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Abstract

Let f : {−1, 1}n → R be a real function on the hypercube, given by its discrete
Fourier expansion, or, equivalently, represented as a multilinear polynomial. We say
that it is Boolean if its image is in {−1, 1}.

We show that every function on the hypercube with a sparse Fourier expansion
must either be Boolean or far from Boolean. In particular, we show that a multilinear
polynomial with at most k terms must either be Boolean, or output values different
than −1 or 1 for a fraction of at least 2/(k + 2)2 of its domain.

It follows that given oracle access to f , together with the guarantee that its rep-
resentation as a multilinear polynomial has at most k terms, one can test Booleanity
using O(k2) queries. We show an Ω(k) queries lower bound for this problem.

Our proof crucially uses Hirschman’s entropic version of Heisenberg’s uncertainty
principle.
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1 Introduction

Let f be a function from {−1, 1}n to R. Equivalently, one can consider functions on {0, 1}n
or Zn2 , as we do below. A natural way to represent such a function is as a multilinear
polynomial. For example:

f(x1, x2, x3) = x1 − 2x2x3 + 3.5x1x2.

This representation is called the Fourier expansion of f and is extremely useful in many
applications (cf., [19]). The coefficients of the Fourier expansion of f are called the Fourier
transform of f . We denote the Fourier transform by f̂ , and think of it too as a function from
{−1, 1}n to R.

We say that f is Boolean if f(x) = 1 or f(x) = −1 for all x in its domain. An interesting
question in the field of discrete Fourier analysis of Boolean functions is the following: what
does the fact that f is Boolean tell us about its Fourier transform f̂? Is there a simple
characterization of functions that are the Fourier transform of Boolean functions?

We propose the following observation that lies at the basis of our proofs: f is Boolean
if and only if the convolution (over Zn2 ) of f̂ with itself is equal to the delta function. This
follows from the convolution theorem, as we show below in Proposition 3.1.

Equipped with this characterization, we consider the question of determining whether or
not f is Boolean. In particular, we consider the case that we are given black box access to a
function f , together with the guarantee that its representation as a multilinear polynomial
has at most k terms, in which case we say that f is k-sparse. Sparse functions on the
hypercube have been the subject of numerous studies (see, e.g., [18, 11, 15]).

We show that O(k2) queries to f suffice to answer this question correctly with high
probability. This follows from the following combinatorial result: in Theorem 1.1 we show
that if f is not Boolean then it is not Boolean for at least a 2/(k+2)2 fraction of its domain.
More generally, we show that for any set D ⊂ R of size d, either the image of f is contained
in D, or else f(x) 6∈ D for at least a d!/(k + d)d fraction of the domain of f . We prove an
Ω(k) lower bound for this problem.

Booleanity testing bears resemblance to problems of property testing of functions on the
hypercube (see, e.g., [3, 6, 7, 17]). See Section 1.4 below for further discussion.

Our proofs rely on the discrete version of Heisenberg’s uncertainty principle. There have
been very few applications of the discrete uncertainty principle in Computer Science, and in
fact we are only familiar with one other such result, concerning circuit lower bounds [13]. We
expect that more applications can be found, in particular in cryptography. See Sections 1.3
and 1.5 below for further discussion.

In the following Section 1.1 we present our main results, and in Sections 1.2, 1.3, 1.4
and 1.5 we elaborate on the background and relation to other work, as well as propose a
relaxation of our main claim. Section 2 contains formal definitions, and proofs appear in
Section 3.
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1.1 Main results

A function f : {−1, 1}n → R is k-sparse if it can be represented as a multilinear polynomial
with at most k terms. Recall that we say that f is Boolean if its image is contained in
{−1, 1}.

The following theorem is a combinatorial result, stating that a function with a sparse
Fourier expansion is either Boolean or far from Boolean.

Theorem 1.1. Every k-sparse function f is either Boolean, or satisfies

Px [f(x) 6∈ {−1, 1}] ≥ 2

(k + 2)2

where Px [·] denotes the uniform distribution over the domain of f .

We in fact prove a more general result:

Theorem 1.2. Let D ⊂ R be a set with d elements. Then, for any k-sparse function f , one
of the following holds.

• Either Px [f(x) ∈ D] = 1,

• or Px [f(x) 6∈ D] ≥ d!
(k+d)d

,

where Px [·] denotes the uniform distribution over the domain of f .

