Electronic Colloquium on Computational Complexity, Report No. 28 (2012)

Kolmogorov Complexity, Circuits, and the Strength
of Formal Theories of Arithmetic

Eric Allender George Davie
Rutgers University University of South Africa
allender@cs.rutgers.edu davieg@unisa.ac.za
Luke Friedman' Samuel B. Hopkin's
Rutgers University University of Washington
Ibfried@cs.rutgers.edu samhop@uw.edu
Iddo Tzamerét

Tsinghua University
tzameret@tsinghua.edu.cn

Abstract

Can complexity classes be characterized in terms of efficient reducibility
to the (undecidable) set of Kolmogorov-random strings? Although this might
seem improbable, a series of papers has recently provided evidence that this
may be the case. In particular, it is known that there is a class of problems
C defined in terms of polynomial-time truth-table reducibility®g (the set
of Kolmogorov-random strings) that lies between BPP and PSPACE [4, 3].
In this paper, we investigate improving this upper bound from PSPACE to
PSPACEN P/poly.

More precisely, we present a collection of true statements in the language
of arithmetic, (each provable in ZF) and show that if these statements can be
proved in certain extensions of Peano arithmetic, then

BPPC C C PSPACEN P/poly.

We conjecture that is equal to P, and discuss the possibility this might
be an avenue for trying to prove the equality of BPP and P.
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1 Introduction

Kolmogorov complexity provides a mathematically precise definition of théiset

of “random” strings. Actually, it provides at leasto distinct but closely-related
notions of randomness that we will need to discuss here, one defined in terms of the
prefix Kolmogorov complexity functiors’, and one defined in terms of the plain
Kolmogorov complexity functiorC'. This yields the two sets that lie at the center

of this paper:Rx = {z : K(z) > |z|} andRc = {z : C(z) > |z|}. When itis

not important to distinguish betweet andC we will simply refer toR.

It is known that PSPACE- P [2], but it is unknown if any larger class such as
EXP is in P*. In this paper we will focus especially on polynomial-titneth-table
reductions (also known ason-adaptivereductions)<},; our motivation comes in
part from a theorem of Buhrman et al., showing BBR A : A<V, R} [4].

Because no larger complexity classes have been shown to be redudible to
this way, we are interested in the question of whether these inclusiooptarel
in some sense. It was observed earlier [1] that the dlass A<, R¢} contains
arbitrarily complex decidable sets (and thus does not look very much like a com-
plexity class), but the same paper also suggested that a more promising avenue was
to investigate the classes of problems that @veaysreducible toR, no matter
which universal Turing machine was used to define the Kolmogorov funcfibns
and K. This gives rise to the following classes:

Definition 1 As usual, IetA(l) denote the class of decidable sets. Cgt denote

the plain Kolmogorov complexity function as given unyversalTuring machine

U, and let Ky denote the prefix complexity function as given by universal prefix
Turing maching/. Define

o Co= A(l) N ﬂU{A : ASZRCU}.
o Ci = A(l) N ﬂU{A : AS%RKU}-

In each case, the intersection is taken oveualversalTuring machined/. See
Section 2 for more background and definitions relating to Kolmogorov complexity.
The firstupper bound®n the complexity of sets iGx was provided recently:

Cx C PSPACE [3]. (We conjecture that similar bounds holddgr but at present
it is still unknown whethet = A(l).) Thus, in particular, we have

BPPC Cx C PSPACEC P”.

In this paper, we focus on the following conjecture (which we believe holds for
both notions of Kolmogorov complexity, and for all universal machitig¢s



Conjecture 2 A = {A € AY: A<}, R} C P/poly.

Our main technical contribution is to present theorems that, in our opinion, sup-
port this conjecture. Namely, we build a set of formu{ds, (n, j,k)} ac.4 in the
language of Peano Arithmetic, and for eadhe A present a proof (which can

be formalized in certain extensions of Zermelo-Frankel, or ZF) of the statement
VYV VkW 4(n, j, k). We then show that if for eacd € A, and each fixed tu-

ple (,j,k), the true statement 4(n,j,k) is provable in certain extensions of Peano
Arithmetic, then Conjecture 2 holds. We believe that it is at least plausible that the
statement¥ 4(n,j k) are, in fact, provable in these extensions of Peano Arithmetic,
but we have less confidence in this than in the truth of Conjectute 2.

