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Abstract

Informally stated, we present here a randomized algorithm that given blackbox access to the
polynomial f computed by an unknown/hidden arithmetic formula φ reconstructs, on the average,

an equivalent or smaller formula φ̂ in time polynomial in the size of its output φ̂.
Specifically, we consider arithmetic formulas wherein the underlying tree is a complete binary

tree, the leaf nodes are labelled by affine forms (i.e. degree one polynomials) over the input variables
and where the internal nodes consist of alternating layers of addition and multiplication gates. We
call these alternating normal form (ANF) formulas. If a polynomial f can be computed by an
arithmetic formula µ of size s, it can also be computed by an ANF formula φ, possibly of slightly
larger size sO(1). Our algorithm gets as input blackbox access to the output polynomial f (i.e. for
any point x in the domain, it can query the blackbox and obtain f(x) in one step) of a random
ANF formula φ of size s (wherein the coefficients of the affine forms in the leaf nodes of φ are
chosen independently and uniformly at random from a large enough subset of the underlying field).
With high probability (over the choice of coefficients in the leaf nodes), the algorithm efficiently

(i.e. in time sO(1)) computes an ANF formula φ̂ of size s computing f . This then is the strongest
model of arithmetic computation for which a reconstruction algorithm is presently known, albeit
efficient in a distributional sense rather than in the worst case.
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1 Introduction

A reconstruction algorithm for a polynomial f ∈ F[X1, . . . , Xn] is given blackbox access to f and
is required to output a (succint) representation of f in some suitable model of computation. The
algorithm can adaptively query the blackbox to evaluate f on inputs of its choice from Fn. 1 The
algorithm is said to be efficient, if the running time, and hence number of queries, is bounded by a
polynomial in the size of the representation produced by it. The most obvious representation of a
multivariate polynomial is its formula as a sum, weighted by coefficients from F, of monomials, i.e.,
a depth-2 ΣΠ formula. In this case, the problem of reconstruction is more commonly referred to as
interpolation. In the past few decades, the interpolation problem has drawn considerable attention
(see e.g. [BOT88,KY88,Zip90,KS01] and the references therein) and found many applications as well.
Of course, writing down all the monomials of a polynomial may be too expensive. For example, the
polynomial

∑
S⊆[n](

∏
i∈S Xi)×(

∏
i∈([n]\S) Yi) can also be written as (X1 +Y1)×(X2 +Y2)× . . .×(Xn+

Yn). It is seen that the first one (sum of monomials) involves (n−1) ·(2n−1) operations. On the other
hand, the second expression only needs (2n − 1). Of course, the second expression is also natural,
and has been employed implicitly by mathematicians. The technical term for such an expression is
an arithmetic formula2, and the size of a formula is the number of operations involved. The naive
example above indicates that it is more desirable to solve the reconstruction problem with the output
polynomials represented by a small formula. We say the size of the smallest formula computing f is
the formula size of f , and use fs(f) to denote this quantity. Ideally, we would like a reconstruction
algorithm, given black-box to an n-variate polynomial f , outputs a formula computing it in time
polynomial in n, and fs(f) 3. This particularly implies that the size of the formula is a polynomial in
n and fs(f). We call this version of the reconstruction problem, the arithmetic formula reconstruction
problem.

More generally, we can consider reconstruction problems for classes of arithmetic circuits.From a
broad perspective, reconstructing polynomials from arithmetic complexity classes is, in some sense,
analogous to learning concept classes of Boolean functions using membership and equivalence queries.
(see Chapter 5 of the survey by Shpilka and Yehudayoff [SY10] for justifying arguments for the analogy
to the Boolean world and, more generally, for previous work in this area.) While research on the theory
of learnability in the Boolean world has evolved into a mature discipline, thanks to fundamental notions
such as PAC learning due to Valiant, research on learnability in the arithmetic world has been gaining
momentum only in recent years.
Hardness of reconstruction. The reconstruction problem, in its most general formulation, e.g.
produce (roughly) an optimal Boolean circuit (resp. arithmetic circuit) for a given Boolean function
(resp. a given polynomial) f , seems to be extremely hard. On the other hand the status of the field
of arithmetic complexity is such that we do not know of a superquadratic lower bound for any explicit
polynomial. Formal hardness results are available for restricted subclasses of Boolean and arithmetic
circuits. Specifically, Allender et al [AHM+08] showed that finding even an approximately optimal
DNF formula is NP-hard, even when the Boolean function is given rather verbosely as a truth table.
Buchburger and Umans [BU08] showed that when the boolean function is given succinctly as a formula
then finding an equivalent minimal formula is ΣP

2 -complete (i.e. hard even for the second level of the
polynomial hierarchy). 4 In the arithmetic setting, H̊astad [H̊as90] showed that reconstructing the

1We typically assume f itself to have a small representation in the target model of computation. This is essentially
without loss of generality because of the DeMillo-Lipton-Schwarz-Zippel lemma which allows us to efficiently test whether
the output of the reconstruction algorithm represents f or not.

2an arithmetic formula is a rooted tree with two types of internal nodes/gates: a × gate computes the product of
its inputs, + gate computes an arbitary linear combination of its inputs, wires are labelled by elements of a field F and
leaves by elements of X ∪ F.

3Note that the formula size of f is an upper bound on its degree.
4 Some further evidence of the hardness of reconstruction in the Boolean world is provided by Kabanets and Cai [KC00]
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smallest depth three set-multilinear formula (a much weaker model than general arithmetic formulas)
for a given set-multilinear polynomial is NP-hard even for degree three polynomials. These hardness
results indicate that it may be unrealistic to hope for an efficient worst-case reconstruction algorithm
even when the polynomial (resp. Boolean function) f is given rather verbosely as a ΣΠ formula (resp.
as a truth table). Because of this, progress on the reconstruction problem has been possible only for
very restricted classes of arithmetic (resp. Boolean) formulas and/or under distributional assumptions
(i.e. average-case rather than worst-case). We now mention some of the known results of this flavor.
Previous works. In the Boolean world an algorithm for reconstructing random DNF formulas was
given recently by Sellie [Sel09]. Another line of work pertaining to learning DNF formulas stems from
a conjecture by Mansour [Man94] which was recently settled for random DNF formulas by Klivans,
Lee and Wan [KLW10]. Reconstruction/learning in the arithmetic setting has gained momentum only
recently and we mention some of this work here. Reconstruction algorithms are previously known
for depth-2 ΣΠ formulas (sparse polynomials) [KS01], read-once arithmetic formulas [SV08, BC98],
non-commutative arithmetic branching programs [AMS10], ΣΠΣ formulas, i.e., depth-3 formulas 5

with top + gate of fan-in 2, [Shp07] 6, and ΣΠΣ(k) formulas with k = O(1) [KS09] 7 For more
information on reconstruction in the arithmetic setting and previous work in the area, we refer the
reader to chapter 5 of the survey by Shpilka & Yehudayoff [SY10]. More recently, Kayal [Kay12]
and Gupta, Kayal and Lokam [GKL12] have devised reconstruction algorithms for some more classes
of bounded-depth formulas. In [GKL11], Gupta, Kayal and Lokam have devised a reconstruction
algorithm for multilinear formulas under distributional assumptions.
Arithmetic formula reconstruction problem in average case. In light of the above hardness
result, currently, it seems unrealistic to solve the arithmetic formula reconstruction problem in the
worst case. A less formal but more intuitive reason is that to solve this problem, conceptually the
algorithm should somehow “know” the size of the smallest formula for every polynomial! 8 Since the
formula size of a polynomial is still poorly understood, it seems difficult to make progress on formula
reconstruction problem. However, it turns out that we are able to solve an average-case version of this
problem, described as follows.

An average-case version of a problem will assume some natural distribution over the input in-
stances, and an algorithm for this is expected to work correctly for most instances sampled from this
distribution. To come up with a natural distribution on arithmetic formulas seems tricky 9. We turn
to a very natural canonical form of arithmetic formula, defined as follows: We firstly fix the internal
tree structure to be a complete binary tree of depth 2∆. The label of an internal node at distance d
from the closest leaf node is + if d is even and × otherwise. In particular, the root node is a + node.
Finally at the leaves the labels are affine forms (linear polynomials) in the variables. If a formula
is of this form we call it in alternating normal form (ANF for short). The most important claim
about ANF-formulas is that for a polynomial f , the size of the smallest ANF-formula computing f is
a polynomial in that of the smallest formula for it (Proposition 5). Thus, as far as understanding the
formula-size complexity of a polynomial is concerned, we can focus our attention on formulas in ANF
form with only a relatively small loss in the quality of the answer.

For ANF-formulas of size s the following P-samplable distribution D(n, s, S) is natural: specify the
coefficients of the affine forms at the leaves uniformly at random from a large finite set S ⊆ F. Now we

and Fortnow and Klivans [FK06].
5Also some of these algorithms only work under some very mild and easily verifiable nondegeracy conditions.
6The algorithms of [Shp07] and [KS09] have quasipolynomial time complexity.
7Also [BBB+00,KS03] devise an algorithm that given the polynomial computed by a hidden set-multilinear depth-3

formula, outputs an algebraic branching program/multiplicity automata of roughly the same size.
8This is one of the most challenging tasks for complexity theorists; we we do not know of any superquadratic formula-

size lower bound for any explicit polynomial.
9The reason mostly lies on the fact that the internal tree structure of a formula (see Section 3.2) can be quite arbitrary.

Here we fix the internal tree to be a complete binary tree
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reach the average case version of the formula reconstruction problem over D(n, s, S): assume we are
given black-box access to an ANF-formula φ sampled from a distribution D(n, s, S), and φ computes
f ∈ F[X1, . . . , Xn]. Our goal is to construct an arithmetic formula φ̂ computing f , in time poly(n, s),
with high probability over D(n, s, S). This also implies that |φ̂| is poly(d, n, fs(f)).
Our contribution. Our result here, roughly stated, shows that there is an efficient randomized
algorithm that given access to the output of a random ANF formula (this notion is made precise in
the next section), can reconstruct the hidden underlying formula. We will soon make precise the notion
of a random formula that we use and state our results more formally. This result then represents the
strongest model of arithmetic computation for which a reconstruction algorithm is presently known,
albeit efficient in an average-case or distributional sense rather than in the worst case. The conceptual
contribution of this paper is to show how the dimension of the singular locus of a polynomial - a
property used in proving a moderate lower bound for the determinant versus permanent problem by
von zur Gathen in [vzG87] - can be used to efficiently do reconstruction of random ANF formulas. The
technical work involves analyzing the components of the singularities of arbitrary linear combinations
of random formulas and to characterize the high dimensional ones among these. Our main theorem is
just a randomized algorithm that solves arithmetic formula reconstruction problem over D(n, s, S) in
average case. A more precise version of the following theorem is given in section 6.3 as Theorem 67.

Theorem 1. Let F be a field of characteristic 0 and S be a finite subset of F. Assume there is a
black box holding an ANF-formula φ of size s sampled from D(n, s, S), and φ computes a polynomial
f ∈ F[X1, . . . , Xn]. There is a randomized algorithm that given this black box, either outputs an

ANF-formula φ̂ of size ≤ s computing f , or outputs Fail . The algorithm succeeds for (1 − n2.sO(1)

|S| )

fraction of the ANF-formulas from D(n, s, S). Moreover, the running time of the algorithm is at most
(n · s)O(1).10.

A few remarks are due to the theorem itself.

Remark 2. 1. Arithmetic Formulas versus Boolean formulas. Note that a boolean formula
over the basis {⊕,∧,¬} is equivalent to arithmetic formulas over the finite field F2. However our
algorithm cannot be used for boolean formula reconstruction as the algorithm inherently requires
the underlying field to be larger than the formal degree of the formula. On ther hand, as long
as the size of the field itself is large enough, theorem 1 continues to remain valid even over
fields with characteristic two. A few changes to the analysis are however required in the low
characteristic case and we point these out in more detail in remark 68 after the proof of this
theorem.

2. Time complexity and number of arithmetic operations. For ease of presentation we will
assume throughout the rest of this paper that the elementary field operations (+,−,×,÷) and
the extraction of roots of constant degree polynomials are all unit cost operations. Note that
over a finite field Fq the elementary field operations as well as root extraction of constant degree
polynomials can be done in actual time (log q)O(1) so that overall the time complexity is still
polynomial in terms of the bitlength of the hidden formula. Over the field of rational numbers
one needs to be more careful. It turns out that the steps of our algorithm ultimately boil down to
doing some linear algeraic computation and extraction of roots of constant degree polynomials.
Moreover the bitlength of the entries of the relevant matrices as well as the bitlength of the
coefficients of the relevant polynomials is bounded by a polynomial in the size of the hidden
formula so that our algorithm has polynomial running time in this case too. Abusing terminology,
we will often that an algorithm has running time t(n) when the number of arithmetic operations
in that algorithm is t(n).

10We ignore the internal randomness of the algorithm as by well-known techniques, the probability of failure with
respect to the internal randomness can effectively be made negligible

5



3. Smoothed Complexity. By concatenating the vector of (n+ 1) coefficients of the affine forms
occuring in the 4∆ leaf nodes of an ANF formula into one long vector of length N = 4∆ · (n+ 1),
we can view the set of (X,∆)-ANF formulas as points in the space FN . As we will see the input
instances on which our algorithm fails forms a proper Zariski-closed subset 11 of FN . In other
words the fails This means that for any ANF formula φ, our algorithm will succeed with high
probability given access to the output polynomial of a ”slightly perturbed” formula φ̂. In this
sense our algorithm has smoothed polynomial-time complexity.

