
Width-parameterized SAT: time-space tradeoffs

Eric Allender* Shiteng Chen
†

Tiancheng Lou
†

Periklis A. Papakonstantinou
†

Bangsheng Tang
†

*Department of Computer Science, Rutgers University
†
Institute for Theoretical Computer Science, Tsinghua University

March 29, 2012

Abstract

A decade has passed since Alekhnovich and Razborov [AR02] presented an algorithm that
solves SAT on instances φ of size n having tree-width T W(φ), using time (and space) bounded
by 2O(TW(φ))nO(1). Although there have been several papers over the ensuing years building
on the work of Alekhnovich and Razborov (e.g. [BDP09, BL03, FMR08, SS10]) there has been
no real progress on what is listed as the first open question of [AR02]: Can one “do anything
intelligent in polynomial space to check satisfiability of formulas” with small tree-width? We
present both positive and negative results on this question; we present a fairly fast polynomial
space algorithm, and present complexity-theoretic evidence that no significantly faster algorithm
runs in polynomial space.

Our first positive result is a simple algorithm that runs in polynomial space and achieves
run-time 3TW(φ) lognnO(1), nearly matching the run-time of [AR02], but with an annoying factor
of log n in the exponent.

Our negative results indicate that this annoying factor of log n is unavoidable. For ease of
exposition, let us focus on the case where the tree-width is logk n. Then, when k = 1 we show
that solving SAT instances of tree-width log n is complete for LOGCFL = SAC1, and for ar-
bitrary k, SAT of tree-width logk n is complete for a level of the NSC hierarchy corresponding

to log-depth semi-unbounded fan-in circuits of size 2O(logk n). (NSC is the class of problems
solvable in nondeterministic polynomial time and poly-logarithmic space: i.e., the nondeter-
ministic analog of the well-known class SC.) Problems in this class can be solved in space

logk+1 n (and hence in time 2O(logk+1 n)), and also in time 2O(logk n) (with space bound the same
as the time bound). These results show that our conjecture (that the annoying factor of log n
in the exponent of the running time of our polynomial-space algorithm cannot be eliminated)
is equivalent to the question of whether the small-space simulation of semi-unbounded circuit
classes can be sped up without incurring a large space penalty. This is a recasting, possibly with
different resource bounds depending on k, of the long-standing conjecture in complexity theory
that SAC1 (and even its subclass NL) is not contained in SC, or even in the Time-Space class

TISP(nO(1), 2log
1−ε n).

The most involved part of this paper is the demonstration that the best-known time-
efficient and space-efficient algorithms for small tree-width SAT can be combined using a new
technique to obtain, for each ε with 0 < ε < 1, an algorithm with time-space complexity(
31.441(1−ε)TW(φ) log |φ||φ|O(1), 22εTW(φ)|φ|O(1)

)
. We systematically study the limitations of our

technique for trading off time and space, and we show that our bounds are the best achievable
using this technique.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 27 (2012)

1 Introduction

In this paper we focus on the prototypical NP-complete problem SAT, where problem instances
have small tree-width.1 This restriction of SAT was studied by Alekhnovich and Razborov [AR02]
(for references prior to this see within), who gave algorithms that work in time 2O(T W(φ))|φ|O(1)

and in space 2O(T W(φ))|φ|O(1), where T W(φ) is the tree-width of a CNF formula φ, and |φ| = n+m
where n and m is the number variables and clauses.

The motivation for studying this restriction is that real-world SAT instances frequently tend
to have small width. The authors of [AR02] state their results in terms of the branch-width of the
formula, which is within a constant factor of the tree-width. They conclude:

“ The first important problem is to overcome the main difficulty of the practical imple-
mentation which is the huge amount of space used by width-based algorithms. . . . Thus
we ask if one can do anything intelligent in polynomial space to check satisfiability of
formulas with small branch-width? ”

The question raised by Alekhnovich and Razborov is a major issue in practical SAT-solving. It is
well-known in the SAT-solving community that in many common cases SAT-solvers abort due to
lack of space.

We provide answers to this question of Alekhnovich and Razborov.
First, we devise a simple space-efficient algorithm for SAT instances in CNF, which runs in time

3T W(φ) log |φ||φ|O(1) and space |φ|O(1). This is the first algorithm with running time exponential in
the tree-width of the incidence graph of arbitrary CNF instances, that runs in polynomial space.2

Our simple algorithm does not fully answer the question of [AR02], since we suffer a log |φ|
factor in the exponent of the running time. Most of our work revolves around this logarithmic
factor. We conjecture that it cannot be removed:

Conjecture 1. Let A be an algorithm for SAT that runs in time 2T W(φ)δ(|φ|)|φ|O(1). Consider
CNF formulas where T W(φ) = O(|φ|1−ε), for some fixed ε < 0. If δ(φ) = o(log |φ|) then A uses
space 2Ω(T W(φ)).

We offer complexity-theoretic evidence in support of this conjecture. We show that solving
SAT instances of small tree-width constitutes a complete problem for a subclass of NP defined
in terms of a well-studied type of Boolean circuits: semi-unbounded circuits of logarithmic depth.
Semi-unbounded fan-in circuits provide one of the standard characterizations of the class SAC1,
which is not believed to lie in TISP(nO(1), no(1)). This can be seen as a strong form of the popular
conjecture NC 6⊆ SC. Our study shows that Conjecture 1 can be seen as simply a more general
form of this belief, for a wider range of resource bounds. This connection is explored in more detail
in Section 3.

Assuming for now that Conjecture 1 holds (which implies that there are severe limits to how
much time complexity can be improved without sacrificing space complexity), it makes sense to
devise algorithms that approach these limits. This is the topic of Section 4, which constitutes the
most technically-involved part of this work, though the practical significance of these algorithms is
debatable.

1Definitions of formula tree-width and related notions are deferred until Section 2.
2The polynomial space algorithm of [GP08] works only for k-CNFs, whereas the one of [BDP09] is for tree-width

on the primal graph.

2

1.1 Related work

Tree-width is a popular graph parameter introduced by Robertson and Seymour [RS83, RS86]. The
smaller the tree-width of a graph, the more the graph looks like a tree in some topological sense;
for a connected graph of n vertices tree-width 1 means that the graph is a tree, whereas tree-width
n− 1 means that it is the complete graph. Several hard computational problems on general graphs
become computationally easier when the input graph is of small tree-width; see. e.g. [Bod93] for a
survey.

For SAT instances the tree-width of a CNF formula is the tree-width of its associated graph
(e.g., incidence graph, primal graph, or intersection graph). Among those graphs, the most general
one is the incidence graph (a bipartite graph where one side has variable-nodes and the other clause-
nodes). In some sense, the tree-width value on the incidence graph upper bounds the tree-width
value of the rest [Sze04]. In particular, the tree-width of the incidence graph of a CNF formula
can be arbitrarily smaller than the tree-width of the CNF-formula graphs that were studied by
Bacchus et al. [BDP09]. There is a vast literature (too large to concisely cite here) in empirical
and theoretical studies in various width-parameterizations of SAT – we only cite some of the most
relevant ones below.

Improving constants, previous work, and what’s different. Improving the constant in the
base of an exponential time algorithm is a well-established goal in the field of exact computation for
NP-hard problems; see e.g. [FK10, Woe03] for an overview. In particular for k-SAT there is a line
of work in algorithms that run in time αn for α < 2; e.g. [MS11, PPSZ98, Sch99, Woe03]. An issue
somewhat superficially related to our conjecture deals with time-space tradeoffs for algorithms for
NP-hard permutation problems, as discussed for example in [BFK+12] and the references within
(in particular [KP10]). However, there is no easy way to adapt these techniques in our setting,
and if Conjecture 1 is true, they cannot really be applied at all. A key property of these previous
algorithms is that as smaller subproblems are considered, the parameter number of nodes becomes
smaller. There is no obvious way to achieve this when the parameter is the width of the formula.

Algorithms for width-parameterized SAT. Prior to our work, [BDP09, GP08] addressed the
question of Alekhnovich and Razborov. In [GP08] the authors gave a combinatorially non-explicit
algorithm only for the k-SAT problem, where k is constant, where the algorithm runs in time
2O(T W(φ) log |φ|) and space |φ|O(1), when T W(φ) = Ω(log |φ|). The problem is not only that their
algorithm works only for k-SAT, but also due to the non-explicitness the constant in the exponent
of the running time cannot be bounded in any easy way. [BDP09] presents a polynomial-space
DPLL algorithm with running time exponential in the tree-width of the primal graph of a formula,
hence their SAT algorithm is strictly weaker than ours (although they also present algorithms for
#SAT and similar problems).

There have been a number of follow-ups improving the running time of the Alekhnovich and
Razborov algorithm [AR02], considering different width-parameters: Fischer et al. [FMR08] give
algorithms for SAT (and a somewhat generalized version of #SAT) parameterized by tree-width
and clique-width. Their tree-width algorithm matches the running time and space of an algorithm
of Samer and Szeider [SS10], which we make use of later in this paper as a time-efficient algorithm,
running in time-space

(
22T W(φ)|φ|O(1), 2T W(φ)|φ|O(1)

)
.

We should also mention that in two excellent works on constraint satisfaction problems Grohe

3

[Gro07] and Marx [Mar10] essentially show that the running time of the known width-based algo-
rithms is optimal.

Previous hardness results, and NSC characterizations. [Pap09] considers path-width in-
stead of tree-width, and shows that the complexity of deciding path-width parameterized SAT
instances precisely corresponds to the streaming verification in log-space of NP-witnesses. In par-
ticular, [Pap09] shows that deciding formulas with given path decompositions of width O(log |φ|)
is complete for NL, and asks whether the complexity of SAT instances with tree-width O(log |φ|)
is more difficult. In this paper we answer this question affirmatively, unless NL = SAC1. (It is
conjectured, e.g. [Coo85], that SAC1 = LOGCFL 6= NL.) We characterize these “streaming
verification classes” by levels of NSC. Then, we give a natural circuit characterization of interme-
diate levels in the NSC hierarchy using semi-unbounded-fan-in circuits of depth O(log n) and size
quasi-polynomial. For these classes we obtain new hardness results. Let us note that this character-
ization of NSC is of independent interest, and is perhaps more natural than the characterizations
presented in [AAD+00].