Note that it is still unknown whether the halting problem<i§,-reducible to
R¢ (in which case it would hold thatz = AY). As a consequence of our main
result, presenting such a reduction (or presenting a reductiondryrset outside
of P/poly) entails proving independence results from Peano Arithmetic.

Note that, if Conjecture 2 holds, then BRPCx C PSPACEN P/poly. Thus
we think that it is very reasonable to conjecture that = BPP. But in fact we
conjecture more. We believe thédt = Cx = P. In fact, for limited classes of
truth-table reductions, equalities of this form are known. In particular, it has been
shown thatAY N, {A : A<E, R} = AN {A: A<E,Re, } =P [1].

In Section 7 we speculate about the possible advantages of pursuing this avenue
toward the goal of proving BPP- P. At a minimum, we believe that our results
raise the possibility that various mathematical techniques (e.g., from proof theory)
might be relevant to the BPP vs. P problem, where such a connection may have
seemed less likely before. Certainly the connection surprised some of the authors.

2 A Warm-Up Result

In this section we start with some basic definitions, and then present an easy the-
orem that provides intuition for Conjecture 2 and whose proof will help motivate
some additional definitions.

We say that a languagé polynomial-time truth-tableeduces to a languade,
denoted byA<?, B, if there exists a polynomial-time machidé that computes!
when givenB as an oracle, with the additional requirement that, on input/

'Recent unpublished work by Burhman and Loff [5] implies that these statements in their current
form are in fact independent from the relevant extensions of Peano Arithmetic. Nonetheless, we still
believe Conjecture 2 to be true, and we find the connection between these unusual complexity classes
and mathematical logic to be of independent interest. See Section 6 for a more in-depth discussion
of these developments.



must compute the query sét(x) of all queries it will ask the oraclé3 before
receiving answers to any of its queries.

We will consider only truth-table reductions in this paper; as such we will write
M to indicate that maching/ is using a setl as an oracle, and it will be implicit
that the oracle access is non-adaptive.

The plain Kolmogorov complexity of a string with respect to a Turing ma-
chine M is defined as’y/(z) = min{|y| : M(y) = =}. A universal Turing
machine is a machin& such that for allM/ and allz, Cy(x) < Cy(z) + e,
wherec,, is a constant depending only di. At times the choice of reference
machine is not important as long as we choose a universal machine; when this is
the case we fix some universal machiiend writeC'(x) in place ofCy (x). We
then define the Kolmogorov random strings to be theget= {z : C(z) > |z|}.

In many settings where Kolmogorov complexity arises, it is more appropriate
to use what is known gsrefix complexity. A Turing machiné/ is called aprefix
machine, if, for any stringc on which M halts, it is the case tha/ does not
halt on any string of the formy for any non-empty string. That is, the domain
of the machine must form a prefix code. Given such a prefix machinave
define Kj/(z) = min{|y| : M(y) = =}. A universal prefix Turing machine
is a prefix machind/ such that for all prefix machine®/ and allz, Ky (z) <
Ky (z) + ey, Whereeyy is a constant depending only dd. Similar to the case
with plain complexity, we fix some universal prefix machitieand write K (x)
in place of Ki7(x). We refer to the set of random strings under this version of
Kolmogorov complexity afix .

All our theorems about random strings from this paper work for e¢hand
Ry ; we will prove them with respect t&®~ and simply writeR for the set of
random strings, but in Section 5 we indicate how to adjust the proofs to work for
Ry as well.

For a setS of binary strings, letS<* be the set of all strings i§ that have
length at most; i.e S=F = U;<,.S N {0, 1}%. LetV);, be the set of all sets of binary
strings that only contain strings of length at mést.e vV, = P({0, 1}=F), where
P denotes the powerset operation g0d1}=* is shorthand fof{0, 1}*)=F.

The complement of? is computably-enumerable; therefore there is a Turing
machineF that outputs an enumeration , z-, x3,... of all nonrandom strings.
We defineR;, o = {0, 1}k, andRy, ; to be Ry ;1 \{z;}, wherez; is theith non-
random string of length at mostin the enumeration. One can vieR, ; as an
updated approximation tB=<* afteri nonrandom strings of length at mdshave
been discovered. Note that for soriie Ry, ;« = R=k, and that for ali > i*, Ry ;
is undefined, since there are no further nonrandom strings of length atkniost
be discovered. Even thoudhy, ; is undefined for ali > 7*, in order to make the
following proposition easier to read we state3V C Ry, ;... " as a shorthand for
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“for all 4 for which R, ; is defined, there existsla C Ry, ; ...” We refer the reader
to the Appendix, Section 8 for additional details regarding how to make precise
certain details that we present at a more intuitive level.