4. Parallelization. Our algorithm can easily be parallelized as most of the steps of the algorithm
ultimately boil down to linear algebraic computations. In particular, assuming that the under-
lying field operations and extraction of roots of a constant degree polynomial are all unit cost
operations our algorithm can be implemented in randomized NC.

Also note that super-polynomial lower bound for ANF formulas would imply super-polynomial
lower bound for general arithmetic formulas (Proposition 5). Our remarks earlier on the difficulty of
the formual reconstruction problem naturally leads one to wonder whether the ideas and techniques
for proving Theorem 1 can lead to good lower bound for arithmetic formulas. It follows from our proof
idea 12 (proposition 3) that for any n ≥ 5 and d ≥ 2 the polynomial

g = (Xd
1 +Xd

2 + . . .+Xd
n)

cannot be computed by a homogeneous ANF formula 13. From proposition 5 it follows that proving
superpolynomial lower bounds for ANF formulas without the homogenity restriction is equivalent to
proving superpolynomial lower bounds for arbitary arithmetic formulas. The significance (if any) of
our ideas and results towards this larger goal of proving superpolynomial arithmetic formula-size lower
bounds is presently unclear (to us).
Some further discussion. Average-case algorithms, by their very nature, are highly sensitive to
the distribution from which the input instances are drawn. Unlike graphs, for which the Erdös-Renyi
model of generating graphs (the so-called G(n, p) graph) is pretty much a universally accepted notion
of what constitutes a random graph, there is no obvious way to define a random formula. In this work
we showed that for a reasonable notion of a random formula, reconstruction can be done efficiently.
At the same time, the impact of this work on practically important problems is not immediately clear.
Perhaps the most important practical application by far of any formula reconstruction algorithm might
be to the complexity of matrix multiplication. For example, a reconstruction algorithm producing
optimal sized formula for the polynomial corresponding to the product of say two 5 × 5 matrices
may potentially improve the current best asymptotic running time of matrix multiplication using
Strassen’s recursive approach. Unfortunately our line of research here (reconstruction of random ANF
formulas) does not seem to be immediately applicable to matrix multiplication. This is because the
polynomial corresponding to matrix multiplication has degree 3 whereas any reasonable notion of a
random formula will almost certainly generate polynomials of much larger degree. On the other hand,
it seems reasonable to hypothesize that if a given polynomial f admits a formula of size (deg(f))O(1)

then our results and techniques should help reconstruct the formula (with high probability).

11 Recall that a Zariski-closed subset of Fn is the set of common zeroes of some system of polynomial equations over
F.

12 Von zur Gathen [vzG87] used a similar idea to show a relatively modest lower bound for the determinant versus
permanent problem. This bound has since been improved and the current best lower bound is due to Mignon and
Ressayre [MR04].

13 A homogeneous formula is a formula in which the polynomial computed at every node is a homogeneous polynomial.
An ANF formula is homogeneous if and only if the leaf nodes are labelled by linear forms rather than affine forms, i.e.
the constant term of the label of every leaf node is zero.
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We mention here in passing that in many application areas such as scientific computing, finance,
vision, graphics, etc. computers routinely operate on numerical data and a large chunk of the compu-
tation in these applications involves the arithmetic operations of addition, multiplication, subtraction
and division. It might be interesting to see if these algorithmic techniques can help optimize some of
these fragments of arithmetic computation. We now make some comments with an eye towards such
potential applications. We note here that in its current form, our analysis suggests that even though
our algorithm has polynomial running time, it is completely impractical. But it might well be that
simply a better analysis (see remark 68 for suggestions in this direction) can lead to a better choice of
parameters and therefore also a significant speedup, and bringing our algorithm much closer to having
a real-world existence. On the theoretical side, it is quite easy to construct formulas (corresponding
to low-rank tensors) for which our algorithm fails rather miserably. But perhaps it is inevitable that
there exist easily samplable hard instances against any algorithm aspiring to do formula reconstruction
efficiently. As we mentioned earlier, the available hardness results indicate that it would be unrealis-
tic to hope for an efficient worst-case reconstruction algorithm for arithmetic formulas. In summary
therefore the algorithm we present has its limitations; nevertheless we feel that our work does represent
a small step forward towards understanding a central question in arithmetic complexity: what is an
optimal arithmetic formula computing a given polynomial f?

1.1 Discussion

Average-case algorithms, by their very nature, are highly sensitive to the distribution from which the
input instances are drawn. Unlike graphs, for which the Erdös-Renyi model of generating graphs (the
so-called G(n, p) graph) is pretty much a universally accepted notion of what constitutes a random
graph, there is no obvious way to define a random formula. In this work we showed that for a reason-
able notion of a random formula, reconstruction can be done efficiently. At the same time, the impact
of this work on pratically important problems is not immediately clear. Perhaps the most important
practical application by far of any formula reconstruction algorithm might be to the complexity of
matrix multiplication. For example, a reconstruction algorithm producing optimal sized formula for
the polynomial corresponding to the product of say two 5 × 5 matrices may potentially improve the
current best asymptotic running time of matrix multiplication using Strassen’s recursive approach.
Unfortunately our line of research here (reconstruction of random ANF formulas) does not seem to
be immediately applicable to matrix multiplication. This is because the polynomial corresponding to
matrix multiplication has degree 3 whereas any reasonable notion of a random formula will almost
certainly generate polynomials of much larger degree. On the other hand, it seems reasonable to
hypothesize that if a given polynomial f admits a formula of size (deg(f))O(1) than our results and
techniques should help reconstruct the formula (with high probability). We mention here in passing
that in many application areas such as scientific computing, finance, vision, graphics, etc. comput-
ers routinely operate on numerical data and a large chunk of the computation in these applications
involves the arithmetic operations of addition, multiplication, subtraction and division. It might be in-
teresting to see if these algorithmic techniques can help optimize some of these fragments of arithmetic
computation. We now make some comments with an eye towards such potential applications. We note
here that in its current form, our analysis suggests that even though our algorithm has polynomial
running time, it is completely impractical. But it might well be that simply a better analysis (see
remark 68 for suggestions in this direction) can lead to a better choice of parameters and therefore
also a significant speedup, and bringing our algorithm much closer to having a real-world existence.
On the theoretical side, it is quite easy to construct formulas (corresponding to low-rank tensors)
for which our algorithm fails rather miserably. But perhaps it is inevitable that there exist easily
samplable hard instances against any algorithm aspiring to do formula reconstruction efficiently. As
we mentioned earlier, the available hardness results indicate that it would be unrealistic to hope for
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an efficient worst-case reconstruction algorithm for arithmetic formulas. In summary therefore the
algorithm we present has its limitations; nevertheless we feel that our work does represent a small
step forward towards understanding a central question in arithmetic complexity: what is an optimal
arithmetic formula computing a given polynomial f?

2 Basic Idea and Approach

Let F be an algebraically closed field and let S be a subset of F. Let X = (X1, X2, . . . , Xn). Suppose we
have blackbox access to the output polynomial f of a random (X,∆, S)-ANF formula φ. By querying
f at points of our choice, we want to recover φ. How do we do so?

As the two children of the output node are × gates so that the output polynomial f is of the form

f = f1 · f2 + f3 · f4. (1)

Our aim will be to obtain blackbox access to the four ‘grandchildren’ f1, f2, f3 and f4. If we could do
this then we can recursively find ANF formulas for the fi’s and we would be done. Before we find the
fi’s, let us ask an easier question: can we even distinguish an f of the form (1) from a truly random
n-variate polynomial of degree d = deg(f)? We first observe that if x is any point on the variety

V(f) := {x ∈ Fn : f1(x) = f2(x) = f3(x) = f4(x) = 0} ⊆ Fn

then it is also a singularity of f , denoted x ∈ Sing(f), where Sing(f) ⊆ Fn is defined as the common
zeroes of the system of equations

f(X) =
∂f

∂X1
(X) = . . . =

∂f

∂Xn
(X) = 0. (2)

This can be seen as follows: differentiating equation (1) with respect to the variable Xi we get

∂f

∂Xi
= f1 ·

∂f2

∂Xi
+ f2 ·

∂f1

∂Xi
+ f3 ·

∂f4

∂Xi
+ f4 ·

∂f3

∂Xi
(3)

For this and equation (1) we have that any x ∈ V(f) is a zero of f(X) and also of ∂f
∂Xi

(X) for each
i ∈ [n]. When the number of variables n is larger than 4, V(f) (and therefore also Sing(f)) is likely
to contain lots of points while Sing(g) is empty for most n-variate polynomials of degree d. The main
idea of this work is to exploit the structure of Sing(f) - in particular the fact that V(f) is a subset of
Sing(f) - to recover V(f) and then with some more work to recover the actual grandchildren - viz. the
fi’s. At this juncture, let us point out some of the difficulties that we face and/or the questions that
we need to address in implementing this idea.

(Q1) Emptiness of V(f) - For an arbitary f = (f1, f2, f3, f4), it can happen that V(f) is empty even
when the number of variables n is much larger than 4 - e.g. when f2(X) = 1 + f1(X). If V is
empty then it might not be possible to extract information about the fi’s by looking at Sing(f).

(Q2) Analyzing Sing(f) in a computationally efficient manner - Even some very basic questions
pertaining to varieties, such as emptiness of a given variety, are NP-hard/coNP-hard. How do
we analyze the structure of Sing(f) in a computationally efficient manner?

(Q3) Exsistence of points in Sing(f)\V(f) - Sing(f) can in general contain many points other than
those on V(f). For a given point x ∈ Sing(f), how can we know if it is coming from V(f) or not?
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(Q4) Recovering f from V(f) - In general a variety can be written as the common zeroes of a set of
polynomials g ⊆ F[X] in several different ways. Given such a g, how do we recover the actual
fi’s from it?

(Q5) Uniqueness of the fi’s - A closely related difficulty pertains to the uniqueness of the represen-
ation (1) for f . Aside from the trivial ones such as f = f ·1+xd ·0 there can be several nontrivial
ways of writing f in the form of equation (1). Indeed, for any ‘non-trivial’ representation of the
form (1), there are several more nontrivial ones such as

f = (
f1 + f3

2
) · (f2 + f4) + (

f1 − f3

2
) · (f2 − f4).

The difficulty with this nonuniqueness is that if we obtain ‘an incorrect’ representation of f , say

f = g1 · g2 + g3 · g4,

then the gi need not be computable by ANF formulas smaller than φ and so recursively invoking
the algorithm on the gi’s will lead to failure. Such failed recursive calls would be prohibitively
expensive.

(Q6) Representation of the fi’s - Even if we could somehow recover the fi’s, how do we store/represent
them in an efficient manner? More generally, how do we efficiently represent polynomials com-
puted at the intermediate nodes? Clearly, the fi’s will typically have exponentially many mono-
mials so that a ΣΠ representation of the fi’s is prohibitively expensive. We could use a ‘blackbox
representation’ in the manner of Kaltofen wherein some ‘advice’ is stored. When the value of f1

at a point x ∈ Fn is needed, we use the advice to query f at poly(deg(f) · n) points and based
on these answers and the advice compute f1(x). Even this is too expensive because at a depth
∆ from the root node of the tree corresponding to φ, we will end up making (deg(f) · n)O(∆)

queries to f , which is superpolynomial in the size of the formula φ.

We now indicate how we go about addressing each of these difficulties.
Tackling Q1. We take care of the first difficulty by homogenizing the polynomial f and working in the
projective closure of Fn instead. Recall that the homogenization of a polynomial f is the homogeneous
polynomial

f̂(X0, X1, . . . , Xn) := Xd
0 · f(

X1

X0
,
X2

X0
, . . . ,

Xn

X0
).

Note that f̂ 14 now admits a homogeneous formula φ̂ of product-depth ∆; φ̂ is obtained from φ simply
by replacing the label of each leaf node of φ from the affine form

` = a0 + a1X1 + a2X2 + . . .+ arXr

by the corresponding linear form

ˆ̀= a0X0 + a1X1 + a2X2 + . . .+ arXr.

Note that φ̂ is now a homogeneous formula of product-depth ∆. Equation (1) now becomes

f̂ = f̂1 · f̂2 + f̂3 · f̂4

To avoid notational clutter we replace f and φ by f̂ and φ̂ respectively so that our problem reduces
to the situation where we want to construct a homogeneous ANF formula for a given homogeneous

14Later in proposition 62 we will see that given blackbox access to f we can evaluate f̂ even at points for which X0 = 0.
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polynomial f . In this manner, we can assume that the fi’s in equation (1) are homogeneous polynomi-
als and are therefore polynomial functions over the corresponding projective space Pn. Intersections
of varieties are much more nicely behaved in projective spaces. Indeed from fact 19 it follows that
V(f) ⊆ Pn will always be of dimension at least (n−4) and in particular will always be nonempty when
n ≥ 4. To see the usefulness of this let us note a lower bound.

Proposition 3. For any d ≥ 2 and n ≥ 5, the polynomial

g = Xd
1 +Xd

2 + . . .+Xd
n

cannot be computed by a homogeneous ANF formula.

Proof. Suppose if possible there exists a homogeneous ANF formula φ computing g. g is irreducible
so that we can assume without loss of generality that the output node of φ is a + gate. From the
discussion above we must then have codim(Sing(g)) ≤ 4. But it is easily verified that in this case,
Sing(g) is empty as a projective variety thereby giving a contradiction.

Tackling Q2 and Q3. From the above discussion we have that V(f) is a subvariety of Sing(f) of
codimension at most 4. The key observation here which is the source of our computational efficiency
is that even though Sing(f) may in general be a very complicated variety and be difficult to analyze,
we are really only interested in V(f) which is a subvariety of Sing(f) of bounded codimension. Let us
now consider the set of points in Sing(f) \ V(f). Let us consider an arbitrary x ∈ Sing(f) \ V(f). From
equations (2) and (3) we get that

∂f1

∂X1
(x) ∂f2

∂X1
(x) . . . ∂f4

∂X1
(x)

∂f1

∂X2
(x) ∂f2

∂X2
(x) . . . ∂f4

∂X2
(x)

...
...

