
Kolmogorov Complexity, Circuits, and the Strength
of Formal Theories of Arithmetic

Eric Allender∗

Rutgers University
allender@cs.rutgers.edu

George Davie
University of South Africa

davieg@unisa.ac.za

Luke Friedman∗†

Rutgers University
lbfried@cs.rutgers.edu

Samuel B. Hopkins‡

University of Washington
samhop@uw.edu

Iddo Tzameret§

Tsinghua University
tzameret@tsinghua.edu.cn

Abstract

Can complexity classes be characterized in terms of efficient reducibility
to the (undecidable) set of Kolmogorov-randomstrings? Although this might
seem improbable, a series of papers has recently provided evidence that this
may be the case. In particular, it is known that there is a class of problems
C defined in terms of polynomial-time truth-table reducibility toRK (the set
of Kolmogorov-random strings) that lies between BPP and PSPACE [5, 4].

The results in this paper were obtained, as part of an investigation of
whether this upper bound can be improved, to show

BPP⊆ C ⊆ PSPACE∩ P/poly. (∗)

In fact, we conjecture thatC = BPP = P, and we close this paper with a
discussion of the possibility this might be an avenue for trying to prove the
equality of BPP and P.

∗Supported in part by NSF Grants CCF-0830133, CCF-0832787, and CCF-1064785.
†Supported in part by the [European Community’s] Seventh Framework Programme [FP7/2007-

2013] under grant agreement n◦ 238381.
‡Supported in part NSF Grant CCF-1004956 with the DIMACS REU Program.
§Supported in part by the National Basic Research Program of China Grant 2011CBA00300,

2011CBA00301, the National Natural Science Foundation of China Grant 61033001, 61061130540,
61073174

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 28 (2012)

In this paper, we present a collection of true statements in the language
of arithmetic, (each provable in ZF) and show that if these statements can be
proved in certain extensions of Peano arithmetic (PA), then (*) holds. Al-
though it was subsequently proved that infinitely many of these statements
are, in fact, independent of those extensions of PA [1], we present these re-
sults in the hope that related ideas may yet contribute to a proof ofC = BPP,
and because this work did serve as a springboard for subsequent work in the
area [1].

1 Introduction

Kolmogorov complexity provides a mathematically precise definition of the setR
of “random” strings. Actually, it provides at leasttwo distinct but closely-related
notions of randomness that we will need to discuss here, one defined in terms of the
prefix Kolmogorov complexity functionK, and one defined in terms of the plain
Kolmogorov complexity functionC.1 This yields the two sets that lie at the center
of this paper:RK = {x : K(x) ≥ |x|} andRC = {x : C(x) ≥ |x|}. When it is
not important to distinguish betweenK andC we will simply refer toR.

It is known that PSPACE⊆ PR [3], but it is unknown if any larger class such as
EXP is in PR. In this paper we will focus especially on polynomial-timetruth-table
reductions (also known asnon-adaptivereductions)≤p

tt ; our motivation comes in
part from a theorem of Buhrman et al., showing BPP⊆ {A : A≤p

ttR} [5].
Because no larger complexity classes have been shown to be reducible toR in

this way, we are interested in the question of whether these inclusions areoptimal
in some sense. It was observed earlier [2] that the class{A : A≤p

ttRC} contains
arbitrarily complex decidable sets: that is, for every computable time boundt there
is a decidable setA 6∈ DTIME(t(n)) such thatA≤p

ttRC . Thus this does not look
very much like a complexity class. But the same paper also suggested that a more
promising avenue was to investigate the classes of problems that arealwaysre-
ducible toR, no matter which universal Turing machine was used to define the
Kolmogorov functionsC andK. This gives rise to the following classes:

Definition 1 As usual, let∆0
1 denote the class of decidable sets. LetCU denote

the plain Kolmogorov complexity function as given byuniversalTuring machine
U , and letKU denote the prefix complexity function as given by universal prefix
Turing machineU . Define

• CC = ∆0
1 ∩

⋂
U{A : A≤p

ttRCU
}.

1We provide a brief introduction to some basic notions of Kolmogorov complexity in Section 2.
For a more comprehensive introduction to the topic, we refer the reader to standard texts such as
[13, 6].

2

• CK = ∆0
1 ∩

⋂
U{A : A≤p

ttRKU
}.

In each case, the intersection is taken over alluniversalTuring machinesU .2 See
Section 2 for more background and definitions relating to Kolmogorov complexity.

The firstupper boundson the complexity of sets inCK was provided recently:
CK ⊆ PSPACE [4]. (We conjecture that similar bounds hold forCC , but at present
it is still unknown whetherCC = ∆0

1.) Thus, in particular, we have

BPP⊆ CK ⊆ PSPACE⊆ PR.

We conjecture thatCK is actually equal to BPP. The results in this paper were
proved as part of an attempt to establish a slightly weaker conjecture:

BPP⊆ CK ⊆ PSPACE∩ P/poly.

This, in turn, would follow from the following, which lies at the center of the
present investigation:

Conjecture 2 A = {A ∈ ∆0
1 : A≤p

ttR} ⊆ P/poly. That is, no matter which
universal machineU is used to defineC or K, {A ∈ ∆0

1 : A≤p
ttRC} ⊆ P/poly

and{A ∈ ∆0
1 : A≤p

ttRK} ⊆ P/poly.