Proposition 3 Let A € A, and letM be a polynomial-time Turing machine run-
ning in time f (n) computing a truth-table reduction frorh to R. Then

1. I 3dvn3Vy € Vaiiog 1) ¥ € {0,1}" MV (2) = A(x), thenA € P/poly.
2. JdvnVzx € {0,1}"Vi3V C Ry1og f(n), SUCh thatMV (z) = A(z).

This proposition resembles an earlier observation from [1], but adds the condi-
tion in Part 2 thatV’” C Ry 104 (n),;- The following is an informal interpretation
of the proposition. Part 1 states that if for eacthere is some oracle that (a) says
that all “long” queries are nonrandom and (b) makes the reduction work fer all
of lengthn, then A € P/poly. Part 2 says something similar to the hypothesis of
Part 1, but weaker: although there might not be a single such oracle that works for
all z, for everyzx there issomesuch oracle that works for that(and furthermore
is a subset ofR=¢+logf(n)) Thus, in some senseii consistent for an oracle to
say that all long queries are nonrandom, although this might entail giving incorrect
answers to short queries; see Section 6 for more on this topic.
Proof: Part 1 is easy. On inputs of sizethe advice string is just an encoding of
V. BecauséV,,| < 24+l f(")+1 the advice can be encoded usifg!) bits.

Now, we prove Part 2. Suppose, for the sake of contradictionvifiatdx <
{07 1}nE|ZVV - Rd+logf(n),i Mv(x) # A(‘T)

Let Q(2') be the set of queries that asks on an input’. Note that because
M runs in timef(n), |Q(z")] < f(|2/|). Let T be the Turing machine that, on
input (d, ), does a dovetailing search until it finds some tupié 2/, i") such that
forall V. C Ry iiog (n,irs MV (z') # A(2'). (This is where we make use of the
assumption tha#l is decidable.) By our assumptions, it is guaranteed thuatill
find such a tupleT” then outputs theth element of) (z').

The machiné’ demonstrates that for all queriess Q(z'), C(z) < 2logd +
log f(n') + ¢r, whereer is some constant large enough to encode all the infor-
mation needed to descritdg including f, £/, M and the algorithmV that decides
membership irA.

However, for the tuplén’, «/, i) thatT finds, the oracld/* = R=d+log f(n')
which agrees witlRk on all short queries and says that all long queries are nonran-
dom must be bad fot’. That is,

o V¥ = RSdJrlog f(n') - Rd—f—logf(n’),i” and

o MV (2)) # A(z') = ME(2).



BecauseM " (2/) # MP(z'), there must be some query € Q(z') such
thatz € R and|z| > d + log f(n'). However, we know that the Kolmogorov
complexity of thisz is low, so for sufficiently largel this is a contradiction: when
d is large enough, we have thaitog d + log f(n’) 4+ ¢ < d + log f(n').

|

Here is an idea for how we can improve on Proposition 3. The condition that
V' C Rajiog £(n),i CaN be viewed as restricting the setlof that need to be con-
sidered; the proof relies only on the fact tiE4+'°2 /(") ends up being one of the
possibleV'’s. Thus, in the proof of Proposition 3, as the machinenumerates
nonrandom strings as part of its dovetailing search, we can view this process as
T “proving” that certain setd§” cannot ber=d¢+logf(") But enumerating a non-
random stringz such that: € V' is not theonly way to prove that a sét is not
R=d+log f(n)  For instance, one can prove that for edgha constant fraction of
strings of lengthk are inR (see, e.g., [12]). Therefore, if the cardinality of a Bet
is too small, one can prove thet#£ R=4tlogf(n) without explicitly enumerating a
nonrandom string such that: € V. This suggests that we construct the machine
T to consider more general proofs that a Beis not equal toR=4*1°gf(") than
just those proofs based on enumerating nonrandom strings.

This motivates some of the definitions in the next section about formal proof
systems.

