
A

Optimal bounds for monotonicity and Lipschitz testing over hypercubes
and hypergrids

D. CHAKRABARTY, Microsoft Research

C. SESHADHRI, Sandia National Laboratories, Livermore

The problem of monotonicity testing over the hypergrid and its special case, the hypercube, is a classic,

well-studied, yet unsolved question in property testing. We are given query access to f : [k]n 7→ R (for

some ordered range R). The hypergrid/cube has a natural partial order given by coordinate-wise ordering,
denoted by ≺. A function is monotone if for all pairs x ≺ y, f(x) ≤ f(y). The distance to monotonicity, εf ,

is the minimum fraction of values of f that need to be changed to make f monotone. For k = 2 (the boolean

hypercube), the usual tester is the edge tester, which checks monotonicity on adjacent pairs of domain points.
It is known that the edge tester using O(ε−1n log |R|) samples can distinguish a monotone function from

one where εf > ε. On the other hand, the best lower bound for monotonicity testing over general R is Ω(n).

We resolve this long standing open problem and prove that O(n/ε) samples suffice for the edge tester. For
hypergrids, existing testers require O(ε−1n log k log |R|) samples. We give a (non-adaptive) monotonicity

tester for hypergrids running in O(ε−1n log k) time, recently shown to be optimal. Our techniques lead to
optimal property testers (with the same running time) for the natural Lipschitz property on hypercubes

and hypergrids. (A c-Lipschitz function is one where |f(x)− f(y)| ≤ c‖x− y‖1.) In fact, we give a general

unified proof for O(ε−1n log k)-query testers for a class of “bounded-derivative” properties that contains
both monotonicity and Lipschitz.

Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and problem complexity]: Nonnu-

merical Algorithms and Problems—Computations on discrete structures; G.2.1 [Discrete Mathematics]:
Combinatorics—Combinatorial algorithms

General Terms: Theory

Additional Key Words and Phrases: Property Testing, Monotonicity, Lipschitz functions

1. INTRODUCTION

Monotonicity testing over hypergrids [Goldreich et al. 2000] is a classic problem in property
testing. We focus on functions f : D 7→ R, where the domain, D, is the hypergrid [k]n

and the range, R, is a total order. The hypergrid/hypercube defines the natural coordinate-
wise partial order: x � y, iff ∀i ∈ [n], xi ≤ yi. A function f is monotone if f(x) ≤ f(y)
whenever x � y. The distance to monotonicity, denoted by εf , is the minimum fraction
of places at which f must be changed to have the property P. Formally, if M is the set
of all monotone functions, εf , ming∈M (|{x|f(x) 6= g(x)}|/|D|) . Given a parameter
ε ∈ (0, 1), the aim is to design a randomized algorithm for the following problem. If εf = 0
(meaning f is monotone), the algorithm must accept with probability > 2/3, and if εf > ε,
it must reject with probability > 2/3. If εf ∈ (0, ε), then any answer is allowed. Such
an algorithm is called a monotonicity tester. The quality of a tester is determined by the
number of queries to f . A one-sided tester accepts with probability 1 if the function is
monotone. A non-adaptive tester decides all of its queries in advance, so the queries are

A preliminary version of this result appeared as [Chakrabarty and Seshadhri 2013a].
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0000-0000/YYYY/01-ARTA $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 30 (2012)

A:2

independent of the answers it receives. Monotonicity testing has been studied extensively
in the past decade [Ergun et al. 2000; Goldreich et al. 2000; Dodis et al. 1999; Lehman
and Ron 2001; Fischer et al. 2002; Ailon and Chazelle 2006; Fischer 2004; Halevy and
Kushilevitz 2008; Parnas et al. 2006; Ailon et al. 2006; Batu et al. 2005; Bhattacharyya
et al. 2009; Briët et al. 2012; Blais et al. 2012]. Of special interest is the hypercube domain,
{0, 1}n. [Goldreich et al. 2000] introduced the edge tester. Let H be the pairs that differ
in precisely one coordinate (the edges of the hypercube). The edge tester picks a pair in
H uniformly at random and checks if monotonicity is satisfied by this pair. For boolean
range, [Goldreich et al. 2000] prove O(n/ε) samples suffice to give a bonafide montonicity
tester. [Dodis et al. 1999] subsequently showed that O(ε−1n log |R|) samples suffice for a
general range R. In the worst case, |R| = 2n, and so this gives a O(n2/ε)-query tester.
The best known general lower bound is Ω(min(n, |R|2)) [Blais et al. 2012]. It has been an
outstanding open problem in property testing (see Question 5 in the Open Problems list
from the Bertinoro Workshop [Ber 2011]) to give an optimal bound for monotonicity testing
over the hypercube. We resolve this by showing that the edge tester is indeed optimal (when
|R| ≥

√
n).

Theorem 1.1. The edge tester is a O(n/ε)-query non-adaptive, one-sided monotonicity
tester for functions f : {0, 1}n 7→ R.

For general hypergrids [k]n, [Dodis et al. 1999] give a O(ε−1n log k log |R|)-query mono-
tonicity tester. Since |R| can be as large as kn, this gives a O(ε−1n2 log2 k)-query tester. In
this paper, we give a O(ε−1n log k)-query monotonicity tester on hypergrids that generalizes
the edge tester. This tester is also a uniform pair tester, in the sense it defines a set H of
pairs, picks a pair uniformly at random from it, and checks for monotonicity among this
pair. The pairs in H also differ in exactly one coordinate, as in the edge tester.

Theorem 1.2. There exists a non-adaptive, one-sided O(ε−1n log k)-query monotonic-
ity tester for functions f : [k]n 7→ R.

Remark 1.3. Subsequent to the conference version of this work, the authors proved a
Ω(ε−1n log k)-query lower bound for monotonicity testing on the hypergrid for any (adap-
tive, two-sided error) tester [Chakrabarty and Seshadhri 2013b]. Thus, both the above
theorems are optimal.

A property that has been studied recently is that of a function being Lipschitz: a function
f : [k]n 7→ R is called c-Lipschitz if for all x, y ∈ [k]n, |f(x) − f(y)| ≤ c‖x − y‖1. The
Lipschitz testing question was introduced by [Jha and Raskhodnikova 2011], who show that
for the range R = δZ, O((δε)−1n2) queries suffice for Lipschitz testing. For general hyper-
grids, [Awasthi et al. 2012] recently give an O((δε)−1n2k log k)-query tester for the same
range. [Blais et al. 2014] prove a lower bound of Ω(n log k) queries for non-adaptive mono-
tonicity testers (for sufficiently large R). We give a tester for the Lipschitz property that
improves all known results and matches existing lower bounds. Observe that the following
holds for arbitrary ranges.

Theorem 1.4. There exists a non-adaptive, one-sided O(ε−1n log k)-query c-Lipschitz
tester for functions f : [k]n 7→ R.

Our techniques apply to a class of properties that contains monotonicity and Lipschitz. We
call it the bounded derivative property, or more technically, the (α, β)-Lipschitz property.
Given parameters α, β, with α < β, we say that a function f : [k]n 7→ R has the (α, β)-
Lipschitz property if for any x ∈ [k]n, and y obtained by increasing exactly one coordinate

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

of x by exactly 1, we have α ≤ f(y) − f(x) ≤ β. Note that when (α = 0, β = ∞)1, we get
monotonicity. When (α = −c, β = +c), we get c-Lipschitz.

Theorem 1.5. There exists a non-adaptive, one-sided O(ε−1n log k)-query (α, β)-
Lipschitz tester for functions f : [k]n 7→ R, for any α < β. There is no dependence in
the running time on α and β.

Although Theorem 1.5 implies all the other theorems stated above, we prove Theorem 1.1
and Theorem 1.2 before giving a whole proof of Theorem 1.5. The final proof is a little heavy
on notation, and the proof of the monotonicity theorems illustrates the new techniques.

1.1. Previous work

We discuss some other previous work on monotonicity testers for hypergrids. For the total
order (the case n = 1), which has been called the monotonicity testing problem on the line,
[Ergun et al. 2000] give a O(ε−1 log k)-query tester, and this is optimal [Ergun et al. 2000;
Fischer 2004]. Results for general posets were first obtained by [Fischer et al. 2002]. The ele-
gant concept of 2-TC spanners introduced by [Bhattacharyya et al. 2009] give a general class
of monotonicity testers for various posets. It is known that such constructions give testers
with polynomial dependence of n for the hypergrid [Bhattacharyya et al. 2012]. For constant
n, [Halevy and Kushilevitz 2008; Ailon and Chazelle 2006] give a O(ε−1 log k)-query tester
(although the dependency on n is exponential). From the lower bound side, [Fischer et al.
2002] first prove an Ω(

√
n) (non-adaptive, one-sided) lower bound for hypercubes. [Briët

et al. 2012] give an Ω(n/ε)-lower bound for non-adaptive, one-sided testers, and a break-
through result of [Blais et al. 2012] prove a general Ω(min(n, |R|2) lower bound. Testing
the Lipschitz property is a natural question that arises in many applications. For instance,
given a computer program, one may like to test the robustness of the program’s output to
the input. This has been studied before, for instance in [Chaudhuri et al. 2011], however, the
solution provided looks into the code to detect if the program satisfies Lipschitz or not. The
property testing setting is a black-box approach to the problem. [Jha and Raskhodnikova
2011] also provide an application to differential privacy; a class of mechanisms known as
Laplace mechanisms proposed by [Dwork et al. 2006] achieve privacy in the process of out-
putting a function by adding a noise proportional to the Lipschitz constant of the function.
[Jha and Raskhodnikova 2011] gave numerous results on Lipschitz testing over hypergrids.
They give a O(ε−1 log k)-query tester for the line, a general Ω(n)-query lower bound for the
Lipschitz testing question on the hypercube, and a non-adaptive, 1-sided Ω(log k)-query
lower bound on the line.