. . .
...

∂f1

∂Xn
(x) ∂f2

∂Xn
(x) . . . ∂f4

∂Xn
(x)

 ·

f2(x)
f1(x)
f4(x)
f3(x)

 = 0

The (n × 4) matrix of the lhs of the above equation is known as the Jacobian and denoted J(f ,X).
The fact that x 6∈ V(f) means that the (4×1) vector on the lhs of the above equation is nonzero which
in turn means that J(f ,x) has rank 3. The set of points x ∈ Fn for which J(f ,x) has rank 3 forms a
variety W (the common zeroes of all 4 × 4 minors of J(f ,X).) We observe (corollary 54) that when
f1, f2, f3 and f4 are independently chosen random formulas then the following algebraic condition is
satisfied with high probability:

(FI) : dim(V(f)) = (n− 4) and dim(Sing(f) ∩W ) < (n− 4).

We use this to tackle Q2 and Q3 by showing (in lemma 42) that if the assumption FI (short for
formulaic independence (definition 37) ) is satisfied then given blackbox access to Sing(f) we can
efficiently recover a basis for the corresponding ideal

I(f) := 〈f1, f2, f3, f4〉 ⊆ F[X].

Tackling Q4 and Q5. A significant part of the technical work in this paper is aimed at tackling
questions Q4 and Q5. By examining the homogeneous components of the generators of I(f), we can
efficiently obtain a tuple of polynomials

h = (h1, h2, h3, h4) ∈ (F[X])4
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such that 
h1

h2

h3

h4

 = A ·


f1

f2

f3

f4

 , (4)

where A ∈ F4×4 is an invertible matrix (lemma 43). In other words, we get the fi’s upto F-linear com-
binations. We show that if the grandchildren of the fi’s satisfy a certain other algebraic nondegeneracy
condition (definition 48) then for any F-linear combination

h = a1f1 + a2f2 + a3f3 + a4f4 ∈ F[X]

in which at least two of the ai’s are nonzero, the dimension of Sing(h) is at most (n − 5) (lemma
49). This other algebraic condition roughly captures independence of the polynomials which are the
grandchildren of the fi’s and as before, this too is satisfied with high probability when φ is a randomly
chosen formula (corollary 55). This then allows us to set up a system of polynomial equations in
the unknown coefficients a1, a2, a3, a4 such that the solutions of this system correspond to linear
combinations of the hi’s which are scalar multiples of the fi’s (lemma 24). It is well known that a
system of polynomial equations 15 in a bounded number of unknowns can be solved efficiently (theorem
25). This allows us to recover (upto scalar multiples and permutation) the fi’s (lemma 51).
Tackling Q6. To overcome this difficulty we invoke what we call the project and lift technique
(originally due to Kaltofen [Kal85] and Shpilka [Shp07]). While there is some nontrivial work needed
to apply this to our setting let us give here an informal gist of the technique as applicable to our
situation. We effectively reduce the problem to the situation where n, the number of variables is a
constant, say r. This is done by judiciously choosing a small (O(n)) number of r-dimensional subspaces
U of the underlying space Fn and doing the reconstruction for the restriction to each subspace U .
With the number of variables reduced to r = O(1) we can represent the polynomial computed at
each intermediate node of the tree in the näıve representation. We then show how to patch together
the ANF formulas for f restricted to these subspaces to obtain a formula for f over the original
n-dimensional space (lemma 65).
Overview of the algorithm and its analysis. We now give the overall structure of our algorithm
and its analysis keeping the above ideas in mind. The main component of our algorithm is a subroutine
(algorithm 1) that we call the low dimensional reconstruction algorithm (LDR for short) wherein the
input consists of a homogeneous (r+1)-variate polynomial f (r is a suitable constant) and the algorithm
reconstructs the formula for f . For a technical reason 16 the output of LDR consists of the quadratic
polynomials at the second-last layer of the tree rather than the affine forms at the leaves. The rest of
the algorithm (algorithm 2) makes O(n) invocations to LDR and patches the answers together to get a
formula for the original n-variate input polynomial.
Low dimensional formula reconstruction. We now focus our attention on the LDR subroutine.
Let f be a homogeneous (r + 1)-variate polynomial (here r = O(1)) which can be computed by a
homogeneous ANF formula of depth ∆ . Via recursion, it suffices to find homogeneous polynomials
f1, f2, f3, f4 with

f = f1 · f2 + f3 · f4

15 Another technical difficulty we need to handle here is that although the number of variables in this system of

polynomial equations is bounded, the number of polynomials themselves is very large - about 2d
O(1)

. This is because
these polynomials are the appropriate sized minors of a matrix of size dO(1) × dO(1). We get around this difficulty (in
lemma 30 and proposition 31) by observing that these minors all have a small F-basis and this basis can be computed
efficiently (in dO(1) time).

16The technical reason has to do with the fact that every quadratic form q of rank four can be written as q = `1·`2+`3·`4,
the `i’s being linear forms, in infinitely many different ways.
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such that each fi can be computed by a homogeneous ANF formula of depth (∆− 1). Note that the
later condition means in particular that each fi can be written as

fi = fi1 · fi2 + fi3 · fi4.

This subroutine has two steps. In the first step, we proceed as indicated in Tackling Q2 and Q3
above, and show that if the fi’s satisfy a certain algebraic nondegeneracy condition (which we call
formulaic independence), then given f = (f1 · f2 + f3 · f4), one can efficiently compute a basis for
the ideal I(f) :=< f1, f2, f3, f4 > (lemma 42). Using this basis for I(f) and exploiting homogenity,
one can easily recover the fi’s upto F-linear combinations (lemma 43). Specifically, we compute
polynomials g1, g2, g3, g4 such that each gj is a F-linear combination of the fi’s and vice-versa. Our
second observation is that if the greatgrandchildren fij ’s satisfy another algebraic nondegeneracy
condition (we call it pairwise singular independence) then given the gj ’s, one can efficiently compute
the fi’s themselves upto scalar multiples (lemma 51). It turns out that recovering the fi’s upto scalar
multiples suffices for our purpose. This gives the algorithm. The analysis of this algorithm involves
showing that each of the algebraic nondegeneracy conditions are satisfied with high probability at
every node of a random homogeneous ANF formula (corollaries 54 and 55). This completes our brief
overview.

Organization. We will briefly discuss the significance and limitations of this result in section
1.1 while the remainder of this paper will be devoted to giving a proof of this theorem. In section
2 we will give an overview of the algorithm. Then i section 3 we set up the relevant notation and
terminology. For our purpose here, we will need to make several concepts and/or theorems from
algebraic geometry more explicit/constructive and we do this in section 4. We then give the low
dimensional reconstruction algorithm in section 5. We then use that to give the algorithm of our main
theorem in section 6.

3 Preliminaries

3.1 Notations

Index Sets. [n] denotes the set {1, 2, . . . , n} while [m..n] denotes the set {m,m + 1, . . . , n}. For a
finite set S,

(
S
t

)
denotes the set of all subsets of S of size t.

Scalars, Indeterminates and Polynomials. We will use capitalized letters such as X1, Y2 etc. to
denote formal variables and small letters such as x1, y2 etc for elements of a field. Boldfaced letters
such as x (resp. X) shall stand for tuples of field elements (respectively tuples of variables). In a
similar fashion we will typically use small letters such as f, g for multivariate polynomials over a field
while f ,g will stand for tuples of polynomials. We will also often think of an m-tuple of polynomials
f = (f1, . . . , fm) ∈ (F[X])m as an m-dimensional vector over the rational function field F(X) in the
natural way.
Other stuff. “w.h.p.” is a shorthand for with high probability, specifically with probability (1−o(1)).
Let M(X) ∈ F[X]m×n be a matrix whose entries are polynomials over the set of variables X and let
t ≥ 1 be an integer. We will denote by Minors(M(X), t) the set of determinants of all t× t submatrices
of M(X). Note that a matrix M(X) has rank less than t if and only if each polynomial in Minors(X, t)
vanishes identically. For a point x ∈ Fn, rank(M(x)) < t if and only if x lies on the variety defined
by the polynomials in Minors(M(X), t). We will sometimes use the shorthand ∂if for ∂f

∂Xi
.

3.2 Arithmetic formulas, ANF formulas and other representations of polynomials

Arithmetic formulas. Let us fix a variable set X = {X1, . . . , Xn}, and a field F. An arithmetic
formula is a rooted binary tree with labels on nodes as follows: the leaves are labeled by elements
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from X∪F; the internal nodes are labeled by addition (+) or product (×). Sometimes, labels on edges
are allowed: for the edges feeding into a plus gate, they can be labeled with field constant. Thus it
is understood that the plus gate will compute the linear combinations of its two children, using the
labels on the edges. An arithmetic formula computes polynomials in the natural way - the polynomial
computed at a leaf node is the variable or the field constant that labels it, while the polynomial at a
+ node (resp. × node) is the sum (resp. product) of the polynomials computed at the two children.
The polynomial outputted at the root is said to be computed by the formula. The size of a formula
is measured by the number of edges in it.

A generalization of arithmetic formulas is to allow the internal graphs to be an arbitrary directed
acyclic graph, rather than a rooted binary tree.
Formulas in alternating normal form. We will be concerned with a special class of formulas as
follows: we say that an arithmetic formula φ is in alternating normal form (in short we say φ is an
ANF formula) if

1. The underlying tree of φ is a complete rooted binary tree (the root node is called the output
node). In particular

size(φ) = 2depth(φ)+1 − 1,

where size(φ) is the number of nodes in the tree of φ and depth(φ) is the maximum distance of
a leaf node from the output node of φ.

2. The leaves of the tree are labelled with affine forms. i.e. each leaf is labelled with

` = a0 + a1X1 + . . .+ anXn,

where each ai ∈ F is a scalar.

3. The label of an internal node at distance d from the closest leaf node is + if d is even and ×
otherwise. In particular, the root node is a + node, its children are all × nodes, etc.

Note in particular that there are no labels on the edges going into addition gates in an ANF
formula. Thus a + node of an ANF formula computes a simple sum rather than a general F-linear
combination of its two inputs. ANF-formulas can be viewed as a canonical form of arithmetic formulas.
Converting circuits/formulas into normal forms is standard practice throughout computer science. We
now exhibit how to transform any formula into one in ANF form with only a polynomial blow up.

We first note that for ANF formulas, we can assume that each plus gate is a simple sum without
any significant loss of generality. Specifically, we have

Fact 4. Let φ be any arithmetic formula computing a polynomial f wherein internal nodes are labelled
by {+,×} and arbitrary scalars are allowed on the incoming edges of + nodes so that a + node
computes the corresponding F-linear combination of its inputs 17. Then there exists another formula
φ̂ computing f of exactly the same size and tree structure as φ such that:

1. There are no scalars on the edges of φ̂.

2. For a leaf node v in φ labelled by `, the corresponding leaf node v̂ of φ̂ is labelled by α · ` for some
suitable choice of α ∈ F.

The proof is an easy induction on the depth of the tree. We next observe that as far as understand-
ing the formula-size complexity of a polynomial is concerned we can focus our attention on formulas
in ANF form with only a relatively small loss in the quality of the answer.

17Note that subtraction can be done by having the scalar (−1) ∈ F on the second incoming edge to a + node
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Proposition 5. Let f(X) ∈ F[X] be a polynomial computed by an arithmetic formula φ of size s.
Then there exists an ANF formula φ̂ of size at most s4 computing the same polynomial f(X).

For this, we need the following theorem from Bshouty, Cleve and Eberly (theorem 4 from [BCE91]).

Theorem 6 (Size-depth tradeoffs for algebraic formulas.). For any arithmetic formula φ of size s there
exists an arithmetic formula φ̂ of depth O(log s) and size at most s2 computing the same polynomial
as φ.

Proof of Proposition 5. Using theorem 6 we squashing the original formula to depth O(log s). We
then add dummy nodes (wherein the ‘dummy child’ of a + gate computes the zero polynomial and
the dummy child of a × gate compute the constant 1) to make the tree a complete binary tree with
alternating layers of addition and multiplication gates. This increases the depth by at most a factor of
two and hence also the size by at most a quadratic amount. Overall therefore we get an ANF formula
of depth at most O(log s) and size sO(1).

This motivates us to find the smallest ANF formula computing a given polynomial. The rest of
this paper is devoted to showing that random ANF formulas can be reconstructed efficiently. We first
make this notion precise.
Random ANF Formulas. Let F be a field and S ⊆ F be a subset of F. Let X = (X1, X2, . . . , Xn)
be an n-tuple of formal variables. We will say that an ANF formula φ is a (X,∆, S)-ANF formula if
it has depth 2∆ and for each linear form labelling

` = a0 + a1X1 + a2X2 + . . .+ anXn

a leaf node of φ, each coefficient ai is in S. In what follows S will typically be a finite set and we will
consider the uniform distribution on the set of (X,∆, S)-ANF formulas. Abusing terminology, we will
sometimes say that a random (ANF) formula has some property if at least (1 − o|S|(1)) fraction of
(X,∆, S)-ANF formulas have that property.
What does it mean to reconstruct an ANF formula? For a node v of an (X,∆)-ANF formula
φ we denote by fv(x) the polynomial computed at v and by fv the 4-tuple of polynomials computed at
the four grandchildren of v. In order to describe the algorithm, we need to define polynomials which
in some sense are universal for formulas of product-depth ∆. For each ∆ ≥ 0, F∆ will be a 4∆-variate
polynomial defined recursively as follows.