3 Preliminaries and Notation

3.1 Encoding in Formal Theories

We consider the first-order system Peano Arithmetic (PA) augmented with addi-
tional axioms. We will be concerned with languages from thedet {A € AY :
A<V R}. AlanguageA € A will be encoded as a finite string//, N), whereN
is a Turing machine that computds and M is a clocked polynomial-time Turing
machine computing the truth-table reduction frahto R. Note that anyAd € A
can be specified by two such machines; forAle A we fix some such encod-
ing. For a fixedA, we lett 4 (n) denote an upper bound on the running time/of
which is bounded by.© for some constant.

For a givenA € A encoded by M, N), PA may not be able to prove that
halts on every input, or that for all, M (zx) = N(z). Therefore we define a
predicate HypA), which is an encoding of the sentencéz“ N halts on inpute
and M % (x) = N(x)", corresponding to the hypothesis € A. For eachA € A,
we define the system Pito be PA augmented with the additional axiom Kiyp.
Since Hyg A) is true, PA! is consistent if PA is.



We also define hierarchies based on thesé Bystems as follows. We define
PA; to be PA!, and for eactk > 0, PA{! to be PA' | augmented with an extra
axiom corfPA? ) stating that PA_| is consistent. We also define PAo be PA!
augmented with an extra axiom encoding “Forlaltor(PA;j)”.

The statement of Part 2 of Proposition 3 sayd “.. ” — but in fact we will
find it useful to be much more explicit about the valueioflhe analysis of Part 2
of Proposition 3 works as long as we pig¢ko thater +2log d < d. In subsequent
arguments we will use a similar style of reasoning, using slightly more complicated
machinesl’, and of course the choice of universal Turing macliingat is used to
define Kolmogorov complexity will also contribute, but in all cage&\/, N)| +
2|U| + 22° is a conservative over-estimate on the size;of Thus, if we definel 4
to be8(|(M, N)| + |U| +2%9), and we defing 4 (n) to bed 4 + logta(n), then we
can restate Part 2 of Proposition 3 as follows:

ForallA € A,
vnVz € {0,1}"Vi3dV C Ry, (n),; Such thati/V (z) = A(z).

Note that the proposition remains true, even if we replagcdy a somewhat
larger function. For technical reasons, we will find it useful to defingn) to be
da + 2logn +logta(n).

3.2 Other definitions

For a setV we defineL(n,V) = {z € {0,1}* : MV (z) = N(x)}, whereA
is encoded agM, N) as described in the previous section. Thatlig(n, V) is
the set of allkz’s of lengthn for which M computes the correct answer whigris
substituted in as the oracle in the truth-table reduction in plade of

Later on, we will consider a graph whose vertices correspond to different pos-
sible V'’s, and where a vertek has “label’ L 4(n, V). Recalling the definition of
ga(n) at the end of Section 3.1, note that Part 1 of Proposition 3 still holds when
restated as follows:

Proposition 4 Forall A € A, if Yn3V,, € V) such thatl 4(n, V,,) = {0,1}",
then A € P/poly.

Given anyA € Aand any set& C V, () andV €V, (), we define
SA(n,B,V) = U LA(n,V/)
VICV : V'¢B

Informally, we think of B as an excluded set of sets, or “bad”s. Thus
Sa(n,B,V) is the set of all strings: that “label” some subset df that is not
in the setB.



With these definitions in hand, we can now restate Part 2 of Proposition 3 as
follows:

ForallA € A, Vn¥i Sa(n,0, Ry, ) = {0,1}".

Restating things once more, we obtain the following useful corollary, which
we claim is provable in PAfor all A € A:

Corollary 5 If S4(n,0,V) #{0,1}",thenVi V # R

ga(n)i:

One more definition is necessary. We defiBg(n, j, k) to be the set of all
V€ Vy,n) such that there is a PAproof of length at mosj of the suitably-
encoded sentenc&?, V' # R, (,);"- Think of Ba(n, j, k) as being a set of’'s
that can be proved to be “bad” (i.e. not equaRe74(™) via a PA;? proof of length

7.

4 Main Results

Our main focus in this paper is Conjecture 2, which we restate below.
Conjecture 6 {4 € AY: A<}, R} C P/poly.

Although we do not prove this conjecture, we do make partial progress in this
direction by proving theorems supporting the conjecture and relating it to questions
about the provability of certain true sentences in formal theories of arithmetic.

Before stating and proving our main theorem, which concerns a hierarchy of
proof systems PA for variousk, we state and prove a simpler version that focuses
on PA! and PA":

Theorem 7 LetW 4(n, j) be the formul&’i Sa(n, Ba(n, j,0), Ry, (n):) = 10,1}".

