
Interval graph representation with
given interval and intersection lengths

Johannes Köbler1, Sebastian Kuhnert1∗, and Osamu Watanabe2

1 Humboldt-Universität zu Berlin, Inst. für Informatik
2 Tokyo Institute of Technology, Dept. of Mathematical and Computing Sciences

Abstract. We consider the problem of finding interval representations
of graphs that additionally respect given interval lengths and/or pairwise
intersection lengths, which are represented as weight functions on the
vertices and edges, respectively. Pe’er and Shamir proved that the problem
is NP-complete if only the former are given [SIAM J. Discr. Math. 10.4,
1997]. We give both a logspace and a linear-time algorithm for the case
when both are given, and both a logspace and an O(n ·m) time algorithm
when only the latter are given. We also show that the resulting interval
systems are unique up to isomorphism.
Complementing their hardness result, Pe’er and Shamir give a polynomial-
time algorithm for the case that the input graph has a unique minimal
interval representation. For such graphs, their algorithm computes an
interval representation that respects a given set of distance inequalities
between the interval endpoints (if it exists). We observe that deciding if
such a representation exists is NL-complete.

1 Introduction

Algorithmic aspects of interval graphs have been the subject of ongoing research
for several decades, stimulated by their numerous applications; see e.g. [Gol04].

The interval representation problem asks, given a graph G, if G is an inter-
val graph, and if so, to compute an interval representation for it. Booth and
Lueker [BL76] solve this problem in linear time, introducing the widely used
concept of PQ-trees to efficiently encode all possible orderings of the maximal
cliques. Hsu and Ma [HM99] give a simpler linear-time algorithm that relies on
modular decomposition instead. Corneil, Olariu, and Stewart [COS09] show a
further simplification, avoiding ordering the maximal cliques, by using lexico-
graphic breadth first search. Klein gave a parallel AC2 algorithm [Kle96]. Köbler
et al. [KKLV11] show that the interval representation problem is complete for
logspace.

In this paper, we consider the problems whether a graph with a weight
function ` on its vertices and/or a weight function s on its edges admits `-
respecting interval representations (where for each vertex v, its weight `(v)
prescribes the length of its interval), s-respecting interval representations (where
∗ Supported by DFG grant KO1053/7–1.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 32 (2012)



2 Johannes Köbler, Sebastian Kuhnert, and Osamu Watanabe

for each edge {u, v}, its weight s({u, v}) prescribes the length of the intersection of
the intervals of u and v), and (`, s)-respecting interval representations (which are
required to fulfill both these restrictions). Pe’er and Shamir showed that it is NP-
hard to decide if a graph G admits an `-respecting interval representation [PS97].
For the restricted case that the clique order of G is unique (up to reflection),
the same authors give a polynomial-time algorithm that can also handle more
general constraints on differences of interval endpoints. The problem of finding
s-respecting interval representations was introduced in [Yam07].

There are several related notions of constrained interval representation prob-
lems, many of which are motivated by scheduling and artificial intelligence
applications. In an influential paper, Allen classified the possible temporal rela-
tions between intervals, which give rise to an interval algebra consisting of all
unions of these relations [All83]. In a series of results, constraint satisfaction
problems over various subalgebras of this interval algebra have been considered.
See [KJJ03] for the final classification into tractable and NP-complete cases,
which also contains a survey of previous results. While Allan’s interval algebra
and its subalgebras focus on ordering the intervals, several extensions have been
studied that additionally allow constraints on interval lengths. Krokhin, Jeavons,
and Jonsson [KJJ04] study the case where disjunctions of linear relations on the
intervals are given and each of these disjunctions contains at most one relation
other than 6=. They characterize which subalgebras of Allen’s interval algebra
remain tractable after this addition.

Klavìk, Kratochvíl, and Vyskočil [KKV11] consider a variant of the interval
representation problem, where additionally to the graph G an interval represen-
tation of an induced subgraph of G is given as input. They give an O(n2) time
algorithm that computes a representation of G (if it exists) which extends the
given partial representation.

Our results. We show how to construct (`, s)-respecting interval representations in
logspace or alternatively in linear time, and s-respecting interval representations
in logspace or alternatively in O(n ·m) time.

The first step towards our algorithms is to show that all interval representa-
tions of the appropriate type have the same inclusion and overlap relationships,
and that these relations can be computed efficiently when G, ` (and s) are given
as input. This is described in Section 3.