Our main technical contribution is to build a set of formulas{ΨA(n, j, k)}A∈A in
the language of Peano Arithmetic, and for eachA ∈ A present a proof (which can
be formalized in certain extensions of Zermelo-Frankel, or ZF) of the statement
∀n∀j∀kΨA(n, j, k). We then show that if for eachA ∈ A, and each fixed tuple
(n,j ,k), the true statementΨA(n,j ,k) is provable in certain extensions of Peano
Arithmetic, then Conjecture 2 holds.3

At the time that the results in this paper were originally submitted for publi-
cation, we believed that a plausible approach to prove Conjecture 2 would be to
show that proofs ofΨA(n,j ,k) exist in these extensions of PA. However, it is now
known that infinitely many of the statementsΨA(n,j ,k) are independent of these
extensions of PA [1]. In light of these developments, the reasons for publishing
these results are:

• They served as a springboard for the subsequent work of [1], including
results having a flavor similar to Conjecture 2, but in the context of Kol-
mogorov complexity with (large) time bounds,

2It was recently announced [14] thatCK is equal to
⋂

U{A : A≤p
ttRKU }. That is, any set in this

intersection is decidable.
3We use the familiar convention that (bound or free) variables are represented by italic characters,

as in “ΨA(n, j, k)” whereas bold-face characters are used, when a variable is replaced by a term of
the form1 + 1 + · · ·+ 1, as in “ΨA(n,j ,k)”.

3

• The connection between Conjecture 2 and proof theory is of some indepen-
dent interest, and

• Perhaps a more sophisticated argument, based on our general approach, may
yet serve to prove Conjecture 2.

Recall that, if Conjecture 2 holds, then BPP⊆ CK ⊆ PSPACE∩ P/poly. Thus
we think that it is very reasonable to conjecture thatCK = BPP. But in fact we
conjecture more. We believe thatCC = CK = P. In fact, for limited classes of
truth-table reductions, equalities of this form are known. In particular, it has been
shown that∆0

1 ∩
⋂

U{A : A≤p
dttRCU

} = ∆0
1 ∩

⋂
U{A : A≤p

⊕ttRCU
} = P [2].

In Section 7 we speculate about the possible advantages of pursuing this avenue
toward the goal of proving BPP= P. At a minimum, we believe that our results
raise the possibility that various mathematical techniques (e.g., from proof theory)
might be relevant to the BPP vs. P problem, where such a connection may have
seemed less likely before. Certainly the connection surprised some of the authors.

2 A Warm-Up Result

In this section we start with some basic definitions, and then present an easy the-
orem that provides intuition for Conjecture 2 and whose proof will help motivate
some additional definitions.

We say that a languageA polynomial-time truth-tablereduces to a languageB,
denoted byA≤p

ttB, if there exists a polynomial-time machineM that computesA
when givenB as an oracle, with the additional requirement that, on inputx, M
must compute the query setQ(x) of all queries it will ask the oracleB before
receiving answers to any of its queries.

We will consider only truth-table reductions in this paper; as such we will write
MA to indicate that machineM is using a setA as an oracle, and it will be implicit
that the oracle access is non-adaptive.

The plain Kolmogorov complexity of a stringx with respect to a Turing ma-
chine M is defined asCM (x) .= min{|y| : M(y) = x}. A universal Turing
machine is a machineU such that for allM and allx, CU (x) ≤ CM (x) + cM ,
wherecM is a constant depending only onM . At times the choice of reference
machine is not important as long as we choose a universal machine; when this is
the case we fix some universal machineU and writeC(x) in place ofCU (x). We
then define the Kolmogorov random strings to be the setRC = {x : C(x) ≥ |x|}.

In many settings where Kolmogorov complexity arises, it is more appropriate
to use what is known asprefixcomplexity. A Turing machineM is called aprefix
machine, if, for any stringx on which M halts, it is the case thatM does not

4

halt on any string of the formxy for any non-empty stringy. That is, the domain
of the machine must form a prefix code. Given such a prefix machineM , we
defineKM (x) .= min{|y| : M(y) = x}. A universal prefix Turing machine
is a prefix machineU such that for all prefix machinesM and allx, KU (x) ≤
KM (x) + cM , wherecM is a constant depending only onM . Similar to the case
with plain complexity, we fix some universal prefix machineU and writeK(x)
in place ofKU (x). We refer to the set of random strings under this version of
Kolmogorov complexity asRK .

All our theorems about random strings from this paper work for bothRC and
RK ; we will prove them with respect toRC and simply writeR for the set of
random strings, but in Section 5 we indicate how to adjust the proofs to work for
RK as well.

For a setS of binary strings, letS≤k be the set of all strings inS that have
length at mostk; i.e S≤k = ∪i≤kS ∩ {0, 1}i. LetVk be the set of all sets of binary
strings that only contain strings of length at mostk; i.e Vk = P({0, 1}≤k), where
P denotes the powerset operation and{0, 1}≤k is shorthand for({0, 1}∗)≤k.