2. THE PROOF ROADMAP

The challenge of property testing is to relate the tester behavior to the distance of the
function to the property. Consider monotonicity over the hypercube. To argue about the
edge tester, we want to show that a large distance to monotonicity implies many violated
edges. Most current analyses of the edge tester go via what we could call the contrapositive
route. If there are few violated edges in f , then they show the distance to monotonicity
is small. This is done by modifying f to make it monotone, and bounding the number of
changes as a function of the number of violated edges. There is an inherently “constructive”
viewpoint to this: it specifies a method to convert non-monotone functions to monotone
ones. Implementing this becomes difficult when the range is large, and existing bounds
degrade with R. For the Lipschitz property, this route becomes incredibly complex. A non-
constructive approach may give more power, but how does one get a handle on the distance?
The violation graph provides a method. The violation graph has [k]n as the vertex set and

1If the reader is uncomfortable with the choice of β as ∞, β can be thought of as much larger than any
value in f .

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

an edge between any pair of comparable domain vertices (x, y) (x ≺ y) if f(x) > f(y). The
following theorem can be found as Corollary 2 in [Fischer et al. 2002].

Theorem 2.1 ([Fischer et al. 2002]). The size of the minimum vertex cover of the
violation graph is exactly εf |D|. As a corollary, the size of any maximal matching in the
violation graph is at least 1

2εf |D|.

Can a large matching in the violated graph imply there are many violated edges? [Lehman
and Ron 2001] give an approach by reducing the monotonicity testing problem on the
hypercube to routing problems. For any k source-sink pairs on the directed hypercube,
suppose kµ(k) edges need to be deleted in order to pairwise separate them. Then O(n/εµ(n))
queries suffice for the edge tester. Therefore, if µ(n) is at least a constant, one gets a linear
query monotonicity tester on the cube. Lehman and Ron [Lehman and Ron 2001] explicitly
ask for bounds on µ(n). [Briët et al. 2012] show that µ(n) could be as small as 1/

√
n, thereby

putting an Ω(n3/2/ε) bottleneck to the above approach. In the reduction above, the function
values are altogether ignored. More precisely, once one moves to the combinatorial routing
question on source-sink pairs, the fact that they are related by actual function values is
lost. Our analysis crucially uses the value of the functions to argue about the structure of
the maximal matching in the violation graph.

2.1. It’s all about matchings

The key insight is to move to a weighted violation graph. The weight of violation (x, y) de-
pends on the property at hand; for now it suffices to know that for monotonicity, the weight
of (x, y) (x ≺ y) is f(x)−f(y). This can be thought of as a measure of the magnitude of the
violation. (Violation weights were also used for Lipschitz testers [Jha and Raskhodnikova
2011].) We now look at a maximum weighted matching M in the violation graph. Naturally,
this is maximal as well, so |M| ≥ 1

2εf |D|. All our algorithms pick a pair uniformly at random
from a predefined set H of pairs, and check the property on that pair. For the hypercube
domain, H is the set of all edges of the hypercube. Our analysis is based on the construction
of a one-to-one mapping from pairs in M to violating pairs in H. This mapping implies the
number of violated pairs in H is at least |M|, and thus the uniform pair tester succeeds with
probability Ω(εf |D|/|H|), implying O(|H|/εf |D|) queries suffice to test monotonicity. For
the hypercube, |H| = n2n−1 and |D| = 2n, giving the final bound of O(n/εf). To obtain
this mapping, we first decompose M into sets M1,M2, . . . ,Mt such that each pair in M is
in at least one Mi. Furthermore, we partition H into perfect matchings H1, H2, . . . ,Ht. In
the hypercube case, Mi is the collection of pairs in M whose ith coordinates differ, and Hi

is the collection of hypercube edges differing only in the ith coordinate; for the hypergrid
case, the partitions are more involved. We map each pair in Mi to a unique violating pair in
Hi. For simplicity, let us ignore subscripts and call the matchings M and H. We will assume
in this discussion that M ∩H = ∅. Consider the alternating paths and cycles generated by
the symmetric difference of M \M and H. Take a point x involved in a pair of M , and
note that it can only be present as the endpoint of an alternating path, denoted by Sx. Our
main technical lemma shows that each such Sx contains a violated H-pair.

2.2. Getting the violating H-pairs

Consider M , the pairs of M which differ on the ith coordinate, and H is the set of edges
in the dimension cut along this coordinate. Let (x, y) ∈ M , and say x[i] = 0 giving us
x ≺ y. (We denote the ath coordinate of x by x[a].) Recall that the weight of this violation
is f(x) − f(y). It is convenient to think of Sx as follows. We begin from x and take the
incident H-edge to reach s1 (note that that s1 ≺ y). Then we take the (M \ M)-pair
containing s1 to get s2. But what if no such pair existed? This can be possible in two
ways: either s1 was M-unmatched or s1 is M -matched. If s1 is M-unmatched, then delete

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

𝑥

𝑠1

𝑠2

𝑠3

𝑦

𝑥

𝑦

𝑠1

𝑠2

𝑠3

Fig. 1: The alternating path: the dotted lines connect pairs of M , the solid curved lines connect
pairs of M \M , and the dashed lines are H-pairs.

(x, y) from M and add (s1, y) to obtain a new matching. If (x, s1) was not a violation,
and therefore f(x) < f(s1)2, we get f(s1) − f(y) > f(x) − f(y). Thus the new matching
has strictly larger weight, contradicting the choice of M. If s1 was M -matched, then let
(s1, s2) ∈ M . First observe that s1 � s2. This is because s1[i] = 1 (since s1[i] 6= x[i])
and since (s1, s2) ∈ M they must differ on the ith coordinate implying s2[i] = 0. This
implies s2 ≺ y, and so we could replace pairs (x, y) and (s2, s1) in M with (s2, y). Again, if
(x, s1) is not a violation, then f(s2)− f(y) > [f(s2)− f(s1)] + [f(x)− f(y)], contradicting
the maximality of M. Therefore, we can taje a (M \M)-pair to reach s2. With care, this
argument can be carried over till we find a violation, and a detailed description of this
is given in §5. Let us demonstrate a little further (refer to the left of Fig. 1). Start with
(x, y) ∈ M , and x[i] = 0. Following the sequence Sx, the first term s1 is x projected “up”
dimension cut H. The second term is obtained by following the M \M -pair incident to
s1 to get s2. Now we claim that s2 � s1, for otherwise one can remove (x, y) and (s1, s2)
and add (x, s1) and (s2, y) to increase the matching weight. (We just made the argument
earlier; the interested reader may wish to verify.) In the next step, s2 is projected “down”
along H to get s3. By the nature of the dimension cut H, x ≺ s3 and s1 ≺ y. So, if s3 is
unmatched and (s2, s3) is not a violation, we can again rearrange the matching to improve
the weight. We alternately go “up” and “down” H in traversing Sx, because of which we
can modify the pairs in M and get other matchings in the violation graph. The maximality
of M imposes additional structure, which leads to violating edges in H. In general, the
spirit of all our arguments is as follows. Take an endpoint of M and start walking along
the sequence given by the alternating paths generated by M \M and H. Naturally, this
sequence must terminate somewhere. If we never encounter a violating pair of H during the
entire sequence, then we can rewire the matching M and increase the weight. Contradiction!
Observe the crucial nature of alternating up and down movements along H. This happens
because the first coordinate of the points in Sx switches between the two values of 0 and 1
(for k = 2). Such a reasoning does not hold water in the hypergrid domain. The structure
of H needs to be more complex, and is not as simple as a partition of the edges of the
hypergrid. Consider the extreme case of the line [k]. Let 2r be less than k. We break [k] into
contiguous pieces of length 2r. We can now match the first part to the second, the third to
the fourth, etc. In other words, the pairs look like (1, 2r +1), (2, 2r +2), . . ., (2r, 2r+1), then
(2r+1 + 1, 2r+1 + 2r + 1), (2r+1 + 2, 2r+1 + 2r + 2), etc. We can construct such matchings for
all powers of 2 less than k, and these will be our Hi’s. Those familiar with existing proofs
for monotonicity on [k] will not be surprised by this set of matchings. All methods need to
cover all “scales” from 1 to k (achieved by making them all powers of 2 up to k). It can

2We are assuming here that all function values are distinct; as we show in Claim 8.9 this is without loss of
generality.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

also be easily generalized to [k]n. What about the choice of M? Simply choosing M to be a
maximum weight matching and setting up the sequences Sx does not seem to work. It suffices
to look at [k]2 and the matching H along the first coordinate where r = 0, so the pairs
are {(x, x′)|x[1] = 2i − 1, x′[1] = 2i, x[2] = x′[2]}. A good candidate for the corresponding
M is the set of pairs in M that connect lower endpoints of H to higher endpoints of H.
Let us now follow Sx as before. Refer to the right part of Fig. 1. Take (x, y) ∈ M and let
x ≺ y. We get s1 by following the H-edge on x, so s1 � x. We follow the M \M -pair
incident to s1 (suppose it exists) to get s2. It could be that s2 � s1. It is in s3 that we see
a change from the hypercube. We could get s3 � s2, because there is no guarantee that s2
is at the higher end of an H-pair. This could not happen in the hypercube. We could have
a situation where s3 is unmatched, we have not encountered a violation in H, and yet we
cannot rearrange M to increase the weight. For a concrete example, consider the points as
given in Fig. 1 with function values f(x) = f(s1) = f(s3) = 1, f(y) = f(s2) = 0. Some
thought leads to the conclusion that s3 must be less than s2 for any such rearrangement
argument to work. The road out of this impasse is suggested by the two observations. First,
the difference in 1-coordinates between s1 and s2 must be odd. Next, we could rearrange and
match (x, s2) and (s1, y) instead. The weight may not increase, but this matching might be
more amenable to the alternating path approach. We could start from a maximum weight
matching that also maximizes the number of pairs where coordinate differences are even.
Indeed, the insight for hypergrids is the definition of a potential Φ for M. The potential Φ
is obtained by summing for every pair (x, y) ∈M and every coordinate a, the largest power
of 2 dividing the difference |x[a] − y[a]|. We can show that a maximum weight matching
that also maximizes Φ does not end up in the bad situation above. With some addition
arguments, we can generalize the hypercube proof. We describe this in §7.