Relation to Propositional Proof Complexity. Our work opens new, exciting directions for
Propositional Proof Complexity. One way to make progress towards validating Conjecture 1 is to
restrict attention to specific types of algorithms. The study of restricted proof systems is one such
choice. In fact, Beame, Beck, and Impagliazzo very recently [BBI11] made progress towards exactly
validating our question. In particular, they proved a Resolution Refutation size-space tradeoff,
which in particular implies that there exists a family of formulas φ of tree-width T W(φ) where for

every k > 0 every resolution refutation of size nk requires space 2
T W(φ) log logn

log log logn . This very exciting
development is the first super-polynomial lower bound and through our work it can be interpreted
as validating the SAC1 6⊆ SC conjecture, at least for a class of restricted algorithms. This is a new
direction; lower bounds in proof complexity are clearly connected to the NP 6= coNP conjecture
[CR79], but have not previously seemed to have a bearing on the SC 6= NC question.

1.2 Our contribution and techniques

In Section 3 we show that SAT of a given tree-decomposition of width logk n is complete for the class
SACk

quasi := SAC(O(log n), 2O(logk n)), i.e. semi-unbounded fan-in circuits of O(log n)-depth, and

2O(logk n)-size. This is shown through a generic reduction in the spirit of [GLS01]. We also show that
NSCk = NTISP(nO(1), O(logk n)) is contained in SACk

quasi which is in turn contained in NSCk+1,
where NTISP denotes the set of problems decidable by non-deterministic Turing Machines that
are simultaneously TIme-SPace bounded. Note that the NSC levels are direct space-scaled analogs
of NL and these SAC classes are direct size-scaled analogs of SAC1. Therefore, separating the
complexity of SAT parameterized by path-width and tree-width is equivalent to separating these
classes, and hence by padding separating NL and SAC1.

On the positive side, we give a recursive algorithm that runs in time-space
(
3T W(φ) log |φ|

|φ|O(1), |φ|O(1)
)

(see Section 4). This is the first space-efficient algorithm for width-parameterized
SAT for arbitrary CNFs.

We use this space-efficient algorithm, together with a time-efficient dynamic programming al-
gorithm (essentially the algorithm of [SS10]), as the “end-points” for a spectrum of algorithms
that trade off time and space complexity between these two extremes. But there is a catch. If

4

we combine the time-efficient dynamic programming algorithm and our recursive algorithm in the
obvious way, then we gain the worst of both worlds. Here “obvious” means that we discretize
the space of truth assignments during the execution of the recursive algorithm and combine using
dynamic programming. Instead, we introduce an implicit family of proof systems. We use two free
parameters to specify an algorithm in this family. One parameter is an integer which is at least 2.
This controls the “complexity” of the rules applied, for performing an unbalanced type of recursion
of some sort. The larger this parameter is, the smaller the running time is and the more space is
used. The second parameter is a real number in (0, 1) that controls the discretization of the truth
assignment space. This family of algorithms is presented in Section 4, and in its full generality in
Section 5. In the same sections we show that all infinite pairs of values are of interest, depending
on the different time-space bounds one may want to achieve.

Note: Throughout this paper we assume that the tree (or path) decompositions are given in
the input. To the best of our knowledge, the same is true in all other work in width-parameterized
SAT.

2 Preliminaries

We introduce notation, terminology, and conventions used throughout the paper. We also provide
a rather elementary introduction on how an algorithm may exploit the structure of bounded tree-
width formulas.

2.1 Notation

All logarithms are of base 2, and all propositional formulas are in Conjuctive Normal Form (CNF).
SAT is the decision problem where given an arbitrary CNF formula we want to decide if it is
satisfiable. k-SAT denotes the restriction of SAT to CNFs where each clause has at most k
literals. For a formula φ, m denotes the number of clauses, n the number of variables, and Ci and
xj stand for the i-th clause and j-th variable respectively. For convenience we write |φ| = m + n.
When there is no confusion (e.g. when defining complexity classes) n is used to denote the input
length.

2.2 Tree-Width

Definition 1. Let G = (V,E) be an undirected graph. A tree decomposition of G is a tuple (T,X),
where T = (W,F) is a tree, and X = {X1, · · · , X|W |} where Xi ⊆ V s.t.

(1) ∪|W |i=1Xi = V

(2) ∀(i, j) ∈ E, ∃t ∈W , s.t. i, j ∈ Xt.

(3) ∀i, the set {t : i ∈ Xt} forms a subtree of T .

each of Xi is called a bag, the width of (T,X) is defined as maxt∈W |Xt| − 1, and the tree-width
T W(G) of graph G is defined as the minimum width over all possible tree decompositions.

When the tree decomposition T = (W,F) is restricted to a path, the decomposition is called path
decomposition, and the specific tree-width is called path-width PW(G). The following inequality

5

holds (e.g. [Bod98])

T W(G) ≤ PW(G) ≤ O(log |V |T W(G)) (1)

Definition 2. The incidence graph Gφ of a SAT instance φ is a bipartite graph, where in one
side of the bipartization each node is associated with a distinct unsigned variable, and in the other
each node is associated with a clause. There is an edge between a clause-node and a variable-node
if and only if the variable appears in a literal of the clause. The tree-width of a formula φ is the
tree-width of its incidence graph, T W(φ) = T W(Gφ). When it is clear from the context we may
abuse notation and write T W(φ) to denote the width of a given decomposition of Gφ.

We assume that a tree decomposition of the incidence graph of φ is given as input along with
φ. For convenience, we assume the input tree decompositions have the following two properties.

(1) |W | = O(T W(φ) · |V |) = O(T W(φ)|φ|)

(2) The tree T has bounded degree 3.

Tree decompositions satisfying the two properties are called nice. A tree decomposition can be
converted to a nice one in linear time (see e.g. [Klo94, Bod98]). The maximal degree in the tree
decomposition is denoted by d. By the property above, d ≤ 3. If the input is given with a path
decomposition, then d ≤ 2.

Remark 1. We present our results with the parameter d. One may replace d by 2 or 3 when the
structure of the input decomposition is a path or a tree.

2.3 A primer to algorithms for width-parameterized SAT

The structure of a tree decomposition is associated with the concept of separability(e.g. [Bod98]).
Intuitively, the smaller the tree-width is, the easier the graph can be broken into separate com-
ponents by removing nodes. Separability allows us to devise more efficient algorithms for small
tree-width SAT than for general SAT. In some sense, the given tree decomposition allows us to
“localize” an exhaustive search. The following example sheds some light on how this can be done
towards devising a space-bounded algorithm. For the sake of simplicity we make an additional
assumption on the tree decompositions given in the input that all the variables of a clause appear
in the same bag with the clauses. We will see later that removing this assumption in a time-efficient
manner is non-trivial (in fact, removing it without increasing the base of the exponential running
time is an interesting puzzle).

Suppose xi’s, x
′
i’s and x′′i ’s are different sets of variables and the tree decomposition is as in

Figure 1a.
Let us fix a truth assignment to the variables in the bag in the middle, e.g. x1 = x2 = x3 =

x4 = 1. Conditioned on this truth assignment we can simplify the instance by removing clauses
that are already satisfied, and removing literals in a clause that are set to false. This will result in
multiple sub-instances as shown in Figure 1b. The properties of a tree decomposition assure that
the sub-instances depend on different sets of variables, i.e. they are independent. Since if instead
they shared a common variable, this variable would have appeared in the middle bag, e.g. x2. But
this variable is already fixed by the truth assignment.

The satisfiability of the input instance, conditioned on the truth assignment given to the middle
bag, is determined by the satisfiability of the two separate sub-instances. Therefore, it suffices to

6

(a) Input tree decomposition.

+

(b) Fixing an assignment to the vari-
ables in the middle bag results in two
independent instances.

Figure 1: An example showing bounded tree-width SAT can be solved efficiently

enumerate all truth assignments satisfying all the clauses in the middle bag without causing empty
clauses in the simplification phase. Then, recurse into the two independent sub-instances to decide
the satisfiability of the original instance. Furthermore, by choosing the middle bag carefully we can
invoke this “splitting” on subtrees of somewhat balanced size.

In each recursive step, the most time-consuming part is to enumerate all the assignments sat-
isfying all the clauses in the chosen bag, which costs O(2T W(φ)|φ|O(1)) time, and the total running
time is O(2T W(φ) log |φ||φ|O(1)), which is much better than the current best algorithms for general
SAT, which run in time exponential in |φ|.

The subtle additional assumption The assumption that all variables of a clause appear in the
same bag with the clause is not a mild one (especially for CNFs of large cardinality). In general,
we may have to delay the decision to satisfy a clause. In the above algorithm, we only store the
truth assignments to the variables. The following example shows that only storing this information
is not enough when aiming at removing the assumption.

(a) φ1 (b) φ2 (c) φ3

Figure 2: Three instances used in the example. Figures on the top are the input tree decompositions,
the bottom figures are the two components after fixing assignment to the variables in the middle
bag.

Suppose C1 = x1 ∨ x2 ∨ x4 ∨ x6, C2 = x1 ∨ x3 ∨ x5, C3 = x2, C4 = x3, C5 = x4, C6 = x5 and
C7 = x6. Three instances φ1, φ2 and φ3 along with their tree decompositions are given in Figure 2,
where φ1 = C1∧· · ·∧C7, φ2 = C1∧· · ·∧C5∧C7(i.e. C6 is missing), and φ3 = C1∧· · ·∧C4∧C6∧C7(i.e.
C5 is missing). We say that a clause is satisfied by a literal under a truth assignment if the literal
appears in the clause and is set to 1. If an instance is satisfiable, then there is a truth assignment

7

where every clause is satisfied by one of its literals.
Now, consider the splitting operation on the middle bag by fixing a truth assignment to it as

above. For all three instances, the only possible assignment for x6 is 0, since C7 must be satisfied
by x6 = 0. Similarly, in the left bag, we must assign x2 = 0 and x3 = 0 to satisfy C3 and C4. In
the left bag, the only variable left is x1, which can satisfy either C1 or C2 but not both. The three
instances differ in the right part where two variables x4 and x5 are left.

Satisfying C5 requires x4 = 0, then C1 can not be satisfied by x4. Similarly, satisfying C6

requires x5 = 0, then C2 can not be satisfied by x5. In order to find a satisfying truth assignment,
when processing the right part, we need the information which of C1, C2 is already satisfied in the
left part. φ1 is not satisfiable so whichever does not affect the result. φ2 is satisfied only when C1

is already satisfied, while φ3 is satisfied only when C2 is already satisfied. This piece of information
is not carried through the middle bag by just the truth assignment to the variables. To overcome
this issue we are going to use “clause-bits”.

2.4 Notation and terminology

We introduce terminology and notation to talk about truth assignments on bags. Let X be a bag in
the tree decomposition, V be the variables and C be the clauses in X. Also, nV = |V| and mC = |C|.
An assignment RX for X is a binary vector of length nV +mC . The first nV bits indicate the truth
values of the corresponding variables. Note that the term “assignment” does not correspond only
to a “truth assignment” on the variables in X. It is an assignment of bit values both to variables
and to clauses.