That is, either f ’s image is inD, or it is far from being inD. In particular, forD = {−1, 1}
(or {0, 1}, or any other set of size two), this theorem reduces to Theorem 1.1

An immediate consequence of Theorem 1.1 is the following result.

Theorem 1.3. For every ε > 0 there exists a randomized algorithm with query (and time)
complexity O(k2 log(1/ε)) that, given k and oracle access to a k-sparse function f ,

• returns true if f is Boolean, and

• returns false with probability at least 1− ε if f is not Boolean.

This result can easily be extended to test whether the image of a function on the hyper-
cube is contained in any finite set, using Theorem 1.2.

We prove the following lower bound:

Theorem 1.4. Let A be a randomized algorithm that, given k and oracle access to a k-sparse
function f ,

• returns true with probability at least 2/3 if f is Boolean, and

• returns false with probability at least 2/3 if f is not Boolean.

Then A has query complexity Ω(k).
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1.2 The Fourier transform of Boolean functions

Let f, g be functions from Zn2 to R. Their convolution f ∗ g is also a function from Zn2 to R
defined by

[f ∗ g](x) =
∑
y∈Zn

2

f(y)g(x+ y),

where the addition “x+y” is done using the group operation of Zn2 . Note that the convolution
operator is both associative and distributive.

An observation that lies at the basis of our proofs is a characterization of the Fourier
transforms of Boolean functions: f̂ : Zn2 → R is the Fourier transform of a Boolean function
if its convolution with itself is equal to the delta function; that is,

f̂ ∗ f̂ = δ

(where δ : Zn2 → {0, 1} is given by δ(0) = 1, and δ(x) = 0 for every x 6= 0).

This is our Proposition 3.1; it follows from the convolution theorem (see, e.g.,[14]).
Equivalently, given a function f on Zn2 , one can shift it by acting on it with x ∈ Zn2 by
[xf ](y) = f(x + y). Hence the observation above can be stated as follows: If and only if a
function is orthogonal to its shifted self, for all non-zero shifts in Zn2 , then it is the Fourier
transform of a Boolean function.

1.3 The uncertainty principle

A distribution over a discrete domain S is often represented as a non-negative function
f : S → R+ which is normalized in L1, i.e.,

∑
x∈S f(x) = 1.

In Quantum Mechanics the state of a particle on a domain S is represented by a complex
function on S, and the probability to find the particle in a particular x ∈ S is equal to
|f(x)|2. Accordingly, f is normalized in L2, so that

∑
x∈S |f(x)|2 = 1.

Often, the domain S is taken to be R (or some power thereof). In this continuous case one
represents the state of a particle by a function f : R→ C such that

∫
x∈R |f(x)|2dx = 1, and

then |f(x)|2 is the probability density function of the distribution of the particle’s position.
The Fourier transform of f , denoted by f̂ , is then also normalized in L2 (if one chooses the
Fourier transform operator to be unitary), and |f̂(x)|2 is the probability density function of
the distribution of the particle’s momentum.

The Heisenberg uncertainty principle states that the variance of a particle’s position times
the variance of its momentum is at least one - under an appropriate choice of units. Besides
its physical significance, this is also a purely mathematical statement relating a function on
R to its Fourier transform.
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Hirschman [12] conjectured in 1957 a stronger entropic form, namely

He

[
f
]

+He

[
f̂
]
≥ 1− ln 2,

where He [f ] = −
∫
x∈R |f(x)|2 ln |f(x)|2dx is the differential entropy of f . This was proved

nearly twenty years later by Beckner [1].

When the domain S is Zn2 (equivalently, {−1, 1}n) then a similar inequality holds, but
with a different constant. Let f : Zn2 → C have Fourier transform f̂ : Zn2 → C. Then

H

[
f

||f ||

]
+H

[
f̂

||f̂ ||

]
≥ n.

where H [f ] = −
∑

x∈Zn
2
|f(x)|2 log2 |f(x)|2, and ‖f‖ =

√∑
x∈Zn

2
f(x)2. (For a further dis-

cussion on the foregoing inequality, see Section 3.2.)

1.4 Relation to property testing

We note that the problem of testing Booleanity is similar in structure to a property testing
problem. Since its introduction in the seminal paper by Rubinfeld and Sudan [20], property
testing has been studied extensively, both due to its theoretical importance, and the wide
range of applications it has spanned (cf. [8, 9]). In particular, property testing of functions
on the hypercube is an active area of research [3, 6, 7, 17].