F0 := X1

Subsequently, F∆+1(X1,X2,X3,X4) is defined as

F∆+1(X1,X2,X3,X4) := F∆(X1) · F∆(X2) + F∆(X3) · F∆(X4),

where for i ∈ [4], we have
Xi := (Xi1, Xi2, . . . , Xi4∆).

Note that F∆ is a 4∆-variate polynomial of degree 2∆. Note also that each F∆ is computed by an
ANF formula of size 4∆.

Fact 7. A polynomial f(X) can be computed by a (X,∆)-ANF formula of iff there exist affine forms
`1, `2, . . . , `4∆ such that

f(X) = F∆(`1, `2, . . . , `4∆).

This establishes a one-one correspondence between (X,∆)-ANF formulas and 4∆-sized tuples of affine
forms. Because of this correspondence our ANF formula reconstruction problem can equivalently be
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stated as follows: given (blackbox access to) a polynomial f such that there exist m = 4∆ affine forms
`1, . . . , `m with

f = F∆(`1, `2, . . . , `m), (5)

find the `i’s. In particular the output of our reconstruction algorithm will simply be a (4∆)-tuple of
affine forms satisfying (5).
Representing polynomials in algorithms. Besides arithmetic formulas and arithmetic circuits,
another common representation of a polynomial in F[X1, . . . , Xn] is to list the coefficients of the
monomials in it. If there is a degree bound d, then the number of monomials in bounded by

(
d+n−1
n−1

)
=

(d+ n)O(n). Thus this representation is only allowed in the algorithm when n is a constant.

3.3 Preliminaries for polynomials

In this section we collect some standard concepts, and some useful results about polynomials.
DeMillo-Lipton-Schwartz-Zippel lemma.

Lemma 8. Let f(X) ∈ F[X] be an n-variate polynomial of degree d and S ⊆ F be any subset. If
f(X) 6= 0 then f(x) = 0 for at most d

|S| fraction of points x ∈ Sn ⊆ Fn.

F-irreducibility and absolute irreducibility. A polynomial f(X) ∈ F[X] is said to be F-reducible
if there exist nonconstant polynomials g(X), h(X) ∈ F[X] such that f(X) = g(X) · h(X). Otherwise
f is said to be F-irreducible. If f(X) is F̄-irreducible then it is said to be absolutely irreducible (here
F̄ is the algebraic closure of F).
Homogeneous Components. Recall that a polynomial f(X1, . . . , Xn) is said to be homogeneous
of degree d if every monomial with a nonzero coefficient is of degree d. By collecting together all
monomials of the same degree it can be seen that any polynomial f ∈ F[X] of degree d can be
uniquely written as

f = f [d] + f [d−1] + . . .+ f [0],

where each f [i] is homogeneous of degree i. We call f [i] the homogeneous component of degree i of f .
Affine forms and linear forms. An affine form is a polynomial of degree at most one. A linear
form is a homogeneous polynomial of degree one.
Substitution maps. Let S ⊂ [n] be a subset of indices of the variables. We shall denote by
σS : F[X] 7→ F[X] the ring homomorphism induced by the substitution map

σS(Xi) :=

{
Xi if i ∈ S
0 otherwise

In other words, σS preserves the variables in S and “kills” all the other variables by setting them to
zero. Occasionally we will be concerned with general linear substitutions which we now define. Let
A = ((aij))n×n ∈ Fn×n be a linear transformation (not necessarily invertible). We will denote by
σA : F[X] 7→ F[X] the homorphism given by

σA(f(X)) = f(A ·X)

= f(a11X1 + . . .+ a1nXn, . . . , an1X1 + . . .+ annXn)

Let U ⊂ Fn be a subspace of dimension t spanned by vectors a1, . . . ,at ∈ Fn. The restriction of f to
the subspace U with respect to the ordered basis (a1, . . . ,at) is defined to be the polynomial

g(X1, . . . , Xt)
def
= f(a1X1 + a2X2 + . . .+ atXt).
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Stated differently, g(X)
def
= f(A ·X), where A is the n× n matrix whose first t columns consist of the

vectors a1, . . . ,at respectively and the last (n− t) columns are zero.
F-linear dependence. A very useful notion will be the notion of F-linear dependencies among
polynomials. We now define this notion.

Definition 9. Let f(X)
def
= (f1(X), f2(X), . . . , fm(X)) ∈ (F[X])m be an m-tuple of polynomials. The

set of F-linear dependencies in f , denoted f⊥, is the set of all vectors a ∈ Fm whose inner product
with f is the zero polynomial, i.e.,

f⊥
def
=
{

(α1, . . . , αm) ∈ Fm : α1f1(X) + . . .+ αmfm(X) = 0
}

If f⊥ contains a nonzero vector, then the fi’s are said to be F-linearly dependent else they are F-linearly
independent.

The following lemma from [Kay11] is an extension of the DeMillo-Lipton-Scwarz-Zippel lemma and
gives an effective criterion for F-linear dependence.

Lemma 10. Let f = (f1(x), f2(x), . . . , fm(x)) be an m-tuple of n-variate polynomials of degree at
most d each. Let T ⊆ F be a set. Let

P := {ai : i ∈ [m]} ⊂ Tn

be a set of m points in Fn. Consider the m×m matrix

M := (fj(ai))i,j∈[m] .

With probability at least (1 − dm
|T | ) over a random choice of P ∈ (Tn)m, the nullspace of M consists

precisely of all the vectors (α1, α2, . . . , αm) ∈ Fm such that∑
i∈[m]

αifi(x) = 0.

We will also be interested in the dimension of f(X) = (f1(X), . . . , fm(X)) over F. Namely, suppose

deg(fi) ≤ d, then fi’s can be viewed as vectors over F(n+d−1
n−1 ), indexed by the monomials in X with

degree ≤ d. Thus it is natural to consider the dimension of f , denoted as dim(f). Note that f is
F-linearly independent if and only if dim(f) = m.
Algebraic dependence. The notion of algebraic dependence between a set of polynomials is defined
as follows.

Definition 11 (Algebraic Dependence.). Let f = (f1, . . . , fm) be an m-tuple of polynomials where
each fi ∈ F[X]. A nonzero polynomial A(Z1, . . . , Zm) ∈ F[Z1, . . . , Zm] is said to be an f -annihilating
polynomial if A(f1, . . . , fm) = 0. The polynomials f1, . . . , fm are said to be algebraically dependent if
there exists an f -annihilating polynomial.

Let f = (f1, . . . , fm) be an m-tuple of n-variate polynomials. F-linear dependence among the fi’s is a
much stronger relationship than algebraic dependence.

Fact 12. If f1, . . . , fm are F-linearly dependent then they are algebraically dependent as well.

Let J(f ,X) be the Jacobian of f which is defined as the following matrix of partial derivatives.

J(f ,X)
def
=

((
∂fi
∂Xj

))
m×n

.

This matrix is known as the Jacobian of the set of polynomials in f . The following is a classical
theorem (cf. Ehrenborg and Rota [ER93] for a proof).
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Theorem 13 (The Jacobian Criterion for algebraic independence.). Let f1, . . . , fm ∈ F[X] be poly-
nomials over F. If the fi’s are algebraically dependent then the Jacobian matrix, J(f ,X) has rank
less than m over F(X). Moreover if the field F has characteristic zero then the converse holds true as
well, i.e. if the Jacobian matrix, J(f ,X), matrix has rank less than m then the fi’s are algebraically
dependent.

3.4 A subgroup lattice of general linear groups

Group of invertible matrices and its actions. Let GL(m,F) (simply GL(m) in short) denote
the group of m ×m invertible matrices over F. There is a natural action of GL(m) on m-tuples of
polynomials as follows. For an f ∈ F(X)m and a matrix A = ((aij))m×m ∈ GL(m,F) we denote by
A · f ∈ F(X)m the vector 

a11f1 + a12f2 + . . .+ a1mfm
a21f1 + a22f2 + . . .+ a2mfm

...
am1f1 + am2f2 + . . .+ ammfm

 ∈ F(X)m

Definition 14. Let G be a subgroup of GL(m,F). We will say that two m-tuples f ,g ∈ F(X)m are
G-equivalent iff there exists an A ∈ G such that

g = A · f .

Note that the fact thatG is a subgroup of GL(m,F) means that ‘G-equivalence’ is indeed an equivalence
relation on m-tuples of polynomials (easy verification). The relevance of this definition to us arises in
the following manner. Our algorithm here determines tuples of polynomials computed at some set of
internal nodes of the formula but these tuples are determined upto G-equivalence for various choices
of G being a subgroup of GL(m,F). We first introduce subgroups of the symmetric group and then
define the subgroups of GL(m,F) of significance to us. The symmetric group Sm is the group (under
composition) of all bijective maps π : [m] 7→ [m]. Every element π of Sm corresponds to an invertible
linear transformation A(π) ∈ GL(m,F) in the natural way:

A(π) · ei = eπ(i) where e1, e2, . . . , em is a basis of Fm.

For a subgroup G of Sm, abusing notation, we will denote by G(m,F) the corresponding subgroup
of GL(m,F) under the above identification. In particular, S(m,F) will denote the group of m × m
permutation matrices over F.

Definition 15. Let m = 4∆. We define some subgroups of GL(m,F) as follows.

(1) D(m,F) denotes the group of invertible diagonal matrices. In other words D(m,F) consists of
matrices of the form 

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 , λi ∈ F \ {0} ∀i ∈ [n]

Structurally, D(m,F) is isomorphic to (F∗)m, the m-wise direct product of F∗.

(2) S(m,F) denotes the group of m×m permutation matrices over F. It is isomorphic to the symmetric
group Sm.
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(3) DS(m,F) denotes the subgroup of GL(m,F) generated by D(m,F) and S(m,F). Structurally, it is
isomorphic to the semidirect product of (F∗)m with Sm.

(4) TR(m,F) denotes the automorphisms of a rooted complete binary tree of depth (logm) = 2∆. It
is defined recursively as follows.

• For m = 1, TR(1) consists only of the identity matrix.

• For m > 1, TR(m) is the subgroup generated by matrices of the form(
A 0
0 B

)
and

(
0 1m/2

1m/2 0

)
where A,B ∈ TR(m/2,F) and 1m/2 is the identity matrix in GL(m/2,F).

(5) TS(m,F) denotes the subgroup genrated by TR(m) and matrices of the form
α · 1m/4 0 0 0

0 α−1 · 1m/4 0 0

0 0 β · 1m/4 0

0 0 0 β−1 · 1m/4


where 1m/4 is the identity matrix in GL(m/4,F).

(6) OG(4,F) denotes the group of invertible 4× 4 matrices A such that

AT ·


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ·A =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


OG(4) is the group of symmetries of the quadratic form

q(X) = X1 ·X2 +X3 ·X4, i.e. q(A ·X) = q(X) iff A ∈ OG(4).

(7) FA(m,F) is defined recursively for m being a power of 4 as follows.

•
FA(4,F)

def
= OG(4,F).

• FA(m,F) is generated by matrices of the form
α ·A1 0 0 0

0 α−1 ·A2 0 0
0 0 β ·A3 0
0 0 0 β−1 ·A4

 ,


0 1m/4 0 0

1m/4 0 0 0

0 0 1m/4 0

0 0 0 1m/4


and 

1m/4 0 0 0

0 1m/4 0 0

0 0 0 1m/4
0 0 1m/4 0

 ,


0 1m/4 0 0

1m/4 0 0 0

0 0 0 1m/4
0 0 1m/4 0


where α, β ∈ F∗, A1, A2, A3, A4 ∈ FA(m/4,F) and 1m/4 is the identity of GL(m/4,F).

The relationships among these subgroups is given in the form of a lattice diagram in figure 3.4.
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GL(4,F)

OG(4,F) DS(4,F)

TS(4,F) S(4,F) D(4,F)

TR(4,F)

{14}

TS(m,F)

FA(m,F)

GL(m,F)

DS(m,F)

S(m,F) D(m,F)

TR(m,F)

{1m}

Figure 1: A Lattice of Subgroups of GL(4,F),GL(m,F).

3.5 Summary of concepts from algebraic geometry

Algebraic sets, varieties and ideals. Let F be a field, X = (X0, X1, . . . , Xr) be a tuple of r + 1
indeterminates. F[X] denotes the ring of polynomials in r+ 1 variables over F. An algebraic set is the
set of common zeroes of a system of polynomial equations

f1(X) = f2(X) = . . . = fm(X) = 0.

If all the fi’s are homogeneous then such a system also corresponds to a projective (algebraic) set
wherein two points x,y ∈ Fr+1 are considered to be equivalent, denoted x ∼ y, if one is a nonzero
scalar multiple of the other. Pr(F) (simply Pr for short), called the projective space of dimension r, is
the set of all points in

(
Fr+1 \ {0}

)
modulo this equivalence relation ∼. Unless mentioned otherwise,

we will always be dealing with projective algebraic sets over an algebraically closed field F. When the
algebraic set cannot be written as the union of smaller sets, we will call it an irreducible variety.18

We will denote by V(f) the algebraic set defined by the tuple of polynomials f = (f1, . . . , fm) and by
I(f) the ideal 〈f1, f2, . . . , fm〉 ⊆ F[X] generated by these polynomials. When the fi’s are homogeneous
polynomials, the ideal I(f) is called a homogeneous ideal and has the property that for each g ∈ I(f),
all the homogeneous components of g also lie in the ideal I(f).

Fact 16 (Theorem 2, Page 380 in [CLO07]). An ideal is homogenous if and only if it can be generated
by a set of homogeneous polynomials.

On dimension of algebraic sets. We now examine the dimension of the algebraic set V. We shall
use the following definition of dimension from the text by Harris (definition 11.2 of [Har92]). This
definition is one among several equivalent definitions of the dimension of an algebraic set.