To obtain our results on (`, s)-respecting interval representations (which are
in Section 4), we first focus on graphs with overlap-connected representations.
We show that these representations are unique up to reflection and can be
computed efficiently (if they exist). For graphs with several overlap-components
we arrange these components into a tree, and combine their (`, s)-respecting
interval representations into one for the whole graph. We also show that all
(`, s)-respecting interval representations are isomorphic.

In Section 5 we show how to compute s-respecting interval representations
efficiently. To obtain our result, we repeatedly use our algorithm for computing
an (`, s)-respecting interval representation as a subroutine. We prove that the
lengths of the pairwise intersections already determine the interval lengths (up



Interval graph representation with given intersection lengths 3

to insertion of points that are only present in a single interval). The resulting
s-respecting interval representation is minimal, i.e., it contains no superfluous
points. We also show that all minimal s-respecting interval representations are
isomorphic.

In Section 6, we reconsider the variant of the interval representation problem
that Pe’er and Shamir proved tractable [PS97], namely where the input graph is
required to have a unique minimal interval representation (up to reflection). We
observe that checking whether such a graph has an interval representation that
fulfills given upper and lower bounds on the distances between interval endpoints
is NL-complete.

2 Preliminaries

We say that two sets A and B overlap and write A G B, if A∩B 6= ∅, A \B 6= ∅,
and B \A 6= ∅. The cardinality of a finite set A is denoted by ‖A‖

For a graph G = (V,E), the set of neighbors of a vertex v ∈ V is denoted
by N(v). G is an interval graph if there is a system I of nonempty intervals
over N (we allow I to be a multiset) and a bijection ρ : V → I such that
{u, v} ∈ E ⇔ ρ(u) ∩ ρ(v) 6= ∅. In this case, I is called an interval model of G
and ρ is called an interval representation of G.

We write [l, r] to denote the interval {i ∈ N | l ≤ i ≤ r}. With the length of an
interval we denote the number of points in it.3 For an interval model I we always
suppose

⋃
I∈I I = [1, k] for some k, i.e., we disallow shifting and gaps between

connected components. I can be regarded as hypergraph with nodes [1, k] and
hyperedges I. Two interval models I and I ′ with points [1, k] are isomorphic if
they are isomorphic as hypergraphs, i.e., if there is a permutation π : [1, k]→ [1, k]
of the points that induces a bijection between the intervals of I and I ′ (preserving
multiplicities). We call two interval representations ρ1 and ρ2 of a graph G
isomorphic if ρ1(G) and ρ2(G) are isomorphic. The slots of I are the equivalence
classes on [1, k] w.r.t. containment in the intervals in I.

For functions ` : V → N and s : E → N, an interval representation ρ : V → I
of G is called `-respecting if ‖ρ(v)‖ = `(v) for all v ∈ V , s-respecting if
‖ρ(u) ∩ ρ(v)‖ = s({u, v}) for all {u, v} ∈ E, and (`, s)-respecting if both condi-
tions hold. An s-respecting interval representation of G is called minimal if no
point of I can be deleted without destroying this property, i.e., if there is no
s-respecting interval representation ρ′ : V → I ′ of G such that V (I ′) ( V (I) and
ρ′(v) ⊆ ρ(v) for all v ∈ V .

As usual, L is the class of all languages decidable by Turing machines with a
read-only input tape using only O(logN) space on the working tapes, where N
is the input size. FL is the class of all functions computable by such machines
that additionally have a write-only output tape. Note that FL is closed under
composition: To compute f(g(x)) for f, g ∈ FL, simulate the Turing machine
for f and keep track of the position of its input head. Every time this simulation
3 This does not coincide with the usual notion of length r − l. However, if we use the
real interval (l − 0.5, r + 0.5), then both measures coincide.



4 Johannes Köbler, Sebastian Kuhnert, and Osamu Watanabe

needs a character from f ’s input tape, simulate the Turing machine for g on input
x until it outputs the required character. Note also that g can first output a copy
of its input x and afterwards compute additional information to be used by f .
This construction can be iterated a constant number of times, still preserving the
logarithmic space bound. We will utilize this closure property in our logspace
algorithms by employing pre- and post-processing steps.