A typical formulation of property testing is as follows: Given a fixed property P and an
input f , a property tester is an algorithm that distinguishes with high probability between
the case that f satisfies P , and the case that f is ε-far from satisfying it, according to some
notion of distance.

The algorithm we present for testing Booleanity given oracle access is similar to a property
testing algorithm. However, in our case there is no proximity parameter: we show that if a
function is not Boolean then it must be far from Boolean, and can therefore be proved to
not be Boolean by a small number of queries. This type of property testing algorithms have
appeared in the context of the study of adaptive versus non-adaptive testers [10].

1.5 Discussion and open questions

In this paper we use a discrete entropy uncertainty principle to prove a combinatorial state-
ment concerning functions on the hypercube. To the best of our knowledge, this is the first
time this tool has been used in the context of theoretical computer science, outside of circuit
lower bounds.

We note that Theorem 1.1 and Theorem 1.2 are, in a sense, a dual to the Schwartz-Zippel
lemma [22, 21]: both limit the number of roots of a polynomial, given that it is sparse.
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Given the usefulness of the Schwartz-Zippel lemma, we suspect that more combinatorial
applications can be found for the discrete uncertainty principle.

For example, Biham, Carmeli and Shamir [2] show that an RSA decipherer who uses
hardware that has been maliciously altered can be vulnerable to an attack resulting in the
revelation of the private key. The assumption is that the dechiperer is not able to discover
that it is using faulty hardware, because the altered function returns a faulty output for only
a very small number of inputs. The uncertainty principle shows that such malicious alter-
ation is impossible to accomplish with succinctly represented functions: when the Fourier
transform of a function is sparse then it is impossible to “hide” elements in its image.

As for the scope of this study, many questions still remains open. In particular, there
is a gap between the lower bound and the upper bound for testing Booleanity with oracle
access; we are disinclined to guess which of the two is not tight.

A natural extension of our results is to functions with a Fourier transform f̂ that is not
restricted to having support of size k, but rather having entropy log k; the latter is a natural
relaxation of the former. Unfortunately, we have not been able to generalize our results given
this constraint. However, another natural constraint which does yield a generalization is the
requirement that the entropy of f̂ ∗ f̂ , the convolution of the Fourier transform with itself,
is at most 2 log k. See Proposition 3.4 for why this is indeed natural.

Two additional amendments are needed to be added for Theorem 1.1 for it to be thus
generalized. First, we require that |f |2 = 2n. Next, recall that we call a function f Boolean
if f 2 = 1. We likewise say that f is ε-close to being Boolean if√

1

2n

∑
x∈Zn

2

(f(x)2 − 1)2 ≤ ε.

This is simply the L2 distance of f 2 from the constant function 1. In the following theorem
we do not test for Booleanity, but for ε-closeness to Booleanity.

Theorem 1.5. Let H
[

f̂∗f̂
‖f̂∗f̂‖

]
≤ 2 log k, and let ‖f‖2 = 2n. Then f is either ε-close to

Boolean, or satisfies

Px [f(x) 6∈ {−1, 1}] = Ω

(
1

k2(ε2+1)/ε2

)
where Px [·] denotes the uniform distribution over the domain of f .

We prove this Theorem in Section 3.4.

2 Definitions

The following definitions are mostly standard. We deviate from common practice by consid-
ering both a function and its Fourier transform to be defined on the same domain, namely
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Zn2 . Some readers might find {0, 1}n or {−1, 1}n a more familiar domain for a function, and
likewise the power set of [n] a more familiar domain for its Fourier transform.

Denote Z2 = Z/2Z. For x, y ∈ Zn2 we denote by x + y the sum using the Zn2 group
operation. The equivalent operation in {−1, 1}n is pointwise multiplication (i.e., xy =
(x1y1, . . . , xnyn)).

Let f : Zn2 → R. We denote its L2-norm by

‖f‖ =

√∑
x∈Zn

2

f(x)2, (2.1)

denote its support by

supp f = {x ∈ Zn2 : f(x) 6= 0}, (2.2)

and denote its entropy by

H [f ] = −
∑
x∈Zn

2

f(x)2 log f(x)2, (2.3)

where logarithms are base two and 0 log 0 = 0, by the usual convention in this case. We
remark that for the simplicity of the presentation, we define norms and convolutions using
summation rather than expectation.

We call a function f : Zn2 → R Boolean if its image is in {−1, 1}, i.e., if f(x) ∈ {−1, 1}
for all x ∈ Zn2 .