1. Forall A € A, the sentencenV;j ¥ 4(n, j) is true and provable ifPA:'.

2. If for all A € A, and each fixed paifn,j), PA* proves¥ 4(n,j), then
Conjecture 6 is true.

Proof of Part 2:
Let®4(n,j, V) bethe formula“lfS4(n, Ba(n,j,0),V) # {0,1}" thenVi V #

ga(n),i - Note that

R

‘I’A(n,j) - (DA(nvj?V) (1)



and this implication is provable in PA

Suppose that for each € .4 and each fixed paim, j), PA* proves¥ 4(n, j).

Let A € A and (M, N) be the encoding ofA. To prove Conjecture 6 we
must show thatd € P/poly. Suppose for contradiction thdt ¢ P/poly. Then,
for somen, by Proposition 4 there does not exist a $ete V,,(,) such that
L(n,V)={0,1}".

Choose am with this property. We define a directed gra@h as follows. For
eachV € V,, ) there is a node it7,. The graphG,, is leveled, with levelh
containing allV’s of cardinality ». There is an edge from a nodéto a nodeV’
in Gy ifand only if V. C V' and|V'| = |[V| + 1. ThusG,, is a rooted, layered,
directed graph with the empty set as root.

We make use of the following claim:

Claim 8 For everyV € V,,(y) there is aPA“ proof of the sentencei V #
Ry (n),i-
Proof: The proof is by induction ofi//|.

For the basis case, whén = (), a simple counting argument that can be for-
malized in PA' proves that there are random strings of every length, and hence
PA* provesvi § # Ry, )i

Now assume mductlvely that for all’ € V() such thafV’| < h there is
a PA* proof of the sentencei V' # Ry, ). LetV € V,,m) with [V| = h.

To prove the claim, it suffices to show that there is a'R#oof of the sentence
ViV # Ry, (n),i-

By the inductive hypothesis, for sonje we have tha{V’ : V' € V) A
|[V'| < h} € Ba(n,j’,0). Since, in the graplis;, — Ba(n,j’,0), V has indegree
zero, it follows from the definition 0F 4(-, -, -) that PA! proves

Sa(n, Bs(n,j’,0),V) = Ls(n,V),

and by the choice oh we haveL4(n,V) # {0,1}". Hence PA proves that
Sa(n, Ba(n,j,0),V) # {0,1}*. By assumption we have that PArovesV 4 (n, j’),
so by (1) we have that PAproves “If S (n, B4(n, j,0),V) # {0,1}™ thenVi V #
R, ,(n).i"- Therefore PA! provesvi V # R, ,( N

A(n),i-
Therefore, by Claim 8 we have that PAorovesyi {0,1}=94(m) £ Ry, (n),i-
However, by definition{0, 1}=94(®) — Ry, (n),0» Which implies that PA is incon-

sistent. By the consistency of PAwhich is provable in, say, 2, we therefore
get a contradiction. Thus we conclude this in P/poly. 1



Proof of Part 1:

Let A € A be encoded byM, N), and suppose for contradiction that there
exists(n, j) such that-W 4 (n, j).

This implies that for somé S4(n, Ba(n, j,0), Ry, ;) # 10,1}".

Let T" be the following machine. On input:, r), T' does a dovetailing search
until it finds some tuplgx, j/, i) such thatr is a string of lengthn that is not
in Sa(n, Ba(n,j',0), Ry, mn).i)- PAA can argue that under the assumptichiss
guaranteed to find such a tuplEthen compute§)(x), and outputs theth element
of Q(x).

The input(n, r) to T has length at mogtlog n + log t 4 (n). By the discussion
at the end of Section 3.1, this implies that for all queties Q(z), C(z) < ga(n),
so there can be no € Q(z) N R such thatz| > ga(n). Thus PA! can argue that
ME(z) = ME="2" (), since these oracles answer all queries of length at most
ga(n) identically, and by the previous sentence they answer queries@r@m of
length greater thap (n) identically as well.

Therefore PA' can argue the following points:

o Ji* < 29a(n)+1 R<ga(n) — Ry, (n)iv-

o JV* € VgA(n) V* = RgA(n),i*-
o A(z) = ME(z) = ME=*" (z) = MV (2).
o If V*& Ba(n,j',0) thenz € Sa(n, Ba(n,j',0), Ry, ()i

(The last item follows from the others together with the definitiobaf-, -, -).)

