages can be distinguished by
looking at only k − 1 bit positions; thus we only need to consider all sets of k − 1 bit positions (of
which there are Θ(mk−1)) rather than all sets of k messages. This lemma is also the heart of our
polynomial-time list-decoder.

4.2.1 A Combinatorial Lemma

For a set S and number a, we let
(

S
a

)

denote the set of all subsets of S of size a. For a string
σ ∈ {0, 1}b and i ∈ [b] and I ⊆ [b], we let σi denote the ith bit of σ, and we let σI denote the
length-|I| string consisting of the bits of σ indexed by I.

15

Lemma 1. For all 1 ≤ a ≤ b and every set of distinct strings σ1, . . . , σa ∈ {0, 1}b, there exists an
I ∈

([b]
a−1

)

such that σ1
I , . . . , σ

a
I ∈ {0, 1}a−1 are distinct.

Proof. By induction on a, with a = 1 and a = 2 being trivial. Suppose a ≥ 3. By the induction
hypothesis there exists an I ′ ∈

([b]
a−2

)

such that σ1
I′ , . . . , σ

a−1
I′ are distinct. If σa

I′ is different from

each of σ1
I′ , . . . , σ

a−1
I′ then we can take an arbitrary I ⊇ I ′ of size a − 1. Otherwise, σa

I′ = σh
I′ for

exactly one h ∈ [a − 1]. Since σa 6= σh, there exists an i ∈ [b]\I ′ such that σa
i 6= σh

i , and we can
take I = I ′ ∪ {i}.

It is not difficult to see that the a − 1 bound in Lemma 1 is tight (there do not always exist
a− 2 coordinates on which a distinct bit strings remain distinct: consider a strings that each have
a single 1). We remark in passing that Lemma 1 can be viewed in terms of a certain “dual” of VC-
dimension: While the VC-dimension of a set of bit strings is the size of a largest set of coordinates
on which every pattern appears at least once, we are interested in the size of a smallest set of
coordinates on which every pattern appears at most once.

4.2.2 Code Construction

We now give our construction of the code C for an arbitrary constant k ≥ 3 and message length
m ≥ k. By convention we use the notation µ ∈ {0, 1}m for messages, γ ∈ [k]ℓ for codewords, and
ρ ∈ (P([k]))ℓ for received words.

We define Surjk to be the set of all surjections f : {0, 1}k−1 → [k]. The coordinates of a

codeword are indexed by
([m]
k−1

)

× Surjk, in other words by pairs I, f where I is a subset of [m] of

size k− 1 and f : {0, 1}k−1 → [k] is a surjection. We let ℓ =
∣

∣

([m]
k−1

)

× Surjk
∣

∣ = Θ(mk−1) (recall the

hidden constant factor depends on k), and we define the code C : {0, 1}m → [k]ℓ by

C(µ) =
(

f(µI)
)

I∈([m]
k−1), f∈Surjk

.

In other words, the I, f coordinate of the codeword is the evaluation of f on the bits of the message
indexed by I. Encoding can clearly be done in polynomial time.

It just remains to exhibit a polynomial-time list-decoder for C. Let us fix an arbitrary received
word ρ ∈ (P([k]))ℓ with ρI,f 6= [k] for all I, f . We need to show that there are at most k − 1
messages whose codewords are consistent with ρ, and that moreover, these messages can be found
in polynomial time given ρ.

For each I ∈
([m]
k−1

)

we define List(ρ, I) to be the set of all σ ∈ {0, 1}k−1 such that f(σ) ∈ ρI,f
for all f ∈ Surjk. Note that the set List(ρ, I) can be found efficiently given ρ and I by trying all
possibilities.

Observation 1. If µ ∈ {0, 1}m is such that C(µ) is consistent with ρ, then for all I ∈
([m]
k−1

)

,
µI ∈ List(ρ, I).

Lemma 2. For all I ∈
([m]
k−1

)

, |List(ρ, I)| ≤ k − 1.