Let f̂ : Zn2 → R denote the discrete Fourier transform (also known as the Walsh-Fourier
transform and Hadamard transform) of f , or its representation as a multilinear polynomial:

f̂(x) =
1

2n

∑
y∈Zn

2

f(y)χy(x), (2.4)

where the characters χy are defined by

χy(x) =

{
−1

∑
i:yi=1 xi = 1

1 otherwise
.

Note that the sum
∑

i:yi=1 xi is over Z2 and that xi, yi are (respectively) the i’th coordinate
of x and y. It follows that the discrete Fourier expansion of f is

f(x) =
∑
y∈Zn

2

f̂(y)χy(x). (2.5)

Note that this is a representation of f as a multilinear polynomial. Hence f : Zn2 → R is
k-sparse if | supp f̂ | ≤ k.
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We define δ : Zn2 → R by

δ(x) =

{
1 when x = (0, . . . , 0)

0 otherwise
.

If we denote by 1(x) : Zn2 → R the constant function such that 1(x) = 1 for all x ∈ Zn2 , then
it is easy to verify that

1̂ = δ. (2.6)

Given functions f, g : Zn2 → R, their convolution f ∗ g is also a function from Zn2 to R,
defined by

[f ∗ g](x) =
∑
y∈Zn

2

f(y)g(x+ y). (2.7)

We denote

f (2) = f ∗ f,

and more generally f (k) is the convolution of f with itself k times. f (0) is taken to equal δ,
since f ∗ δ = f .

3 Proofs

3.1 The Fourier transform of Boolean functions

The convolution theorem (see., e.g., [14]) for Zn2 states that, up to multiplication by a con-
stant, the Fourier transform of the pointwise multiplication of two functions is equal to
the convolution of their Fourier transforms, and that likewise the Fourier transform of a
convolution is the product of the Fourier transforms (again up to a constant):

f̂ · g = f̂ ∗ ĝ, and f̂ ∗ g = 2nf̂ · ĝ. (3.1)

The correctness of the constants can be verified by, for example, setting f = g = 1. The
following proposition follows from Eqs. 2.6 and 3.1.

Proposition 3.1. f : Zn2 → R is Boolean iff f̂ ∗ f̂ = δ.

3.2 The discrete uncertainty principle

The discrete uncertainty principle for Zn2 is the following. It is a straightforward consequence
of Theorem 23 in Dembo, Cover and Thomas [5]; we provide the proof for completeness, since
it does not seem to have previously appeared in the literature.
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Theorem 3.2. For any non-zero function f : Zn2 → R (i.e., ‖f‖ > 0) it holds that

H

[
f

||f ||

]
+H

[
f̂

||f̂ ||

]
≥ n. (3.2)

Proof. Let U be a unitary n by n matrix such that maxij |uij| = M . Let x ∈ Cn be such
that ‖x‖ > 0. Then Theorem 23 in Dembo, Cover and Thomas [5] states that

H

[
x

‖x‖

]
+H

[
Ux

‖Ux‖

]
≥ 2 log(1/M),

where for x ∈ Cn we define H [x] = −
∑

i∈[n] |xi|2 log |xi|2.
Let F be the matrix representing the Fourier transform operator on Zn2 . Note that by

our definition in Eq. 2.4, the transform operator F is not unitary. However, if we multiply it
by
√

2n (i.e., normalize the characters χy) then it becomes unitary. The normalized matrix
elements (which are equal to the elements of the normalized characters χy), are all equal to
±1/
√

2n. Hence M = 1/
√

2n, and

H

[
f

‖f‖

]
+H

[
Ff

‖Ff‖

]
≥ 2 log(1/M) = n.

A distribution supported on a set of size k has entropy at most log k, as can be shown
by calculating its Kullback-Leibler divergence from the uniform distribution (see, e.g., [4]).
Hence any distribution with entropy log k has support of size at least k. This fact, to-
gether with the discrete uncertainty principle, yields a proof of the following claim (see
Matolcsi and Szucs [16] or O’Donnell [19] for an alternative proof of Eq. 3.3.)

Claim 3.3. For any non-zero function f : Zn2 → R (i.e., ‖f‖ > 0) it holds that

| supp f | · | supp f̂ | ≥ 2n (3.3)

and

| supp f | · 2H[f̂/‖f̂‖] ≥ 2n. (3.4)

Proof. By Theorem 3.2 we have that

H

[
f

||f ||

]
+H

[
f̂

||f̂ ||

]
≥ n.