What values the last mC bits have is a subtle issue explained in Section 4. For the dynamic
programming algorithm things are pretty clear. However, for the space-efficient and trade-off
algorithms, things become more subtle. Intuitively, a bit corresponding to a clause C is 1 if we
“have decided” to eventually satisfy this clause (this has to do with where we are in the execution
of the algorithm). Such a decision is different for different algorithms, but we use the same data-
structure.

Actually, the most straightforward way of defining the clause bits is to let it denote whether
the corresponding clause “is” satisfied. To ensure that a clause is satisfied in one of the branches
in the tree decomposition, we need to enumerate all 2d − 1 combinations of branches on which the
clause is satisfied. However, if one is interested in only in the satisfiability problem (and not e.g.
in #SAT) we observe that d combinations suffice.

3 On the complexity of width-parameterized SAT

We show that SAT problems parameterized by path- and tree-width are complete for natural com-
plexity classes. These completeness results, together with a new characterization of the levels of
the NSC hierarchy yield two important corollaries. First, our Conjecture 1 holds true under a
widely believed complexity assumption. Second, under a different well-known complexity assump-
tion (NL (SAC1), for the same width parameter w(|φ|) SAT of tree-width O(w(|φ|)) cannot be
efficiently reduced to SAT of path-width O(w(|φ|)).

8

3.1 More preliminaries and notation

NSC is the non-deterministic analog of SC, the class of sets decidable simultaneously in polynomial
time and poly-logarithmic space. We denote by NSCk := NTISP

(
nO(1), O(logk n)

)
. It is widely

conjectured that SC 6= NC. Here is a stronger intuitive form of this conjecture.

Conjecture 2. The NL-complete graph reachability problem3 cannot simultaneously be solved
deterministically in sub-polynomial space and polynomial time. That is, depth-first search cannot
be simulated quickly in small space, and hence NL 6⊆ TISP(nO(1), no(1)). This implies the weaker
conjecture SAC1 6⊆ TISP(nO(1), no(1)).

We denote by SATtw(w(|φ|)) the problem of deciding SAT of a given CNF formula together
with a tree-decomposition of width w(|φ|). Similarly, for path-width we use the notation SATpw(w(|φ|)).
[Pap09] shows that SATpw(w(|φ|)) is complete for the class NL[w(|φ|)

log |φ|], characterized by log-space
bounded Turing Machines augmented with a polynomially long read-only, non-deterministic tape
on which they make O(w(|φ|)

log |φ|) passes.
A semi-unbounded circuit is a circuit with unbounded fan-in OR gates, bounded AND gates

and all the negations at the input level. We use the notation SAC(depth, size), and we define

SACk := SAC(logk n, nO(1)) and SACk
quasi := SAC(log n, 2O(logk n)). The study of SAC circuits,

and the various classes SACi has received considerable attention e.g. [BCD+89, Ven87]. The
SACk

quasi classes (very shallow quasi-polynomial size circuits) are introduced in this paper; they
characterize the NSC hierarchy (Equation (2)). For these families of circuits we use Dlogtime-
uniformity [BIS90]. This means that the direct connection language for the circuit family can be
recognized in linear time. The direct connection language takes inputs of the form 〈n, i, d, j, t〉
such that d > 0 and the dth input of the gate i in the circuit for inputs of length n is of type
t(∈ {AND,OR, 0, 1}) and has index j, or else d = 0 and gate i is of type t. Since the string
〈n, i, d, j, t〉 has length logarithmic in the size of the circuit for inputs of length n, it follows that,
for SACk

quasi circuits, questions about connectivity in the circuits for length n can be answered in

time O(logk n).
Simultaneously depth-size bounded semi-unbounded circuits are ultimately related to space-

time bounded non-deterministic Auxiliary Pushdown Automata (NAuxPDAs). A NAuxPDA is a
non-deterministic space-bounded Turing Machine equipped with an unbounded stack (see [Coo71]
for a precise definition). NAuxPDA(s(n), t(n)) is the class of decision problems decidable by an
NAuxPDA in space O(s(n)) and time O(t(n)). Generalizing the arguments in [Ruz80] and [Ven87]
we obtain:

Lemma 1. SACk
quasi = NAuxPDA(logk n, nO(1)), for O(logk n) time uniform SAC circuits.

Proof sketch. The proof of SACk
quasi ⊇ NAuxPDA(logk n, nO(1)) is a series of several simulations,

generalizing the characterization theorems in [Ruz80, Ven87], which proved a down-scaled version
of the lemma, namely, NAuxPDA(log n, nO(1)) = SAC(log n, nO(1)).

The route of simulations follows exactly the same way as in the previous works, except that
more careful analysis is required. The details and some definitions (e.g. alternation, Alternating
Turing Machine, treesize bounded alternation) are beyond the scope of the main topic of this paper
and since we make no major change in these arguments, they are omitted. Interested readers are
referred to [Ruz80, Ven87]. For completeness, we provide an overview of the simulation.

3Given a directed graph G = (V,E) and two designated vertices s, t ∈ V , is t reachable from s?

9

The high-level of the simulation witnessing NAuxPDA(log n, nO(1)) ⊆ SAC(log n, nO(1)) is
as follows. First, a machine deciding a set in NAuxPDA(logk n, nO(1)) is simulated by a semi-
unbounded ATM which runs simultaneously in O(logk n) space, O(logk+1 n) time, and O(log n)
alternations. This ATM is further simulated by a class of uniform semi-unbounded circuits with size
2O(logk n), O(logk+1 n) depth and O(log n) alternations (in fact, this step is rather straightforward).
The last simulation shrinks the gates between two alternations to constant depth using semi-
unboundedness and the so-called reachability sub-circuits. O(log n) alternations directly result in
O(log n) depth, while the reachability sub-circuits only need to test whether two OR gates are
connected by a path of at most O(logk+1 n) OR gates and therefore have depth O(log log n). The
Dlogtime-uniformity of the circuit is immediate.

We prove the other direction, namely NAuxPDA(log n, nO(1)) ⊇ SAC(log n, nO(1)) by showing
that SATtw(logk |φ|) is hard for SAC(log n, nk), and is contained in NAuxPDA(log n, nO(1)).
These are presented later in Lemma 4 and Lemma 5.

The reader may be surprised that acceptance of a super-polynomial size circuit can be verified in
(non-deterministic) polynomial time. This is related to the structure and size of proofs of accepting
inputs for semi-unbounded circuits. In particular, the size of such a proof/certificate is exponential
in the depth of the circuit (see the proof of Lemma 5 for details).

3.2 Completeness for SATpw(log
k |φ|) and SATtw(log

k |φ|), and a new circuit char-
acterization of the NSC hierarchy

In Theorem 1 we show that SATpw(logk |φ|) is complete for NSCk and Theorem 2 states that
SATtw(logk |φ|) is complete for SACk

quasi. We remark that the tree-width/path-width relation
PW(G) ≤ T W(G) log n can be shown via a reduction computable in logspace. Putting these
together we have the following characterization of the NSC levels:

NL︸︷︷︸
NSC1

⊆ SAC1︸ ︷︷ ︸
SAC1

quasi

⊆ NSC2 ⊆ SAC2
quasi ⊆ NSC3 ⊆ · · · ⊆ NSC = SACquasi (2)

Our completeness results require us to present upper bounds on the complexity of SAT with
small tree-width and path-width. For these upper bounds, we need the notation of consistency.
Since we have extended the notion of assignment to also include assignments to clauses, we also
need to have a correspondingly extended notation of consistency of assignments. The rigorous
definition of consistency deferred until the next section; for this section it suffices to rely on an
intuitive understanding of the notion. Intuitively, assignments to two bags are said to be consistent,
if the bits corresponding to variables agree, and some additional constraints imposed by the bits
corresponding to clauses are satisfied such that a satisfying truth assignment can be deduced. For
this section, it suffices to know that, if assignments for two bags are written on the worktape, then a
machine can determine if the assignments are consistent without using any additional space. Also,
by the connectivity properties of tree-decompositions, it suffices to check consistency of neighboring
bags.

Now, we turn to showing these completeness results. The following lemma implies Theorem 1.

Lemma 2. NSCk = NL[logk−1 n], for k ∈ Z+.

Proof. Let’s see why NSCk ⊆ NL[logk−1 n] first. Let M be a machine that accepts a language
L ∈ NSCk. From M , we construct a machine M ′ that uses only logarithmic space on its worktape,

10

and that makes O(logk−1 n) passes over a tape of polynomial length that holds the sequence of
“nondeterministic” bits. On accepting computations, the nondeterministic tape of M ′ will contain
an encoding of a computation of M : i.e., a sequence of encodings of successive configurations (from
initial state to accepting state) of a complete run of M accepting the given input. (Clearly, such
an encoding will have polynomial length since the running time of M is polynomial and the length
of each configuration is O(logk n).) A configuration will include state, head position and worktape.
Without loss of generality we assume that all the encodings of configurations have the same size, and
that the worktape is divided evenly into blocks of length O(log n). Note that because of the locality
of computation, two adjacent configurations only differ in O(1) bits; the ith blocks of the worktape
of two consecutive configurations will be identical when the head is not in the corresponding block,
and otherwise will differ only in O(1) bits.

In the ith pass, starting from the initial configuration, M ′ will check that the ith blocks of each
two consecutive configurations are correct. To do this, M ′ will read blocks i−1, i, and i+ 1 of each
two consecutive configurations into its worktape in turn, as well as the state and head position of
both configurations. If the head is not in the ith block, then M ′ will merely check that ith blocks of
the two configurations are identical; if the head is in the ith block, M ′ will check whether the move
is a legal move of M . Some additional bookkeeping is necessary when the head is moving into or
out of the ith block; in those cases, the blocks i− 1 and i+ 1 will also need to be consulted. If the
ith blocks of configurations j and j + 1 are deemed to be consistent, then the process is repeated
for configurations j + 1 and j + 2. It should be clear that M ′ uses logarithmic space and makes
only O(logk−1 n) passes over its nondeterministic tape.

For the other direction, it is sufficient to present a complete problem for NL[logk−1 n] that is
contained in NSCk. SATpw(logk |φ|) is such a problem, by the following characterization:

Lemma 3 ([Pap09]). SATpw(logk |φ|) is complete for NL[logk−1 n], for k ∈ Z+, under log-space
many-to-one reductions.

A nondeterministic machine M ′′ for SATpw(logk |φ|) runs as follows: on its worktape, M ′′

guesses assignments (each of length logk |φ|) for each bag, in the order of path decomposition
(storing only the assignments for three bags at any one time). In order to check the correctness of
the assignment for the jth bag, the assignments for bags j − 1, j, and j + 1 on the working tape,
and the consistency of these assignments can be checked in polynomial time. By the properties
of path decompositions, checking consistency of consecutive bags is sufficient for correctness. M ′′

uses O(logk n) space and polynomial time.