2.3. Attacking the generalized Lipschitz property

One of the challenges in dealing with the Lipschitz property is the lack of direction. The
Lipschitz property, defined as ∀x, y, |f(x) − f(y)| ≤ ‖x − y‖1, is an undirected property,
as opposed to monotonicity. In monotonicity, a point x only “interacts” with the subcube
above and below x, while in Lipschitz, constraints are defined between all pairs of points.
Previous results for Lipschitz testing require very technical and clever machinery to deal
with this issue, since arguments analogous to monotonicity do not work. The alternating
paths argument given above for monotonicity also exploits this directionality, as can be seen
by heavy use of inequalities in the informal calculations. Observe that in the monotonicity
example for hypergrids in Fig. 1, the fact that s3 � s2 (as opposed to s3 ≺ s2) required
the potential Φ (and a whole new proof). A subtle point is that while the property of
Lipschitz is undirected, violations to Lipschitz are “directed”. If |f(x) − f(y)| > ‖x − y‖1,
then either f(x)− f(y) > ‖x− y‖1 or f(y)− f(x) > ‖x− y‖1, but never both. This can be
interpreted as a direction for violations. In the alternating paths for monotonicity (especially
for the hypercube), the partial order relation between successive terms follow a fixed pattern.
This is crucial for performing the matching rewiring. As might be guessed, the weight of
a violation (x, y) becomes max(f(x) − f(y) − ‖x − y‖1, f(y) − f(x) − ‖x − y‖1). For the
generalized Lipschitz problem, this is defined in terms of a pseudo-distance over the domain.
We look at the maximum weight matching as before (and use the same potential function
Φ). The notion of “direction” takes the place of the partial order relation in monotonicity.
The main technical arguments show that these directions follow a fixed pattern in the
corresponding alternating paths. Once we have this pattern, we can perform the matching
rewiring argument for the generalized Lipschitz problem.

3. THE ALTERNATING PATHS FRAMEWORK

The framework of this section is applicable for all (α, β)-Lipschitz properties over hypergrids.
We begin with two objects: M, the matching of violating pairs, and H, a matching of D.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

The pairs in H will be aligned along a fixed dimension (denote it by r) with the same
`1 distance, called the H-distance. That is, each pair (x, y) in H will differ only in one
coordinate and the difference will be the same for all pairs. We now give some definitions.

— L(H), U(H): Each pair (x, y) ∈ H has a “lower” end x and an “upper” end y depending
on the value of the coordinate at which they differ. We use L(H) (resp. U(H)) to denote
the set of lower (resp. upper) endpoints. Note that L(H) ∩ U(H) = ∅.

— H-straight pairs, stH(M): All pairs (x, y) ∈M with both ends in L(H) or both in U(H).
— H-cross pairs, crH(M): All pairs (x, y) ∈ M \ H such that x ∈ L(H), y ∈ U(H), and

the H-distance divides |y[r]− x[r]|.
— H-skew pairs, skH(M) = M \ (stH(M) ∪ crH(M)).
— X: A set of lower endpoints in crH(M) \H.

Consider the domain {0, 1}n. We set H to be (say) the first dimension cut. stH(M) is the
set of pairs in (x, y) ∈ M where x[1] = y[1]. All other pairs (x, y) ∈ M (x ≺ y) are in
crH(M) since x[1] = 0 and y[1] = 1. There are no H-skew pairs. The set X will be chosen
differently for the applications. We require the following technical definition of adequate
matchings. This arises because we will use matchings that are not necessarily perfect. A
perfect matching H is always adequate.

Definition 3.1. A matching H is adequate if for every violation (x, y), both x and y
participate in the matching H.

We will henceforth assume thatH is adequate. The symmetric difference of stH(M) andH is
a collection of alternating paths and cycles. Because H is adequate and stH(M)∩crH(M) =
∅, any point in x ∈ X is the endpoint of some alternating path (denoted by Sx). Throughout
the paper, i denotes an even index, j denotes an odd index, and k is an arbitrary index.

(1) The first term Sx(0) is x.
(2) For even i, Sx(i+ 1) = H(Sx(i)).
(3) For odd j: if Sx(j) is stH(M)-matched, Sx(j+1) = M(Sx(j)). Otherwise, terminate.

We start with a simple property of these alternating paths.

Proposition 3.2. For k ≡ 0, 3 (mod 4), sk ∈ L(H). For non-negative k ≡ 1, 2 (mod 4),
sk ∈ U(H).

Proof. If k is even, then (sk, sk+1) ∈ H. Therefore, either sk ∈ L(H) and sk+1 ∈ U(H)
or vice versa. If k is odd, (sk, sk+1) is a straight pair. So sk and sk+1 lie in the same sets.
Starting with s0 ∈ L(H), a trivial induction completes the proof.

The following is a direct corollary of Prop. 3.2.

Corollary 3.3. If i ≡ 0 (mod 4), si ≺ si+1. If i ≡ 2 (mod 4), si+1 ≺ si.

We will prove that every Sx contains a violated H-pair. Henceforth, our focus is entirely on
some fixed sequence Sx.

3.1. The sets E−(i) and E+(i)

Our proofs are based on matching rearrangements, and this motivates the definitions in
this subsection. For convenience, we denote Sx by x = s0, s1, s2, We also set s−1 = y.
Consider the sequence s−1, s0, s1, . . . , si, for even i > 1. We define

E−(i) = (s−1, s0), (s1, s2), (s3, s4), . . . , (si−1, si) = {(sj , sj+1) : j odd,−1 ≤ j < i}

This is simply the set of M-pairs in Sx up to si. We now define E+(i). Think of this as
follows. We first pair up (s−1, s1). Then, we go in order of Sx to pair up the rest. We pick

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

the first unmatched sk and pair it to the first term of opposite parity. We follow this till
si+1 is paired. These sets are illustrated in Fig. 2.

E+(i) = (s−1, s1), (s0, s3), (s2, s5), . . . , (si−4, si−1), (si−2, si+1)

= {(s−1, s1)} ∪ {(si′ , si′+3) : i′ even, 0 ≤ i′ ≤ i− 2}

s1

s-1

s0

s2

s3

s4

s5

s6

s7

s9

s8

Fig. 2: Illustration for i = 8. The light vertical edges are H-edges. The dark black ones are
stH(M)-pairs. The green, double-lined one on the left is the starting M -pair. The dotted
red pairs form E+(8). All points alove the horizonatal line are in U(H), the ones below are
in L(H).

Proposition 3.4. E−(i) involves s−1, s0, . . . , si, while E+(i) involves
s−1, s0, . . . , si−1, si+1.

4. THE STRUCTURE OF Sx FOR MONOTONICITY

We now focus on monotonicity, and show that Sx is highly structured. (The proof for general
Lipschitz will also follow the same setup, but requires more definitions.) The weight of a
pair (x, y) is defined to be f(x)−f(y) if x ≺ y, and is −∞ otherwise. We will assume that all
function values are distinct. This is without loss of generality although we prove it formally
later in Claim 8.9. Thus violating pairs have positive weight. We choose a maximum weight
matching M of pairs. Note that every pair in M is a violating pair. We remind the reader
that for even k, (sk, sk+1) ∈ H and for odd k, (sk, sk+1) ∈ stH(M).

4.1. Preliminary observations

Proposition 4.1. For all x, y ∈ L(H) (or U(H)), x ≺ y iff H(x) ≺ H(y). Consider
pair (x, y) ∈ crH(M) such that x ≺ y. Then H(x) ≺ y and x ≺ H(y).

Proof. For any point in x ∈ L(H), H(x) is obtained by adding the H-distance to a
specific coordinate. This proves the first part. The H-distance divides |[y[r] − x[r]| (where
H is aligned in dimension r) and (x, y), x ≺ y is a cross pair. Hence y[r]−x[r] is at least the
H-distance. Note that H(x) is obtained by simply adding this distance to the r coordinate
of x, so H(x) ≺ y.

Proposition 4.2. All pairs in E−(i) and E+(i) are comparable. Furthermore, s1 ≺ s−1
and for all even 0 ≤ k ≤ i− 2, sk ≺ sk+3 iff sk+1 ≺ sk+2.

Proof. All pairs in E−(k) are in M, and hence comparable. Consider pair (s−1, s1) ∈
E+(k). Since s1 = H(s0) and (s0, s1) is a cross-pair, by Prop. 4.1, s1 ≺ s−1. Consider pair
(sk, sk+3), where k is even. (Refer to Fig. 2.) The pair (H(sk), H(sk+3)) = (sk+1, sk+2) is
in stH(M). Hence, the points are comparable and both lie in L(H) or U(H). By Prop. 4.1,
sk, sk+3 inherit their comparability from sk+1, sk+2.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

For some even i, suppose (si, si+1) is a not a violation. Corollary 3.3 implies

If i ≡ 0 (mod 4), f(si+1)− f(si) > 0.

If i ≡ 2 (mod 4), f(si)− f(si+1) > 0. (∗)
We will also state an ordering condition on the sequence.

If i ≡ 0 (mod 4), si ≺ si−1.
If i ≡ 2 (mod 4), si � si−1. (∗∗)

Remember these conditions and Corollary 3.3 together as follows. If i ≡ 0 (mod 4), si is
on smaller side, otherwise it is on the larger side. In other words, if i ≡ 0 (mod 4), si is
smaller than its “neighbors” in Sx. For i ≡ 2 (mod 4), it is bigger. For condition (∗), if
i ≡ 0 (mod 4), f(si) < f(si−1).

4.2. The structure lemmas

We will prove a series of lemmas that prove structural properties of Sx that are intimately
connected to conditions (∗) and (∗∗). These proofs are where much of the insight lies.