3 Deriving structural information

Let G = (V,E) be a graph, let n = ‖V ‖ and m = ‖E‖, and let ` : V → N and
s : E → N specify the desired interval and intersection lengths. For convenience, we
write s(u, v) instead of s({u, v}) for {u, v} ∈ E; for {u, v} /∈ E we let s(u, v) = 0.
Using this convention, we define two relations R`,s, Rs ⊆ V 2:

(u, v) ∈ R`,s ⇔ {u, v} ∈ E ∧ `(u) > s(u, v)
(u, v) ∈ Rs ⇔ {u, v} ∈ E ∧ ∃w ∈ V \ {u, v} : s(w, u) > min {s(w, v), s(u, v)}

By the following lemma, these relations characterize a structural property
that all (`, s)-respecting (resp., s-respecting) interval representations of G have
in common.

Lemma 1.
(a) Let ρ : V → I be any (`, s)-respecting interval representation of G, and let
{u, v} ∈ E. Then ρ(u) \ ρ(v) 6= ∅ if and only if (u, v) ∈ R`,s.

(b) Let ρ : V → I be any minimal s-respecting interval representation of G, and
let {u, v} ∈ E. Then ρ(u) \ ρ(v) 6= ∅ if and only if (u, v) ∈ Rs.

Proof. Part (a) follows directly from the definitions.
We now show part (b). By definition, (u, v) ∈ Rs means that there is a w ∈ V

such that s(w, u) > s(w, v) or s(w, u) > s(u, v). Either way, there must be a
point p ∈ ρ(w) ∩ ρ(u) \ ρ(v), implying ρ(u) \ ρ(v) 6= ∅.

For the backward direction, consider a point p ∈ ρ(u) \ ρ(v). By minimality
of ρ, there is a vertex w ∈ V \ {u} with p ∈ ρ(w). Note that w 6= v by
choice of p. If ρ(w) ⊃ ρ(u) ∩ ρ(v), it follows that s(w, u) > s(u, v). Otherwise
ρ(w) ∩ ρ(u) ) ρ(w) ∩ ρ(v) and thus s(w, u) > s(w, v). ut

Lemma 2. R`,s and Rs can be enumerated in time O(m) and O(n ·m), respec-
tively, and both can be enumerated in logspace.

Proof. The logspace part is obvious. To enumerate R`,s in linear time, loop
over all edges {u, v} ∈ E (considering both orientations) and output (u, v)
if `(u) > s(u, v). To enumerate Rs, loop over all edges {w, u} ∈ E (again,
considering both orientations) and all nodes v ∈ V \ {w, u}, and output (u, v) if
s(w, u) > min {s(w, v), s(u, v)}. ut

We write u G`,s v if (u, v) ∈ R`,s ∧ (v, u) ∈ R`,s, and u ⊆`,s v if {u, v} ∈
E ∧ (u, v) /∈ R`,s. The relations Gs and ⊆s are defined analogously using Rs. By



Interval graph representation with given intersection lengths 5

Lemma 1, these relations describe the situation in any appropriate representation
of G, e.g. we have u G`,s v ⇔ ρ(u) G ρ(v) in any (`, s)-respecting interval
representation ρ of G.

Lemma 3. Let ρ : V → I be any s-respecting interval representation of G. For
any three vertices v, w1, w2 ∈ V such that ρ(w1) G ρ(v) G ρ(w2), the intervals
ρ(w1) and ρ(w2) overlap ρ(v) from the same side if and only if s(w1, w2) >
min {s(w1, v), s(w2, v)}.

Note that this condition can be decided both in constant time and in logspace.

Proof. If ρ(w1) and ρ(w2) overlap ρ(v) from the same side, then ρ(w1) and ρ(w2)
contain at least one common point outside ρ(v), making their intersection larger
than the minimum of ‖ρ(w1) ∩ ρ(v)‖ and ‖ρ(w2) ∩ ρ(v)‖.

Now suppose to the contrary that ρ(w1) and ρ(w2) overlap ρ(v) from different
sides. Then ρ(v) can be partitioned into ρ(w1) ∩ ρ(w2), (ρ(w1) ∩ ρ(v)) \ ρ(w2),
and (ρ(w2) ∩ ρ(v)) \ ρ(w1). Because of the overlap relationships, the latter two
sets are non-empty. This implies that ‖ρ(w1) ∩ ρ(w2)‖ is smaller than both
‖ρ(w1) ∩ ρ(v)‖ and ‖ρ(w2) ∩ ρ(v)‖. ut

4 Given interval and intersection lengths

Let G = (V,E) be a graph, and let ` : V → N and s : E → N specify the desired
interval and intersection lengths. In this section, we give linear-time and logspace
algorithms that construct an (`, s)-respecting interval representation of G, or
detect that such a representation does not exist.