Lemma 3 and Lemma 2, immediately yield the following theorem:

Theorem 1. SATpw(logk |φ|) is complete for NSCk, for k ∈ Z+, under log-space many-to-one
reductions.

Theorem 2. SATtw(logk |φ|) is complete for SACk
quasi, for k ∈ Z+, under log-space many-to-one

reductions.

Proof. Containment is by Lemma 4 and Lemma 1, and hardness is by Lemma 5.

Lemma 4. SATtw(logk |φ|) ∈ NAuxPDA(logk n, nO(1))

11

Proof. The algorithm witnessing this containment is very natural when expressed as a NAuxPDA;
it is a modification of the algorithm in [GP08] with an additional trick to handle arbitrary CNF
clauses, and has a very similar structure to the proof of SATpw(logk |φ|) is in NSCk.

The NAuxPDA will perform a depth-first traversal of the tree-decomposition, guessing as-
signments corresponding to the bags (each of length O(logk |φ|)) using the worktape and the stack
to check consistency of the assignments. More precisely, the NAuxPDA will start at the root and
guess an assignment for the root node, and then recursively search the tree rooted at that node,
given the current assignment.

To search the tree rooted at a given node v, given an assignment, the NAuxPDA will first
check if v has any children. If not, the NAuxPDA will halt and reject if the assignment is not
accepting, and otherwise will pop the stack to continue searching the tree rooted at v’s parent.
Otherwise, the NAuxPDA will guess assignments for v’s children (of which there are ≤ 2), and
check that the assignments are consistent, then push the second child and its assignment onto the
stack, along with information about v and its assignment, and then search the tree rooted at the
first child. When that subtree has been searched, the NAuxPDA will pop the information for
the second child off of the stack and search it. If both subtrees are successfully searched, then the
NAuxPDA pops the stack to continue searching the tree rooted at v’s parent.

It can be seen from the description that this machine requires O(logk |φ|) space, and polynomial
time.

Hardness is more interesting. We do a reduction from an arbitrary language in SACk
quasi. Similar

“generic reductions” (i.e. reducing the computation of families of SAC circuits) for treewidth-
related problems have appeared before, e.g. [GLS01] .

Lemma 5. SATtw(logk |φ|) is hard for SACk
quasi, under logspace many-to-one reductions.

Proof. Fix L ∈ SACk
quasi and an input x. Let C be the associated SAC circuit, with uniformity

realized by a Turing Machine M (i.e. the machine that decides the direct connection language).
We construct a formula φ that is satisfiable if and only if C(x) = 1. Without loss of generality we
assume the following normal form for C: (i) C is layered, (ii) C is strictly alternating : odd-layer
gates are OR, even-layer gates are AND, (iii) C has an odd number of layers, and (iv) the AND
gates in C have fan-in 2.

A proof-tree is a tree with the same layering as the circuit. Each node of the tree is labelled by
an index of a gate from the corresponding layer of the circuit. At odd layers, each node has one
child, while at even layers, each node has two children. Two connected nodes must be labelled such
that the corresponding gates are connected. At the bottom layer, each node must be labelled by an
input gate or a NOT gate which outputs value 1. See Figure 3a for an illustration of an example.

A proof-tree witnesses that C(x) = 1. The main observation is that by the above normal
form every proof-tree must have the same shape. A skeleton is a proof-tree without labels (see
Figure 3b). Therefore, C(x) = 1 if and only if there exists a labeling to the nodes of the skele-
ton which turns it into a valid proof-tree. We encode this labeling as a CNF formula as follows.
Associate a node v in the skeleton with bit vectors xv, dv, tv, where |xv| = |dv| = logk n, |tv|
is constant. An assignment to these Boolean vectors can be viewed as a labeling in the fol-
lowing sense: xv indicates the index of the gate, tv indicates its type, while dv together with
another xu indicates which predecessor in the circuit it should choose in the proof-tree. More
specifically, for every node v at an even-numbered layer in the skeleton with children ul, ur we

12

(a) A semi-unbounded circuit to-
gether with a proof-tree. The NOT
gates are assumed to be part of the
input

(b) The skeleton of the
proof-trees

Figure 3: In 3b a SATtw(logk |φ|) instance is constructed from the skeleton: each node corresponds
to O(logk n) Boolean variables; clauses are constructed for each oval with dashed border; and only
those variables corresponding to a node shared by different dashed circles must be put into a bag
in the tree decomposition. This ensures O(logk n) tree-width.

have: M(〈n, xv, 0, 0, AND〉) = 1, M(〈n, xv, dv, xul , OR〉) = 1, and M(〈n, xv, dv, xur , OR〉) = 1.
When v is at an odd-layer, and u is its child, we have M(〈n, xv, 0, 0, OR〉) = 1, and either
M(〈n, xv, dv, xu, AND〉) = 1 or M(〈n, xv, dv, xu, 1〉) = 1.

A correct proof-tree exists if and only if, for each edge (v, u), in the skeleton, the assignments
to the variables in xv, dv and xu can be picked so that M accepts the corresponding tuples. This
condition can be formalized as ∃s,M ′(s) = 1, where |s| = O(logk n), corresponding to the inputs
bits provided to a Turing machine M ′ (a modification of M) having running time O(logk n) on s.
This can be encoded à la Cook-Levin (see e.g. [AB09]) as a CNF of size O(logk n). At the end we
take the conjunction of all the CNFs corresponding to the nodes and edges, which is also a CNF
F , where F is satisfiable if and only if C(x) = 1.

It remains to show that F has tree-width O(logk n). Notice that clauses in F are defined for only
one specific node, and variables appear in clauses corresponding to at most two nodes. Therefore
there is a natural tree-decomposition associated with F , as illustrated in Figure 3b, that is, clauses
and variables corresponding to an edge in the skeleton form a bag, and two bags are connected when
they share variables. By the argument above, this tree-decomposition has tree-width O(logk n).

3.3 Evidence for Conjecture 1, and the separation of SATpw(log
k |φ|) from SATtw(log

k |φ|)

We list corollaries of the completeness results obtained in the previous sub-section.

Corollary 1. SACk
quasi 6⊆ TISP(2O(logk n), no(1)) ⇐⇒ Conjecture 1 for tree-width O(logk |φ|).

In particular, when k = 1, we have that Conjecture 1 for tree-width O(log |φ|) is equivalent to
SAC1 6⊆ TISP(nO(1), no(1)).

This corollary is just a resource-scaled form of our initial equivalence for logarithmic tree-width.
In fact, by padding4 we have:

4Philosophically, the assumption SACk
quasi 6⊆ TISP(2O(logk n), no(1)) is not really different than the widely-believed

13

Corollary 2. Conjecture 1 for tree-width polylog(|φ|) =⇒ SAC1 6⊆ SC.

Thus, modulo these complexity assumptions this settles the lower bound of the Alekhnovich-
Razborov question. Note that Corollary 2 opens new avenues for propositional proof complexity
[BBI11]; i.e. validating our conjecture for restricted types of algorithms implies progress towards
NC 6= SC.

As another corollary, assuming that NL (SAC1, we separate the complexity of SATpw and
SATtw.

Corollary 3. SATtw(log |φ|) is not log-space reducible to SATpw(log |φ|), unless NL = SAC1.

In fact, the above holds up to NL-reductions. This corollary extends to every poly-logarithmic
width under the scaled assumption NSCk (SACk

quasi. This is the first separation result for width
parameterizations of SAT for the same width parameter. Prior to our work there were only results
in the opposite direction [GP08], where some width parameters (e.g. band-width and path-width)
were shown to be log-space-equivalent, although combinatorially they can be off by an exponential.

4 Tradeoff algorithms on a single parameter

We consider two basic algorithms. One is time-efficient, which works in time-space
(
22T W(φ)|φ|O(1),

2T W(φ)|φ|O(1)
)
, whereas the space-efficient one works in time-space

(
3T W(φ) log |φ||φ|O(1), |φ|O(1)

)
.

The first one [SS10] is the most time-efficient (with respect to the constant in the exponent)
algorithm known. The second is our contribution, and it is the first space-efficient algorithm for
arbitrary CNFs for tree-decompositions on the incidence graph. Our main contribution is combining
these two algorithms in a non-trivial way to obtain a tradeoff.

Here is an overview of the time- and space- efficient algorithms.
The time-efficient algorithm does dynamic programming using the tree-decomposition in a typ-

ical way [Bod93]: root the tree to make it a binary tree, then for each bag define a 2T W(φ) size
Boolean array, each entry corresponds to the satisfiability of the subformula rooted at the bag with
the bag being assigned the assignment indexed by the entry. Clearly, computing the array for the
root will solve the satisfiability of the formula, and indeed by the property of a tree decomposition,
computing is leaves-to-root fashion we determine the required values.

To simplify this overview of the space-efficient algorithm we shall assume that each clause
appears in a bag together with all of its variables.5 Observe that if we fix a truth assignment on
a bag, then solving SAT on the given tree decomposition reduces to solving e.g. 3 independent
subproblems – think of splitting the degree-3 tree into three subtrees by cutting the original one at

assumption SAC1 6⊆ TISP(nO(1), no(1)). By analogy let us consider P 6= NP and E 6= NE. It is true that E 6= NE
is stronger in the sense that E 6= NE implies P 6= NP (via a simple padding argument), and it is also the case
that at the current state-of-the-art we have no idea how to obtain the converse implication. (In fact, this is true
for the vast majority of these resource-scaled analogs of other complexity conjectures). Also, it is worth noting that
the converse fails relative to some oracles [BWMR82]. However, in principle we see no real reason why one should
believe in one and not in the other (especially when the scaling in the resource bounds is moderate); they are merely
different manifestations of the same underlying question. Our conjecture is equivalent to SAC1 6⊆ TISP(nO(1), no(1))
for logarithmic tree-width, whereas for larger tree-width we have only shown equivalence to the scaled analogs of
SAC1 6⊆ TISP(nO(1), no(1)).

5This is not a mild assumption, since the space-efficient algorithm does not traverse the tree in some “contiguous
manner” (e.g. from leaves to the root). Certain ways of removing the assumption severely affect the running time of
the algorithm.

14

this bag. The algorithm works by enumerating and checking recursively truth assignments on the
bags. Its performance is determined by the size of the subproblems (ideally all the subtrees have
the same size). In Section 4.1 (Lemma 6 below) we show that there always exists a good choice for
a bag, reminiscent to the well-known “1

3 - 2
3 lemma” for binary trees. The lemmas in Section 4.1

are a bit of an overkill for the analysis of this simple algorithm, but they are also applied in the
analysis of the tradeoff.