The complement ofR is computably-enumerable; therefore there is a Turing
machineE that outputs an enumerationx1, x2, x3, . . . of all nonrandom strings.
We defineRk,0 = {0, 1}≤k , andRk,i to beRk,i−1\{xj}, wherexj is theith non-
random string of length at mostk in the enumeration. One can viewRk,i as an
updated approximation toR≤k after i nonrandom strings of length at mostk have
been discovered. Note that for somei∗, Rk,i∗ = R≤k, and that for alli > i∗, Rk,i

is undefined, since there are no further nonrandom strings of length at mostk to
be discovered. Even thoughRk,i is undefined for alli > i∗, in order to make the
following proposition easier to read we state “∀i∃V ⊆ Rk,i . . . ” as a shorthand for
“for all i for whichRk,i is defined, there exists aV ⊆ Rk,i . . . ” We refer the reader
to the Appendix, Section 8 for additional details regarding how to make precise
certain details that we present at a more intuitive level.

Proposition 3 Let A ∈ A, and letM be a polynomial-time Turing machine run-
ning in timef(n) computing a truth-table reduction fromA to R. Then

1. If ∃d∀n∃Vn ∈ Vd+log f(n)∀x ∈ {0, 1}n MVn(x) = A(x), thenA ∈ P/poly.

2. ∃d∀n∀x ∈ {0, 1}n∀i∃V ⊆ Rd+log f(n),i such thatMV (x) = A(x).

This proposition resembles an earlier observation from [2], but adds the condi-
tion in Part 2 thatV ⊆ Rd+log f(n),i.

4 The following is an informal interpretation

4Adding the condition “Vn ⊆ Rd+log f(n),i∗ ” to Part 1 results in afalsestatement [1]! However,
the hypothesis of Part 1, as stated, still seems plausible. Additional discussion of this point can be
found in [1].

5

of the proposition. Part 1 states that if for eachn there is some oracle that (a) says
that all “long” queries are nonrandom and (b) makes the reduction work for allx
of lengthn, thenA ∈ P/poly. Part 2 says something similar to the hypothesis of
Part 1, but weaker: although there might not be a single such oracle that works for
all x, for everyx there issomesuch oracle that works for thatx (and furthermore
is a subset ofR≤d+log f(n)). Thus, in some sense itis consistent for an oracle to
say that all long queries are nonrandom, although this might entail giving incorrect
answers to short queries; see Section 6 for more on this topic.
Proof: Part 1 is easy. On inputs of sizen the advice string is just an encoding of
Vn. Because|Vn| ≤ 2d+log f(n)+1, the advice can be encoded usingnO(1) bits.

Now, we prove Part 2. Suppose, for the sake of contradiction, that∀d∃n∃x ∈
{0, 1}n∃i∀V ⊆ Rd+log f(n),i MV (x) 6= A(x).

Let Q(x′) be the set of queries thatM asks on an inputx′. Note that because
M runs in timef(n), |Q(x′)| ≤ f(|x′|). Let T be the Turing machine that, on
input (d, r), does a dovetailing search until it finds some tuple(n′, x′, i′) such that
for all V ⊆ Rd+log f(n′),i′ , MV (x′) 6= A(x′). (This is where we make use of the
assumption thatA is decidable.) By our assumptions, it is guaranteed thatT will
find such a tuple.T then outputs therth element ofQ(x′).

The machineT demonstrates that for all queriesz ∈ Q(x′), C(z) ≤ 2 log d +
log f(n′) + cT , wherecT is some constant large enough to encode all the infor-
mation needed to describeT , includingf,E,M and the algorithmN that decides
membership inA.

However, for the tuple(n′, x′, i′) thatT finds, the oracleV ∗ = R≤d+log f(n′)

which agrees withR on all short queries and says that all long queries are nonran-
dom causesM to give the wrong answer on inputx′, in the following sense:

• V ∗ = R≤d+log f(n′) ⊆ Rd+log f(n′),i′ , and

• MV ∗
(x′) 6= A(x′) = MR(x′).

BecauseMV ∗
(x′) 6= MR(x′), there must be some queryz ∈ Q(x′) such

that z ∈ R and |z| > d + log f(n′). However, we know that the Kolmogorov
complexity of thisz is low, so for sufficiently larged this is a contradiction: when
d is large enough, we have that2 log d + log f(n′) + cT < d + log f(n′).

Here is an idea for how we can improve on Proposition 3, by deriving addi-
tional conclusions aboutV in part 2 of Proposition 3. The condition thatV ⊆
Rd+log f(n),i can be viewed as restricting the set ofV ’s that need to be considered;
the proof relies only on the fact thatR≤d+log f(n) ends up being one of the possible
V ’s. Thus, in the proof of Proposition 3, as the machineT enumerates nonrandom

6

strings as part of its dovetailing search, we can view this process asT “proving”
that certain setsV cannot beR≤d+log f(n). But enumerating a nonrandom stringz
such thatz ∈ V is not theonly way to prove that a setV is notR≤d+log f(n). For
instance, one can prove that for eachk, a constant fraction of strings of lengthk are
in R (see, e.g., [12]). Therefore, if the cardinality of a setV is too small, one can
prove thatV 6= R≤d+log f(n) without explicitly enumerating a nonrandom stringz
such thatz ∈ V . This suggests that we construct the machineT to consider more
general proofs that a setV is not equal toR≤d+log f(n) than just those proofs based
on enumerating nonrandom strings. Theorems 6 and 8 strengthen Proposition 3,
by concluding not only thatV ⊆ Rd+log f(n),i, but also that there is no proof that
V 6= Rd+log f(n),i.