We define EG`,s
= {{u, v} ∈ E | u G`,s v} and GG`,s

= (V,EG`,s
) and call the

connected components of G`,s the overlap components of G. As a first step, we
consider overlap-connected graphs G.

Lemma 4. Given G = (V,E), ` and s, such that GG`,s
is connected, it is

possible in logspace (resp., in linear time) to compute an (`, s)-respecting interval
representation ρ : V → I of G, or to detect that none exists. Moreover, if existent,
ρ is unique up to reflection.

Proof. Let v1, v2, . . . , vN be a path in GG`,s
that visits every vertex at least once;

such a path can be constructed in linear time using depth first search or in logspace
using Reingold’s universal exploration sequences [Rei08]. The following algorithm
computes an interval representation ρ : V → I of G by moving along this path
(which we assume has been computed in a pre-processing step). It computes an
interval Ii for vi at each step and outputs ρ(vi) = Ii, if there is no j < i with
vj = vi. Define I1 = [1, `(v1)] and I2 = [`(v1)−s(v1, v2)+1, `(v1)−s(v1, v2)+`(v2)].
Note that after the arbitrary placement of I1, there are only two possibilities to
place I2 that respect (`, s); see Fig. 1 for an illustration. After that, all further
intervals are completely determined because of Lemma 3, and can be computed
from the path, ` and s, remembering only the two previous intervals.



6 Johannes Köbler, Sebastian Kuhnert, and Osamu Watanabe

ρ(vi−1)

ρ(vi)

`(vi−1)

`(vi) `(vi)

s(vi−1, vi) s(vi−1, vi)

Fig. 1. Proof of Lemma 4: If vi G`,s vi−1, and if ρ(vi−1) is already determined, there
remain only the two dashed possibilities for ρ(vi).

In a post-processing step, check that ρ is (`, s)-respecting. Additionally, shift
the resulting intervals such that 1 becomes the smallest point.

The uniqueness up to reflection follows from the fact that the only arbitrary
decision (except shifting) was to place ρ(v2) right of ρ(v1). ut

The next step is to generalize Lemma 4 to graphs where GG`,s
is not connected.

Let C = {G1, . . . , Gk} be the connected components of G`,s. We write Gi ≤`,s Gj

if i = j or if there are vertices u in Gi and v in Gj such that v ⊆`,s u. The latter
implies that, for any (`, s)-respecting interval representation ρ of G,

⋃
u∈Gi

ρ(u)
is contained in some slot S ⊆ ρ(v) of ρ(Gj), because otherwise there would be an
overlap-path from ρ(Gi) to ρ(Gj). Thus ≤`,s is an partial order on the overlap
components of G. If G is connected, (C,≤`,s) is also connected; by removing
reflexive and transitive edges, we obtain a rooted tree T`,s, which we will call the
overlap component tree of G.

Theorem 5. Given G = (V,E), ` and s, it is possible in logspace (resp., linear
time) to compute an (`, s)-respecting interval representation ρ : V → I of G, or
to detect that none exists. Moreover, ρ is unique up to isomorphism.

Proof. We assume that G is connected, otherwise consider its connected compo-
nents separately and concatenate their representations afterwards.

The algorithm works as follows: As pre-processing steps, compute the con-
nected componentsG1, . . . , Gk ofGG`,s

, an (`, s)-respecting interval representation
for each of them, and the overlap component tree T`,s. The main part of the al-
gorithm constructs an (`, s)-respecting interval representation of G by combining
appropriately shifted copies of the representations of the overlap components.
This is done in a depth-first traversal of the overlap component tree. The repre-
sentation of the root component is not shifted. The representations of the other
components are shifted to the appropriate slot of their parent component; if
several child components are contained in the same slot, they are placed beside
each other in the order in which they are encountered. It remains to check that
the result is indeed an (`, s)-respecting interval representation of G.

If G admits an (`, s)-respecting interval representation, then this algorithm
will find it: The representations of the components are unique up to reflection by
Lemma 4, implying that they have the same length in all representations; and
in every (`, s)-respecting interval representation of G, each overlap-component
must be placed in the appropriate slot of its parent overlap component. The



Interval graph representation with given intersection lengths 7

only arbitrary choices in the algorithm are the precise placement of overlap
components within their containing slot, the order of the connected components
of G, and whether the representation of the individual overlap components is
reflected. All these choices can be transformed into one another by isomorphisms
of the resulting interval system, so ρ is unique up to isomorphism.