Since log | supp(f)| = log | supp(f/||f ||)| ≥ H [f/||f ||] then

| supp f | · 2H[f̂/‖f̂‖] ≥ 2n
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and likewise

| supp f | · | supp f̂ | ≥ 2n.

We note that for the proof of Theorem 1.2 we rely on Claim 3.3, whereas for the more
general Theorem 1.5, using Claim 3.3 does not suffices and we must use (the stronger)
Theorem 3.2.

3.3 Testing Booleanity given oracle access

We begin by proving the following standard proposition, which relates the support of func-
tions f and g with the support of their convolution.

Proposition 3.4. Let g, f : Zn2 → R. Then

supp(f ∗ g) ⊆ supp f + supp g.

Here supp f + supp g is the set of elements of Zn2 that can be written as the sum of an
element in supp f and an element in supp g.

Proof. Let x ∈ supp(f ∗ g). Then, from the definition of convolution, there exist y and z
such that f(y) 6= 0, g(z) 6= 0 and x = y + z. Hence x ∈ supp f + supp g.

We consider a k-sparse function f to which we are given oracle access. We are asked to
determine if it is Boolean, or more generally if its image is in some small set D. We here
think of k as being small - say polynomial in n.

We first prove the following combinatorial result:

Theorem (1.2). Let D ⊂ R be a set with d elements. Then for any k-sparse f one of the
following holds.

• Either Px [f(x) ∈ D] = 1,

• or Px [f(x) 6∈ D] ≥ d!
(k+d)d

,

where Px [·] denotes the uniform distribution over the domain of f .

Proof. Let D = {y1, . . . , yd}. Denote

g =
d∏
i=1

(f − yi),
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so that g(x) = 0 iff f(x) ∈ D. Then

ĝ =
(
f̂ − y1δ

)
∗ · · · ∗

(
f̂ − ydδ

)
= f̂ (d) + ad−1f̂

(d−1) + · · · a1f̂ + a0δ,

for some coefficients a0, . . . , ad−1. Therefore

supp ĝ ⊆
d⋃
i=1

supp f̂ (i) ∪ {0}.

We show that | supp ĝ| ≤ (k + d)d/d!. Let A = supp f̂ ∪ {0}. Then by Proposition 3.4
supp f̂ (i) is a subset of iA = A + · · · + A, where the sum is taken i times; this is the set of
elements in Zn2 that can be written as a sum of i elements of A. Hence

supp ĝ ⊆ A ∪ 2A ∪ · · · ∪ dA.

Since 0 ∈ A, then for all i ≤ d we have that iA ⊆ dA. Hence

supp ĝ ⊆ dA.

Therefore supp ĝ is a subset of the set of elements that can be written as the sum of at most
d elements of A. This number is bounded by the number of ways to choose d elements of A
with replacement, disregarding order. Hence

| supp ĝ| ≤
(
|A| − 1 + d

d

)
≤ (k + d)d

d!
, (3.5)

since |A| ≤ | supp f̂ |+ 1 = k + 1.

Now, if f(x) ∈ D for all x ∈ Zn2 , then clearly Px [f(x) ∈ D] = 1. Otherwise, g(x) is
different than zero for some x, and so ‖g‖ > 0. Hence we can apply Claim 3.3 and

| supp g| · | supp ĝ| ≥ 2n.

By Eq. 3.5 this implies that

| supp g| ≥ 2nd!

(k + d)d
.

Since the support of g is precisely the set of x ∈ Zn2 for which f(x) /∈ D then it follows that

Px [f(x) 6∈ D] ≥ d!

(k + d)d
.
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A consequence is that a function that is not Boolean (i.e., the case D = {−1, 1}) is
not Boolean over a fraction of at least 2/(k + 2)2 of its domain. Theorem 1.3 is a direct
consequence of this result: assuming oracle access to f (i.e., O(1) time random sampling),
the algorithm samples f at random 1

2
(k + 2)2 ln(1/ε) times, and therefore will discover an x

such that f(x) 6∈ {−1, 1} with probability at least 1− ε - unless f is Boolean.

While we were not able to show a tight lower bound, we show that any algorithm would
require at least Ω(k) queries to perform this task (even when two-sided error is allowed).

Theorem (1.4). Let A be a randomized algorithm that, given k and oracle access to a k-
sparse function f ,

• returns true with probability at least 2/3 if f is Boolean, and

• returns false with probability at least 2/3 if f is not Boolean.