Therefore, since from the way was obtained we also have thatis not in
the setSa(n, Ba(n,j',0), Ry, (n),i"), PA% can conclude thadt* is in B4(n, j',0).
From the definition of3.4(n, j’,0) this means that PAcan conclude that there is
a length;’ proof in PA* of the sentenc®i V* # Ry, () -

However, we have that™ = R, -, and as the relatiod(k, V, ) with
intended meaningV = Ry, ;” can be defined by &9 formula, PA! can conclude
that there is a PA proof of V* = Ry, (n),i=- (See the Appendix, Section 8, for more
details on this.) Therefore PAproves that PA is inconsistent. In PA this gets
us very little, but in PA' this is a contradiction. Thus BRprovesyny;j¥ 4 (n, j).
|

We have been unable to show that the hypothesis for Part 2 of Theorem 7
holds. In fact, there is a reasonable likelihood that the given statementotare
provable in PA!, particularly if as in the proof above these statements reduce to
PA“ proving its own consistency. (Certainly, the study of Kolmogorov complexity

10



is a rich source of true statements that are not provable [6], and this might merely
be yet another manifestation of this phenomenon.)

On the other hand, we suspect that if one has accestsotogertheories, then
it becomes more likely that the required proofs can be carried out. This leads us to
our main theorem:

Theorem 9 LetWV 4(n, j, k) be the formulari S4(n, Ba(n,j, k), Ry, n),i) = {0, 1}".

1. For all A € A, the sentenc&nVjVk U 4(n,j, k) is true and provable in
PAS.

2. Ifforall A € Aand each fixed tuplén, j, k) there exists am such '[halPA;4
proves¥ 4(n, j, k), then Conjecture 6 is true.

Proof: The proof of Part 2 is almost identical to that of Theorem 7, and we omit it
here.

The proof of Part 1 is very similar to that of Theorem 7 as well, but we include
it here for completeness.

Let A € A be encoded by, N) and suppose for contradiction that there
exists(n, j, k) such that=¥ 4(n, j, k).

This implies that for somé Sa(n, Ba(n,j,k), Ry, n),:) 7 {0, 1}".

Let T' be the following machine. On input, r), T does a dovetailing search,
until it finds some tupldz, j', k', ') such thatz is a string of length: that is not
in Sa(n, Ba(n,j', k'), Ry, (n),i)- PA? can argue that under the assumptidhss
guaranteed to find such a tuplEthen compute§)(x), and outputs theth element
of Q(x).

The input(n, ) to T has length at mogtlog n + log t4(n). By the discussion
at the end of Section 3.1, this implies that for all queties Q(z), C(z) < ga(n),
so there can be ne € Q(x) N R such thatz| > ga(n). Thus PA' can argue
that M E(z) = ME="4" since these oracles answer all queries of length at most
ga(n) identically, and by the previous sentence they answer queries@ram of
length greater thap4 (n) identically as well.

Thus PA! can argue the following points:

o Ji* < 294 RS9A) = R

o JV* € VgA(n) V* = RgA(n),i*-
o Alz) = MB(z) = ME="*" (z) = MV ().

% ¢ BA(nvj/vk/) Imp“esw € SA(naBA(nvjlvk/)ngA(n),i’)'

11



(The last item follows directly from the definition &f4(-,-,-), along with the
preceding items.)

Thus, since from the way was obtained we also have thatis not in the
setSa(n, Ba(n,j', k'), Ry, n).ir)» PA% can conclude that is in B4(n,j', k).
From the definition ofB4(n, j’, k') this means that PAcan conclude that there is
alengthj’ proof in PA; of the sentenc®i V* # Ry, () ;-

However, we have that™ = R, ), and as the relatiod(k, V, ) with
intended meaningV” = Ry, ;" can be defined by &9 formula, PA! can conclude
that there is PA proof of V* = R,,(,);~. Therefore PA proves that P4 is
inconsistent. In PA, for fixed /, there is not much we can conclude from this,
since it is not clear how to bound by any fixed number. But in PAthis is a
contradiction. Thus PA provesvnYjVkW 4(n, j, k).