To finish the proof, we show that the algorithm can be implemented in
logspace or linear time. Connected components can be found in logspace using
Reingold’s connectivity algorithm [Rei08], and in linear time using depth first
search. Computing (`, s)-respecting representations of the components of GG`,s

is
possible by Lemma 4. The construction of the overlap component tree given above
can easily be implemented in logspace. To obtain it in linear time, compute ≤`,s by
iterating over the edges ofG, and remove reflexive and transitive arcs; see [HMR93,
Proposition 3.6] for how the latter is possible in linear time. Computing the offsets
for shifting is clearly possible in linear time, and also in logspace if during the
tree traversal (see e.g. [Lin92] for how to do this in logspace) a current shift-offset
is maintained. ut

5 Given intersection lengths

Let G = (V,E) be a graph and let s : E → I prescribe the desired intersection
lengths. In this section, we reduce finding a minimal s-respecting interval repre-
sentation of G to finding (`, s)-respecting interval representations. In particular,
we show that the lengths of the intervals in a minimal s-respecting representation
are determined by G and s, and can be computed efficiently.

Note that we need minimality here, unlike to the case of (`, s)-respecting
representations. The reason is that adding a point to an interval of an (`, s)-
respecting representation always destroys this property, whereas in an s-respecting
representation, we can always duplicate points that are contained in a single
interval.

Lemma 6. Let G = (V,E) be an interval graph, s : E → N, and ρ : V → I
a minimal s-respecting interval representation of G. Then the interval lengths
`(v) = ‖ρ(v)‖ do not depend on ρ and can be computed from G and s in logspace;
or in O(n+m) time, if Rs is given as additional input.

Proof. We first describe the algorithm. For each v ∈ V , consider these cases:
1. If N(v) = ∅, set `(v) := 1.
2. If ∃w ∈ N(v) : v ⊆s w, then set `(v) := s(v, w).
3. Else, if ∃w1, w2 ∈ N(v) such that v Gs w1 Gs w2 Gs v and s(w1, w2) <

min {s(w1, v), s(w2, v)}, then set `(v) := s(w1, v) + s(w2, v)− s(w1, w2).
4. Otherwise, consider the subgraph G[N(v)] and define `v : N(v) → N by
`v(w) = s(w, v) for all w ∈ N(v). Additionally, define sv :

(
E ∩

(
N(v)

2
))
→ N

by sv(w1, w2) = min {s(w1, v), s(w2, v)} if w1 and w2 overlap v from the same
side, and sv(w1, w2) = s(w1, w2) otherwise. Compute an (`v, sv)-respecting
interval representation ρv : N(v)→ Iv of G[N(v)], and set `(v) :=

∥∥⋃
I∈Iv

I
∥∥.



8 Johannes Köbler, Sebastian Kuhnert, and Osamu Watanabe

Next, we show that the computed ` satisfies `(v) = ‖ρ(v)‖ for each v ∈ V . For
an isolated vertex v, as considered in case 1, we have ‖ρ(v)‖ = 1 by minimality
of ρ, so `(v) = 1 is correct. By Lemma 1(b) and definition of Gs and ⊆s, we have
u Gs v ⇔ ρ(u) G ρ(v) and u ⊆s v ⇔ ρ(u) ⊆ ρ(v). In case 2, this immediately
implies `(v) = s(v, w) = ‖ρ(v) ∩ ρ(w)‖ = ‖ρ(v)‖.

ρ(v)

ρ(w1)

ρ(w2)

`(v)

s(w1, v)

s(w2, v)

s(w1, w2)

Fig. 2. Proof of Lemma 6, case 3: ρ(w1) and ρ(w2) cover ρ(v), overlapping it from
different sides.

In case 3, ρ(w1) and ρ(w2) cover ρ(v), overlapping it from different sides
(the latter is true by Lemma 3), so we have the situation depicted in Fig. 2.
Thus, `(v) = s(w1, v) + s(w2, v)− s(w1, w2) = ‖ρ(w1) ∩ ρ(v)‖+ ‖ρ(w2) ∩ ρ(v)‖−
‖ρ(w1) ∩ ρ(w2)‖ = ‖(ρ(w1) ∪ ρ(w2)) ∩ ρ(v)‖ = ‖ρ(v)‖.