Then A has query complexity Ω(k).

Proof of Theorem 1.4. Let A be an algorithm that is given oracle access to a function f :
Zn2 → R, together with the guarantee that supp f̂ ≤ k. When f is Boolean then A returns
“true”. When f is not Boolean then f returns “false” with probability at least 2/3. We
show that A makes Ω(k) queries to f .

Denote by Bk the set of Boolean functions that depend only on the first log k coordinates.
Denote by Ck the set of functions that likewise depend only on the first log k coordinates,
return values in {−1, 1} for some k− 1 of the k possible values of the first log k coordinates,
but otherwise return 2. Note that functions in both Bk and Ck have Fourier transforms of
support of size at most k.

We prove the lower bound on the query complexity of the randomized algorithm by show-
ing two distributions, a distribution of Boolean functions and a distribution of non-Boolean
functions, which are indistinguishable to any algorithm that makes a small number of queries
to the input. That is, we present two distributions: one for which the algorithm should re-
turn “false” (denoted by D0) and another for which the algorithm should return “true”
(denoted by D1). We prove that any randomized algorithm which performs at most o(k)
queries would not be able to distinguish between the two distributions with non-negligible
probability. This proves the claim.

Let D1 be the uniform distribution over Bk, and let D0 be the uniform distribution over
Ck. Observe that an arbitrary query to f in either distribution would output a non-Boolean
value with probability at most 1/k, independently of previous queries with different values of
the first log k coordinates. Therefore any algorithm that performs o(k) queries would find an
input for which f(x) = 2 with probability o(1), and would therefore be unable to distinguish
between D0 and D1 with noticeable probability.
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3.4 Proof of Theorem 1.5

Recall the statement of Theorem 1.5.

Theorem (1.5). Let H
[

f̂∗f̂
‖f̂∗f̂‖

]
≤ 2 log k, and let ‖f‖2 = 2n. Then f is either ε-close to

Boolean, or satisfies

Px [f(x) 6∈ {−1, 1}] = Ω

(
1

k2(ε2+1)/ε2

)
where Px [·] denotes the uniform distribution over the domain of f .

We begin by proving a preliminary proposition.

Proposition 3.5. Let X be a discrete random variable, and let x0 be a value that X takes
with positive probability. Then

H(X|X 6= x0) ≤
H(X)

P [X 6= x0]
.

Proof. Let A be the indicator of the event X = x0. Then

H(X) ≥ H(X|A)

= P [X = x0]H(X|X = x0) + P [X 6= x0]H(X|X 6= x0)

= P [X 6= x0]H(X|X 6= x0),

since H(X|X = x0) = 0.

Proof of Theorem 1.5. Assume that f is ε-far from being Boolean. Observe that

‖f̂ (2)‖2 =
1

2n
‖f 2‖2 =

1

2n

∑
x∈Zn

2

f(x)4 =
1

2n

∑
x∈Zn

2

(f(x)2 − 1)2 + 1 ≥ 1 + ε2, (3.6)

where the equality before last follows from the fact that ‖f‖2 = 2n.

Let X be a Zn2 -valued random variable such that P [X = x] = f̂ (2)(x)2/‖f̂ (2)‖2. Since f
is normalized, then f̂ (2)(0) = 1. Furthermore,

P [X 6= 0] = 1− P [X = 0] = 1− f̂ (2)(0)2

‖f̂ (2)‖2
≥ ε2

ε2 + 1
,

since f̂ (2)(0) = 1, and by Eq. 3.6.

Let g = f 2 − 1. Then ĝ = f̂ (2) − δ, ĝ(0) = 0, and P [X = x|X 6= 0] = ĝ(x)2/‖ĝ‖2. Hence
by Proposition 3.5 it follows that

H

[
ĝ

‖ĝ‖

]
≤ H

[
f̂ (2)

‖f̂ (2)‖2

]
· ε

2 + 1

ε2
≤ 2

ε2 + 1

ε2
log k,

13



where the second inequality follows from the proposition hypothesis that

H

[
f̂ ∗ f̂
‖f̂ ∗ f̂‖

]
≤ 2 log k.

By Claim 3.3 it follows that

| supp g| · 2H[ĝ/‖ĝ‖] ≥ 2n.

Hence | supp(f 2 − 1)| · k2(ε2+1)/ε ≥ 2n, from which the proposition follows directly, since

Px [f(x) 6∈ {−1, 1}] =
| supp(f 2 − 1)|

2n
.
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