Proof. Consider any set of k distinct strings σ1, . . . , σk ∈ {0, 1}k−1. There exists an f ∈ Surjk
such that

{

f(σ1), . . . , f(σk)
}

= [k].13 Therefore since ρI,f 6= [k] there exists an h ∈ [k] such that
f(σh) 6∈ ρI,f , which implies that σh 6∈ List(ρ, I).

13Because of this, we do not actually need to use all possible surjections in the definition of the code C. We can
instead use any collection of functions with the property that for every set of k distinct strings in {0, 1}k−1, there
exists a function in the collection that assigns each of the k strings a different value.

16

Algorithm 2: List-decoder for Theorem 2

Input: ρ ∈ (P([k]))ℓ with ρI,f 6= [k] for all I, f
Output: set of all µ ∈ {0, 1}m such that C(µ) is consistent with ρ

1 let Sk−1 = List(ρ, [k − 1])
2 foreach n = k, . . . ,m do

3 suppose Sn−1 =
{

σ1, . . . , σ|Sn−1|
}

⊆ {0, 1}n−1

4 find an I ∈
([n−1]
k−2

)

such that σ1
I , . . . , σ

|Sn−1|
I are distinct

5 let Sn =
{

s ∈ {0, 1}n : s[n−1] ∈ Sn−1 and sI∪{n} ∈ List(ρ, I ∪ {n})
}

6 end

7 output the set of all µ ∈ Sm such that C(µ) is consistent with ρ

Now to see that C is list-decodable in principle, suppose for contradiction that there are k
distinct messages µ1, . . . , µk whose codewords are all consistent with ρ. Applying Lemma 1 with
a = k and b = m, there exists an I ∈

([m]
k−1

)

such that µ1
I , . . . , µ

k
I are distinct. But for all h ∈ [k], we

have µh
I ∈ List(ρ, I) by Observation 1. Thus |List(ρ, I)| ≥ k, which contradicts Lemma 2. Hence

for our arbitrary received word ρ, there are at most k− 1 messages whose codewords are consistent
with ρ. Algorithm 2 finds this list of messages in polynomial time given ρ. The correctness of the
algorithm follows immediately from the following claim and line 7 of the algorithm.

Claim 3. For all n = (k−1), . . . ,m, the following three properties hold: Sn ⊆ {0, 1}n, |Sn| ≤ k−1,
and for every µ ∈ {0, 1}m such that C(µ) is consistent with ρ we have µ[n] ∈ Sn.

Proof. By induction on n. The base case n = k−1 is immediate from Lemma 2 and Observation 1,
so assume n ≥ k and the claim holds for n − 1. By the induction hypothesis, |Sn−1| ≤ k − 1 and
so line 4 of the algorithm will succeed by Lemma 1 (with a = |Sn−1| and b = n− 1).

We now verify the three properties of Sn. The property Sn ⊆ {0, 1}n is immediate. To see
that |Sn| ≤ k − 1, suppose for contradiction that there are k distinct strings s1, . . . , sk ∈ Sn. Then
since |List(ρ, I ∪ {n})| ≤ k − 1 (by Lemma 2) and shI∪{n} ∈ List(ρ, I ∪ {n}) for all h ∈ [k], there

must exist h1 6= h2 such that sh1

I∪{n}
= sh2

I∪{n}
. Since sh1

[n−1]
, sh2

[n−1]
∈ Sn−1 and sh1

I = sh2
I , we must

have sh1

[n−1] = sh2

[n−1] = σh for some h. But now sh1

[n−1] = sh2

[n−1] and sh1
n = sh2

n , which contradicts

our assumption that sh1 and sh2 are distinct. Thus we have verified that |Sn| ≤ k − 1. To verify
the third property, consider an arbitrary µ ∈ {0, 1}m such that C(µ) is consistent with ρ. By the
induction hypothesis, µ[n−1] ∈ Sn−1, and by Observation 1, µI∪{n} ∈ List(ρ, I ∪ {n}). By line 5 of
the algorithm, this means that µ[n] ∈ Sn.