|

Of course, it would be much more interesting to obtain an unconditional result,
proving containment in P/poly, rather than obtaining this inclusion merely on the
assumption that these true statements can be proved in one of the given theories.
Although it seems plausibiehat ¥ 4 (n, j, k) is provable in PA' for somel such
that! > k, it is worthwhile considering what a modél of PA;“ that does not
satisfy ¥ 4(n, j, k) would have to look like. In the standard model, the Turing
machinel’ that we construct in the proof of Part 1 will actually never halt (since,
in the standard model, the tuple tiatfinds” with the needed properties does not
exist). Therefore, in\, the “number’t such thafl’ halts aftert steps and finds the
tuple (z, 5/, k’,i") must be a nonstandard element of the domain. One can easily
require that’ be a standard number, but it is not clear to us whether in this type of
framework we can forcg’ andk’ to be standard elements. If we could somehow
arrange this, then this might be a first step toward proving that the hypothesis of
Part 2 holds unconditionally.

The question remains, is there some way to prove that the hypothesis of Part 2
holds that does not mimic our proof of Part 1? Also, we chose to focus on PA in this
paper for concreteness and because it is strong enough to formalize the concepts
we need. However, to some extent this choice was arbitrary. Is it possible to devise
another hierarchy of proof systems based on a system other than PA containing
certain properties that would allow us to prove Conjecture 2 using this type of
strategy? Or is this type of approach limited in a way that is independent of the
particular system that is used?

2The comments in this paragraph and the next represent our thoughts at the time when this work
was originally submitted for publication. We now know that this “plausible” statement, as currently
formulated, is in fact false. See Section 6 for more details.
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5 Adapting to Prefix Complexity

The results in the preceding section were proved with respect to the plain Kol-
mogorov complexity functiorC. Here, we provide a few comments regarding
how to adapt the arguments, so that they carry over to the prefix Kolmogorov com-
plexity function K.

Briefly, the descriptions of the elemenjof Q(z) need to be presented as a
prefix-free code. The descriptions that we used were of the {d&®m, ) where
we can think ofP as being a “program”, and andr are numbers. In the analysis
for plain complexity, we gave an upper bound on the length of these descriptions,
of the formg4(n) = da + 2logn + logt 4(n) (and we remarked that the analysis
also would carry through if a slightly larger value @f (n) were used).

The term 2logn” in this expression comes from the fact that we need to en-
code the “comma” betweemandr in some way, and a very simple way to do this
is to simply double each bit of the numberand then mark the end of." with a
pair (either 01 or 10) that isotdoubled.

If we similarly double each bit of and mark the end of, then we will obtain
a prefix-free encoding scheme, and the analysis will carry through if we just define
ga(n)tobeds + 2logn + 2logta(n).

6 Epilogue

Two months after this work was originally submitted for publication, Buhrman and
Loff proved some results that bear directly upon our investigation [5]. Buhrman
and Loff had read a preliminary version of our paper, and sought to give an uncon-
ditional proof of Conjecture 2. Although this conjecture is still open, one of the
theorems in [5] can be seen as lending additional support to the conjectured P/poly
upper bound on the class of decidable sets polynomial-time truth-table reducible
to R. For a polynomial-time reduction from a decidable deto the undecidable

setR, it seems reasonable to hypothesize that the reduction would also work if one

used a very high time-complexity approximationRpsuch asRﬁE”) for some very

rapidly-growing time bound(n). Buhrman and Loff have shown that, for each
decidable setl and polynomial-time truth-table reductidd, it is the case that for
everylarge-enough time bound if M reducesA to R%”), thenA € P/poly.

In addition, however — the techniques used by Buhrman and Loff also imme-
diately yield that the sentencdgn,j,k) considered here are, in fact, independent
of PA,. Moreover, they present a polynomial-time reductidp with the property
that it cannot be directly replaced by a reduction that makes queries only of length

O(logn), having as oracle a subset Bf Thus the general approach discussed in
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here will need to be revised substantially, if it is to be used to obtain a P/poly upper
bound on{A € A} : A<V, R}.

The reductionM, alluded to in the preceding paragraph has the property that it
obtains no useful information from the oracle. Thus it is still conceivable that one
can formulate a notion of “useful” truth-table reductions, for which it still might
hold that, for each length, there is a set of short random stringsthat can be
used as an oracle to cause the reduction to give the correct answer for all strings of
lengthn. However, it is far from clear how to formulate such a definition.