This motivates some of the definitions in the next section about formal proof
systems.

3 Preliminaries and Notation

3.1 Encoding in Formal Theories

We consider the first-order system Peano Arithmetic (PA) augmented with addi-
tional axioms. We will be concerned with languages from the setA = {A ∈ ∆0

1 :
A≤p

ttR}. A languageA ∈ A will be encoded as a finite string〈M,N〉, whereN
is a Turing machine that computesA, andM is a clocked polynomial-time Turing
machine computing the truth-table reduction fromA to R. Note that anyA ∈ A
can be specified by two such machines; for allA ∈ A we fix some such encod-
ing. For a fixedA, we lettA(n) denote an upper bound on the running time ofM ,
which is bounded bync for some constantc.

For a givenA ∈ A encoded by〈M,N〉, PA may not be able to prove thatN
halts on every input, or that for allx, MR(x) = N(x). Therefore we define a
predicate Hyp(A), which is an encoding of the sentence “∀x N halts on inputx
andMR(x) = N(x)”, corresponding to the hypothesisA ∈ A. For eachA ∈ A,
we define the system PAA to be PA augmented with the additional axiom Hyp(A).
Since Hyp(A) is true, PAA is consistent if PA is.

We also define hierarchies based on these PAA systems as follows. We define
PAA

0 to be PAA, and for eachk > 0, define PAAk to be PAA
k−1 augmented with an

extra axiom con(PAA
k−1) stating that PAAk−1 is consistent. We also define PAA

ω to
be PAA augmented with an extra axiom encoding “For allk, con(PAA

k)”.
The statement of Part 2 of Proposition 3 says “∃d . . . ” – but in fact we will

find it useful to be much more explicit about the value ofd. The analysis of Part 2
of Proposition 3 works as long as we pickd so thatcT +2 log d < d. In subsequent

7

arguments we will use a similar style of reasoning, using slightly more complicated
machinesT , and of course the choice of universal Turing machineU that is used to
define Kolmogorov complexity will also contribute, but in all cases2|〈M,N〉| +
2|U |+ 225 is a conservative over-estimate on the size ofcT . Thus, if we definedA

to be8(|〈M,N〉|+ |U |+ 225), and we definegA(n) to bedA + log tA(n), then we
can restate Part 2 of Proposition 3 as follows:

For allA ∈ A,
∀n∀x ∈ {0, 1}n∀i∃V ⊆ RgA(n),i such thatMV (x) = A(x).

Note that the proposition remains true, even if we replacegA by a somewhat
larger function. For technical reasons, we will find it useful to definegA(n) to be
dA + 2 log n + log tA(n).

3.2 Other definitions

For a setV we defineLA(n, V) .= {x ∈ {0, 1}n : MV (x) = N(x)}, whereA
is encoded as〈M,N〉 as described in the previous section. That is,LA(n, V) is
the set of allx’s of lengthn for which M computes the correct answer whenV is
substituted in as the oracle in the truth-table reduction in place ofR.

Later on, we will consider a graph whose vertices correspond to different pos-
sibleV ’s, and where a vertexV has “label”LA(n, V). Recalling the definition of
gA(n) at the end of Section 3.1, note that Part 1 of Proposition 3 still holds when
restated as follows:

Proposition 4 For all A ∈ A, if ∀n∃Vn ∈ VgA(n) such thatLA(n, Vn) = {0, 1}n,
thenA ∈ P/poly.

Given anyA ∈ A and any setsB ⊆ VgA(n) andV ∈ VgA(n), we define

SA(n,B, V) .=
⋃

V ′⊆V : V ′ 6∈B

LA(n, V ′)

Informally, we think ofB as an excluded set of sets, or “bad”V ’s. Thus
SA(n,B, V) is the set of all stringsx that “label” some subset ofV that is not
in the setB.

With these definitions in hand, we can now restate Part 2 of Proposition 3 as
follows:

For allA ∈ A, ∀n∀i SA(n, ∅, RgA(n),i) = {0, 1}n.

8

Restating things once more, we obtain the following useful corollary, which
we claim is provable in PAA for all A ∈ A. (To see this, observe that the proof of
this corollary follows exactly along the lines of the proof of Proposition 3, which
can be formulated in PA.)

Corollary 5 If SA(n, ∅, V) 6= {0, 1}n, then∀i V 6= RgA(n),i.

One more definition is necessary. We defineBA(n, j, k) to be the set of all
V ∈ VgA(n) such that there is a PAAk proof of length at mostj of the suitably-
encoded sentence “∀i, V 6= RgA(n),i”. Think of BA(n, j, k) as being a set ofV ’s

that can be proved to be “bad” (i.e. not equal toR≤gA(n)) via a PAA
k proof of length

j.

4 Main Results

Our main focus in this paper is Conjecture 2, which we restate below.
Conjecture 2{A ∈ ∆0

1 : A≤p
ttR} ⊆ P/poly.