The tradeoff algorithm: where is the complication? Let us consider for a moment an
execution of the space-bounded algorithm. We can visualize each step of the recursion as cutting
the tree decomposition at a node (bag) – this bag is replicated at each of the subproblems with the
fixed truth assignment. Let the process evolve for a while, and when the forest has enough many
trees let us single out one such tree. At the boundary (the leaves) of this tree there can be as many
as log |φ| nodes to which we previously fixed an assignment, i.e. by splitting. The logarithmically
large number of nodes does not affect the performance of the space-efficient algorithm (at each
point of the recursion each bag/node is associated with a single assignment). Now, we switch gears
to devise a tradeoff algorithm. A natural thing to do is first to discretize the truth assignment
space associated with each bag, say in 2(1−ε)T W(φ) many chunks each of size 2εT W(φ), and we
perform the recursion as in the space-efficient algorithm but now instead of one assignment we
assign the whole chunk. This brings the enumeration, at each recursive step, from 2T W(φ) down to
2(1−ε)T W(φ). On the other hand combining the chunks of the truth assignments into one consistent
chunk associated with this tree may increase the space as much as 2ε log |φ|T W(φ). Overall this
is a time-space

(
2(1−ε) log |φ|T W(φ), 2ε log |φ|T W(φ)

)
algorithm, worse both than the time- and space-

efficient ones! To devise our tradeoff algorithm we show that it is possible to simultaneously (i)
perform the splitting in a way that at each step of the execution the forest consists of trees each with
at most a constant number of split-nodes and (ii) this splitting results in subproblems of somewhat
balanced sizes. Furthermore, we show that it is possible to control the number of splitting nodes
per tree in the forest in a way that yields a tradeoff on this parameter (Section 5). This is a
different (and competing) tradeoff than the one from the discretization factor ε; i.e. our most
general tradeoff algorithm is controlled by two parameters.

4.1 Splitting, Consistency, Assignment Groups

In this section we give some additional notation and technical lemmas which we apply in the
analysis of the space-efficient (Section 4.2) and tradeoff algorithms (Sections 4.3 and 5). First we
define an operation which allows a natural divide-and-conquer strategy, and a lemma follows the
definition for choosing where the operation should occur. Then we define consistency with respect
to our definition of assignments, which is somehow subtle and different from consistency of truth
assignments. And in the last part of this section, we define discretized assignment which is crucial
in the tradeoff algorithms.

Definition 3 (Splitting operation). Let T = (V,E) be a tree, and v ∈ V . Splitting T at v is the
following operation. Let T1, . . . , Tk be the trees after removing v from T . The splitting operation
results in a forest {v} ∪ T1, . . . , {v} ∪ Tk, where {v} ∪ Ti is the subtree induced by the nodes in Ti
together with v. v is called the splitting node of this operation.

Given a tree T together with a sequence of splitting operations results in a forest where each
subtree in the forest in general has many nodes marked as splitting nodes. The splitting nodes

15

before a specific splitting operation are called previous splitting nodes. A splitting operation also
splits the set of previous splitting nodes S into Si’s, where Si is the set of splitting nodes contained
in tree Ti, 1 ≤ i ≤ k. A splitting algorithm A computes a function that, given a tree T together
with previous splitting nodes S, returns a node where the next splitting operation is going to be
performed. A splitting algorithm formalizes the way of breaking an instance into sub-instances in
the space-efficient algorithm. In particular, choosing the balancing splitting node is done according
to the following lemma.

Lemma 6. Consider a tree of size N , a leaf s and 0 < α < 1. Then, there is a node p where
after we split at p, the tree which contains s is of size ≤ dαNe and every other tree is of size
≤ d(1 − α)Ne. The node p is called an α-splitting node. Furthermore, such a p can be found in
time polynomial in N .

Proof. We prove this lemma by giving an algorithm for finding p. First root the given tree at s,
and then we iteratively construct a path 〈s ≡ v1, v2, . . . , vl〉 as follows. After constructing the path
from v1 through vi−1, vi is chosen to be child of vi−1 which roots the largest subtree. We claim
that there exists an α-splitting node in this path.

Denote by ai the size of the subtree containing s after splitting at vi, 1 ≤ i ≤ l. It is not hard
to see that a1 = 1, al = N , and ai strictly increases as i increases. Therefore, there must be a j,
such that aj ≤ αN and aj+1 > αN . We claim that vj is the node we need. If aj+1 − aj = 1, then
splitting at vj results in two components, where the size of the component containing s is dαNe,
while the other one is of size d(1 − α)Ne. If aj+1 − aj > 1, then there must be a branch at vj ,
meaning that vj has at least two children. Splitting at vj results in at least three components. One
which contains s and is of size smaller than αN . The largest one among the rest is of size smaller
than (1− α)N .

Corollary 4. On a bounded-degree tree of size N , there exists a node p, such that after splitting
at p each subtree is of size at most dN/2e.

Consistent assignments In what follows we assume that there is an initial tree decomposi-
tion(recall that the bags are denoted by Xi) together with a sequence of splitting operations S that
results in the subtrees along with their splitting nodes.

We refer to an assignment on a subtree as the assignment that corresponds only to its splitting
nodes. Formally, let X∗ = ∪vi∈SXi, and let V be the variables and C the clauses which have
corresponding nodes in X∗. X∗ is the set of variables and clauses on which we define assignments.
Suppose in one single splitting operation, T splits into subtrees Ti’s. In every splitting operation,
the bag being split is given some assignment. Further suppose RT is an assignment to T , and RTi
is an assignment to the subtree Ti. RT and RTi ’s are said to be consistent if

(1) for every i, the bits corresponding to a variable x in RTi is the same as in RT

(2) for a clause C:

a) if C appears in X∗ and is assigned to 0, then ∀i every bit for C in RTi is assigned to 0

b) otherwise, ∃ exactly one i such that in RTi the bit corresponding to C is assigned to 1.

16

Figure 4: Consistent assignments. C1 = x1 ∨ x2 ∨ x3, C2 = x3 ∨ x4. Consider splitting at the gray
bag, while fixing the value of the bits, 1 for C1, 0 for x3. And possible consistent assignments for
T1, T2, T3 would be they all have 0 for x3, C1 in T1 is 1, while in T2 and T3 are 0

Remark 2. The latter point in the definition, where in exactly one of the subtrees we require that
the corresponding bit equals to 1, is somewhat subtle. The following lemma crucially depends on
this issue.

Lemma 7. For every assignment RT to the tree T , the number of assignments RTi to subtrees Ti’s
consistent with RT is at most dT W(φ).

Proof. Let Xp be the bag corresponding to the splitting node p. For each variable x in the bag Xp,
there are 2 possible assignments of the bit for x in the Ti’s. For each clause C in Xp, if C appears
in RT and is assigned to 0, by the definition of consistency, all the bits for C in the Ti’s are assigned
to 0. Otherwise, in exactly one Ti, the bit for C is assigned to 1; in this case there are at most 3
valid assignments. Recall that 3 is the maximum degree of the tree decomposition.

We define a satisfying assignment in a way consistent with the role of clause bits in the assign-
ments.

Definition 4. For a tree T with splitting nodes S, an assignment RT is satisfying if there exists
a truth assignment A to every variable in T , such that

(1) every truth value for a variable in RT agrees with the corresponding value in A

(2) every clause C that appears in T where C does not appear in S, is satisfied by A

(3) every clause C that appears in S and the corresponding bit is assigned to 1 by RT is satisfied
by A

A satisfying assignment of the input tree decomposition with empty splitting nodeset implies
that the input formula is satisfiable. The following lemma shows that the task of finding a satisfying
assignment can be done recursively.

Lemma 8. An assignment RT is satisfying if and only if there exist assignments RTi to the subtrees
Ti, such that the assignments RTi’s are consistent with RT and each of the RTi is satisfying.

17

Proof. For a tree T with splitting nodes S, suppose that splitting at node p results in the subtrees
{Ti}.

Suppose that the assignment RT is satisfying. By Definition 4, there exists a truth assignment
on variables within T . Using the truth assignment, we can always find assignments RTi ’s consistent
with RT , such that for these truth assignments the conditions in Definition 4 are met.

For the other direction suppose that there exist assignments RTi of the subtrees Ti, such that
the assignments RTi ’s are consistent with RT and all RTi ’s are satisfiable. For each subtree Ti,
there exists a truth assignment complying to Definition 4. Since all these truth assignments agree
on their common variables, we can get a truth assignment from their union, which also meets the
axioms in Definition 4. Therefore, the assignment RT is satisfying.

An ε-assignment group ε-GRT is a set of binary strings each of length at most |S|T W(φ), in
which 1 − ε fraction of entries corresponding to the splitting nodes are fixed to some constants.
ε-GRT and ε-GRTi ’s are called consistent if there exists a way to assign values to each unfixed entry
to obtain an assignment for T (as RT) and assignments for Ti’s(as RTi ’s), such that RT and RTi ’s
are consistent. For a tree T and ε-GRT , by fixing (1−ε)T W(φ) bits corresponding to variables and
clauses contained in the splitting node p, one can derive ε-GRTi for each subtree Ti. Note that the
fixed entries for the splitting node p may be different among subtrees, and the unfixed entries in T
need not to be fixed in subtrees. The following important lemma holds, which basically generalizes
Lemma 7.

1 0 1 0 1 1 1︸ ︷︷ ︸
(1−ε)|S|T W(φ)

∗ ∗ ∗︸ ︷︷ ︸
ε|S|T W(φ)

(a) An ε-assignment group
where 1 − ε fraction of values
are fixed

1 0 1 0 1 1 1 0 0 0

1 0 1 0 1 1 1 0 0 1
...

1 0 1 0 1 1 1 1 1 1
(b) Assignments in the group

Figure 5: ε-assignment group

Lemma 9. The number of distinct ε-GRTi’s consistent with ε-GRT is at most d(1−ε)T W(φ).

Proof. For each variable x, there are 2(≤ d) possible values. For each clause C, let d0(≤ d) be the
number of subtrees created by splitting at p. There are three different cases.

Suppose that C does not appear in any previous splitting node. This implies that C only
appears in T , then there are d0 possible ways of assigning values to the bit for C, such that there
is exactly one of Ti’s, whose bit for C is set to 1.

Suppose that C appears in some previous splitting nodes and its value is fixed in ε-GRT . If the
bit for C is assigned to 1, then there are d0 possible assignments to C similar as above, otherwise
the only possible way is to set all bits for C to 0.