We now discuss the running time of the algorithm. Line 4 can be implemented in polynomial
time since an efficient algorithm for finding I can be gleaned from the proof of Lemma 1 (or less
elegantly, since k is a constant, we can just try all possible subsets of size k − 2). Line 5 can be
implemented efficiently by looking at each string in Sn−1 and considering extending it with each
possible symbol in [k] and checking whether the I∪{n} coordinates form a string in List(ρ, I∪{n}).
Line 7 runs in polynomial time since C is efficiently encodable and consistency is easy to check.

Since our list-decoding algorithm is correct and runs in polynomial time, this completes the
proof of Theorem 2.

17

5 Open Problems

In Corollary 1, ǫ can be an arbitrarily small constant. A natural open problem is to investigate
how fast ǫ can approach 0, as a function of n, for interesting choices of k(n) such as 2n. Similarly, it
would be interesting to study whether the time hierarchy can be made tighter in terms of the two
time bounds. Another open problem is to investigate time hierarchies for sampling distributions
that are uniform over NP witness sets.

Also, can something interesting be said about space hierarchies for sampling distributions? Our
proof does not seem to carry through for the space-bounded setting because it would require a
list-decoder that is space-efficient and read-once, and the step of intersecting multiple lists would
also be problematic.

It is also open to prove an “almost-everywhere” robust time hierarchy for sampling non-unary
families of distributions, where the algorithms running in the smaller time bound are required to
fail on all but finitely many input lengths, instead of just on infinitely many input lengths.

A standard technique in complexity theory is “indirect diagonalization”, where a separation
is proved by assuming the separation does not hold and deriving a contradiction with a known
diagonalization-based result such as a hierarchy theorem. It would be interesting to use our hierar-
chy theorem in an indirect diagonalization, or more generally to find applications of our hierarchy
theorem.

Another open problem is to obtain explicit constructions of list-decodable codes as in Theorem 2
that simultaneously achieve constant rate (instead of polynomially small rate) and optimal list size
k − 1.

Most generally, we advocate further study of sampling problems from a complexity theory
perspective.

Acknowledgments

I thank Andrew Drucker, Oded Goldreich, Venkatesan Guruswami, Alexander Smal, Luca Trevisan,
and anonymous reviewers for helpful comments and discussions.

References

[Aar11] Scott Aaronson. The equivalence of sampling and searching. In Proceedings of the 6th
International Computer Science Symposium in Russia, pages 1–14, 2011.

[Bac88] Eric Bach. How to generate factored random numbers. SIAM Journal on Computing,
17(2):179–193, 1988.

[Bar02] Boaz Barak. A probabilistic-time hierarchy theorem for slightly non-uniform algorithms.
In Proceedings of the 6th International Workshop on Randomization and Computation,
pages 194–208, 2002.

[BD99] Russ Bubley and Martin Dyer. Faster random generation of linear extensions. Discrete
Mathematics, 201(1-3):81–88, 1999.

18

[BGR08] Nayantara Bhatnagar, Sam Greenberg, and Dana Randall. Sampling stable marriages:
Why spouse-swapping won’t work. In Proceedings of the 19th ACM-SIAM Symposium
on Discrete Algorithms, pages 1223–1232, 2008.

[BIL12] Christopher Beck, Russell Impagliazzo, and Shachar Lovett. Large deviation bounds for
decision trees and sampling lower bounds for AC0-circuits. In Proceedings of the 53rd
IEEE Symposium on Foundations of Computer Science, pages 101–110, 2012.

[BT06] Andrej Bogdanov and Luca Trevisan. Average-case complexity. Foundations and Trends
in Theoretical Computer Science, 2(1), 2006.

[CCM12] Prasad Chebolu, Mary Cryan, and Russell Martin. Exact counting of Euler tours for
generalized series-parallel graphs. Journal of Discrete Algorithms, 10:110–122, 2012.

[CDR10] Mary Cryan, Martin Dyer, and Dana Randall. Approximately counting integral flows
and cell-bounded contingency tables. SIAM Journal on Computing, 39(7):2683–2703,
2010.

[Coo73] Stephen Cook. A hierarchy for nondeterministic time complexity. Journal of Computer
and System Sciences, 7(4):343–353, 1973.