Definition 17 ( [Har92], Definition 11.2). The dimension of V ⊆ Pr, denoted dim(V), is the smallest
integer k such that a general 19 subspace Λ ⊆ Pr of dimension (r − 1− k) is disjoint from V.

18By a variety we will simply mean an algebraic set, i.e. the set of zeroes of a system of polynomial equations. Note
that for us a variety can be reducible - i.e. it can be expressed as the union of smaller algebraic sets. Note that some
authors use the term ”variety” to refer to an irreducible variety and hence to avoid confusion we will try to avoid the
use of this term.

19It means that the subspaces of dimension r satisfying this property form a Zariski dense subset of the Grassmanian
variety G(r, n).
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The following definition may serve as the definition of dimension for projective sets also.

Proposition 18 ( [Har92], Proposition 11.4). If V ⊆ Pr is of dimension k, then every linear subspace
with dimension ≥ r − k intersects V nontrivially.

That is, consider using linear subspaces to intersect a projective set of dimension k with dimension
i decreasing from r to 0. It will be noted, the situation changes from “always intersecting” to “hardly
intersecting” when i goes from r − k to r − k − 1. This distinction will be exploited in Lemma 24.
This behavior can be understood easily when one visualizes using linear subspaces (viewed as in the
projective space).

We collect certain well-known facts about dimension of projective algebraic sets.

Fact 19. Let V, W be algebraic sets in Pr.

1. If V ⊆ W then dim(V) ≤ dim(W).

2. dim(V ∪ W) = max{dim(V), dim(W)}.

3. dim(V ∩ W) ≤ min{dim(V), dim(W)}.

4. dim(V) = 0 if and only if it consists of a finite number of points.

5. If V is defined by homogeneous polynomials f1, . . . , fk and W is defind by homogeneous polynomials
g1, . . . , g` and if the fi’s and gj’s are pairwise variable-disjoint (i.e. for every i and j the set of
variables in fi is disjoint from the set of variables in gj) then

codim(V ∩ W) = codim(V) + codim(W)

or equivalently,
dim(V ∩ W) = dim(V) + dim(W)− r.

6. (Corollary of Theorem 3, Page 469 in [CLO07]) If V ⊆ Pr can be defined by m homogeneous
polynomials, then dim(V) ≥ r −m.

7. (Irreducible decomposition of an algebraic set) An algebraic set V ⊂ Pr can be decomposed into
a finite union of algebraic sets W1, W2, . . . , Wu such that

(a) Every Wi is irreducible.

(b) Wi 6⊆Wj for i 6= j, i, j ∈ [u].

The algebraic sets Wi (called the irreducible components of V) are uniquely determined.

8. (Equidimensional decomposition of an algebraic set) For each 0 ≤ i ≤ r, let Vi be the union of
all irreducible components of V (possibly none) of dimension i. Then V =

⋃r
i=0 Vi. This is called

the equidimensional decomposition of V.

On singularity of algebraic sets. We have seen that the Jacobian matrix is related to algebraic
independence of a set of polynomials. In algebraic geometry it has to do with the singular points.
Recall that J(f ,X) ∈ (F[X])m×(r+1) is defined as the m× (r + 1) matrix whose (i, j)-th entry is ∂fi

∂Xj
.

Thus

J(f ,X) =


∂f1

∂X0

∂f1

∂X1
. . . ∂f1

∂Xr
∂f2

∂X0

∂f2

∂X1
. . . ∂f2

∂Xr
...

...
. . .

...
∂fm
∂X0

∂fm
∂X1

. . . ∂fm
∂Xr


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The significance of J(f ,X) is as follows. If we view J(f ,X) as an m × (r + 1) matrix over the
function field F(X) its rank denotes the dimension of the image of the map Ψ : Fr+1 7→ Fm,x 7→
(f1(x), . . . , fm(x)). The dimension of the nullspace of J(f ,X) is then the dimension of the preimage of
a generic point in the image of the map Ψ. On the other hand, the dimension of V(f) is the dimension
of Ψ−1(0). For a point x ∈ V, it is always the case that dim(NullSpace(J(f ,x))) ≥ 1 + dimx(V) holds
20. We say that x ∈ V is a smooth point of V iff

dim(NullSpace(J(f ,x))) = 1 + dimx(V).

Otherwise x is said to be a singular point of V. The singularity of V(f) is defined as the set of all
singular points in in.

A case of particular interest will be the singular points of a hypersurface - i.e. a variety defined by
a single polynomial f(X). For a polynomial f(X), we will denote by Sing(f), the variety consisting
of singularities of V(f), i.e. the set of points x ∈ Fn satisfying

f(x) =
∂f

∂X1
(x) = . . . =

∂f

∂Xn
(x) = 0.

When f is homogeneous,

Sing(f) ≡ V(
∂f

∂X1
,
∂f

∂X2
, . . . ,

∂f

∂Xn
).

Namely, we can drop the condition that x ∈ V in the definition of a singular point. This is because
for a homogeneous polynomial f , the vanishing of all its partial derivatives ensures the vanishing of
f , by the following well-known identity:

f(X) =
1

deg(f)
·

(
n∑
i=n

Xi ·
∂f

∂Xi

)
.

Commutative algebraic formulation of algebraic geometry. While the geometric formulation
above has the advantage of being quick and intuitive, the algebraic formulation is closer to reality –
in the algorithm, we need to deal with a few polynomials viewed as a generating set of an ideal.

Let I be an ideal in F[X]. The radical of I, denoted as
√
I is {f ∈ F[X] | ∃n ∈ N, fn ∈ I}. We

say I is radical if
√
I = I. Hilbert’s Nullstellensatz shows the correspondence between algebraic sets

and radical ideals when F is algebraically closed. Formally, it states that if F is algebraically closed,
then I(V(I)) =

√
I. As we will see, the fact that algebraic sets correspond to radical ideals will cause

certain complication to the algebraic formulation.
Recall that for an algebraic set, there can be irreducible decomposition and equidimensional de-

composition for it. We will present the algebraic correspondents of the two decompositions.
Let I be an ideal in F[X]. I is primary if for f, g ∈ F[X], fg ∈ I implies that either f or gm

(m ∈ N) is in I. The primary decomposition of I is to express I as the intersection of primary ideals
like I =

⋂`
i=1 Ji, where Ji’s are primary. This decomposition is irredundant if there are no inclusion

relations between any two of
√
Ji’s. The Lasker-Noether theorem asserts that for a polynomial ideal,

a irredundant primary decomposition exists. In the following, a primary decomposition would be
irredundant unless stated otherwise explicitly. In fact, the primary decomposition of I corresponds
to the irreducible decomposition of V(I) in an exact sense: if I is primary, then

√
I satisfies that if

fg ∈ I then either f or g is in I. An ideal satisfying this property is prime. Thus in the primary
decomposition I =

⋂`
i=1 Ji,

√
Ji are called the associated prime ideals of I. For an algebraic set V, V

is irreducible, if and only if I(V) is a prime ideal. Furthermore, the irreducible decomposition of V(I)
is exactly

⋃
i V(Ji).

20The ‘+1’ here is because we are looking at the dimension in projective space rather than affine space
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To explain the equidimensional decomposition of an ideal I ⊆ F[X], we start with a discussion
on the definition of dimension for a polynomial ideal. In general, for a Noether ring R, the Krull
dimension of R is the largest number d such that there exists a strictly increasing chain of prime
ideals P0 ⊂ P1 ⊂ · · · ⊂ Pd in R. (Note that R is not a prime ideal.) For polynomial rings, the Krull
dimension and Definition 17 coincide. We can understand the dimension of I ⊆ F[X] as that of V(I).

Now it is straightforward to see what the equidimensional decomposition of an ideal I ⊆ F[X]
would be: suppose I is of dimension d. Then in the primary decomposition I =

⋂`
i=1 Ji, for each

j ∈ {0, 1, . . . , d}, form I =
⋂d
j=0 Ij , where Ij is the intersection of Ji’s of dimension j. This is the

equidimensional decomposition of I. The top dimensional component is of course Id, denoted as
top(I).

4 Explicit versions of some Algebraic Geometry concepts

In this sections we revisit some standard notions from algebraic geometry with a view towards making
these concepts explicit and enough for our purpose. While most of the tools and concepts from
algebraic geometry that we use here are already available, some of them are not available in the form
that we need here and so in this section we develop these concepts further and make things more
explicit. In Section 4.1 we will see how the dimension of a projective algebraic set V can be captured
by an explicit polynomial matrix, where entries are polynomials in the coefficients of the defining
polynomials of V. We also mention an algorithm for solving polynomial equations by Lazard [Laz81]
(cf. [Laz01]) in this section. In Section 4.2 an algorithmic trick for handling polynomial matrices is
presented. Combining results from Section 4.1, we are able to determine the dimension of an algebraic
set. In Section 4.3 we exhibit a well-known algorithm to extract the top dimensional component of an
ideal, and present an implementation that allows worst-case analysis.

4.1 The resultant system for a set of homogeneous polynomials

In this section, we describe the resultant system for a set of homogeneous polynomials, which will be
a major algorithmic tool for us. To illustrate this concept, we feel it helpful to review the classical
resultant for two monic univariate polynomials P (x) = xn+an−1x

n−1+· · ·+a1x+a0 and Q(x) = xm+
bm−1x

m−1 + · · ·+b1x+b0 in F[x]. The resultant of P (x) and Q(x) Res(P,Q) =
∏

(r,s):P (r)=0,Q(s)=0(r−
s). Interestingly, Res(P,Q) is equal to the determinant of the (n + m) × (n + m) Sylvester matrix
w.r.t. P and Q:

Syl(P,Q) =



1 an−1 . . . a0 0 0 . . . 0
0 1 . . . a1 a0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 . . . . . . 0 1 an−1 . . . a0

1 bm−1 . . . b0 0 0 . . . 0
0 1 . . . b1 b0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 . . . . . . 0 1 bm−1 . . . b0


The equivalence of det(Syl(P,Q)) and Res(P,Q) can be interpreted as follows. Note that Res(P,Q) =
0 if and only if P and Q share a common zero. Also note that Sylvester matrix is determined by
the defining parameters of P and Q. Thus, the geometric fact (whether having a common zero) is
reflected in the algebraic manipulation of the defining coefficients of P and Q (whether determinant
of the Sylvester matrix is zero).

We would like to generalize the classical resultant for univariate polynomials, to a resultant system
for a set of homogeneous polynomials. A treatment of the resultant system can be found in [Yap00].
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The setting. Let F be an algebraically closed field of characteristic zero. Let S ⊂ F be a set and let
X = (X0, X1, . . . , Xr) be an (r + 1)-tuple of indeterminates. For an integer d ≥ 0, we denote by

Ld := {(i0, i1, i2, . . . , ir) ∈ (Z≥0)r+1 : (i0 + i1 + i2 + . . .+ ir) = d},

the set of all possible indices of monomials of total degree d over the (r + 1)-tuple X. We denote by
Ld =

(
r+d
d

)
the size of Ld. Let g(X) = {g1, g2, . . . , gm | gi ∈ F[X]} be homogeneous polynomials of

degree d over the variable set X. For j ∈ [m], let

gj(X) =
∑
i∈Ld

aijX
i.

Let a = (aij)i∈Ld,j∈[m] be the vector of coefficients of the gj ’s.
Now we define “universal polynomials” to capture the idea that a set of homogeneous polynomials

as above is specified by the coefficients of the monomials. Let A = (Aij)i∈Ld,j∈[m] be a vector of formal
variables. Then define the universal polynomial f(A,X) = {f1, . . . , fm | fi ∈ F[A,X]}, where

fj(X) =
∑
i∈Ld

AijX
i.

To recover g from f , it is enough to assign a ∈ FLd×m to A. Denote fa = {f1(a,X), . . . , fm(a,X) | fi},
and it is clear that fa = g.
Characterizing whether a projective set is empty or not.

Definition 20. A resultant system for f is a set of homogeneous polynomials p = {p1, . . . , p` | pi ∈
F[A]}, such that for a ∈ FLd×m, V(fa) 6= ∅ if and only if a ∈ V(p).

Note that from the definition it is not a priori clear that a resultant system for a set of polynomials
should exist. For example, we can come up with the same definition of resultant systems for sets of
nonhomogeneous polynomials, then it can be exhibited that such a resultant system would not exist.
For homogeneous polynomials, the existence of resultant systems is ensured by the main theorem of
elimination theory (cf. e.g. [CLO05, Chap. 8]). In [Yap00], a constructive proof of the existence of
resultant system is presented in Lecture 11, Section 4. We adapt that proof to prove Lemma 24. To
get an explicit bound in Lemma 24, the so-called effective Nullstellensatz will be crucial. Recall that
Hilbert’s Nullstellensatz states that when F is algebraically closed, a polynomial f vanishes on the
zeros of an ideal I ⊆ F[X0, X1, . . . , Xr], if and only if there exists an integer e, such that fe ∈ I.
Suppose there is a degree bound d on a set of generators for I, then the effective Nullstellensatz, or
quantitative Nullstellensatz as in [Yap00], establishes bound for the exponent e on d and r. We cite
the following bound by Dubé [Dub93].

Theorem 21 ( [Dub93], Theorem 7.1). Situations as above. Let M = 13dr+1. If f ∈
√
I, then

fM ∈ I.

Lemma 22 (Resultant system for projective sets). Let the notations be as above. Then there exists
a matrix B(A) ∈ ({0} ∪ A)s×t, such that for a ∈ FLd×m, V(fa) 6= ∅ if and only if rank(B(a)) < s.
Moreover, for d ≥ r, we have s ≤ dO(r2) and t ≤ m · dO(r2).