Lemma 4.3. Consider some even index i such that si exists. Suppose conditions (∗)
and (∗∗) held for all even indices ≤ i. Then, si+1 is M-matched.

Proof. The proof is by contradiction, so assume that M(si+1) does not exist. Assume
i ≡ 0 (mod 4). (The proof for the case i ≡ 2 (mod 4) is similar and omitted.) Consider
sets E−(i) and E+(i). Note that s−1, s0, s1, . . . , si+1 are all distinct. By Prop. 3.4, M′ =
M−E−(i)+E+(i) is a valid matching. We will argue that w(M′) > w(M), a contradiction.
By condition (∗∗),

w(E−(i)) = [f(s0)− f(s−1)] + [f(s1)− f(s2)] + [f(s4)− f(s3)] + · · ·
· · ·+ [f(si−3)− f(si−2)] + [f(si)− f(si−1)] (1)

By the second part of Prop. 4.2 (for even k, sk ≺ sk+3 iff sk+1 ≺ sk+2) and condition (∗∗),
we know the comparisons for all pairs in E+(i).

w(E+(i+ 2)) = [f(s1)− f(s−1)] + [f(s0)− f(s3)] + [f(s5)− f(s2)] + · · ·
· · ·+ [f(si−4)− f(si−1)] + [f(si+1)− f(si−2)] (2)

Note that the coefficients of common terms in w(E+(i)) and w(E−(i)) are identical. The
only terms not involves (by Prop. 3.4) are f(si+1) in w(E+(i)) and f(si) in w(E−(i)). The
weight of the new matching is precisely w(M)−W− +W+ = w(M) + f(si+1)− f(si). By
(∗) for i, this is strictly greater than w(M), contradicting the maximality of M.

So, under the condition of Lemma 4.3, si+1 is M-matched. We can also specify the com-
parison relation of si+1, M(si+1) (as condition (∗∗)) using an almost identical argument.
Abusing notation, we will denote M(si+1) as si+2. (This is no abuse if (si+1,M(si+1)) is a
straight pair.)

Lemma 4.4. Consider some even index i such that si exists. Suppose conditions (∗)
and (∗∗) held for all even indices ≤ i. Then, condition (∗∗) holds for i+ 2.

Before we prove this lemma, we need the following distinctness claim.

Claim 4.5. Consider some odd j such that sj and M(sj) exist. Suppose condition (∗)
and (∗∗) held for all even i < j. Then the sequence s−1, s0, s1, . . . , sj ,M(sj) are distinct.

Proof. (If (sj ,M(sj)) ∈ stH(M), this is obviously true. The challenge is when Sx

terminates at sj .) The sequence from s0 to sj is an alternating path, so all terms are
distinct. If sj 6= y, then the claim holds. Suppose sj = y. Note that j > 1, since (x, y) /∈ H.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

Since y ∈ U(H), by Prop. 3.2, j ≡ 1 (mod 4). Condition (∗∗) holds for j−1, so sj−1 ≺ sj = y
and by Corollary 3.3, sj−1 ≺ sj−2. Note that (sj−1, sj) ∈ H and (x, sj) is a cross pair. By
Prop. 4.1, x ≺ sj−1 and thus x ≺ sj−2. We replace pairs A = {(x, y), (sj−2, sj−1)} ∈M with
(x, sj−2), and argue that the weight has increased. We have w(A) = [f(x)−f(y)]+[f(sj−1)−
f(sj−2)] = [f(x)−f(sj−2)]−[f(y)−f(sj−1)]. By condition (∗) on i, f(y) = f(sj) > f(sj−1),
contradicting the maximality of M.

Proof. (of Lemma 4.4) By Lemma 4.3, M(si+1) exists. Assume i ≡ 0 (mod 4) (the
other case is analogous and omitted). The proof is again by contradiction, so we assume
condition (∗∗) does not hold for i + 2. This means si+2 = M(si+1) ≺ si+1. Consider sets
E−(i+ 2) and E′ = E+(i− 2)∪ (si−2, si+2). By Claim 4.5, s−1, s0, s1, . . . , si+2 are distinct.
So M′ = M − E−(i) + E′ is a valid matching and we argue that w(M′) > w(M). By
condition (∗∗) for even i′ < i+ 2 and the assumption si+2 ≺ si+1.

w(E−(i+ 2)) = [f(s0)− f(s−1)] + [f(s1)− f(s2)] + [f(s4)− f(s3)] + · · ·
· · ·+ [f(si−3)− f(si−2)] + [f(si)− f(si−1)] + [f(si+2)− f(si+1)]

Observe how the last term in the summation differs from the trend. All comparisons in
E+(i − 2) are determined by Prop. 3.4, just as we argued in the proof of Lemma 4.3. The
expression for w(E+(i − 2)) is basically given in (2). It remains to deal with (si−2, si+2).
By condition (∗∗) for i, si ≺ si−1. Thus, by Prop. 3.4, si+1 ≺ si−2. Combining with the
assumption of si+2 ≺ si+1, we deduce si+2 ≺ si−2.

w(E+(i+ 2)) = [f(s1)− f(s−1)] + [f(s0)− f(s3)] + [f(s5)− f(s2)] + · · ·
· · ·+ [f(si−3)− f(si−6)] + [f(si−4)− f(si−1)] + [f(si+2)− f(si−2)]

The coefficients are identical, except that f(si) and f(si+1) do not appear in w(E+(i+ 2)).
We get w(M) − W− + W+ = w(M) + f(si+1) − f(si). By (∗) for i, we contradict the
maximality of M.

A direct combination of the above statements yields the main structure lemma.

Lemma 4.6. Suppose Sx contains no violated H-pair. Let the last term by sj (j is odd).
For every even i ≤ j + 1, condition (∗∗) holds, and sj belongs to a pair in skH(M).

Proof. We prove the first statement by contradiction. Consider the smallest even i ≤
j + 1 where condition (∗∗) does not hold. Note that for i = 0, the condition does hold, so
i ≥ 2. We can apply Lemma 4.4 for i − 2, since all even indices at most i − 2 satisfy (∗)
and (∗∗). But condition (∗∗) holds for i, completing the proof. Now apply Lemma 4.3 and
Lemma 4.4 for j − 1. Conditions (∗) and (∗∗) hold for all relevant even indices. Hence, sj
must be M-matched and condition (∗∗) holds for j+1. Since Sx terminates at sj , sj cannot
be stH(M)-matched. Suppose sj was crH(M) matched. Let j ≡ 1 (mod 4). By Prop. 3.2,
sj ∈ U(H), so sj+1 = M(sj) ≺ sj , violating condition (∗∗). A similar argument holds when
j ≡ 3 (mod 4). Hence, sj must be skH(M)-matched.

5. MONOTONICITY ON BOOLEAN HYPERCUBE

We prove Theorem 1.1. Since M is also is a maximal family of disjoint violating pairs, and
therefore, |M| ≥ 1

2εf ·2
n. We denote the set of all edges of the hypercube as H. We partition

H into H1, . . . ,Hn where Hr is the collection of hypercube edges which differ in the rth
coordinate. Each Hr is a perfect matching and is adequate. Note that stHr

(M) is the set of
M-pairs which do not differ in the rth coordinate. The H-distance is trivially 1, so crHr

(M)
is the set of M-pairs that differ in the rth coordinate. Importantly, skHr

(M) = ∅.

Lemma 5.1. For all 1 ≤ r ≤ n, the number of violating Hr-edges is at least crHr
(M)/2.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

Proof. Feed in M and Hr to the alternating path machinery. Set X to be the set of
all lower endpoints of crHr

(M) \ Hr, so |X| = |crHr
(M) \ Hr|/2. Since skHr

(M) = ∅, by
Lemma 4.6, all sequences Sx must contain a violated Hr-edge. The total number of violated
Hr-edges is at least |X|+ |crHr (M) ∩Hr|.

The above lemma proves Theorem 1.1. Observe that every pair in M belongs to some set
crHr

(M). The edge tester only requires O(n/ε) queries, since the success probability of a
single test is at least

1

|H|

n∑
r=1

crHr (M)/2 ≥ |M|/(n2n−2) ≥ ε/2n.

6. SETTING UP FOR HYPERGRIDS

We setup the framework for hypergrid domains. The arguments here are property inde-
pendent. Consider domain [k]n and set ` = dlg ke. We define H to be pairs that differ in
exactly one coordinate, and furthermore, the difference is a power of 2. The tester chooses
a pair in H uniformly at random, and checks the property on this pair. We partition H
into n(` + 1) sets Ha,b, 1 ≤ a ≤ n, 0 ≤ b ≤ `. Ha,b consists of pairs (x, y) which differ
only in the ath coordinate, and furthermore |y[a]− x[a]| = 2b. Unfortunately, Ha,b is not a
matching, since each point can participate in potentially two pairs in Ha,b. To remedy this,
we further partition Ha,b into H0

a,b and H1
a,b. For any pair (x, y) ∈ Ha,b, exactly one among

x[a] (mod 2b+1)3 and y[a] (mod 2b+1) is > 2b and one is ≤ 2b. We put (x, y) ∈ Ha,b with
x ≺ y in H0

a,b if y[a] (mod 2b+1) > 2b, and in the set H1
a,b if 1 ≤ y[a] (mod 2b+1) ≤ 2b. For

example, H1,0 has all pairs that only differ by 20 = 1 in the first coordinate. We partition
these pairs depending on whether the higher endpoint has even or odd first coordinate. Note
that each H0

a,b and H1
a,b are matchings. We have L(H0

a,b) = {x|x[a] (mod 2b+1) ≤ 2b} and

U(H0
a,b) = {y|y[a] (mod 2b+1) > 2b}. The sets are exactly switched for H1

a,b. Because of the
matchings are not perfect, we are forced to introduce the notion of adequacy of matchings.
A matching H is adequate if for every violation (x, y), both x and y participate in the
matching H (Definition 3.1). We will eventually prove the following theorem.