In case 4, the definitions of `v and sv truncate the intervals of the vertices
in N(v) to include only their intersection with ρ(v). We have ‖ρv(u)‖ = ‖ρ(u)‖ for
all u ⊆s v, and ‖ρv(w)‖ = ‖ρ(w) ∩ ρ(v)‖ for all w Gs v. So truncating ρ(G[N(v)])
gives an (`v, sv)-respecting model ρv(G[N(v)]) of G[N(v)]. By Theorem 5, this
model is unique up to isomorphism; in particular, its length is uniquely determined,
implying ‖ρ(v)‖ ≥ `(v). By minimality of ρ, both are equal.

It is obvious that this algorithm can be implemented in logspace. To see that
it is also possible in linear time, observe that in case 3, Lemma 3 allows us to
partition the Gs-neighbors of v into two sets W1 and W2, where neighbors that
overlap from the same side are in the same set, and that we can require w1 ∈W1
and w2 ∈ W2. For the linear-time implementation of case 4, observe that each
vertex u of G can occur in at most three of the auxiliary graphs: Suppose to
the contrary that there are vertices v1, v2, v3, v4 such that for each i ∈ [1, 4],
u ∈ N(vi) and case 4 is reached for vi. The latter implies that no ρ(vi) = [v−i , v

+
i ]

is contained in any other interval, and that none of them is covered by two
intervals that overlap it from different sides and additionally overlap each other.
Because case 2 does not hold, there are no containments, so we can assume
v−1 < v−2 < v−3 < v−4 and v+

1 < v+
2 < v+

3 < v+
4 . As case 3 holds neither, it follows

that v+
1 < v−3 and v+

2 < v−4 . Now let ρ(u) = [u−, u+]. As u is a neighbor of all vi,
we know u− ≤ v+

1 and v−4 ≤ u+. But this implies that ρ(u) either covers ρ(v2)
alone or together with ρ(v1), contradicting that case 4 is reached for v2. ut

The following is a consequence of Theorem 5 and Lemmas 2 and 6.



Interval graph representation with given intersection lengths 9

Corollary 7. Given G = (V,E) and s, it is possible in logspace (resp., in
O(n ·m) time) to compute an s-respecting interval representation ρ : V → I of G,
or to detect that none exists. Moreover, ρ is unique up to isomorphism.

6 Graphs with unique minimal interval model

As mentioned before, deciding if a graph has an `-respecting interval representa-
tion is NP-complete [PS97]. However, if the input graph G is required to have
a unique minimal interval model (up to reflection), the more general problem
DCIR (short for difference constrained interval representation) becomes tractable:
Additionally to G, a system of difference inequalities of the form xi − xj ≥ c is
given, where the variables are the left and right endpoints of the intervals (strict
inequalities are allowed, too). The problem is to decide if G has an interval model
that satisfies these inequalities. Pe’er and Shamir show that DCIR is linear-time
equivalent to the problem NegCycle, i.e., deciding if a digraph has a negative
cycle [PS97]. We observe that it is NL-complete, because of the following facts:

Fact 8 NegCycle is NL-complete.

Proof. The problem is in NL, because one can check if a nondeterministically
chosen path is a negative cycle, storing only the first vertex, the number of steps
taken so far and the accumulated weight. To prove the hardness, we reduce from
the NL-complete problem s-t-Con to decide if there is a directed path from s to t
in a given digraph: Let all arcs have weight 1, except (t, s), which is introduced
if not yet present, and assigned the weight −n. ut

Fact 9 The linear-time reductions between NegCycle and DCIR for interval
graphs with unique model can be implemented in logspace.

Proof idea. For most steps of the reductions in [PS97] this is obvious, only
computing the unique interval model requires the algorithm from [KKLV11]. ut

We remark that the reduction from NegCycle to DCIR generates only lower
and upper bounds on interval lengths, so hardness holds for this special case, too.

Conclusion

We have shown how to compute (`, s)- and s-respecting interval representations,
giving a linear-time algorithm for the former, an O(n ·m) time algorithm for
the latter, and logspace algorithms for both. We remark that recognition of
(`, s)- and s-respecting interval graphs is L-complete: In the reduction proving
that recognizing interval graphs is L-hard [KKLV11, Theorem 7.7], all generated
yes-instances are paths; so requiring `(v) = 2 and s(e) = 1 for all vertices u and
edges e does not prevent their representation.