In particular, this means that the s× s minors of B is a resultant system for f .

Proof. Fix M = 13dr+1 from now. As we are aiming for nontrivial zeros of V(I) (that is, we un-
derstand V(I) as in projective space), then the condition of V(I) being empty translates to

√
I =

〈X0, X1, . . . , Xr〉. By Theorem 21, V(I) = ∅ if and only if 〈X0, X1, . . . , Xr〉M ⊆ I. Furthermore, let
N = 1 + (r + 1)(M − 1), and S = {Xi : i ∈ LN} be the set of monomials of degree N . Then we see
that V(I) = ∅ if and only if S ⊆ I.
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Now we can present the construction as in [Yap00]. The idea is to express each monomial Xi ∈ S
as being in the ideal I. Suppose Xi = h1 · g1 + h2 · g2 + . . . + hm · gm, where hi’s are homogeneous
polynomials of degree N − d. Viewing the coefficients of hi’s as variables, this gives a linear equation
with m ·LN−d variables. For every monomial in X of degree N , such a linear equation can be formed.
So we have LN linear equations in m · LN−d variables, and these linear equations can be written as
B · V = I, where B is an LN × (m · LN−d) matrix, whose entries are coefficients of gj ’s. B is the
matrix as desired in the statement; it can be defined formally as follows: the rows are indexed by
monomials of degree N , and the columns are indexed by monomials in hi’s. Given a Xi, |i| = N and
(j,Xk), j ∈ [m] and |k| = N − d, if i ≥ k (namely, at each coordinate e ∈ {0, 1, . . . , r}, ie ≥ ke),
B(i, (j,k)) is the coefficient of Xi−k in gj . If i < k the entry is 0. V is an (m · LN−d) × LN matrix,
whose entries represent the solutions to the linear equations. I is an LN × LN identity matrix. Then
S ⊆ I if and only if each linear equation has a solution, and this happens if and only if rank(B) = LN .
The latter condition can be written as the open set defined by all the LN × LN minors of B, proving
the “moreover” part in our statement. In particular, if m · LN−d < LN , from the above discussion,
the system of polynomial equations always have a nontrivial common zero. We leave it for the reader
to verify that when m ≥ 2 and when N is large enough, then m · LN−d ≥ LN . On the other hand, if
m · LN−d ≥ LN , it is still possible that every minor is a zero polynomial thus putting no constraints
on the A variables.

Note that the minors are have degree bounded by LN =
(
r+N
r

)
=
(

(r+1)M
r

)
= dO(r2). We finally

remark that the degree of the classical multivariate resultant of r+1 polynomials of degree d is (r+1)dr

(cf. Theorem 3.1 in [CLO05]).

Characterizing whether a projective set has dimension ≥ k or not. Now consider a set of
t+ 1 points v0,v1, . . . ,vc in Pr. The span of these points, namely the set

{y0 · v0 + y1 · v1 + . . .+ yc · vc : y0, y1, . . . , yc ∈ F} ⊆ Pr

is a subspace of dimension at most c. It is of dimension equal to c if and only if v0,v1, . . . ,vc are
linearly independent. The following proposition indicates how to express the condition dim ≥ k in an
algebraic way; it is a consequence of Definition 17 and Proposition 18.

Proposition 23. Let k ≥ 1 be an integer and c = (r − k). Then V(f) has dimension ≥ k if and only
if for all linearly independent v0, . . . ,vc ∈ Pr the projective algebraic set defined by the homogeneous
polynomials

{fi(Y0 · v0 + . . .+ Yc · vc) ∈ F[Y0, Y1, . . . , Yc] : i ∈ [m]} ⊂ F[Y]

has a common nontrivial solution for the variables (Y0, . . . , Yc).

In the following, we use V = (V0, . . . ,Vc) to denote a tuple of (c+ 1)(r+ 1) formal variables that
are going to be substituted by vectors v0, . . . ,vc from Pr. Combining this proposition with Lemma
22 we get the following lemma.

Lemma 24 (Resultant system for projective sets with dimension ≥ k). Let the notations be as above.
Then there exists a matrix B(V,A) ∈ (Z[V,A])s×t, such that for a ∈ FLd×m, dim(V(fa)) ≥ k if and
only if every s × s minor of B(V,a) is a zero polynomial in F[A]. Moreover, for d ≥ r, we have
s ≤ dO(c2) and t ≤ m · dO(c2), and the degree of the entries in B is bounded by d.

Proof. In the universal polynomial f , set (X0, . . . , Xr) to Y0V0 + . . . + YcVc. Let h = (h0, . . . , hk)
be the tuple of polynomials after the replacement; note that hi ∈ F[V,A][Y]. As in the proof of
Lemma 22, we build a matrix B consisting of coefficients of the Y variables in hi’s. Let M = 13dc+1

and N = 1 + (c+ 1)(M − 1). Then B is of size LN by mLN−d, with entries from Z[V,A]. Note that
Minors(B,LN ) consists of polynomials from Z[A][V].
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Now consider a specific tuple of polynomials fa. Then for a particular assignment v to V,
h1|v, . . . , hm|v have a nontrivial common zero if and only if for every q(V) ∈ Minors(Ba, LN ), q(v) = 0.
Thus we use Definition 17 and Proposition 18 to distinguish whether dim(V ) ≥ k.

• If dim(V ) ≥ k, then for every linearly independent v = (v0, . . . ,vc), and every q(V) ∈ Minors(B,LN )
we have p(v) = 0. In particular, this implies that every q(V) ∈ Minors(B,LN ) vanishes on a
Zariski-dense subset, thus q(V) ≡ 0.

• If dim(V ) < k, then for a general v = (v0, . . . ,vc), there exists q(V) ∈ Minors(B,LN ), q(v) 6= 0.
This implies the existence of a nonzero polynomial q(V) ∈ Minors(B,LN ).

That is, V(fa) has dimension ≥ k if and only if every q(a,V) ∈ Minors(B,LN ), viewed as ∈ F[V], is a
zero polynomial. This proves the lemma.

Let us get back to the case of universal polynomials. For every q(A,V) ∈ Minors(B,LN ), let U be
the set of the the coefficients of V variables, which are polynomials from F[A]. The above discussion
implies that, fa has dimension ≥ k if and only if a satisfies the polynomials in U . In other words, U
characterizes whether dim(fa) ≥ k.

Solving polynomial equations using resultant. For solving polynomials we will be concerned
with the affine case; namely, polynomials need not be homogeneous.

A well-known application of resultant system is for solving a system of polynomials, cf. e.g.
[CLO05]. In this paper we are concerned with solving a system of polynomials defining a 0-dimensional
(affine) algebraic set. In this 0-dimensional case, solving a system of polynomial equations has evolved
into a mature discipline (cf. Lazard’s survey [Laz09]), and is widely implemented (mostly via Gröbner
basis). For the sake of worst-case analysis, we refer to a result by Lazard ( [Laz81], cf. [Laz01]) 30
years ago. We note that this result builds on the u-resultant technique, and is particularly suited for
complexity analysis in our setting.

Theorem 25 (Theorem 8.1, [Laz81], cf. [Laz01]). Given polynomials f1, . . . , fm ∈ F[X1, . . . , Xr] with
degree bounded by d, suppose V(f1, . . . , fm) is of dimension 0 and consists of N points with multiplicity
1. Let D = max(d, 3). Then there exists an algorithm solving (f1 = 0, . . . , fm = 0) using: (1)
O(mDO(r)) field operations; (2) O(rN4) operations in degree-N extensions of F; (3) solving degree-N
univariate polynomial over F.

In our application the polynomials are homogeneous, defining projective algebraic set of dimension
0. To apply Theorem 25 we can “dehomogenize” the polynomials by setting a variable to 1, and use
the theorem. Do this for every variable and collect the solutions afterwards.

4.2 Randomized algorithms for polynomial matrices

A polynomial matrix B(X) is a matrix from (F[X])s×t, where X = {X1, . . . , Xn}. Assume the degrees
of the entries in B(X) to be bounded by d. Let r ≤ min(s, t) be an integer. In this section, we would
like to determine those x ∈ Fn such that rank(B(x)) < r. Note that B(x) is of rank less than r if and
only if all r × r submatrices of B(x) have determinant zero, in other words x ∈ V(Minors(B(X), r)).
We can do this by computing down all the m =

(
s
r

)
·
(
t
r

)
minors of B(X) and then applying theorem

25. The difficulty here is that m can be very large - for example when s = t = 2r then m = 2O(r)

so that a näıve application theorem 25 can lead to a running time which is exponential with respect
to r. We want to avoid this exponential dependence on r and obtain a running time in which only
the number of variables n appears in the exponent. In our application eventually n will be a constant
(actually 4) so that we want a running time which is polynomial in all the other parameters. The idea
is to exploit the structure of f := Minors(B(X), s); the property of interest is its dimension over F (cf.
Section 3.1, definition 9).
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Proposition 26. Let f and g be any two tuples of polynomials (not necessarily of the same length).
If Span(f) = Span(g) then V(f) = V(g).

Proof. Span(g) = Span(f) means that every polynomial in g is an F-linear combination of polynomials
in f and vice-versa. In particular, since every polynomial in f is an F-linear combination of polyno-
mials in g we have V(g) ⊆ V(f). Similarly since every polynomial in g is an F-linear combination of
polynomials in f we have V(f) ⊆ V(g). The proposition follows.

By counting the number of monomials possibly appearing in a (r × r) minor of B(X), we obtain the
following trivial bound for dim(Span(f)).

Fact 27. dim(Span(f) ≤
(
dr+n+1

n

)
.

We now fix m =
(
dr+n+1

n

)
. We will compute an m-tuple of polynomials which has the same F-span as

f .

Proposition 28. For a set of m randomly chosen pairs of matrices

{(Ai, Ci) ∈ (Fr×s)× (Ft×r) : i ∈ [m]},

the m-tuple of polynomials g = (det(Ai ·B(X) · Ci))i∈[m] satisfies Span(g) = Span(f) with probability

at least 1− 2rm
|F| .

Proof. For any (A,C) ∈ (Fr×s)× (Fs×r) we have we have det(A · B(X) · C) ∈ Span(Minors(B, r)) so
that Span(g) ⊆ Span(f) holds true always. Assume that f1(X), f2(X), . . . , fk(X) ∈ F[X] (k ≤ m) is
a maximal set of F-linearly independent polynomials in f . It suffices to show that dim(Span(g)) = k
with high probability. Now understand the entries in Ai’s and Ci’s as formal variables, denoted by the
variable set Y of size 2mst. Viewing gi’s as polynomials over F(Y)[X], whether dim(Span(g)) = k
is characterized by a set of polynomials (of degree 2kr) in Y. Thus to show that dim(Span(g)) = k
w.h.p. it is enough to exhibit a specific assignment to Y such that dim(Span(g)) = k for this specific
assignment to Y. This specific assignment can be got, by letting Ai’s and the Ci’s “choose” the linearly
independent minors f1, . . . , fk. The probability bound follows via an application of the DeMillo-Lipton-
Schwarz-Zippel lemma (lemma 8).

Combining this proposition with Lemma 24, we get the following proposition determining the
dimension of an algebraic set. It follows by applying Proposition 28, to the polynomial matrix B(V,a)
from Lemma 24 for each k ∈ {0, . . . , r}, to check whether the span of minors of B(V,a) is of dimension
0.

Proposition 29. Let notations be as in Lemma 24. Then there exists a randomized algorithm that

computes dim(V(fa)) in time dO(r4) with probability 1− dO(r4)

|S| .

Combining theorem 25 and propositions 26 and 28 we have

Lemma 30. Let B(X) ∈ (F[X])s×t be a matrix, where X = {X1, . . . , Xn}. Assume the degrees of the
entries in B(X) to be bounded by d. Let r ≤ min(s, t) be an integer. Assume that V(Minors(B(X), r))
is zero-dimensional. Then we can find the set of points x ∈ V(Minors(B(X), r)) in randomized time
(st ·

(
dr+n+1

n

)
)O(1) · (dr)O(n). In particular, if n is a constant then the running time is bounded by

(stdr)O(1).

A more complicated application of this idea, as suggested by Lemma 24 and used in Lemma 51,
is as follows. Let C(A,V) ⊆ (F[A][V])s×t be a polynomial matrix in two sets of variables A and V.
Suppose s ≤ t, |A| = a and |V| = b+ 1, and the degree bound c and d, respectively. We are interested

26



in computing a ∈ Fa such that dim(Minors(C(a,V), s)) = 0 – namely, all minors of size s in C(a,V)
are zero polynomials in F[V]. This can be done using Proposition 28 with a bit more work. After
getting a F-basis g of Minors(C(A,V), s), for every p(A,V) ∈ g, view p as in F[A][V], and collect
all the coefficients which are polynomials in F[A] to form a set R. Now the claim is that a ∈ V(R) if
and only if a sets all polynomials in Minors(C(A,V), s) to zero in F[A][V], which follows by the same
proof as in Proposition 28. In this case the number of polynomials we get is bounded by(

a+ b+ s(c+ d)

a+ b

)
·
(
b+ sd

b

)
= (a+ b+ s(c+ d))O(a+b) · (b+ sd)O(b).

The important observation is that only the number of variables stands on the exponent. We present
a proposition summarizing the above discussion.

Proposition 31. Given a polynomial matrix C(A,V) ∈ (F[A,V])s×t (s ≤ t), suppose |A| = a,
|V| = b+ 1, and the degree bound c and d for A and V, respectively. Then there exists a randomized
algorithm, that computes g1, . . . , gu ∈ F[A], with the following property. If the algorithm succeeds, the
gi’s satisfy: a sets every s× s minor to a zero polynomial in F[V], if and only if a ∈ V(g1, . . . , gu).