Theorem 6.1. Let k be a power of 2. Suppose for every violation (x, y) and every
coordinate a, |y[a] − x[a]| ≤ 2c (for some c). Furthermore, suppose that for b ≤ c, all
matchings H0

a,b, H
1
a,b are adequate. Then there exists a maximal matching M of the violation

graph such that the number of violating pairs in H is at least |M|/2.

We reduce to this special case using a simple padding argument. The following theorem
implies Theorem 1.2.

Theorem 6.2. Consider any function f : [k]n 7→ R. At least an εf/(4n(dlog ke + 1)-
fraction of pairs in H are violations.

Proof. Let k̂ = 2` be the smallest power of 2 larger than 4k. Let us construct a function

f̂ : [k̂]n 7→ R∪ {−∞,+∞}. Let 1 denote the n-dimensional vector all 1s vector. For x such

that all xi ∈ [k̂/4+1, k̂/4+k−1], we set f̂(x) = f(x− k̂·1
4). (We will refer to this region as the

“original domain”.) If any coordinate of x is less than k̂/4, we set f̂(x) = −∞. Otherwise,
we set f(x) = +∞. All violations are contained in the original domain. For any violation

(x, y) and coordinate a, |y[a]− x[a]| ≤ k < 2`−2. Let Ĥ be the corresponding set of pairs in

domain [k̂]n. For b ≤ `− 2 (and every a), every point in the original domain participates in

3We abuse notation and define p (mod 2b+1) to be 2b+1 (instead of 0) if 2b+1 | p.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

all matchings in Ĥ. So, each of these matchings is adequate. Since every maximal matching
of the violation graph has size at least εfk

n/2, by Theorem 6.1, the number of violating

pairs in Ĥ is at least εfk
n/2. The matching H is exactly the set of pairs of Ĥ completely

contained in the original domain. All violating pairs in Ĥ are contained in H. The total size
of H is at most nkn(dlog ke+ 1). The proof is completed by dividing εfk

n/4 by the size of
H.

Henceforth, we will assume that k = 2` and that all matchings H0
a,b, H

1
a,b are adequate (for

b ≤ c, where 2c is an upper bound on the coordinate difference for any violation).

6.1. The potential Φ

Define msd(a) of a non-negative integer a to be the largest power of 2 which divides a. That
is, msd(a) = p implies 2p | a but 2p+1 6 | a. We define msd(0) := `+ 1. For any x ∈ Zn, define
Φ(x) =

∑n
c=1 msd(|x[c]|). Now given a matching M, define the following potential.

Φ(M) :=
∑

(x,y)∈M

Φ(x− y) =
∑

(x,y)∈M

n∑
c=1

msd(|y[c]− x[c]|). (3)

We will choose maximum weighted matchings that also maximize Φ(M). To give some
intuition for the potential, note that it is aligned towards picking pairs which differ in as
few coordinates as possible (since msd(0) is large). Furthermore, divisibility by powers of 2
is favored.

7. MONOTONICITY ON HYPERGRIDS

In this section, we prove Theorem 1.2. As in the hypercube case, the weight of a pair (x, y)
is defined to be f(x) − f(y) if x ≺ y, and −∞ otherwise. We set M to be a maximum
weighted matching that maximizes Φ(M). So |M| ≥ εfk

n/2. Fix Hr
a,b. It is instructive to

explicitly see the pairs in stHr
a,b

(M) and crHr
a,b

(M). Consider a pair (x, y), x ≺ y in these
sets.

— stHr
a,b

(M): x[a], y[a] (mod 2b+1) ≤ 2b, or x[a], y[a] (mod 2b+1) > 2b.

— crHr
a,b

(M): msd(|y[a]− x[a]|) = b, x ∈ L(Hr
a,b) (thus y ∈ U(Hr

a,b)).

Now we do have skew pairs, and the potential Φ was designed specifically to handle such
pairs. Note that every pair in M belongs to some crHr

a,b
(M). There exists some a, b such

that msd(|y[a] − x[a]|) = b. If x[a] (mod 2b+1) ≤ 2b, then (x, y) ∈ crH0
a,b

(M), otherwise

(x, y) ∈ crH1
a,b

(M). Therefore, the following lemma directly implies Theorem 6.1.

Lemma 7.1. For all r, a, b, the number of violated Hr
a,b-pairs is at least |crHr

a,b
(M)|/2.

Proof. We assume that Hr
a,b is adequate. Feed in Hr

a,b and M to the alternating paths

machinery, with X as the set of lower endpoints in crHr
a,b

(M) \ Hr
a,b. By Lemma 4.6, if a

sequence Sx does not contain a violating Hr
a,b-pair, then the last term sj must belong to

skHr
a,b

(M). By Lemma 7.2, msd(|sj [a]−M(sj)[a]|) > b. But then both sj and M(sj) belong

to L(Hr
a,b) or U(Hr

a,b), implying (sj ,M(sj)) ∈ stH(M). Contradiction. Every sequence Sx

contains a violating Hr
a,b-pair, and the calculation in Lemma 5.1 completes the proof.

The main technical work is in the proof of Lemma 7.2. Fix a, b, r. For convenience, we lose
all superscripts and subscripts.

Lemma 7.2. Suppose Sx contains no violated H-pair. Let the last term be sj (j is odd).
Then msd(|sj [a]−M(sj)[a]|) > b.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

Proof. For convenience, we denote sj+1 = M(sj). We prove by contradiction, so
msd(|sj [a] − sj+1[a]|) ≤ b. By Lemma 4.6, for all even i ≤ j + 1, condition (∗∗) holds
and sj belongs to an H-skew pair. We will rewire M to M′ such that weight remains the
same but the potential increases. We will remove the set E−(j + 1) from M and add the

set Ê = E+(j − 1) ∪ (sj−1, sj+1). Observe that both E−(j + 1) and Ê involve all terms in
s−1, . . . , sj+1. We will assume that j ≡ 1 (mod 4) (the other case is analogous and omitted).
By (∗∗),
w(E−(j+1)) = [f(s0)−f(s−1)]+[f(s1)−f(s2)]+[f(s4)−f(s3)]+· · ·+[f(sj−1)−f(sj−2)]+[f(sj)−f(sj+1)]

Now for w(Ê), all pairs other than (sj−1, sj+1) have their order decided by Prop. 3.4. By
(∗∗) for j − 1 and Corollary 3.3 for j + 1, sj−1 ≺ sj ≺ sj+1.

w(Ê) = [f(s1)−f(s−1)]+[f(s0)−f(s3)]+[f(s5)−f(s2)]+· · ·+[f(sj)−f(sj−3)]+[f(sj−1)−f(sj+1)]

We get w(E−(j + 1)) = w(Ê), so the weight stays the same. It remains the argue that the
potential has increased, as argued in Claim 7.3

Claim 7.3. Suppose msd(|sj [a]− sj+1[a]|) ≤ b. Then Φ(Ê) > Φ(E−(j + 1)).

Proof. Consider (sj′ , sj′+1) for odd −1 < j′ < j. Both these terms are either in L(H) or
U(H). Hence, Φ(sj′ −sj′+1) = Φ(H(sj′)−H(sj′+1)) = Φ(sj′−1−sj′+2). So most quantities

in Φ(E−(j + 1)) and Φ(Ê) are identical.

Φ(Ê)− Φ(E−(j + 1)) = Φ(s−1 − s1) + Φ(sj+1 − sj−1)− [Φ(s−1 − s0) + Φ(sj − sj+1)]

Since s1 = H(s0), the points s−1 − s1 and s−1 − s0 only differ in the ath coordinate. A
similar argument works for the remaining terms. Using | · |a to denote the absolute value of
the ath coordinate,

Φ(Ê)−Φ(E−(j+1)) = msd(|s−1−s1|a)+msd(|sj+1−sj−1|a)−[msd(|s−1−s0|a)+msd(|sj−sj+1)|a]

Note that msd(|s−1− s0|a) = b, by definition, since it lies in crH0
a,b

(M). Furthermore |s−1−
s1|a = |s−1−H(s0)|a = |s−1−s0|a−2b, so msd(|s−1−s1|a) > b. (Note the strict inequality.)
It suffices to show that msd(|sj+1 − sj−1|a) ≥ msd(|sj − sj+1|a). Because sj−1 = H(sj),
|sj+1−sj−1|a is either |2b + |sj−sj+1|a| or |2b−|sj−sj+1|a|. In either case, the assumption
msd(|sj − sj+1|a) ≤ b implies msd(|sj+1 − sj−1|a) ≥ msd(|sj − sj+1|a).

8. A PSEUDO-DISTANCE FOR (α, β)-LIPSCHITZ

A key concept that unifies Lipschitz and monotonicity is a pseudo-distance defined on
D. The challenge faced in the final proof is tweezing out all the places in the previous
argument where the distance function is “hidden”. We define a weighted directed graph
G = (D, E) where D is the hypergrid [k]n. E contains directed edges of the form (x, y),
where ‖x− y‖1 = 1. The length of edge (x, y) is gives as follows. If x ≺ y, the length is −α.
If x � y, the length is β.

Definition 8.1. The function d(x, y) between x, y ∈ D is the shortest path length from
x to y in G.

This function is asymmetric, meaning that d(x, y) and d(y, x) are possibly different. Fur-
thermore, d(x, y) can be negative, so this is not a distance in the usual parlance of metrics.
Nonetheless, d(x, y) has many useful properties, which can be proven by expressing it in a
more convenient form. Given any x, y ∈ D, we define hcd(x, y) to be the z ∈ D maximizing
||z||1 such that x � z and y � z. Note that if x � y then hcd(x, y) = y.