Suppose that C appears in some previous splitting nodes, but its value is unfixed. C must
appear as unfixed in at least one subtree. Without loss of generality, we assume that C appears in
subtrees T1, T2 · · · Te0 , where e0 ≥ 1. The values of C in T1, T2 · · · Te0 are still unfixed, so there are
d0 − e0 + 1 ≤ d0 possible assignments of C in the subtrees Te0+1, · · · , Td0 , the first one sets all to
0, and the i(≥ 2)-th one sets the bit of C in the subtree Ti+e0−1 to 1 and the rest to 0.

18

Since there are at most (1− ε)T W(φ) unfixed values in p, the number of different combinations
of ε-GRTi consistent with ε-GRT is at most d(1−ε)T W(φ)

4.2 The space-efficient algorithm

The description of the space-efficient algorithm is in Algorithm 1. T is a tree with previous splitting
nodes S, and RT is the assignment fixed on the tree. A subtle point that affects the running time
of this algorithm is addressed in Remark 2. The correctness of the algorithm directly follows by
Lemma 8.

Algorithm 1 SAT(T , RT)

1: if all nodes in T are previous splitting nodes then
2: if every clause in RT which assigned to 1 is satisfied by some variables in T then
3: return true
4: else
5: return false
6: end if
7: else
8: find the splitting node s according to Corollary 4, and split at s, which results in the subtrees

Ti
9: for all assignments R′Tis consistent with RT do

10: if for each subtree Ti, SAT(Ti, RTi) = true then
11: return true
12: end if
13: end for
14: return false
15: end if

This algorithm requires only |φ|O(1) space, because there are only O(log |φ|) assignments to be
stored during the process. Suppose T (N) is the running time on a decomposition with N nodes.
By Lemma 7

T (N) ≤ O
(
dT W(φ)

)
T

(
1

2
N

)
+ |φ|O(1)

that is, T (|φ|) = O(dT W(φ) log |φ||φ|O(1)), where by the normal form assumption d = 3, i.e. T (|φ|) =
3T W(φ) log |φ||φ|O(1).

4.3 Tradeoff Algorithms

We present a family of algorithms for bounded tree-width SAT described in Algorithm 2. Differ-
ent choices for the splitting algorithm (line 10) result in different algorithms. SAT-tradeoff is a
procedure that takes a tree decomposition T , a previous splitting node set S, and an ε-assignment
group ε-GRT , and returns an array M(T , ε-GRT) of 2ε|S|T W(φ) entries, where the ith entry indicates
whether the i-th assignment of ε-GRT can be satisfied.

19

Algorithm 2 SAT-tradeoff(T , S, ε-GRT)

1: M(T , ε-GRT)← all zero matrix
2: if all nodes in T are previous splitting nodes then
3: for j ← 1 to |ε-GPT | do
4: Let RT be the jth assignment in ε-GRT
5: if all entries for a clause in RT assigned to 1 are satisfied by some variables in T then
6: M(T , ε-GRT)j ← 1
7: end if
8: end for
9: else

10: Split at the node returned by a splitting algorithm given T , S
11: Denote the subtrees after the splitting as Ti’s
12: for all ε-group assignments ε-GRTi ∀i, which are all consistent with ε-GRT by fixing (1 −

ε)T W(φ) entries do
13: ∀i, M(Ti, ε-GRTi)← SAT-tradeoff(P, Ti, ε-GRTi)
14: for j ← 1 to |ε-GPT | do
15: Let RT be the jth assignment in ε-GRT
16: for all RTi ∈ ε-GRTi , ∀i do
17: if M(Ti, RTi) = 1,∀i and RTi ’s are all consistent with RT then
18: M(T , ε-GRT)j ← 1
19: end if
20: end for
21: end for
22: end for
23: end if
24: return M(T , ε-GRT)

A type` tree is a tree with ` previous splitting nodes. Let α be a parameter satisfying 0 < α <
1/2. The splitting algorithm H2 described in Algorithm 3 has the property that it never creates
type` tree, ∀` ≥ 3.

The performance of the tradeoff algorithms is not hard to analyze tightly (unlike the rather
involved analysis of the two-parameter generalized tradeoff in Section 5), and it is summarized in
the following theorem.

Theorem 3. SAT of tree-width T W(φ) can be solved in simultaneously O(d1.441(1−ε)T W(φ) log |φ||φ|O(1))
time and O(22εT W(φ)|φ|O(1)) space, where ε is a free parameter, 0 < ε < 1.

Proof. Denote by T1(N), T2(N) the running time of H2 on type1 or type2 tree each of N nodes
respectively. Splitting a type1 tree results in multiple type1 trees with size at most (1 − α)N and
one type2 tree with size at most αN , so we have

T1(N) ≤ O(d(1−ε)T W(φ)) (T1 ((1− α)N) + T2 (αN)) + 2O(T W(φ))

Splitting a type2 tree, when the 1/2-splitting is on the path between p1 and p2 results in two type2

trees with size at most N/2 and multiple type1 trees. Otherwise, the splitting operation results in

20

Figure 6: Finding the splitting node in three different cases.

Algorithm 3 Splitting algorithm H2 with T ,S as parameters

1: if T with S is a type0 tree then
2: return the 1/2-splitting node
3: else if T with S is a type1 tree then
4: consider the previous splitting node as the root
5: return the α-splitting node
6: else if T with S is a type2 tree then
7: suppose the two splitting nodes are p1 and p2

8: consider p1 as the root and compute the 1/2-splitting node m
9: if m is on the path between p1 and p2 then

10: return m
11: else
12: return the least common ancestor c of m and p2

13: end if
14: end if

21

two type2 trees with size at most N/2 and several type1 trees. Hence:

T2(N) ≤ O(d(1−ε)T W(φ)) (T1(N) + T2(N/2)) + 2O(T W(φ))

Set α = 3−
√

5
2 to minimize the values of T1(N) and T2(N), we have

T1(N) ≤ O(d(1−ε)T W(φ)) (T1 ((1− α)N) + T2 (αN)) + 2O(T W(φ))

≤ O(d(1−ε)T W(φ))T1 ((1− α)N) +O(d2(1−ε)T W(φ))T1 (αN) + 2O(T W(φ))

Therefore:

T1(N) ≤ d
1

− log (1−α) (1−ε)T W(φ) logN |φ|O(1)

Since typei, i ≥ 3 trees are not allowed, the space requirement is 22εT W(φ)|φ|O(1)

4.4 Optimality of the splitting algorithm for the single-parameter tradeoff

The splitting algorithm presented above is a specific one, with the property that it does not create
typei,∀i ≥ 3 trees. Interestingly, it can be shown that this specific splitting algorithm is optimal
over all splitting strategies which enjoy this property.

Definition 5. Denote by Ac (∀c ≥ 2) the family of algorithms for SAT with bounded tree-width
following the framework in Algorithm 2 which use a splitting algorithm without creating typei trees
∀i > c.

We lower bound the running time of all algorithms in A2 by showing hard instances based on
generalizations of Fibonacci trees.

Definition 6. For any positive integer h, a h-Fibonacci tree(denoted as Fh) is a rooted tree recur-
sively defined as following,

(1) if h = 1, Fh contains only 1 node;

(2) if h = 2, Fh contains 2 nodes and one edge between them;

(3) if h > 2, Fh is constructed by a root connecting roots of two subtrees Fh−2 and Fh−1.

An extended (h, r)-Fibonacci tree (denote as F ∗h,r) is constructed by adding one edge between the
root r and the root of subtree Fh.

Figure 7: An h-Fibonacci tree (Fh).

22

In what follows, we focus on the structure of the trees and inspect the running time of an
algorithm in A2 on a formula with a tree decomposition with the specific structure, and omit the
details of constructing a formula having tree decomposition of a certain structure here. Consider
an extended (h, r)-Fibonacci tree with N nodes, where r is the splitting node, h = dlog(1+

√
5)/2Ne.

We prove that this is hard for any algorithms in A2, namely,

Theorem 4. Every algorithm in A2 runs in Ω(31.441(1−ε)T W(φ) logN |φ|Θ(1)) time on the instance
constructed above.

Proof. We define a special type1 tree and a special type2 tree: T1,h and T2,h. T1,h is constructed
by a splitting node connected to the root of a subtree Fh, and T2,h is constructed by two sep-
arate splitting nodes connected to another node which roots subtree Fh. We prove by induc-
tion that the running time for T1,h is Ω(3(1−ε)T W(φ)h|φ|Θ(1)), and the running time for T2,h is
Ω(3(1−ε)T W(φ)(h+1)|φ|Θ(1)). Base cases are vacuous where h ≤ 2. Suppose the statement is correct
for any h0 < h. For T1,h, by induction hypothesis, if we split at the root of Fh, the running time is
Ω(3(1−ε)T W(φ)(1+(h−1))|φ|Θ(1)), if we split at some node inside the subtrees Fh−1 or Fh−2, the running
time is Ω(3(1−ε)T W(φ)(1+(h−2)+1)|φ|Θ(1)). So the running time for T1,h is Ω(3(1−ε)T W(φ)h|φ|Θ(1)). For
tree T2,h, we must split at the node connecting two splitting nodes, so again by induction hypothesis
the running time is Ω(3(1−ε)T W(φ)(h+1)|φ|Θ(1)).

Since the number of nodes in Fh is Ω((1+
√

5
2)h), by what is shown in the previous paragraph, the

running time for the instance constructed above can be lower bounded by Ω(3
1

− log (1−α) (1−ε)T W(φ) logN

|φ|Θ(1)), where α = 3−
√

5
2 (which matches the parameter chosen in the tradeoff algorithm). By sim-

plifying this expression we obtain the theorem.

5 Generalized two-parameter tradeoff algorithms

In this section we establish Theorem 5 below, by exhibiting a family of algorithms that achieve
time-space tradeoffs generalizing the algorithms in the previous section. Each algorithm in this
family is identified by the parameters (ε, c). Moreover, we show that both of these parameters are
necessary to achieve different time-space tradeoffs. Intuitively, parameter 0 < ε < 1 corresponds to
the granularity of the discretization of the assignment space, whereas the integer parameter c ≥ 2
has to do with the “complexity” of the rule applied recursively during the truth assignment search.

Theorem 5. For every integer c ≥ 2 and ε, where 0 < ε < 1, a SAT instance φ with a tree decom-
position of width T W(φ) and N nodes, can be decided in time-space (3(λc(logN−c)+c)(1−ε)T W(φ)|φ|O(1),
2cεT W(φ)|φ|O(1)) for a constant λc.