Furthermore, the degree of gi’s is O(
(
a+sc−1
a−1

)
), the running time (thus u) is bounded by O(

(a+b+s(c+d)
a+b

)
·(

b+sd
b

)
), and the success probability is 1− (c+d)su

|S| .

4.3 An algorithm extracting the top dimensional component of an ideal

Suppose we are given some polynomials f1, . . . , fm generating I ⊆ F[X0, . . . , Xr]. Note that in this
section we will think of We will be interested in computing the top dimensional component top(I).
While there are several algorithms to extract the top dimensional component (cf. [DGP98]), we here
present a conceptually simple algorithm that suffices in our setting. The purpose is to illustrate the
techniques with minimal background. For background material we will mostly refer to [GP07].

We need some ring-theoretic preliminaries to support this algorithm. First are some standard
definitions for a Noetherian ring R. For a multiplicative closed subset M ⊆ R, 0 6∈ M , M−1R is the
ring of fractions, where elements are of the form rm−1, r ∈ R and m ∈ M with certain (natural)
equivalence relation. In the polynomial ring case, we will be mostly interested when R = F[X] and
M = F[U] \ {0} where U ⊆ X. We will use F[X]U to denote this case. Also, for an ideal I ⊆ F[X], if
I∩F[U] = {0}, then variables in U are said to be independent w.r.t. I, and U is called an independent
set (w.r.t. I). An independent set U is maximal if |U| = dim(I).

The following fact tells us that for a polynomial ideal of dimension d, there exists d variables that
are independent. In fact, this can be taken as another definition of the dimension.

Proposition 32 (Theorem 3.5.1 (6) in [GP07]). For I ⊆ F[X] of dimension d, there exists U ⊆ X of
size d, such that U is independent w.r.t. I.

Let S ⊆ R be commutative rings, then R is a finite extension of S if R is finitely generated as an
S-module. That is, there exist b1, . . . , bm ∈ R such that every b ∈ R can be expressed as b =

∑
i aibi

for ai ∈ S. For polynomial ideals I ⊆ F[X] of dimension D, Noether normalization lemma states
that there exist Y1, . . . , YD ∈ I, such that I ∩ F[Y1, . . . , YD] = {0}, and I is a finite extension of
F[Y1, . . . , YD]. We call I is in Noether position w.r.t. Yi’s. We state the following form of Noether
normalization lemma of use to us.

Lemma 33 (Noether normalization lemma. Cf. Theorem 3.4.1 in [GP07]). If F is infinite, for an ideal
I ∈ F[X], there exist M = (mij) ∈ GL(r+ 1,F) and v = (vi) ∈ Fr+1, such that under the isomorphism
φ : (X1, . . . , Xn) → (Y1, . . . , Yn) where Yj =

∑
i∈[n]mjiXi + vj, φ(I) is in Noether position w.r.t.

Y1, . . . , YD.
Furthermore, such (M,v) can be chosen from a Zariski-dense set in mij’s and vi’s.
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The most important property of Noether normalization for us, is that it puts Y1, . . . , YD as inde-
pendent variables for all primary components in top(I). In the following, when we say that X1, . . . , XD

are put in Noether position w.r.t. an ideal I, it is understood that we apply some linear transformation
to send Xi’s to Yi’s such that the situation in the lemma holds.

For an ideal I ⊆ R, the extension of I to M−1R, denoted as Ie, is the ideal in M−1R generated by
I in M−1R. For an ideal J in M−1R, the contraction of J w.r.t. R, denoted as Jc is J ∩R. Extension
and contraction serve as the basic operations for extracting the primary components of an ideal.

Lemma 34 (Proposition 4.3.1 in [GP07]). For I ⊆ F[X] with dim(I) = D, suppose the primary
decomposition of I is

⋂
i Ji. If U is of size D and independent w.r.t. I, then Iec between F[X] and

F[X]U is the intersection of the primary components Ji’s satisfying: (1) dim(Ji) = D; (2) U is an
independent set for Ji.

Based on the above preparation, we present the simple procedure computing top(I) for I ⊆ F[X]
of dimension D, codimension C = r + 1−D.

• J := 〈1〉.

• Put X1, . . . , XD in Noether position w.r.t. I.

• U := {X1, . . . , XD}.

• J := Iec where extension and contraction are between F[X] and F[X]U.

• Return J.

Theorem 35. Suppose f1, . . . , fm generate an ideal I ⊆ F[X0, . . . , Xr] of codimension c, with deg(fi) ≤
d, and m = O(r). Then there is a randomized algorithm computing g1, . . . , gu generating top(I) in

time D2O(r)
, with success probability 1− dO(r2)/|S|.

Proof. The algorithm is just as above; its correctness follows from Lemma 34 and Proposition 32, and
the property of Noether normalization. What is left is to exhibit an implementation achieving the
time bound as in the statement. It is seen that the above procedure requires the following operations:
Noether normalization and extension and contraction. As far as we understand, G. Hermann’s classical
method [Her26] (cf. [Her98]) is more suitable for worst-case analysis, while Gröbner basis is of course
used more widely in practice. We indicate the possibility of using Hermann’s method to implement
the algorithm without referring to Gröbner basis.

To perform Noether normalization is easy: randomly choose M ∈ GL(r+1,F) and v ∈ Fr+1 (recall
Lemma 33). To analyze the probability of failure, a bound 1−dO(r2)/|S| can be achieved (cf. Remark
6 in [JS02]).

To compute Iec between F[X] and F[X]U, some theoretic preparation is needed. The saturation
of I w.r.t. h, denoted as I : h∞, is {g ∈ F[X] | ∃m ∈ N, hmg ∈ I}. For the polynomial ideal I, there
exists h ∈ F[U] such that (I : h) = Iec. So the original problem is reduced to the following two tasks.

• Compute h ∈ F[U], such that (I : h) = Iec;

• Compute a set of generators for (I : h).

The above two tasks can be accomplished with Hermann’s classical method for ideal membership
problem, as exhibited in [Asc04], and explained in [Asc11]. This gives the doubly exponential bound

d2O(r)
.
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Several remarks. The algorithm here is the same as in Alonso et al. [AMR90], and background ma-
terial can be found in [BWK93] or [GP07]. While we follow the philosophy of using Hermann’s method
to implement the algorithm, in practice Gröbner basis technique is more suitable for implementation
and has been realized in a number of softwares. The operations like normalization, extension and
contraction, etc. are readily supported. Currently, there is no good upper bound for Buchberger’s
algorithm (cf. [Asc11]). On the other hand, there exists a doubly-exponential-time algorithm to obtain
Gröbner basis for lexicographic order as in [KL90], but as far as we understand, it ultimately relies on
idea similar to Hermann’s.

We also note that there is a distinction between the geometric version and the algebraic version
of the equidimensional decomposition problem. By geometric version of this problem, we mean for I
of dimension d with equidimensional decomposition

⋂
i Ii, compute J0, . . . , Jd such that

√
Ji =

√
Ii.

In [JS02], Jeromino and Sabia presented an algorithm for this geometric version with time bound
dO(r); their algorithm outputs arithmetic circuits as the representation. For the algebraic version,
most algorithms assume using the Gröbner basis, as surveyed in [DGP98]. As mentioned, the worst
case analysis does not favor Gröbner basis, while in practice it is popular.

5 Low dimensional Formula Reconstruction

In this section, we present the most important component of our algorithm which pertains to doing
formula reconstruction when the dimensionality of the ambient projective space is a constant r (we
will later set r = 127). Here the problem is as follows: given a homogeneous (r+1)-variate polynomial
f(Y) (here Y = (Y0, Y1, Y2, . . . , Yr)) which is the output of a random homogeneous (Y,∆, S)-ANF
formula φ, we want to reconstruct a homogeneous (Y,∆)-ANF formula for f . For a certain technical
reason pertaining to uniqueness, the output of our low dimensional reconstruction algorithm will be
the quadratic forms (in an appropriate order) computed at the second last layer of the tree rather
than the linear forms at the leaf nodes of φ. Thus given the output polynomial f of an unknown
homogeneous (Y,∆)-ANF formula φ our task is to find quadratic forms q1, . . . , qm (m = 4∆−1) such
that

f(Y) = F∆−1(q1, . . . , qm).

Let the polynomials computed by the four grandchildren of the output node of φ be f1, f2, f3, f4 so
that

f = f1 · f2 + f3 · f4,

Our aim is to compute the fi’s and then the list of quadratic forms for f is then simply the concate-
nation of the four lists of quadratic forms corresponding to each fi. How do we find the fi’s? We
will follow the outline given in section 2. Our presentation here is organized as follows. In section
5.1, we give the formal staement of the algorithm. It will be immediate from the description of the

algorithm that its running time is at most |φ|2
O(r)

but the algorithm will have a small chance of failing.
In section 5.2, we show that if the fi’s and their grandchildren satisfy certain algebraic conditions 21

then our algorithm correctly computes the fi’s (upto appropriate scalar multiples and permutation).
This allows us to carry out formula reconstruction for f recursively. In section 5.3, we show that the
algebraic conditions of section 5.2 are satisfied with high probability when f is the output of a random
homogeneous (Y,∆, S)-ANF formula. Finally, in section 5.4 we will put all this together to deduce
that in the low dimensional situation, random formulas can be reconstructed efficiently.

21We give names to these algebraic conditions in order to convey some intuition for them.
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5.1 The Low Dimensional Formula Reconstruction Algorithm

The algorithm is given in the accompanying box. From the description of the algorithm it is fairly

straightfoward that the running time is at most |φ|2
O(r)

. In order to explain what is going on we
mention what each step of this algorithm is intended to do/supposed to have computed.

(1) The first step, LDR-1, is just the base case for the recursion.

(2) At the end of step LDR-2, g1, g2, . . . , gr+1 are supposed to be a generating set for the ideal
I(f) := 〈f1, f2, f3, f4〉.

(3) At the end of step LDR-3, the vector space V is supposed to consist of polynomials of the form

(α1f1 + α2f2 + α3f3 + α4f4).

and a basis of V is supposed to consist of four F-linearly independent polynomials of the above
form.

(4) The hi’s computed in step LDR-4 are supposed to be scalar multiples of the fi’s upto ordering.
i.e. there exists a permutation π ∈ S4 and nonzero scalars α1, α2, α3, α4 ∈ F such that

hi = αi · fπ(i).

(5) The h̃i’s computed in step LDR-5 are again scalar multiples of the fi’s but additionally the two
sets

{(h̃1 · h̃2), (h̃3 · h̃4)} and {(f1 · f2), (f3 · f4)}.

are supposed to be equal.

In essence therefore the h̃i’s equal the fi’s upto valid scalar multiples and a valid reordering. Finally
note that if a polynomial f is computed by a homogeneous (Y,∆)-ANF formula then any scalar
multiple α ·f is also computed by a (Y,∆)-ANF formula. Hence assuming each of the steps LDR-2 to
LDR-5 does indeed do what it is supposed to and that the recursive call in step LDR-6 succeeds, we
obtain (Y,∆− 1)-ANF formulas for the h̃i’s and therefore a (Y,∆)-ANF formula for f as required.

5.2 Algebraic Nondegeneracy conditions for success of the LDR algorithm.

We begin our analysis of the low dimensional formula reconstruction algorithm given above by defining
a certain algebraic nondegeneracy condition which we call formulaic independence that is a sufficient
condition for the success of steps LDR-2, LDR-3 and LDR-5 in the algorithm above. Let f = f1 · f2 +
f3 · f4 and f := (f1, f2, f3, f4).

Definition 36. The algebraic set VJ(g). Let g = (g1(Y), . . . , gk(Y)) ∈ F[Y] be a k-tuple of
homogeneous polynomials. The algebraic set VJ(g1, . . . , gk) (VJ(g) in short) is defined to be the algebraic
set which is the set of common zeroes of polynomials in Minors(J((g1, . . . , gk),Y), k). In other words,
VJ(g) consists of points y ∈ Pr for which the rank of the Jacobian matrix J(g,y) is less than k.

Definition 37. Situation as above. We will say that f = (f1, f2, f3, f4) are formulaically independent
if

dim(V(f)) = r − 4 and dim(Sing(f) ∩ VJ(f)) < (r − 4).

We will say that a homogeneous ANF formula φ satisfies formulaic independence at a node v if

• if the node v is a + node and,
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Algorithm : Low Dimensional Reconstruction LDR(f(Y),∆)
Input: An (r + 1)-variate homogeneous polynomial f ∈ F[Y] of degree

d = 2∆ given as a list of coefficients.

Output: Either a tuple of m = 4∆−1 quadratic forms (q1, . . . , qm)
each of rank 4 such that f = F∆−1(q1, q2, . . . , qm) or ‘Fail’.

LDR-1: If ∆ = 1 then return f itself.

LDR-2: Let Sing(f) be the ideal generated by the first order

derivatives of f - i.e. the ideal〈
∂f

∂Y0
,
∂f

∂Y1
, . . . ,

∂f

∂Yr

〉
.

Use Proposition 29 to determine the dimension of Sing(f). If

codimension of Sing(f)) is not 4 output ‘Fail’. Else compute a

set of generators g1, g2, . . . , gu for the top-dimensional component

(of codimension 4) of Sing(f) using the algorithm of theorem

35.

LDR-3: Compute a basis {g̃1, . . . g̃t} for the vector space V ⊂ F[Y]
consisting of all the homogeneous components of degree d/2
of each gi above. If t = dim(V ) 6= 4 output ‘Fail’.

LDR-4: By solving an appropriate system of polynomial equations in 4
unknowns, compute another basis {h1, h2, h3, h4} of V such that

the singularities of each hi has a component of codimension 4.