Claim 8.2. For any x, y ∈ D, d(x, y) = β||x− hcd(x, y)||1 − α||y − hcd(x, y)||1.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

Proof. Let us partition the coordinate set [n] = AtB tC with the following property.
For all i ∈ A, xi > yi. For all i ∈ B, xi < yi, and for all i ∈ C, xi = yi. Any path in G can
be thought of as sequence of coordinate increments and decrements. Any path from x to y
must finally decrement all coordinates in A, increment all coordinates in B, and preserve
coordinates in C. Furthermore, increments add −α to the path length, and decrements
add β. Fix a path, and let Ii and Di denote the number of increments and decrements in
dimension i. For i ∈ A, Di = Ii + |xi − yi|, for i ∈ B, Ii = Di + |xi − yi|, and for i ∈ C,
Ii = Di. The path length is given by∑

i∈A
(βDi − αIi) +

∑
i∈B

(βDi − αIi) +
∑
i∈C

(βDi − αIi)

=
∑
i∈A

[β|xi − yi|+ Ii(β − α)] +
∑
i∈B

[−α|xi − yi|+Di(β − α)] +
∑
i∈C

Ii(β − α)

≥ β
∑
i∈A

(xi − yi)− α
∑
i∈B

(yi − xi)

For the inequality, we use β ≥ α. Let z = hcd(x, y). Note that zi = min(xi, yi). Consider
the path from x that only decrements to reach z, and then only increments to reach y. The
length of this path is exactly β

∑
i∈A(xi − yi)− α

∑
i∈B(yi − xi).

It is instructive see the distance for monotonicity and Lipschitz. In the case of monotonicity
(when α = 0, β = ∞), d(x, y) = 0 if x ≺ y and d(x, y) = ∞ otherwise. In the case of
Lipschitz, d(x, y) = ||x− y||1. The next two claims establish some properties of the pseudo-

distance.

Claim 8.3.
— (Triangle equality) Fix x, y. Suppose z has the property that for all coordinates a, z[a]

lies in [x[a], y[a]] or [y[a], x[a]] (whichever is valid). Then, d(x, y) = d(x, z) + d(z, y).
— (Triangle inequality) d(x, y) ≤ d(x, z) + d(z, y).
— (Projection)Let v be a vector with a single non-zero coordinate. Let x′ = x + v and

y′ = y + v. Then d(x, y) = d(x′, y′).
— (Positivity) Consider a “cycle” of distinct points x1, x2, . . . , xs, xs+1 = x1 Then∑s
c=1 d(xc, xc+1) > 0.

Proof. The triangle equality property follows from Claim 8.2. Suppose x � z � y.
We have hcd(x, y) = y, hcd(x, z) = z, and hcd(y, z) = y. Hence, d(x, y) = β||x− y||1
= β(||x− z||1 + ||z − y||1) = d(x, z) + d(z, y). The other case is analogous. The triangle
inequality follows because d(x, y) is a shortest path length. For the projection property, let
z = hcd(x, y) and let z′ = hcd(x′, y′). Note that z and z′ also differ only in (say) the ath
coordinate by the same amount va. Thus, ||x− z||1 = ||x′ − z′||1 and ||y − z||1 = ||y′ − z′||1,
implying d(x, y) = d(x′, y′). For positivity, note that d(sc, sc+1) is the length of a path in G.
So
∑s

c=1 d(xc, xc+1) is length of a non-trivial cycle in G. Each coordinate increment adds
−α to the length, and a decrement adds β. The number of increments and decrements are
the same, so the length is a strictly positive multiple of β−α, a strictly positive quantity.

The following lemma connects the distance to the (α, β)-Lipschitz property.

Lemma 8.4. A function is (α, β)-Lipschitz iff for all x, y ∈ D, f(x)−f(y)−d(x, y) ≤ 0.

Proof. Suppose the function satisfied the inequality for all x, y. If x and y differ in
one-coordinate by 1 with x ≺ y, we get f(y) − f(x) ≤ β = d(y, x) and f(y) − f(x) ≥ α =
−d(x, y) implying f is (α, β)-Lipschitz. Conversely, suppose f is (α, β)-Lipschitz. Setting
z = hcd(x, y), f(x) − f(z) ≤ β||x− z||1 and α||y − z||1 ≤ f(y) − f(z). Summing these,
f(x)− f(y) ≤ β||x− z||1 − α||y − z||1 = d(x, y).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

We give a simple, but important fact about distances related to the function values.

Claim 8.5. min(f(x)− f(y)− d(x, y), f(y)− f(x)− d(y, x)) < 0.

Proof. Suppose not. Then f(x)− f(y)− d(x, y)+ f(y)− f(x)− d(y, x) ≥ 0, implying
d(x, y) + d(y, x) ≤ 0. This violates the positivity of Claim 8.3.

The next lemma is a generalization of Theorem 2.1, which argued that the size of a minimum
vertex cover is exactly εf |D|. We crucially use the triangle inequality for d(x, y). We define
an undirected weighted clique on D. Given a function f , we define the weight w(x, y) (for
any x, y ∈ D) as follows:

w(x, y) := max
(
f(x)− f(y)− d(x, y), f(y)− f(x)− d(y, x)

)
(4)

Note that although the distance d is asymmetric, the weight is symmetric. Lemma 8.4 shows
that a function is (α, β)-Lipschitz iff all w(x, y) ≤ 0. Once again, consider the special cases
of monotonicity and Lipschitz. For monotonicity, w(x, y) = f(x) − f(y) when x ≺ y and
−∞ otherwise. For Lipschitz, w(x, y) = |f(x)− f(y)|− ||x− y||1. We define the unweighted
violation graph as V Gf = (D, E) where E = {(x, y) : w(x, y) > 0}. The following lemma
generalizes Theorem 2.1 from [Fischer et al. 2002].

Lemma 8.6. The size of a minimum vertex cover in V Gf is exactly εf |D|.
Proof. Let U be a minimum vertex cover in V Gf . Since each edge in V Gf is a violation,

the points at which the function is modified must intersect all edges, and therefore should
form a vertex cover. Thus, εf |D| ≥ |U |. We show how to modify the function values at U
to get a function f ′ with no violations. We invoke the following claim with V = D−U , and
f ′(x) = f(x),∀x ∈ V . This gives a function f ′ such that ∆(f, f ′) = |U |/|D|. By Lemma 8.4,
f ′ is (α, β)-Lipschitz, and |U | ≥ εf |D|. Hence, |U | = εf |D|.

Claim 8.7. Consider partial function f ′ defined on a subset V ⊆ D, such that for all
∀x, y ∈ V , f ′(x) − f ′(y) ≤ d(x, y). It is possible to fill in the remaining values such that
∀x, y ∈ D, f ′(x)− f ′(y) ≤ d(x, y).

Proof. We prove by backwards induction on the size of V . If |V | = |D|, this is trivially
true. Now for the induction step. It suffices define f ′ for some u /∈ V . We need to define
f ′(u) so that f ′(u)− f ′(y) ≤ d(u, y) and f ′(x)− f ′(u) ≤ d(x, u) for all x, y ∈ V . It suffices
to argue that

m := max
x∈V

(f ′(x)− d(x, u)) ≤ min
y∈V

(f ′(y) + d(u, y)) =: M

Suppose not, so for some x, y ∈ V , f ′(x) − d(x, u) > f ′(y) + d(u, y). That implies that
f ′(x) − f ′(y) > d(x, u) + d(u, y) ≥ d(x, y) (using triangle inequality). Contradiction, so
m ≤M .

The following is a simple corollary of the previous lemma.

Corollary 8.8. The size of any maximal matching in V Gf is at least 1
2εf |D|.

By a perturbation argument, we can assume that w(x, y) is never exactly zero. This justifies
the strict inequalities used in the monotonicity proofs.

Claim 8.9. For any function f , there exists a function f ′ with the following properties.
Both f and f ′ have the same set of violated pairs, εf = εf ′ , and for all x, y ∈ D, wf ′(x, y) 6=
0.

Proof. We will construct a function f ′ such that wf ′(x, y) has the same sign as wf (x, y).
When wf (x, y) = 0, then wf ′(x, y) < 0. Since exactly the same pairs have a strictly positive

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

weight, their violation graphs are identical. By Lemma 8.6, εf = εf ′ . Construct the following
digraph T on D. For every x, y such that f(x)−f(y)−d(x, y) = 0, put a directed edge from
y to x. Suppose there is a cycle x1, x2, . . . , xs, xs+1 = x1 in this digraph. Then

∑s
c=1[f(sc)−

f(sc+1) − d(sc, sc+1)] = −
∑s

c=1 d(sc, sc+1) = 0. This violates the positivity of Claim 8.3,
so T is a DAG. Pick a sink s. For any x, f(x) − f(s) − d(x, s) is non-zero. Infinitesimally
decrease f(s) (call the new function f ′). For all x, wf ′(x, s) has the same sign as wf (x, s)
and is strictly negative if wf (x, s) = 0. By iterating in this manner, we generate the desired
function f ′.

9. GENERALIZED LIPSCHITZ TESTING ON HYPERGRIDS

In this section, we prove Theorem 1.5. With the distance d(x, y) in place, the basic spirit
of the monotonicity proofs can be carried over. The final proof requires manipulations of
the distance function. We do not explicitly have the “directed” behavior of monotonicity
that allows for many of rewiring arguments. The matching H is the same as in §6. The
generalized Lipschitz tester picks a pair (x, y) ∈ H at random. We choose M to be the
maximum weight matching that also maximizes Φ(M) (as defined by (3)). We again set up
the alternating paths as in §3, by fixing some matching Hr

a,b and taking alternating paths

with stHr
a,b

(M). We have a minor change that aids in some case analysis. By Claim 8.5,

either f(x) − f(y) > d(x, y) or f(y) − f(x) > d(y, x), but not both. We will show that it
suffices to consider only one of these cases. To that effect, define the set X as follows.

X = {x|(x, y) ∈ crHr
a,b

(M) \Hr
a,b, x ∈ L(Hr

a,b), f(x)− f(y) > d(x, y)}

(For monotonicity, the last condition is redundant.) As before, the main lemma is the
following.

Lemma 9.1. For all x ∈ X, Sx contains a violated Hr
a,b-pair.