We also have shown that (`, s)- and minimal s-respecting interval represen-
tations are unique up to isomorphism. This implies that any algorithm that



10 Johannes Köbler, Sebastian Kuhnert, and Osamu Watanabe

computes canonical interval representations of interval hypergraphs can be used
to obtain canonical (`, s)- and s-respecting interval representations. The algo-
rithm given in [KKLV11, Theorem 4.6] solves this in logspace, and it can also be
done in linear time using the PQ-tree algorithms of [BL76].

Open questions. The bottleneck in our O(n ·m) time algorithm for computing
s-respecting interval representations is the enumeration of Rs (see Lemma 2).
Can this also be implemented in linear, or at least O(n2), time?

Does the complexity of computing (`, s)- and s-respecting interval represen-
tations increase, when only some of the interval and intersection lengths are
restricted? Our techniques are not directly applicable in this case, as the algo-
rithm of Lemma 4 relies on the uniqueness of the representation, which is not
necessarily preserved in the modified scenario.

Acknowledgement. We thank Oleg Verbitsky for interesting discussions about
these results.

References

[All83] James F. Allen. ‘Maintaining knowledge about temporal intervals’. In:
CACM 26.11 (1983), pp. 832–843.

[BL76] Kellogg S. Booth and George S. Lueker. ‘Testing for the consecutive ones
property, interval graphs, and graph planarity using PQ-tree algorithms’.
In: J. Comput. Syst. Sci. 13.3 (1976), pp. 335–379.

[COS09] Derek G. Corneil, Stephan Olariu, and Lorna Stewart. ‘The LBFS Struc-
ture and Recognition of Interval Graphs’. In: SIAM J. Discr. Math. 23.4
(2009), pp. 1905–1953.

[Gol04] Martin Charles Golumbic. Algorithmic graph theory and perfect graphs.
2nd ed. Annals of Discrete Mathematics 57. Amsterdam: Elsevier, 2004.

[HM99] Wen-Lian Hsu and Tze-Heng Ma. ‘Fast and simple algorithms for rec-
ognizing chordal comparability graphs and interval graphs’. In: SIAM J.
Comput. 28.3 (1999), pp. 1004–1020.

[HMR93] Michel Habib, Michel Morvan, and Jean-Xavier Rampon. ‘On the calcula-
tion of transitive reduction—closure of orders’. In: Discrete Math. 111.1–3
(1993), pp. 289–303.

[KJJ03] Andrei Krokhin, Peter Jeavons, and Peter Jonsson. ‘Reasoning about
temporal relations: The tractable subalgebras of Allen’s interval algebra’.
In: J. ACM 50.5 (2003), pp. 591–640.

[KJJ04] Andrei Krokhin, Peter Jeavons, and Peter Jonsson. ‘Constraint Satisfaction
Problems on Intervals and Lengths’. In: SIAM J. Discr. Math. 17.3 (2004),
pp. 453–477.

[KKLV11] Johannes Köbler, Sebastian Kuhnert, Bastian Laubner, and Oleg Verbit-
sky. ‘Interval graphs: Canonical representations in logspace’. In: SIAM J.
Comput. 40.5 (2011), pp. 1292–1315.

[KKV11] Pavel Klavík, Jan Kratochvíl, and Tomáš Vyskočil. ‘Extending partial
representations of interval graphs’. In: Proc. 8th TAMC. LNCS 6648. Berlin
et al.: Springer, 2011, pp. 276–285.



Interval graph representation with given intersection lengths 11

[Kle96] Philip N. Klein. ‘Efficient parallel algorithms for chordal graphs’. In: SIAM
J. Comput. 25.4 (1996), pp. 797–827.

[Lin92] Steven Lindell. ‘A logspace algorithm for tree canonization. extended
abstract’. In: Proc. 24th STOC. 1992, pp. 400–404.

[PS97] Itsik Pe’er and Ron Shamir. ‘Realizing interval graphs with size and
distance constraints’. In: SIAM J. Discr. Math. 10.4 (1997), pp. 662–687.

[Rei08] Omer Reingold. ‘Undirected connectivity in log-space’. In: J. ACM 55.4
(2008), 17:1–17:24.

[Yam07] Naoki Yamamoto. ‘Weighted interval graphs and their representations’.
(In Japanese.) Master’s Thesis. Tokyo Inst. of Technology, 2007.

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