λc is a constant depending on c. To be more specific, λc is defined as − log xc, where xc is the
root with largest absolute value of the polynomial equation: Xc−Xc−1−Xc−2− · · · − 1 = 0. The
first few values of λc for small c’s are listed in Table 1.

c 2 3 4 5 6

λc 1.441 1.138 1.057 1.026 1.013

Table 1: λc for small c’s

23

5.1 Generalized tradeoff algorithms

We have already seen a tradeoff algorithm which avoids typec trees for c ≥ 3. It is natural to ask if
the algorithm can be generalized to allow up to typec trees for some c ≥ 3, and more importantly if
by doing so there is any gain in the running time (clearly, there will be a loss in the space). Indeed,
this is possible and as c increases the running time decreases while the space requirement increases.

First, we generalize the splitting algorithm to allow typei trees for i up to c. For arbitrary
1 ≤ i ≤ c, consider splitting a typei tree: suppose the splitting node is p. If p is on the path
between some pair of previous splitting nodes, splitting at this node results in several typej (j ≤ i)
trees; otherwise, splitting results in several type1 trees and one typei+1 tree. Formally, we devise an
algorithm Hc, such that when splitting a typei tree, we invoke Hc to determine the splitting node.
This is an implementation of line 10 in Algorithm 2.

Figure 8: Finding the splitting node in three different cases.

Each αc,i for any 1 ≤ i < c is a parameter satisfying 0 ≤ αc,i ≤ 1/2. To prevent typec+1 trees,
splitting nodes of typec trees must be on the path between some pair of existing splitting nodes, this
is assured by setting αc,c = 0. For a fixed c, the running time and space of the algorithm solving
SAT of bounded tree-width utilizing the splitting algorithm A are summarized in Theorem 5 (see
page 23).

We introduce the following notation in order to discuss the splitting depth.

Definition 7. c-splitting depth SDc(A, T , S) of a splitting algorithm A on tree T with previous
splitting nodes S is inductively defined as follows, where the case for |S| > c is for well-definiteness:

SDc(A, T , S) =


max(T0,S0)∈CT ,S,p SDc(A, T0, S0) + 1 , |S| ≤ c, |S| < |T |
0 , |S| ≤ c, |S| = |T |
∞ , |S| > c

where p is the output of A on T and S, CT ,S,p is the set of subtrees by splitting at p in tree T with
previous splitting nodes S.

c-minimal splitting depth MSDc(T , S) is the minimum value of SDc(A, T , S), over all splitting
algorithms.

Under this notation, given a tree T , any algorithm A avoiding typec+1 trees requires time
d(1−ε)SDc(A,T ,∅)T W(φ)|φ|O(1) and space 2cεT W(φ)|φ|O(1). In fact, bounding the running time is a non-
trivial issue (the derived recurrences are in a perplexed form). The proof of Theorem 5 follows by

24

Algorithm 4 Splitting algorithm Hc with T ,S as arguments

1: if T with S is a type0 tree then
2: return the 1/2-splitting node
3: else
4: suppose T with S is a typei tree
5: if the number of nodes in T is less than 2c−i then
6: return the 1/2-splitting node
7: else
8: arbitrarily pick a previous splitting node as root
9: compute a αc,i-splitting node q1

10: if q1 is not on the path between any pair of previous splitting nodes then
11: return q1

12: else
13: compute a 1/2-splitting node q2.
14: if q2 is not on the path between any pair of previous splitting nodes then
15: return the least common ancestor of q2 and all previous cutting nodes
16: else
17: return q2

18: end if
19: end if
20: end if
21: end if

two technical lemmas: Lemma 10 establishes the recurrences according to the recursive algorithm,
and Lemma 11 deals with choice of parameters. For simplicity of presentation we ignore issues
regarding the divisibility of N by 2.

Lemma 10. For every c ≥ 2, tree T with N nodes and splitting nodes S, let Dc,|S|(N) =
SDc(Hc, T , S). Then for each 1 ≤ i < c:

Dc,i(N) ≤ max{Dc,1 ((1− αc,i)N) , Dc,i+1 (αc,iN) , Dc,i (N/2)}+ 1

and

Dc,c(N) ≤ max{Dc,1(N), Dc,c(N/2)}+ 1

Proof. Without loss of generality, suppose N ≥ 2c. Consider splitting a typei tree with splitting
nodes S, 1 ≤ i < c. If the αc,i-splitting-node m is not on the path between any pair of previous
splitting nodes, splitting at m will result in multiple type1 trees of size at most d(1− αc,i)Ne and
one typei+1 tree of size at most dαc,iNe. Otherwise, since 1 − αc,i > 1/2, the maximal possible
size of a type1 tree created by any splitting node will not exceed d(1− αc,i)Ne. Splitting at the
1/2-splitting-node c will result in multiple typej(j ≤ i) trees of size at most dN/2e, otherwise,
splitting at the least common ancestor of c and all previous splitting nodes as p, will result in
multiple type1 tree of size at most d(1− αc,i)Ne and many typej(j ≤ i) trees with size at most
dN/2e. In summary,

Dc,i(N) ≤ max{Dc,1 ((1− αc,i)N) , Dc,i+1 (αc,iN) , Dc,i (N/2)}+ 1

25

Now, consider splitting a typec tree with splitting nodes S. Since αc,c = 0, we always ignore the
(1−αc,i)-splitting-node m. Splitting at the 1/2-splitting-node c will result in multiple typej(j ≤ i)
trees of size at most dN/2e. Splitting at the least common ancestor of c and all previous splitting
nodes will result in multiple type1 tree with size at most N and multiple typej(j ≤ i) trees with
size at most dN/2e, namely:

Dc,c(N) ≤ max{Dc,1(N), Dc,c(N/2)}+ 1

Lemma 11. SDc(H2, T , ∅) for a tree T of N nodes is at most λc(logN−c)+c+O(1), with properly
chosen parameters αc,i’s.

Proof. Let D′c,i(N) be a function satisfying the following equations,

D′c,i(N) = D′c,1((1− αc,i)N) + 1 = D′c,i+1(αc,iN) + 1, for 1 ≤ i < c

D′c,c(N) = D′c,1(N) + 1

By manipulating the first equation, we can derive that for i : 1 < i ≤ c, D′c,i(N) = D′c,1((1 −
αc,i−1)N/αc,i−1). Again, by the first equation, for each 1 ≤ i < c, D′c,i(N) = D′c,i+1(αc,iN) + 1 =
D′c,1(αc,i(1− αc,i+1)N) + 2, thus,

D′c,1(N) = D′c,1(αc,i(1− αc,i+1)/(1− αc,i)N) + 2

Since D′c,1(N) = D′c,1((1 − αc,1)N) + 1, to minimize the values of D′c,1 we let 1 − αc,1 =
αc,i(1−αc,i+1)/(1−αc,i), and by rearranging αc,i+1 = 1− (1−αc,1)(1−αc,i)/αc,i. Inductively, the
following can be proved

αc,i = 1− αc,1(1− αc,1)i

2αc,1 − 1 + (1− αc,1)i

Now look at the border conditions, since D′c,c(N) = D′c,1(N) + 1 = D′c,1((1− αc,c−1)N/αc,c−1).
Again, to minimize the values of D′c,1, let αc,c−1/(1 − αc,c) = 1 − αc,1, and therefore αc,c−1 =

(1− αc,1)/(2− αc,1). Thus, (1− αc,1)/(2− αc,1) = 1− αc,1(1−αc,1)c−1

2αc,1−1+(1−αc,1)c−1 , which implies

c∑
i=1

(1− αc,1)i = 1

We choose αc,1 to be a solution of the equation above, and then all the other αc,i’s can be fixed.
By setting λc = 1

log(1−αc,1) , for each 1 ≤ i ≤ c, D′c,i(N) ≥ D′c,i(N/2) + 1. We get

D′c,i(N) = max{D′c,1((1− αc,i)N), D′c,i+1(αc,iN), D′c,i(N/2)}+ 1, 1 ≤ i < c

D′c,c(N) = max{D′c,1(N), D′c,c(N/2)}+ 1

Combining with Lemma 10, it can be proved by induction that D′c,i(N) upper bounds Dc,i(N)
for all c, i. And by the choice of the parameters, the recurrence can be solved using standard tools.
Specifically,

Dc,1(N) ≤ D′c,1(N) ≤ λc(logN − c) +Dc,1(2c) +O(1)

Since Dc,1(2c) = c, SDc(Hc, T , S) is upper bounded by λc(logN − c) + c+O(1), where λc satisfies∑c
l=1 2−

l
λc = 1.

26

Proof. (Proof of Theorem 5) For every c ≥ 2, we solve the above recurrences: when N < 2c, the run-
ning time is dlogN(1−ε)T W(φ)|φ|O(1); whenN ≥ 2c, the running time is d(λc(logN−c)+c)(1−ε)T W(φ)|φ|O(1).
Space required by the algorithm is upper bounded by 2cεT W(φ)|φ|O(1) since only typei, ∀i ≤ c trees
are allowed.

The value λc depending on the choice of parameter c seems quite artificial in the analysis of our
algorithms. Here is an upper bound on λc.

Lemma 12. λc < 1 + 2
2c/2

Proof. Let f(X) = Xc −
∑c

i=0X
i, and let γc be the root of f(X) = 0 with largest absolute value.

We know f(2) = 1 > 0, so if we can prove f(2− 1
2c/2

) < 0 then there must be a root between 2 and

2− 1
2c/2

. Denote y = 2− 1
2c/2

,

f(y) < 0 ⇐⇒ yc <

c∑
i=0

yi =
yc − 1

y − 1
⇐⇒ y < 2− 1

yc

The last inequality is true because y = 2 − 1
2c/2

>
√

2 when c ≥ 2 and 2 − 1
yc > 2 − 1√

2
c = y. By

λc = 1
log2 γc

, λc < 1 + 2
2c/2

.

Given the above upper bound, we can furthermore prove an interesting feature of our family of
algorithms. Namely, the space resource can be fully exploited to minimize the running time, which
potentially is of practical importance.

Corollary 5 (of Theorem 5). For any ε′ > 0 there exists an algorithm which runs in space
2ε
′T W(φ)|φ|O(1) and time dδT W(φ) log2 |φ||φ|O(1) for a constant δ < 1.

Proof. For fixed ε and c, by Theorem 5, there is an algorithm with running timeO(dλc(1−ε) log2NT W(φ)|φ|O(1))
and space O(2cεT W(φ)|φ|O(1)) for any ε > 0. Set ε = ε′

c , then the space is O(2ε
′T W(φ)|φ|O(1)) and

the running time is O(dλc(1−
ε′
c

) log2NT W(φ)|φ|O(1)). By Lemma 12, λc(1− ε′

c) < (1+ 2
2c/2

)(1− ε′

c) < 1
for sufficiently large c.