We apply some symmetry arguments to show the next lemma, which proves Theorem 6.1.
For convenience, we drop the sub/superscripts in Hr

a,b. (Note that we do not lose the 2

factor here, as compared to Lemma 5.1.)

Lemma 9.2. The number of violations in H is at least crH(M).

Proof. We can classify the endpoints of crH(M)\Hr
a,b into the following sets. Consider

a generic (x, y) ∈ crH(M) where x ∈ L(H). If f(x) − f(y) > d(x, y), we put x in X and
y in Y . Otherwise, f(y)− f(x) > d(y, x), and we put x in X ′ and y in Y ′. By Lemma 9.1,

for x ∈ X, Sx has a violated H-pair. Consider x′ ∈ X ′. Take the function f̂ = −f and

the (−β,−α)-Lipschitz property. By Claim 8.2, the new distance satisfies d̂(u, v) = d(v, u).

If f(u) − f(v) > d(u, v), then f̂(v) − f̂(u) > d̂(v, u) (and vice versa). Hence, the violation
graphs, the weights, M, and the alternating paths are identical. Take x′ ∈ X ′, so it belongs

to some (x′, y′) ∈ crH(M). We have f̂(x)− f̂(y) > d̂(x, y). Applying Lemma 9.1 to f̂ for the
(−β,−α)-Lipschitz property, Sx′ has a violated H-pair. All in all, for any x ∈ X ∪X ′, Sx

contains a violated H-pair. To deal with Y ∪ Y ′, we will first reverse the entire domain, by
switching the direction of all edges in the hypergrid. (Represent this transformation by Ψ :
[k]n → [k]n, and note that Ψ−1 = Ψ.) By the shortest path definition of d, the new distance

satisfies d̂(u, v) = d(Ψ(v),Ψ(u)). Hence, we are looking at the (−β,−α)-Lipschitz property.
The matching H remains the same, but the identities of L(H) and U(H) have switched.

Construct function f̂(x) = −f(Ψ(x)). If in the original domain f(u)− f(v) > d(u, v), then

f̂(Ψ(v))− f̂(Ψ(u)) > d̂(Ψ(v),Ψ(u)) (and vice versa). Again, the alternating path structure
is identical. Consider in the original domain (x, y) ∈ crH(M) where x ∈ L(H). In the new
domain, Ψ(y) ∈ L(H). Hence, we can apply the conclusion of the previous paragraph for

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

all points in y ∈ Ψ(Y ∪ Y ′), and deduce that Sy contains a violated H-pair. Finally, we
conclude that every alternating path with an endpoint of crH(M)\Hr

a,b contains a violated

pair. There are at least |crH(M) \Hr
a,b| such (disjoint) alternating paths.

9.1. Preliminary setup

All the propositions of §3 hold, since they were independent of the property at hand. We
start by generalizing the monotonicity-specific setup done in §4. We fix some matching Hr

a,b,

and drop all super/subscripts for ease of notation.

Proposition 9.3. Consider the pairs in E−(i) and E+(i). For all even 0 ≤ j ≤ i− 2,
d(sj , sj+3) = d(sj+1, sj+2) and d(sj+3, sj) = d(sj+2, sj+1).

Proof. By Prop. 3.2, sj and sj+3 both lie in L(H) or U(H). Hence, sj+1 = H(sj) and
sj+2 = H(sj+3) are both obtained by adding or subtracting 2b from the ath coordinate. By
the projection property, d(sj , sj+3) = d(sj+1, sj+2) and d(sj+3, sj) = d(sj+2, sj+1).

Our aim is to generalize the conditions (∗) and (∗∗). The former condition is obtained by
assuming that (si, si+1) is not a violation. For monotonicity, this implies a single inequality,
but here, there are two inequalities. It turns out that because we are in the setting where
w(x, y) = f(x) − f(y) − d(x, y) > 0, only one of these is necessary. For even i, if (si, si+1)
is not a violation, Corollary 3.3 implies

If i ≡ 0 (mod 4), f(si+1)− f(si) > α2b.

If i ≡ 2 (mod 4), f(si)− f(si+1) > α2b. (◦)
Nowe we generalize (∗∗). The pair (si−1, si) is a violation, but we do not know whether
w(si−1, si) is f(si−1)− f(si)− d(si−1, si) or f(si)− f(si−1)− d(si, si−1). The following is
the equivalent of the ordering condition of (∗∗).

If i ≡ 0 (mod 4), f(si)− f(si−1) > d(si, si−1).

If i ≡ 2 (mod 4), f(si−1)− f(si) > d(si−1, si). (◦◦)

9.2. The structure lemmas

This lemma is the direct analogue of Lemma 4.3. The proof is also along similar lines.

Lemma 9.4. Consider some even index i such that si exists. Suppose conditions (◦)
and (◦◦) held for all even indices ≤ i. Then, si+1 is M-matched.

Proof. The proof is by contradiction. Assume i ≡ 0 (mod 4). (The proof for the case
i ≡ 2 (mod 4) is similar and omitted.) As in the proof of Lemma 4.3, we argue that w(M′) >
w(M), where M′ = M− E−(i) + E+(i). By condition (∗∗),

w(E−(i)) = [f(s0)− f(s−1)− d(s0, s−1)] + [f(s1)− f(s2)− d(s1, s2)]

+[f(s4)− f(s3)− d(s4, s3)] + [f(s5)− f(s6)− d(s5, s6)] + · · ·
+[f(si−3)− f(si−2)− d(si−3, si−2)] + [f(si)− f(si−1)− d(si, si−1)] (5)

For w(E+(i)), it suffices to find a lower bound. Since (for any u, v ∈ D) w(u, v) is the
maximum of two expressions, we can choose the expression to match w(E−(i)) as much as
possible. For a pair (sk, sk+3) in E+(i), we bound the weight by f(sk)−f(sk+3)−d(sk, sk+3)
if j ≡ 0 (mod 4) and by f(sk+3)− f(sk)− d(sk+3, sk) if j ≡ 2 (mod 4). This ensure that the
coefficients of f(·) are identical to those in (5).

w(E+(i)) ≥ [f(s1)− f(s−1)− d(s1, s−1)] + [f(s0)− f(s3)− d(s0, s3)]

+[f(s5)− f(s2)− d(s5, s2)] + [f(s4)− f(s7)− d(s4, s7)] + · · ·
+[f(si−4)− f(si−1)− d(si−4, si−1)] + [f(si+1)− f(si−2)− d(si+1, si−2)](6)

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

Note that only w(E+(i)) involves f(si+1) and only w(E−(i)) involves f(si), but all other
f(·) terms have identical coefficients. To deal with the difference of the distances, we use
Prop. 9.3. All the distance terms in (6) except for the first cancel out with an equivalent
term in (5).

w(E+(i))− w(E−(i)) ≥ f(si+1)− f(si)− d(s1, s−1) + d(s0, s−1)

Since (s0, s−1) is a cross pair and s1 = H(s0), we can use triangle equality to deduce that
d(s0, s−1) − d(s1, s−1) = d(s0, s1) = −α2b. Combining, w(E+(i)) − w(E−(i)) ≥ f(si+1) −
f(si)− α2b. By condition (◦) for i, the RHS is strictly positive. Contradiction.

Now for analogue of Lemma 4.4 and Claim 4.5. We will prove the latter first.

Lemma 9.5. Consider some even index i such that si exists. Suppose conditions (◦)
and (◦◦) held for all even indices ≤ i. Then, condition (◦◦) holds for i+ 2.

Claim 9.6. Let j be the last index of Sx. Suppose conditions (◦) and (◦◦) hold for all
even i < j. Then the sequence s−1, s0, s1, . . . , sj ,M(sj) are distinct.

Proof. By the arguments in Claim 4.5, it suffices to get a contradiction assuming sj = y.
Since y ∈ U(H), by Prop. 3.2, j ≡ 1 (mod 4). Note that sj−1 = H(y) and (x, y) is a
cross pair. Therefore, we have the triangle equality d(x, y) = d(x, sj−1) + d(sj−1, y) =
d(x, sj−1) − α2b. We will replace pairs A = {(x, y), (sj−1, sj−2)} ∈ M with (x, sj−2), and
argue that the weight has increased. Applying condition (◦◦) for j − 1,

w(A) = [f(x)− f(y)− d(x, y)] + [f(sj−1)− f(sj−2)− d(sj−1, sj−2)]

= f(x)− f(y) + f(sj−1)− f(sj−2)− d(x, sj−1) + α2b − d(sj−1, sj−2)

≤ f(x)− f(y) + f(sj−1)− f(sj−2)− d(x, sj−2) + α2b (triangle inequality)

= [f(x)− f(sj−2)− d(x, sj−2)]− [f(y)− f(sj−1)− α2b]

≤ w(x, sj−2)− [f(y)− f(sj−1)− α2b]

The second term is strictly positive (by condition (◦) for j − 1 ≡ 0 (mod 4)), contradicting
the maximality of M.