7 Why Care?

It is popular these days to conjecture that BRAP, and much of this popularity

is owing to results such as those of Impagliazzo and Wigderson [11], who showed
that BPP= P if there is a problem in E that requires circuits of exponential size.
But note that a proof that BPR P that proceeds by first proving circuit size lower
bounds yieldsnuchmore than “merely” a proof that BPR P. It also provides

a recipe that one can follow, to start with an arbitrary probabilistic algorithm and
replace it with an equivalent deterministic one of comparable complexity.

Indeed, Goldreich has recently argued @&y proof of BPP= P must proceed
along these lines, in that any proof that these classes are equal yields pseudorandom
generators that are suitable for derandomizing BPP [8, 9].

But there is a catch! Goldreich’s proof requires that the BPRP question
be phrased in terms gfromiseproblems, rather than using the more traditional
definition in terms of language classes, that we have used here.

We do not dispute Goldreich’s assertion that the formulation in terms of promise
problems is in many ways more natural and useful than the traditional definition.
And we certainly agree that it would be much more useful to have a recipe for ob-
taining derandomizations, rather than merely a proof that a derandomization must
exist. But we find it intriguing that a proof th& = P would prove that BPE P
merely by showing that there would be a contradiction otherwise, and owing to the
highly non-computable objects in the definition, it is not clear that such a proof
would lend itself to an effective construction of a general-purpose derandomiza-
tion algorithm. (In particular, it is not clear that it would yield the equality of the
promise classes.) That is, since such a proof would deliver less than a proof that
yields a derandomization, it is at least conceivable that it would be easier to obtain.

We do not wish to suggest that we have any idea of how to obtain such a proof.
After all, we are currently unable even to pravg C P/poly.

Also, it is clear that such a proof must use nonrelativizing techniques. For
instance, the work of [4] shows that, for any decidable ordg)eBPP® is P5-
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truth-table reducible t@x,, for everyU. (There is no need to add an oracle to the
definition of Ry,,.) Thus it is not true that, for every decidabls A NN, {A :

Agﬁ’tB Rk, } = P53, because Heller [10] has presented sudh elative to which
BPP® = NEXP”.
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8 Appendix: Further Encoding Details

Throughout this paper, for the sake of readability, we have presented informally
proofs meant to be in formal systems. In this section we attempt to clarify the
formalization of a couple key definitions in these proofs.

An important definition, introduced in Section 2, is the definition of the set
Ry, ;. Formally, we defineR;, ; by means of a relatio®(V, k, i) that is TRUE if
and only if the seV is equal toRy, ;. (Of courseR takes as input an encodify’)
of the setV/, but we will continue to abuse notation in this way). The quantifier
complexity of the formula used to define this relation plays an important role. At
the end of the proof of Part 1 of Theorem 7, we state that proves the implica-
tion “R(V*,ga(n),i*) — PAY = R(V*, ga(n),i*)” (a similar statement occurs
in Theorem 9 as well). Here “PA- R(V*, g4(n),i*)" is shorthand for a formula
encoding thaR(V*, g4(n),i*) is provable in PA". That this implication involving
PA“ actually is provable in PA itself depends o (V, k, i) being definable by a
¥ formula; i.e., one that can be expressedas’ (%, V, k, i), whereR' (%, V, k, 1)
is a formula containing only bounded quantifiers. (See, for example, [7, Theorems
1.3.4 and 1.4.7] for a proof of this fact.)

Below we show thafz(V, k, i) can in fact be defined by®? formula:

R(V,k,i) =3y T(U, k,i,y) A Jw < y out(w,y) AVz € {0,1}=F
z€V e dj<iz=uwj.
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Here,T'(U, k,i,y) is a formula expressing thatis the transcript of a halting
execution of machin&J on input(k, i), whereU is the Turing machine that takes
as input(a, b) and enumerates the fitshonrandom strings of length at mast(If
there do not exisb nonrandom strings of length at masthen noy will satisfy
the formula). Alsoput(w,y) expresses that is the output of the execution with
transcripty, andw; stands for thgth element ofw (viewingw as a list of strings).

It is standard that the formul&(U, k, i, y) can be defined by a formula con-
taining only bounded quantifiers.

Note that with the definitionR(V, k,4) in hand, we can express a predicate
Z(V, k) with intended meaningV” = R<F” as:

Of course, this predicat8(V, k) is notX{, but it is sufficient for our purposes that
R(V,k,i)is.
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