Before stating and proving our main theorem, which concerns a hierarchy of
proof systems PAAk for variousk, we state and prove a simpler version that focuses
on PAA and PAA1 :

Theorem 6 LetΨA(n, j) be the formula∀i SA(n,BA(n, j, 0), RgA(n),i) = {0, 1}n.

1. For all A ∈ A, the sentence∀n∀j ΨA(n, j) is true and provable inPAA
1 .

2. If for all A ∈ A, and each fixed pair(n, j), PAA provesΨA(n, j), then
Conjecture 2 is true.

Before giving the proof, the reader may wish to understand the relationship
between Theorem 6 and Proposition 3. Part 1 of Theorem 6 is stronger than Part
2 of Proposition 3, by adding the condition that there not be a short proof of the
sentence∀iV 6= RgA(n),i. Part 2 of Theorem 6 is proved by showing that the
hypothesis of Part 2 of Theorem 6 implies the hypothesis of Part 1 of Proposition
3.
Proof of Part 2:

LetΦA(n, j, V) be the formula “IfSA(n,BA(n, j, 0), V) 6= {0, 1}n then∀i V 6=
RgA(n),i”. Note that

ΨA(n, j)→ ΦA(n, j, V) (1)

and this implication is provable in PAA.

9

Suppose that for eachA ∈ A and each fixed pair(n, j), PAA provesΨA(n, j).
Let A ∈ A and 〈M,N〉 be the encoding ofA. To prove Conjecture 2 we

must show thatA ∈ P/poly. Suppose for contradiction thatA 6∈ P/poly. Then,
for somen, by Proposition 4 there does not exist a setV ∈ VgA(n) such that
LA(n, V) = {0, 1}n.

Choose ann with this property. We define a directed graphGn as follows. For
eachV ∈ VgA(n) there is a node inGn. The graphGn is leveled, with levelh
containing allV ’s of cardinalityh. There is an edge from a nodeV to a nodeV ′

in Gn if and only if V ⊂ V ′ and |V ′| = |V | + 1. ThusGn is a rooted, layered,
directed graph with the empty set as root.

We make use of the following claim:

Claim 7 For everyV ∈ VgA(n) there is aPAA proof of the sentence∀i V 6=
RgA(n),i.

Proof: The proof is by induction on|V |.
For the basis case, whenV = ∅, a simple counting argument that can be for-

malized in PAA proves that there are random strings of every length, and hence
PAA proves∀i ∅ 6= RgA(n),i.

Now assume inductively that for allV ′ ∈ VgA(n) such that|V ′| < h there is
a PAA proof of the sentence∀i V ′ 6= RgA(n),i. Let V ∈ VgA(n) with |V | = h.
To prove the claim, it suffices to show that there is a PAA proof of the sentence
∀i V 6= RgA(n),i.

By the inductive hypothesis, for somej′, we have that{V ′ : V ′ ∈ VgA(n) ∧
|V ′| < h} ⊆ BA(n, j′, 0). Since, in the graphGn − BA(n, j′, 0), V has indegree
zero, it follows from the definition ofSA(·, ·, ·) that PAA proves

SA(n, BA(n, j′, 0), V) = LA(n, V),

and by the choice ofn we haveLA(n, V) 6= {0, 1}n. Hence PA proves that
SA(n, BA(n, j′, 0), V) 6= {0, 1}n. By assumption we have that PAA provesΨA(n, j′),
so by (1) we have that PAA proves “IfSA(n, BA(n, j′, 0), V) 6= {0, 1}n then∀i V 6=
RgA(n),i”. Therefore PAA proves∀i V 6= RgA(n),i.

Therefore, by Claim 7 we have that PAA proves∀i {0, 1}≤gA(n) 6= RgA(n),i.
However, by definition,{0, 1}≤gA(n) = RgA(n),0, which implies that PAA is incon-
sistent. By the consistency of PAA (which is provable in, say, ZFA), we therefore
get a contradiction. Thus we conclude thatA is in P/poly.

10

Proof of Part 1:
Let A ∈ A be encoded by〈M,N〉, and suppose for contradiction that there

exists(n, j) such that¬ΨA(n, j).
This implies that for somei, SA(n,BA(n, j, 0), RgA(n),i) 6= {0, 1}n.
Let T be the following machine. On input(n, r), T does a dovetailing search

until it finds some tuple(x, j′, i′) such thatx is a string of lengthn that is not
in SA(n,BA(n, j′, 0), RgA(n),i′). PAA can argue that under the assumptions,T is
guaranteed to find such a tuple.T then computesQ(x), and outputs therth element
of Q(x).

The input(n, r) to T has length at most2 log n + log tA(n). By the discussion
at the end of Section 3.1, this implies that for all queriesz ∈ Q(x), C(z) ≤ gA(n),
so there can be noz ∈ Q(x) ∩R such that|z| > gA(n). Thus PAA can argue that
MR(x) = MR≤gA(n)

(x), since these oracles answer all queries of length at most
gA(n) identically, and by the previous sentence they answer queries fromQ(x) of
length greater thangA(n) identically as well.

Therefore PAA can argue the following points:

• ∃i∗ < 2gA(n)+1 R≤gA(n) = RgA(n),i∗ .