Proof. (of Lemma 9.5) Assume i ≡ 0 (mod 4). (The proof for the case i ≡ 2 (mod 4)
is similar and omitted.) By Lemma 9.4, M(si+1) exists, and is denoted by si+2. The proof
is by contradiction, so assume condition (◦◦) does not hold for i + 2 ≡ 2 (mod 4). This
means f(si+1) − f(si+2) ≤ d(si+1, si+2). Since (si+1, si+2) is a violation, this implies
w(si+1, si+2) = f(si+) − f(si+1) − d(si+2, si+1). We set E′ = E+(i − 2) ∪ (si−2, si+2). We
argue that w(M′) > w(M), where M′ = M−E−(i+ 2) +E′. By Prop. 3.4 and Claim 9.6,
M′ is a valid matching. By condition (◦◦) for even k < i + 2 and the above conclusion on
w(si+1, si+2), we get almost the same expression as (5).

w(E−(i+ 2)) = [f(s0)− f(s−1)− d(s0, s−1)] + [f(s1)− f(s2)− d(s1, s2)]

+[f(s4)− f(s3)− d(s4, s3)] + [f(s5)− f(s6)− d(s5, s6)] + · · ·
+[f(si−3)− f(si−2)− d(si−3, si−2)] + [f(si)− f(si−1)− d(si, si−1)]

+[f(si+2)− f(si+1)− d(si+2, si+1)] (7)

For w(E′), we follow the same pattern in (6).

w(E′) ≥ [f(s1)− f(s−1)− d(s1, s−1)] + [f(s0)− f(s3)− d(s0, s3)]

+[f(s5)− f(s2)− d(s5, s2)] + [f(s4)− f(s7)− d(s4, s7)] + · · ·
+[f(si−3)− f(si−6)− d(si−3, si−6)] + [f(si−4)− f(si−1)− d(si−4, si−1)]

+[f(si+2)− f(si−2)− d(si+2, si−2)] (8)

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

By Prop. 9.3, all distance terms in (6) barring the first and last are identical to an equivalent
term in (5).

w(E+(i+ 2))− w(E−(i+ 2)) ≥ f(si+1)− f(si)

−d(s1, s−1)− d(si+2, si−2) + d(s0, s−1) + d(si, si−1) + d(si+2, si+1)

As in the proof of Lemma 9.4, d(s0, s−1)− d(s1, s−1) = d(s0, s1) = −α2b. Furthermore,

−d(si+2, si−2) + d(si, si−1) + d(si+2, si+1) ≥ d(si, si−1)− d(si+1, si−2) (triangle inequality)

= 0 (Prop. 9.3)

Combining, w(E′) − w(E−(i + 2)) ≥ f(si+1) − f(si) − α2b. This is strictly positive, by
condition (◦) for i. Contradiction.

We proceed to the analogue of Lemma 4.6. Because of the use of distances and potentials,
we require a much simpler statement.

Lemma 9.7. Suppose Sx contains no violated H-pair. Let the last term by sj (j is odd).
For every even i ≤ j + 1, condition (◦◦) holds. Furthermore, sj is M \ stH(M)-matched.

Proof. The first part is identical to that of Lemma 4.6. Condition (◦◦) holds for i = 0,
and applications of Lemma 9.5 complete the proof. By Lemma 9.4 sj is M-matched, but
being the last term cannot be stH(M)-matched.

9.3. The existence of a violated edge in Sx

We show the existence of a violated H-edge in Sx, proving Lemma 9.1. Suppose Sx has
no violated H-pair. By Lemma 9.7, sj is M \ stH(M)-matched. By the following lemma
(analogue of Lemma 7.2) asserts msd(sj [a]− sj+1[a]) > b, implying sj is stH(M)-matched.

Lemma 9.8. Suppose Sx contains no violated H-pair. Let the last term by sj (j is odd).
Then msd(sj [a]− sj+1[a]) > b.

Proof. The proof is analogous to that of Lemma 7.2. By Lemma 9.7, for all even i ≤
j + 1, condition (◦◦) holds. By Claim 9.6, s−1, s0, s1, . . . , sj ,M(sj) = sj+1 are all distinct.

We rewire M to M′ by removing E−(j + 1) from M and adding the set Ê = E+(j − 1) ∪
(sj−1, sj+1). We will assume that j ≡ 1 (mod 4) (the other case is analogous and omitted).
By (◦◦), we can exactly express w(E−(j + 1)).

w(E−(j + 1)) = [f(s0)− f(s−1)− d(s0, s−1)] + [f(s1)− f(s2)− d(s1, s2)]

+[f(s4)− f(s3)− d(s4, s3)] + [f(s5)− f(s6)− d(s5, s6)] + · · ·
+[f(sj−1)− f(sj−2)− d(sj−1, sj−2)] + [f(sj)− f(sj+1)− d(sj , sj+1)]

We get a lower bound for w(Ê) that matches the f terms exactly.

w(Ê) ≥ [f(s1)− f(s−1)− d(s1, s−1)] + [f(s0)− f(s3)− d(s0, s3)]

+[f(s5)− f(s2)− d(s5, s2)] + [f(s4)− f(s7)− d(s4, s7)] + · · ·
+[f(sj)− f(sj−3)− d(sj , sj−3)] + [f(sj−1)− f(sj+1)− d(sj−1, sj+1)]

By Prop. 9.3, the distance terms d(sc, sc+3) and d(sc+3, sc) can be matched to equivalent
terms. In the following, we use the equality d(s0, s−1)− d(s1, s−1) = −α2b.

w(Ê)− w(E−(j + 1)) ≥ −d(s1, s−1)− d(sj−1, sj+1) + d(s0, s−1) + d(sj , sj+1)

≥ −α2b − d(sj−1, sj) (triangle inequality)

= −α2b − (−α2b) = 0 (By Prop. 3.2, j ≡ 1 (mod 4), so sj ∈ U(H).)

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

So M′ is also a maximum weight matching. Observe that the potential Φ is independent
of the property at hand. Claim 7.3 only uses the basic structure of the alternating paths
and is applicable here. It asserts that if msd(sj [a] − sj+1[a]) ≤ b, then Φ(M′) > Φ(M),
contradicting the choice of M.

10. ACKNOWLEDGEMENTS

Sandia National Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-
AC04-94AL85000. CS is grateful for the support received from the Early Career LDRD
program at Sandia National Laboratories.

REFERENCES

2011. Open problems in data streams, property testing, and related topics. http://sublinear.info/files/
bertinoro2011_kanpur2009.pdf. 2

Ailon, N. and Chazelle, B. 2006. Information theory in property testing and monotonicity testing in
higher dimension. Information and Computation 204, 11, 1704–1717. 2, 3

Ailon, N., Chazelle, B., Comandur, S., and Liu, D. 2006. Estimating the distance to a monotone function.
Random Structures and Algorithms 31, 3, 1704–1711. 2

Awasthi, P., Jha, M., Molinaro, M., and Raskhodnikova, S. 2012. Testing Lipschitz functions on hy-
pergrid domains. In Proceedings of the International Workshop on Randomization and Computation
(RANDOM). 2

Batu, T., Rubinfeld, R., and White, P. 2005. Fast approximate PCP s for multidimensional bin-packing
problems. Information and Computation 196, 1, 42–56. 2

Bhattacharyya, A., Grigorescu, E., Jha, M., Jung, K., Raskhodnikova, S., and Woodruff, D. 2012.
Lower bounds for local monotonicity reconstruction from transitive-closure spanners. SIAM Journal of
Discrete Math 26, 2, 618–646. Conference version in RANDOM 2010. 3

Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., and Woodruff, D. 2009. Transitive-
closure spanners. In Proceedings of the 18th Annual Symposium on Discrete Algorithms (SODA). 531–
540. 2, 3

Blais, E., Brody, J., and Matulef, K. 2012. Property testing lower bounds via communication complexity.
Computational Complexity 21, 2, 311–358. 2, 3

Blais, E., Raskhodnikova, S., and Yaroslavtsev, G. 2014. Lower bounds for testing properties of func-
tions on hypergrid domains. In Conference on Computational Complexity. 2

Briët, J., Chakraborty, S., Garćıa-Soriano, D., and Matsliah, A. 2012. Monotonicity testing and
shortest-path routing on the cube. Combinatorica 32, 1, 35–53. 2, 3, 4

Chakrabarty, D. and Seshadhri, C. 2013a. Optimal bounds for monotonicity and Lipschitz testing over
hypercubes and hypergrids. In Proceedings of Symposium on Theory of Computing (STOC). 1

Chakrabarty, D. and Seshadhri, C. 2013b. An optimal lower bound for monotonicity testing over hyper-
grids. In Proceedings of the International Workshop on Randomization and Computation (RANDOM).
2

Chaudhuri, S., Gulwani, S., Lublinerman, R., and Navidpour, S. 2011. Proving programs robust. In
Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE). 3

Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., and Samorodnitsky, A. 1999.
Improved testing algorithms for monotonicity. Proceedings of the 3rd International Workshop on Ran-
domization and Approximation Techniques in Computer Science (RANDOM), 97–108. 2

Dwork, C., McSherry, F., Nissim, K., and Smith, A. 2006. Calibrating noise to sensitivity in private
data analysis. In Proceedings of the Theory of Cryptography Conference (TCC). 3

Ergun, F., Kannan, S., Kumar, R., Rubinfeld, R., and Viswanathan, M. 2000. Spot-checkers. Journal
of Computer Systems and Sciences (JCSS) 60, 3, 717–751. 2, 3

Fischer, E. 2004. On the strength of comparisons in property testing. Information and Computation 189, 1,
107–116. 2, 3

Fischer, E., Lehman, E., Newman, I., Raskhodnikova, S., Rubinfeld, R., and Samorodnitsky, A. 2002.
Monotonicity testing over general poset domains. In Proceedings of the 34th Annual ACM Symposium
on the Theory of Computing (STOC). Proceedings of the 34th Annual ACM Symposium on the Theory
of Computing (STOC), 474–483. 2, 3, 4, 15

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

http://sublinear.info/files/bertinoro2011_kanpur2009.pdf
http://sublinear.info/files/bertinoro2011_kanpur2009.pdf

A:21

Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., and Samorodnitsky, A. 2000. Testing mono-
tonicity. Combinatorica 20, 301–337. 1, 2

Halevy, S. and Kushilevitz, E. 2008. Testing monotonicity over graph products. Random Structures and
Algorithms 33, 1, 44–67. 2, 3

Jha, M. and Raskhodnikova, S. 2011. Testing and reconstruction of Lipschitz functions with applications
to data privacy. In Proceedings of the 52nd Annual Symposium on Foundations of Computer Science
(FOCS). 433–442. 2, 3, 4

Lehman, E. and Ron, D. 2001. On disjoint chains of subsets. Journal of Combinatorial Theory, Series
A 94, 2, 399–404. 2, 4

Parnas, M., Ron, D., and Rubinfeld, R. 2006. Tolerant property testing and distance approximation.
Journal of Computer and System Sciences 6, 72, 1012–1042. 2

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