[CRRS06] Sourav Chakraborty, Jaikumar Radhakrishnan, Nandakumar Raghunathan, and
Prashant Sasatte. Zero error list-decoding capacity of the q/(q−1) channel. In Proceed-
ings of the 26th International Conference on Foundations of Software Technology and
Theoretical Computer Science, pages 129–138, 2006.

[CS09] Mahdi Cheraghchi and Amin Shokrollahi. Almost-uniform sampling of points on high-
dimensional algebraic varieties. In Proceedings of the 26th International Symposium on
Theoretical Aspects of Computer Science, pages 277–288, 2009.

[DW12] Anindya De and Thomas Watson. Extractors and lower bounds for locally samplable
sources. ACM Transactions on Computation Theory, 4(1), 2012.

[Eli88] Peter Elias. Zero error capacity under list decoding. IEEE Transactions on Information
Theory, 34(5):1070–1074, 1988.

[FK84] Michael Fredman and János Komlós. On the size of separating systems and families of
perfect hash functions. SIAM Journal on Algebraic Discrete Methods, 5(1):61–68, 1984.

[FS04] Lance Fortnow and Rahul Santhanam. Hierarchy theorems for probabilistic polynomial
time. In Proceedings of the 45th IEEE Symposium on Foundations of Computer Science,
pages 316–324, 2004.

[FS11] Lance Fortnow and Rahul Santhanam. Robust simulations and significant separations.
In Proceedings of the 38th International Colloquium on Automata, Languages and Pro-
gramming, pages 569–580, 2011.

[FST05] Lance Fortnow, Rahul Santhanam, and Luca Trevisan. Hierarchies for semantic classes.
In Proceedings of the 37th ACM Symposium on Theory of Computing, pages 348–355,
2005.

19

[FV07] Alan Frieze and Eric Vigoda. A survey on the use of Markov chains to randomly sample
colorings. In Combinatorics, Complexity, and Chance. Oxford University Press, 2007.

[GGN10] Oded Goldreich, Shafi Goldwasser, and Asaf Nussboim. On the implementation of huge
random objects. SIAM Journal on Computing, 39(7):2761–2822, 2010.

[GHP05] Dima Grigoriev, Edward Hirsch, and Konstantin Pervyshev. Time hierarchies for cryp-
tographic function inversion with advice. Technical Report TR05-076, Electronic Collo-
quium on Computational Complexity, 2005.

[GI01] Venkatesan Guruswami and Piotr Indyk. Expander-based constructions of efficiently
decodable codes. In Proceedings of the 42nd IEEE Symposium on Foundations of Com-
puter Science, pages 658–667, 2001.

[GI03] Venkatesan Guruswami and Piotr Indyk. Linear time encodable and list decodable codes.
In Proceedings of the 35th ACM Symposium on Theory of Computing, pages 126–135,
2003.

[GJ99] Leslie Ann Goldberg and Mark Jerrum. Randomly sampling molecules. SIAM Journal
on Computing, 29(3):834–853, 1999.

[GJK+97] Vivek Gore, Mark Jerrum, Sampath Kannan, Z. Sweedyk, and Stephen Mahaney. A
quasi-polynomial-time algorithm for sampling words from a context-free language. In-
formation and Computation, 134(1):59–74, 1997.

[GR08] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding capacity:
Error-correction with optimal redundancy. IEEE Transactions on Information Theory,
54(1):135–150, 2008.

[GR09] Venkatesan Guruswami and Atri Rudra. Better binary list decodable codes via multilevel
concatenation. IEEE Transactions on Information Theory, 55(1):19–26, 2009.

[GR10] Venkatesan Guruswami and Atri Rudra. The existence of concatenated codes list-
decodable up to the Hamming bound. IEEE Transactions on Information Theory,
56(10):5195–5206, 2010.

[GST11] Oded Goldreich, Madhu Sudan, and Luca Trevisan. From logarithmic advice to single-
bit advice. Studies in Complexity and Cryptography, pages 109–113, 2011.

[HS65] Juris Hartmanis and Richard Stearns. On the computational complexity of algorithms.
Transactions of the American Mathematical Society, 117:285–306, 1965.

[Its10] Dmitry Itsykson. Structural complexity of AvgBPP. Annals of Pure and Applied Logic,
162(3):213–223, 2010.