• ∃V ∗ ∈ VgA(n) V ∗ = RgA(n),i∗ .

• A(x) = MR(x) = MR≤gA(n)
(x) = MV ∗

(x).

• If V ∗ 6∈ BA(n, j′, 0) thenx ∈ SA(n,BA(n, j′, 0), RgA(n),i′).

(The last item follows from the others together with the definition ofSA(·, ·, ·).)
Therefore, since from the wayx was obtained we also have thatx is not in

the setSA(n,BA(n, j′, 0), RgA(n),i′), PAA can conclude thatV ∗ is in BA(n, j′, 0).
From the definition ofBA(n, j′, 0) this means that PAA can conclude that there is
a lengthj′ proof in PAA of the sentence∀i V ∗ 6= RgA(n),i.

However, we have thatV ∗ = RgA(n),i∗ , and as the relationR(k, V, i) with
intended meaning “V = Rk,i” can be defined by aΣ0

1 formula, PAA can conclude
that there is a PAA proof ofV ∗ = RgA(n),i∗ . (See the Appendix, Section 8, for more
details on this.) Therefore PAA proves that PAA is inconsistent. In PAA this gets
us very little, but in PAA1 this is a contradiction. Thus PAA1 proves∀n∀jΨA(n, j).

Already when we originally submitted this work for publication, we recognized
that it was reasonably likely that the hypothesis of Part 2 of Theorem 6 is false.
(Subsequently this was shown by [1].) But we held out hope that, by considering
stronger theories, this obstacle could be avoided. This led us to our main theorem:

11

Theorem 8 LetΨA(n, j, k) be the formula∀i SA(n,BA(n, j, k), RgA(n),i) = {0, 1}n.

1. For all A ∈ A, the sentence∀n∀j∀k ΨA(n, j, k) is true and provable in
PAA

ω .

2. If for all A ∈ A and each fixed tuple(n, j,k) there exists anl such thatPAA
l

provesΨA(n, j,k), then Conjecture 2 is true.

Proof: The proof of Part 2 is almost identical to that of Theorem 6, and we omit it
here.

The proof of Part 1 is very similar to that of Theorem 6 as well, but we include
it here for completeness.

Let A ∈ A be encoded by〈M,N〉 and suppose for contradiction that there
exists(n, j, k) such that¬ΨA(n, j, k).

This implies that for somei, SA(n,BA(n, j, k), RgA(n),i) 6= {0, 1}n.
Let T be the following machine. On input(n, r), T does a dovetailing search,

until it finds some tuple(x, j′, k′, i′) such thatx is a string of lengthn that is not
in SA(n,BA(n, j′, k′), RgA(n),i′). PAA can argue that under the assumptions,T is
guaranteed to find such a tuple.T then computesQ(x), and outputs therth element
of Q(x).

The input(n, r) to T has length at most2 log n + log tA(n). By the discussion
at the end of Section 3.1, this implies that for all queriesz ∈ Q(x), C(z) ≤ gA(n),
so there can be noz ∈ Q(x) ∩ R such that|z| > gA(n). Thus PAA can argue
thatMR(x) = MR≤gA(n)

, since these oracles answer all queries of length at most
gA(n) identically, and by the previous sentence they answer queries fromQ(x) of
length greater thangA(n) identically as well.

Thus PAA can argue the following points:

• ∃i∗ < 2gA(n)+1 R≤gA(n) = RgA(n),i∗ .

• ∃V ∗ ∈ VgA(n) V ∗ = RgA(n),i∗ .

• A(x) = MR(x) = MR≤gA(n)
(x) = MV ∗

(x).

• V ∗ 6∈ BA(n, j′, k′) impliesx ∈ SA(n,BA(n, j′, k′), RgA(n),i′).

(The last item follows directly from the definition ofSA(·, ·, ·), along with the
preceding items.)

Thus, since from the wayx was obtained we also have thatx is not in the
setSA(n,BA(n, j′, k′), RgA(n),i′), PAA can conclude thatV ∗ is in BA(n, j′, k′).
From the definition ofBA(n, j′, k′) this means that PAA can conclude that there is
a lengthj′ proof in PAA

k′ of the sentence∀i V ∗ 6= RgA(n),i.

12

However, we have thatV ∗ = RgA(n),i∗ , and as the relationR(k, V, i) with
intended meaning “V = Rk,i” can be defined by aΣ0

1 formula, PAA can conclude
that there is PAAk′ proof of V ∗ = RgA(n),i∗ . Therefore PAA proves that PAAk′ is
inconsistent. In PAAl , for fixed l, there is not much we can conclude from this,
since it is not clear how to boundk′ by any fixed number. But in PAAω this is a
contradiction. Thus PAAω proves∀n∀j∀kΨA(n, j, k).

5 Adapting to Prefix Complexity

The results in the preceding section were proved with respect to the plain Kol-
mogorov complexity functionC. Here, we provide a few comments regarding
how to adapt the arguments, so that they carry over to the prefix Kolmogorov com-
plexity functionK.