5.2 Optimality of the generalized tradeoff algorithm

Similarly to the last part of the previous section (Section 4), we also prove the optimality of the
generalized tradeoff algorithm. However, in this case the matching lower bound is more surprising
(since the upper bound involved a lot of guessing). We construct the hard instance using extended
generalized Fibonacci trees.

Definition 8. For any integer c ≥ 2, and a positive integer h, a (c, h)-Fibonacci tree(denoted as
Fc,h) is a rooted tree defined by one of the rules,

(1) if h ≤ c, Fc,h is a chain of 2c nodes;

(2) if h > c, Fc,h is constructed by starting from a chain of c nodes (one end as the root), then
replacing the ith node (starting from the root) by a subtree Fc,h−i.

An extended (c, h, r)-Fibonacci tree (denote as F ∗c,h,r) is constructed by connecting one root node
r to a subtree Fc,h.

27

(a) A (c, h)-Fibonacci tree (b) Gc,h,w

Figure 9: Illustration of the hard instances used in proving optimality

See Figure 9a for an illustration of a (c, h)-Fibonacci tree. A (c, h)-Fibonacci tree is indeed the
hardest input of the splitting algorithm. To be more specific, the following lemma holds.

Lemma 13. For each h ≥ 1, MSD(F ∗c,h,r, {r}) ≥ h.

Proof. For any c ≥ 2, h > c and 1 ≤ w ≤ c, Gc,h,w is a tree defined as follows: first construct a chain
of length w, then connect c−w+1 splitting nodes to the first node of the chain, and connect a subtree
Fc,h−c+w−i to the i-th node of the chain. Denote S` as the set of the ` splitting nodes connected
to the first node of the chain. We prove that MSD(Gc,h,w, Sc−w+1) ≥ h− c+ w, which implies the
inequality that we need. Specifically, MSDc(F

∗
c,h,r, {r}) = MSDc(Gc,h,c, S1) ≥ h− c+ c ≥ h.

The inequality is proved by induction on h. The base case is trivial. Suppose for any h < h0,
MSDc(Gc,h,c, Sc−w+1) ≥ h−c+w. Now we prove MSDc(Gc,h0,c, S1) ≥ h0−c+w by induction on w.
When w = 1, to prevent typei tree for i > c, we must split at the first node of the chain. Therefore,
MSDc(Gc,h0,1, Sc) = 1 + MSDc(Gc,h0−c,c, S1) ≥ h0 − c + 1. When w > 1, if the splitting node is
in the subtree Fc,h0−c+w−1 connected to the first node of the chain, MSDc(Gc,h0,w, Sc−w+1) ≥ 1 +
MSDc(Gc,h0,w−1, Sc−w+2) ≥ h0−c+w, otherwise MSDc(Gc,h0,w, Sc−w+1) ≥ 1+MSDc(Gc,h0−c+w−1,c, S1) =
h0 − c+ w.

Theorem 6. For every c ≥ 2 and N > 2c, there exists a tree T with N nodes, such that
MSDc(T , ∅) ≥ λc(logN − c) + c−O(1).

Proof. Let |Fc,h| be the number of nodes in the tree Fc,h. For any h ≤ c, we have |Fc,h| ≤ 2c, when
h > c, we have |Fc,h| =

∑c
i=1 |Fc,h−i|+ c. By the recursion, the generating function of |Fc,h| can be

written as f(X) = Xc −
∑c

i=0X
i. Therefore |Fc,h| =

∑c
i=1 δc,iγ

h−c
c,i , where δc,i is at most constant

times of 2c and γc,i is the i-th root of the equation f(X) = 0.
Let γc = arg maxi{|γc,i|}. When h tends to infinity, |Fc,h| = Θ(2cγh−cc). So, h ≥ logγc (|Fc,h|/2c)+

c − O(1) = λc(log |Fc,h| − c) + c − O(1). Therefore, for any c ≥ 2 and N > 2c, there exists
a tree T with N nodes, such that the c-minimal splitting depth of T MSDc(T , ∅) is at least
λc(logN − c) + c−O(1).

28

Similarly to Theorem 4, here we conclude the optimality of our tradeoff algorithm. That is, for
fixed c ≥ 2, ε, 0 < ε < 1, any algorithm in Ac there is an instance φ, for which the running time is
Ω(3λc(log |φ|−c)+c−O(1)|φ|Θ(1)).

6 Future work

A very exciting research direction is to unconditionally verify our conjecture in restricted models of
computation – propositional proof complexity lower bounds can be understood as such results. The
work of Beame-Beck-Impagliazzo [BBI11] took the first step towards this direction. Such results
can be also understood as partial progress towards SC 6= NC.

A rather intriguing direction regarding positive results, is to use randomness in order to improve
the multiplicative constants in the exponents of time or space, or to provide improved tradeoffs.
More generally, we would like to understand the role of randomness in width-parameterized SAT-
solving, a topic which is fundamentally unexplored.

Acknowledgments

We would like to thank Kevin Matulef and Alexander Razborov for useful remarks and suggestions.
The first author acknowledges the support of NSF Grants CCF-0832787 and CCF-1064785.

References

[AAD+00] M. Agrawal, E. Allender, S. Datta, H. Vollmer, and K. W. Wagner. Characterizing
small depth and small space classes by operators of higher type. Chicago J. Theor.
Comput. Sci, 2000(2), 2000.

[AB09] S. Arora and B. Barak. Computational complexity: a modern approach, volume 1.
Cambridge University Press, 2009.

[AR02] M. Alekhnovich and A.A. Razborov. Satisfiability, branch-width and Tseitin tautolo-
gies. In Foundations of Computer Science (FOCS), pages 593–603. IEEE, 2002.

[BBI11] P. Beame, C. Beck, and R. Impagliazzo. Time-space tradeoffs in resolution: Super-
polynomial lower bounds for superlinear space. In Symposium on Theory of Computing
(STOC), 2011.

[BCD+89] A. Borodin, S. A. Cook, P. Dymond, L. Ruzzo, and M. Tompa. Two applications
of inductive counting for complementation problems. SIAM Journal on Computing
(SICOMP), 18(3):559–578, 1989.

[BDP09] F. Bacchus, S. Dalmao, and T. Pitassi. Solving #SAT and Bayesian inference with
backtracking search. J. Artif. Intell. Res. (JAIR), 34:391–442, 2009. (also FOCS’03).

[BFK+12] H. L. Bodlaender, F. V. Fomin, A. M. C. A. Koster, D. Kratsch, and D. M. Thilikos. A
note on exact algorithms for vertex ordering problems on graphs. Theory of Computing
Systems, 50(3):420–432, 2012.

29

[BIS90] D. Mix Barrington, N. Immerman, and H. Straubing. On uniformity within NC1.
Journal of Computer and System Sciences, 41(3):274–306, December 1990.

[BL03] E. Broering and S. V. Lokam. Width-based algorithms for SAT and CIRCUIT-SAT:
(extended abstract). In SAT, volume 2919, pages 162–171, 2003.

[Bod93] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11(1-2):1–22,
1993.

[Bod98] H.L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science, 209(1-2):1–45, 1998.

[BWMR82] R. V. Book, C. B. Wilson, and X. Mei-Rui. Relativizing time, space, and time-space.
SIAM J. Comput., 11(3):571–581, 1982.

[Coo71] S.A. Cook. Characterizations of pushdown machines in terms of time-bounded com-
puters. Journal of the ACM (JACM), 18(1):4–18, 1971.

[Coo85] Stephen Cook. A taxonomy of problems with fast parallel algorithms. Information
and Control, 64:2–22, 1985.

[CR79] S. A. Cook and R. A. Reckhow. The relative efficiency of propositional proof systems.
J. of Symbolic Logic, 44(1):36–50, 1979.

[FK10] F. Fomin and D. Kratsch. Exact Exponential Algorithms. Springer, 2010.

[FMR08] E. Fischer, J. A. Makowsky, and E. V. Ravve. Counting truth assignments of formulas
of bounded tree-width or clique-width. Discrete Applied Mathematics, 156(4):511–529,
2008.

[GLS01] G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive queries.
Journal of the ACM (JACM), 48(3):431–498, 2001.

[GP08] K. Georgiou and P. A. Papakonstantinou. Complexity and algorithms for well-
structured k-SAT instances. In Theory and Applications of Satisfiability Testing -
SAT, pages 105–118, 2008.

[Gro07] M. Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. Journal of the ACM (JACM), 54(1):1–24, 2007. (also FOCS’03).

[Klo94] T. Kloks. Treewidth: computations and approximations, volume 842. Springer, 1994.

[KP10] M. Koivisto and P. Parviainen. A space-time tradeoff for permutation problems. In
Symposium on Discrete Algorithms (SODA), SODA ’10, pages 484–492. SIAM, 2010.

[Mar10] D. Marx. Can you beat treewidth? Theory Of Computing, 6:85–112, 2010. (also
FOCS’07).

[MS11] R. A. Moser and D. Scheder. A full derandomization of Schöning’s k-SAT algorithm.
In Symposium on Theory of Computing (STOC), pages 245–252, 2011.

30

[Pap09] P.A. Papakonstantinou. A note on width-parameterized sat: An exact machine-model
characterization. Information Processing Letters (IPL), 110(1):8–12, 2009.

[PPSZ98] R. Paturi, P. Pudlák, M. Saks, and F. Zane. An improved exponential-time algorithm
for k-SAT. In Foundations of Computer Science (FOCS), pages 628–637. IEEE, 1998.

[RS83] N. Robertson and P.D. Seymour. Graph minors. I. excluding a forest. Journal of
Combinatorial Theory, Series B, 35(1):39–61, 1983.

[RS86] N. Robertson and P.D. Seymour. Graph minors. II. algorithmic aspects of tree-width.
Journal of algorithms, 7(3):309–322, 1986.

[Ruz80] W.L. Ruzzo. Tree-size bounded alternation. Journal of Computer and System Sciences
(JCSS), 21(2):218–235, 1980.

[Sch99] T. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems.
In Foundations of Computer Science (FOCS), pages 410–414. IEEE, 1999.

[SS10] M. Samer and S. Szeider. Algorithms for propositional model counting. J. Discrete
Algorithms, 8(1):50–64, 2010.

[Sze04] S. Szeider. On fixed-parameter tractable parameterizations of SAT. In Theory and
Applications of Satisfiability Testing - SAT, pages 188–202. Springer, 2004.

[Ven87] H. Venkateswaran. Properties that characterize LOGCFL. In Symposium on Theory
of Computing (STOC), pages 141–150. ACM, 1987.

[Woe03] G. Woeginger. Exact algorithms for NP-hard problems: A survey. Combinatorial
Optimization—Eureka, You Shrink!, pages 185–207, 2003.

31

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