[JS89] Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM Journal on
Computing, 18(6):1149–1178, 1989.

[JSV04] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation
algorithm for the permanent of a matrix with nonnegative entries. Journal of the ACM,
51(4):671–697, 2004.

20

[Kal03] Adam Kalai. Generating random factored numbers, easily. Journal of Cryptology,
16(4):287–289, 2003.

[KLM89] Richard Karp, Michael Luby, and Neal Madras. Monte-Carlo approximation algorithms
for enumeration problems. Journal of Algorithms, 10(3):429–448, 1989.

[KM09] Jonathan Kelner and Aleksander Madry. Faster generation of random spanning trees. In
Proceedings of the 50th IEEE Symposium on Foundations of Computer Science, pages
13–21, 2009.

[Kör86] Jénos Körner. Fredman–Komlós bounds and information theory. SIAM Journal on
Algebraic Discrete Methods, 7(4):560–570, 1986.

[KTV99] Ravi Kannan, Prasad Tetali, and Santosh Vempala. Simple Markov-chain algorithms
for generating bipartite graphs and tournaments. Random Structures and Algorithms,
14(4):293–308, 1999.

[KvM10] Jeff Kinne and Dieter van Melkebeek. Space hierarchy results for randomized and other
semantic models. Computational Complexity, 19(3):423–475, 2010.

[LRS01] Michael Luby, Dana Randall, and Alistair Sinclair. Markov chain algorithms for planar
lattice structures. SIAM Journal on Computing, 31(1):167–192, 2001.

[LV99] Michael Luby and Eric Vigoda. Fast convergence of the Glauber dynamics for sampling
independent sets. Random Structures and Algorithms, 15(3-4):229–241, 1999.

[LV12] Shachar Lovett and Emanuele Viola. Bounded-depth circuits cannot sample good codes.
Computational Complexity, 21(2):245–266, 2012.

[MS04] Ben Morris and Alistair Sinclair. Random walks on truncated cubes and sampling 0-1
knapsack solutions. SIAM Journal on Computing, 34(1):195–226, 2004.

[Per05] Konstantin Pervyshev. Time hierarchies for computations with a bit of advice. Technical
Report TR05-054, Electronic Colloquium on Computational Complexity, 2005.

[Per07] Konstantin Pervyshev. On heuristic time hierarchies. In Proceedings of the 22nd IEEE
Conference on Computational Complexity, pages 347–358, 2007.

[PW98] James Propp and David Wilson. How to get a perfectly random sample from a generic
Markov chain and generate a random spanning tree of a directed graph. Journal of
Algorithms, 27(2):170–217, 1998.

[SFM78] Joel Seiferas, Michael Fischer, and Albert Meyer. Separating nondeterministic time
complexity classes. Journal of the ACM, 25(1):146–167, 1978.

[TSZ04] Amnon Ta-Shma and David Zuckerman. Extractor codes. IEEE Transactions on Infor-
mation Theory, 50(12):3015–3025, 2004.

[Vig01] Eric Vigoda. A note on the Glauber dynamics for sampling independent sets. Electronic
Journal of Combinatorics, 8(1), 2001.

21

[Vio12] Emanuele Viola. The complexity of distributions. SIAM Journal on Computing,
41(1):191–218, 2012.

[Vio14] Emanuele Viola. Extractors for circuit sources. SIAM Journal on Computing, 43(2):655–
672, 2014.

[vMP07] Dieter van Melkebeek and Konstantin Pervyshev. A generic time hierarchy with one bit
of advice. Computational Complexity, 16(2):139–179, 2007.

[Wil96] David Wilson. Generating random spanning trees more quickly than the cover time.
In Proceedings of the 28th ACM Symposium on Theory of Computing, pages 296–303,
1996.

[Wil04] David Wilson. Mixing times of lozenge tiling and card shuffling Markov chains. Annals
of Applied Probability, 14(1):274–325, 2004.

[Žák83] Stanislav Žák. A Turing machine time hierarchy. Theoretical Computer Science, 26:327–
333, 1983.

22

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