Briefly, the descriptions of the elementsy of Q(x) need to be presented as a
prefix-free code. The descriptions that we used were of the form(P, n, r) where
we can think ofP as being a “program”, andn andr are numbers. In the analysis
for plain complexity, we gave an upper bound on the length of these descriptions,
of the formgA(n) = dA + 2 log n + log tA(n) (and we remarked that the analysis
also would carry through if a slightly larger value ofgA(n) were used).

The term “2 log n” in this expression comes from the fact that we need to en-
code the “comma” betweenn andr in some way, and a very simple way to do this
is to simply double each bit of the numbern, and then mark the end of “n” with a
pair (either 01 or 10) that isnot doubled.

If we similarly double each bit ofr and mark the end ofr, then we will obtain
a prefix-free encoding scheme, and the analysis will carry through if we just define
gA(n) to bedA + 2 log n + 2 log tA(n).

6 Epilogue

Two months after this work was originally submitted for publication, Buhrman
and Loff proved some results that bear directly upon our investigation; see [1].
Buhrman and Loff had read a preliminary version of our paper, and sought to give
an unconditional proof of Conjecture 2. Although this conjecture is still open,
one of the theorems in [1] can be seen as lending additional support to the conjec-
tured P/poly upper bound on the class of decidable sets polynomial-time truth-table
reducible toR. For a polynomial-time reduction from a decidable setA to the un-
decidable setR, it seems reasonable to hypothesize that the reduction would also

13

work if one used a very high time-complexity approximation toR, such asRt(n)
K

for some very rapidly-growing time boundt(n). Buhrman and Loff have shown
that, for each decidable setA and polynomial-time truth-table reductionM , if it
is the case thatM reducesA to R

t(n)
K for everylarge-enough time boundt, then

A ∈ P/poly.
In addition, however – the techniques used by Buhrman and Loff also imme-

diately yield that many of the sentencesΨ(n,j ,k) considered here are, in fact, in-
dependent of PÀfor every`. Moreover, they present a polynomial-time reduction
M0 with the property that it cannot be directly replaced by a reduction that makes
queries only of lengthO(log n), having as oracle a subset ofR. Thus the general
approach discussed in here will need to be revised substantially, if it is to be used
to obtain a P/poly upper bound on{A ∈ ∆0

1 : A≤p
ttR}.

The reductionM0 alluded to in the preceding paragraph has the property that it
obtains no useful information from the oracle. Thus it is still conceivable that one
can formulate a notion of “useful” truth-table reductions, for which it still might
hold that, for each lengthn, there is a set of short random stringsV that can be
used as an oracle to cause the reduction to give the correct answer for all strings of
lengthn. However, it is far from clear how to formulate such a definition.

7 Why Care?

It is popular these days to conjecture that BPP= P, and much of this popularity
is owing to results such as those of Impagliazzo and Wigderson [11], who showed
that BPP= P if there is a problem in E that requires circuits of exponential size.
But note that a proof that BPP= P that proceeds by first proving circuit size lower
bounds yieldsmuchmore than “merely” a proof that BPP= P. It also provides
a recipe that one can follow, to start with an arbitrary probabilistic algorithm and
replace it with an equivalent deterministic one of comparable complexity.

Indeed, Goldreich has recently argued thatanyproof of BPP= P must proceed
along these lines, in that any proof that these classes are equal yields pseudorandom
generators that are suitable for derandomizing BPP [8, 9].

But there is a catch! Goldreich’s proof requires that the BPP= P question
be phrased in terms ofpromiseproblems, rather than using the more traditional
definition in terms of language classes, that we have used here.

We do not dispute Goldreich’s assertion that the formulation in terms of promise
problems is in many ways more natural and useful than the traditional definition.
And we certainly agree that it would be much more useful to have a recipe for ob-
taining derandomizations, rather than merely a proof that a derandomization must
exist. But we find it intriguing that a proof thatCC = P would prove that BPP= P

14

merely by showing that there would be a contradiction otherwise, and owing to the
highly non-computable objects in the definition, it is not clear that such a proof
would lend itself to an effective construction of a general-purpose derandomiza-
tion algorithm. (In particular, it is not clear that it would yield the equality of the
promise classes.) That is, since such a proof would deliver less than a proof that
yields a derandomization, it is at least conceivable that it would be easier to obtain.

We do not wish to suggest that we have any idea of how to obtain such a proof.
After all, we are currently unable even to proveCK ⊆ P/poly.

Also, it is clear that such a proof must use nonrelativizing techniques. For
instance, the work of [5] shows that, for any decidable oracleB, BPPB is PB-
truth-table reducible toRKU

for everyU . (There is no need to add an oracle to the
definition ofRKU

.) Thus it is not true that, for every decidableB, ∆0
1 ∩

⋂
U{A :

A≤pB

tt RKU
} = PB , because Heller [10] has presented such aB relative to which

BPPB = NEXPB .

Acknowledgments

We thank Sergei Artemov, Eli Ben-Sasson, Anupam Das, Zeev Dvir, Kaveh Ghasem-
loo, Russell Impagliazzo, Dieter van Melkebeek, Keng Meng Selwyn Ng, Andre
Scedrov, Frank Stephan, Scott Weinstein, Guohua Wu, Yue Yang, and Liang Yu
for helpful discussions.

References

[1] E. Allender, H. Buhrman, L. Friedman, and B. Loff. Reductions to the set of
random strings: The resource-bounded case. InSymposium on Mathematical
Foundations of Computer Science (MFCS), volume 7464 ofLecture Notes in
Computer Science, pages 88–99. Springer, 2012.

[2] E. Allender, H. Buhrman, and M. Kouck´y. What can be efficiently reduced to
the Kolmogorov-random strings?Annals of Pure and Applied Logic, 138:2–
19, 2006.

[3] E. Allender, H. Buhrman, M. Kouck´y, D. van Melkebeek, and D. Ronneb-
urger. Power from random strings.SIAM Journal on Computing, 35:1467–
1493, 2006.

[4] E. Allender, L. Friedman, and W. Gasarch. Limits on the computational
power of random strings. InProc. of International Conference on Automata,
Languages, and Programming (ICALP), volume 6755 ofLecture Notes in

15

Computer Science, pages 293–304. Springer, 2011. To appear in special is-
sue of Information and Computation for ICALP 2011.

[5] H. Buhrman, L. Fortnow, M. Kouck´y, and B. Loff. Derandomizing from ran-
dom strings. In25th IEEE Conference on Computational Complexity (CCC),
pages 58–63. IEEE Computer Society Press, 2010.

[6] R. Downey and D. Hirschfeldt.Algorithmic Randomness and Complexity.
Springer, 2010.

[7] J. Girard. Proof Theory and Logical Complexity, volume 1. Bibliopolis,
Napoli, 1987.

[8] Oded Goldreich. In a world of P=BPP. InStudies in Complexity and Cryptog-
raphy, volume 6650 ofLecture Notes in Computer Science, pages 191–232.
Springer, 2011.

[9] Oded Goldreich. Two comments on targeted canonical derandomizers.Elec-
tronic Colloquium on Computational Complexity (ECCC), 18:47, 2011.

[10] Hans Heller. On relativized exponential and probabilistic complexity classes.
Information and Control, 71(3):231–243, 1986.

[11] R. Impagliazzo and A. Wigderson.P = BPP if E requires exponential
circuits: Derandomizing the XOR lemma. InProc. ACM Symp. on Theory of
Computing (STOC) ’97, pages 220–229, 1997.

[12] M. Kummer. On the complexity of random strings. InProc. of Symp. on Theo.
Aspects of Comp. Sci. (STACS), volume 1046 ofLecture Notes in Computer
Science, pages 25–36. Springer, 1996.

[13] M. Li and P. Vitanyi. Introduction to Kolmogorov Complexity and its Appli-
cations. Springer, third edition, 2008.

[14] J. Miller. Personal Communication, 2012.

8 Appendix: Further Encoding Details

Throughout this paper, for the sake of readability, we have presented informally
proofs meant to be in formal systems. In this section we attempt to clarify the
formalization of a couple key definitions in these proofs.

An important definition, introduced in Section 2, is the definition of the set
Rk,i. Formally, we defineRk,i by means of a relationR(V, k, i) that is TRUE if

16

and only if the setV is equal toRk,i. (Of courseR takes as input an encoding〈V 〉
of the setV , but we will continue to abuse notation in this way). The quantifier
complexity of the formula used to define this relation plays an important role. At
the end of the proof of Part 1 of Theorem 6, we state that PAA proves the implica-
tion “R(V ∗, gA(n), i∗) → PAA ` R(V ∗, gA(n), i∗)” (a similar statement occurs
in Theorem 8 as well). Here “PAA ` R(V ∗, gA(n), i∗)” is shorthand for a formula
encoding thatR(V ∗, gA(n), i∗) is provable in PAA. That this implication involving
PAA actually is provable in PAA itself depends onR(V, k, i) being definable by a
Σ0

1 formula; i.e., one that can be expressed as∃~x R′(~x, V, k, i), whereR′(~x, V, k, i)
is a formula containing only bounded quantifiers. (See, for example, [7, Theorems
1.3.4 and 1.4.7] for a proof of this fact.)

Below we show thatR(V, k, i) can in fact be defined by aΣ0
1 formula:

R(V, k, i) .= ∃y T (U, k, i, y) ∧ ∃w ≤ y out(w, y) ∧ ∀z ∈ {0, 1}≤k

z ∈ V ←→ ∃j ≤ i z = wj .

Here,T (U, k, i, y) is a formula expressing thaty is the transcript of a halting
execution of machineU on input(k, i), whereU is the Turing machine that takes
as input(a, b) and enumerates the firstb nonrandom strings of length at mosta. (If
there do not existb nonrandom strings of length at mosta then noy will satisfy
the formula). Also,out(w, y) expresses thatw is the output of the execution with
transcripty, andwj stands for thejth element ofw (viewingw as a list of strings).

It is standard that the formulaT (U, k, i, y) can be defined by a formula con-
taining only bounded quantifiers.

Note that with the definitionR(V, k, i) in hand, we can express a predicate
Z(V, k) with intended meaning “V = R≤k” as:

Z(V, k) .= ∃i∗ ≤ 2k+1 R(V, k, i∗) ∧ ∀V ′ ∈ Vk ¬R(V ′, k, i∗ + 1).

Of course, this predicateZ(V, k) is notΣ0
1, but it is sufficient for our purposes that

R(V, k, i) is.

17

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