LDR-5: By going over all permutations π : [4] 7→ [4], find one such

that f is a F-linear combination of hπ(1) · hπ(2) and hπ(3) · hπ(4).

Compute α, β such that

f = α · hπ(1) · hπ(2) + β · hπ(3) · hπ(4)

Let

h̃1 = α · hπ(1), h̃2 = hπ(2), h̃3 = β · hπ(3), h̃4 = hπ(4)

LDR-6: For each i ∈ [4], make a recursive call to

LowDimReconstruct(h̃i,∆− 1) and obtain

Qi := (qi1, qi2, . . . , qi4∆−2) such that h̃i = F∆−2(qi1, qi2, . . . , qi4∆−2).

Output Q := Q1 ◦Q2 ◦Q3 ◦Q4,

where ‘◦’ denotes list concatenation.

Algorithm 1: Low Dimensional Formula Reconstruction (LDR).
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• the four polynomials computed at the grandchildren of v are formulaically independent.

When f1, f2, f3, f4 are linear forms, they are formulaically independent if and only if they are F-linearly
independent. For higher degree forms, formulaic independence is a somewhat more stringent condition.
In particular we have

Proposition 38. Formulaic Independence implies Algebraic Independence. Let f1, f2, f3, f4

be (r + 1)-variate homogeneous polynomials which are formulaically independent. Then they are alge-
braically independent as well. In particular, (f1 · f2 + f3 · f4) is a nonzero polynomial.

Proof. By contradiction. Suppose if possible that the fi’s are algebraically dependent. Then by the
Jacobian criterion (13), we have rank(J(f)) = 3 so that each (4× 4) minor of J(f) is identically zero.
This means that

Sing(f1 · f2 + f3 · f4) ∩ V(Minors(J(f))) = Sing(f1 · f2 + f3 · f4).

Thus

dim(Sing(f1 · f2 + f3 · f4) ∩ V(Minors(J(f)))) = dim(Sing(f1 · f2 + f3 · f4))

≥ dim(V(f)) (since V(f) ⊆ Sing(f1 · f2 + f3 · f4))

≥ (r − 4),

thereby contradicting the formulaic independence of the fi’s.

In the next subsection we will see that when f1, f2, f3, f4 are ANF formulas chosen independenty at
random then they are formulaically independent with high probability. Next, we give a decomposition
of Sing(f).

Lemma 39.
Sing(f) = V(f) ∪ (Sing(f) ∩ VJ(f)) . (6)

Proof. The decomposition of Sing(f) as given in equation (6) follows from

Sing(f) \ V(f) ⊆ VJ(f).

To prove this containment, it is enough to show that for any y ∈ Sing(f) \ V(f), J(f ,y) is of rank < 4.
Note that we have

∂f

∂Xi
= f1 ·

∂f2

∂Xi
+ f2 ·

∂f1

∂Xi
+ f3 ·

∂f4

∂Xi
+ f4 ·

∂f3

∂Xi
.

So if ∂f
∂Xi

(y) = 0 for all i ∈ {0, 1, . . . , r} then we must have that
∂f1

∂X1
(y) ∂f2

∂X1
(y) . . . ∂f4

∂X1
(y)

∂f1

∂X2
(y) ∂f2

∂X2
(y) . . . ∂f4

∂X2
(y)

...
...

. . .
...

∂f1

∂Xn
(y) ∂f2

∂Xn
(y) . . . ∂f4

∂Xn
(y)

 ·

f2(y)
f1(y)
f4(y)
f3(y)

 = 0

written compactly as
J(f ,y)(r+1)×4 · f(y)4×1 = 0.

So if y is not on the algebraic set V(f) defined by the equations

f1(Y) = f2(Y) = f3(Y) = f4(Y) = 0

then f(y) is a nonzero vector whence it follows that J(f ,y) has rank at most 3.
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Proposition 40. Formulaic Independence implies Absolute Irreducibility. Let f1, f2, f3, f4

be (r + 1)-variate homogeneous polynomials of degree d/2 each. Suppose that they are formulaically
independent. Then f = f1 · f2 + f3 · f4 must be absolutely irreducible.

Proof. By contradiction. Suppose if possible that

f(X) = g(X) · h(X), (7)

where g, h ∈ F[X] are polynomials of degree dg and dh = (d− dg) respectively.

Claim 41. g and h must both be homogeneous polynomials.

Proof of Claim 41: Let the homogeneous decomposition of g and h be

g =
∑

i∈[0..dg ]

g[i] and h =
∑

i∈[0..dh]

h[i]

respectively. Then from equation (7) we have

f [i] =
∑
j∈[0..i]

g[j] · h[i−j]

where f [i] is the homogeneous component of degree i of f . Now consider ig ∈ [0..dg] and ih ∈ [0..dh]
defined as

ig = min{i ∈ [0..dg] : g[i] 6= 0}, ih = min{i ∈ [0..dh] : g[i] 6= 0}.

Then we have

f [ig+ih] = g[ig ] · h[ih]

6= 0

Since f is homogeneous of degree d we have get that ig+ ih = d. This can happen if and only if ig = dg
and ih = dh which means that both g and h must be homogeneous. 2

Now the fact that f = g ·h also means that Sing(f) ⊇ V(g, h). By claim 41 above V(g, h) is a projective
variety so that by fact 19 we have dim(V(g, h)) ≥ (r − 2). This means that dim(Sing(f)) ≥ (r − 2) as
well. By the above lemma this means that either dim(V(f)) ≥ (r−2) or dim(Sing(f)∩VJ(f)) ≥ (r−2),
both of which contradict the formulaic independence of f . Thus f must be absolutely irreducible.

With the decomposition of lemma 39 in hand, we are ready to prove that LDR-2, LDR-3 and LDR-5
work correctly assuming formulaic independence of f .

Lemma 42. Correctness of step LDR-2. If (f1, f2, f3, f4) are formulaically independent polyno-
mials of degree d

2 , then step LDR-2 computes a set of polynomials g0, g1, . . . , gu generating I(f), in

time d2O(r)
, with success probability 1− dO(r4)

|S| .

Proof. Let J be the highest equidimensional component of Sing(f), i.e. J = top(Sing(f)). By the
formulaic independence of f and using the decomposition of Sing(f) as in lemma 39, we have

(1) dim(Sing(f)) = r − 4;

(2) for an irreducible component C in Sing(f), C is of dimension < (r − 4) if and only if C ⊆
Sing(f) ∩ VJ(f).
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Given these conditions, we have J = 〈f〉. By theorem 35, a set of defining polynomials g =

(g0, g1, . . . , gu) of J can be computed in time d2O(r)
, .i.e. in time d2O(r)

we obtain g ∈ (F[Y])u,

where u = d2O(r)
, such that

〈g〉 = J = I(f).

Lemma 43. Correctness of step LDR-3. Let (f1, f2, f3, f4) be homogeneous formulaically inde-
pendent polynomials of degree d/2 each. Let

U(f) := {α1f1 + α2f2 + α3f3 + α4f4 : αi ∈ F ∀i ∈ [4]} ⊆ F[Y].

Then the dimension of U(f) as an F-vector space equals 4 and moreover given a basis g0, g1, . . . , gu of

I(f), the algorithm of step LDR-3 computes a basis of U(f) in time d2O(r)
.

Proof. By proposition 38, the assumption that the fi’s are formulaically independent implies that they
are algebraically independent which in turn means that the fi’s are F-linearly independent as well.
Thus

dim(U(f)) = 4

as an F-vector space. We will use the following notation from section 3. For a polynomial h ∈ F[Y],
h[i] shall denote the homogeneous component of degree i of h. Note that in step LDR-3 we compute a
basis for V ⊆ F[Y] viewed as an F-vector space generated by the homogeneous components of degree
d
2 of the gj ’s, i.e.

V := {α0g
[d/2]
0 + α1g

[d/2]
1 + . . .+ αr+1g

[d/2]
r+1 : αi ∈ F ∀i ∈ [0..(r + 1)]} ⊆ F[Y]

It suffices then to prove the following claim.

Claim 44.
V = U(f).

Proof of Claim 44: Consider an arbitrary polynomial g(Y) ∈ I(f)

g(Y) =
∑
i∈[4]

hi(Y) · fi(Y).

So the homogeneous component of degree (d/2) of g is

g[d/2](Y) =
∑
i∈[4]

(hi(Y) · fi(Y))[d/2]

=
∑
i∈[4]

∑
0≤k≤d/2

h
[d/2−k]
i · f [k]

i

=
∑
i∈[4]

h
[0]
i · f

[d/2]
i (since f

[k]
i = 0 ∀k 6= d/2)

=
∑
i∈[4]

αi · fi where αi = h
[0]
i ∈ F.

Thus g[d/2] ∈ U(f) for every g ∈ I(f) and hence we have

V ⊆ U(f) (8)
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Moreover from the same reasoning as above it follows that

g[k] = 0 for every k < d/2 and for every g ∈ I(f). (9)

Since the gj ’s form a basis for I(f) we have that for each i ∈ [4], the polynomial fi can be expressed
as

fi =
∑

0≤j≤(r+1)

hj(Y) · gj(Y),

for some h0, h1, . . . , hr+1 ∈ F[Y]. Since fi is homogeneous of degree d/2 it follows that

fi = f
[d/2]
i

=
∑

0≤j≤(r+1)

(hj · gj)[d/2]

=
∑

0≤j≤(r+1)

∑
0≤k≤(d/2)

(h
[d/2−k]
j · g[k]

j )

=
∑

0≤j≤(r+1)

h
[0]
j · g

[d/2]
j (using (9))

=
∑

0≤j≤(r+1)

αj · g[d/2]
j where αj = h

[0]
j ∈ F.

Hence each fi ∈ V whence
U(f) ⊆ V. (10)

Combining equations (8) and (10), the claim follows. 2

This completes the proof of lemma 43 as well.

We next show that formulaic independence also suffices to ensure that step LDR-5 works correctly
(assuming that step LDR-4 did).

Lemma 45. Correctness of step LDR-5. Let f = (f1, f2, f3, f4) be homogeneous formulaically
independent polynomials of degree d/2 each. Assuming that the 4-tuple h = (h1, h2, h3, h4) computed
in step LDR-4 is PS(4,F)-equivalent to f , i.e. there exists a permutation σ : [4] 7→ [4] and nonzero
scalars α1, α2, α3, α4 ∈ F such that

fi(Y) = αihσ(i)(Y) for each i ∈ [4]. (11)

Then

1. There do exist scalars α, β ∈ F and a permutation π : [4] 7→ [4] such that

f = αhπ(1) · hπ(2) + βhπ(3) · hπ(4).

Moreover for any fixed π there exists at most one pair (α, β) ∈ F×F satisfying the above equation.

2. Let h̃ := (h̃1, h̃2, h̃3, h̃4), where h̃i’s are as defined in step LDR-5. Then h̃ is TS(4,F)-equivalent
to f .

Proof. We start with the following claim.

Claim 46. The polynomials {fifj : 1 ≤ i ≤ j ≤ 4} are F-linearly independent. Similarly the
polynomials {hihj : 1 ≤ i ≤ j ≤ 4} are F-linearly independent as well.
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Proof of Claim 46: By contradiction. Suppose not. Then for 1 ≤ i ≤ j ≤ 4 there exist αij ∈ F not
all zero such that ∑

1≤i≤j≤4

αij · fi · fj = 0.

Consider the 4-variate polynomial A(Z) defined as

A(Z1, Z2, Z3, Z4) :=
∑

1≤i≤j≤4

αij · Zi · Zj .

Since not all the αij ’s are zero it follows that A(Z) is a nonzero polynomial for which

A(f1, f2, f3, f4) ∈ F[Y]

is identically zero. Hence the fi’s are algebraically dependent. But formulaic independence of the fi’s
implies that they are algebraically also independent (Proposition 38), a contradiction. The ‘similarly’
part of the claim follows from the fact that h is PS(4,F)-equivalent to f . 2

Now by assumption, we have

f = f1 · f2 + f3 · f4

= (α1hσ(1)) · (α2hσ(2)) + (α3hσ(3)) · (α4hσ(4)) (using (11))

= (α1α2)hσ(1) · hσ(2) + (α3α4)hσ(3) · hσ(4)

Thus taking π := σ, α := α1α2, β := β1β2 we get the existential part of statement 1 of the lemma.
Note that if we had

f = αhπ(1) · hπ(2) + βhπ(3) · hπ(4) = α′hπ(1) · hπ(2) + β′hπ(3) · hπ(4),

then by the F-linear independence of hπ(1) · hπ(2) and hπ(3) · hπ(4) we would obtain α = α′ and β = β′,
proving the ‘moreover’ part as well. Finally from the statement of LDR-5, it is clear that for some
β1, β2, β3, β4 ∈ F∗ we have

h̃1 = β1fπ(1), h̃2 = β2fπ(2), h̃3 = β3fπ(3), h̃4 = β4fπ(4)

and that
f = f1 · f2 + f3 · f4 = h̃1 · h̃2 + h̃3 · h̃4.

Thus we have

f1 · f2 + f3 · f4 = (β1 · β2) · (fπ(1) · fπ(2)) + (β3 · β4) · (fπ(3) · fπ(4)).

Hence from claim 46 we have that

(β1 · β2) = (β3 · β4) = 1 and {{1, 2}, {3, 4}} = {{π(1), π(2)}, {π(3), π(4)}}.

Using the definition of TS(4,F), it follows that h̃ is TS(4,F)-equivalent to f . This proves part 2 of the
lemma as well.

We remark here that in a similar manner as above, it can be shown that formulaic independence of
f = (f1, f2, f3, f4) suffices to determine f upto OG(4,F)-equivalence from f . Also it is impossible in
general to do any better. Specifically for any groupG ≤ OG(4,F) ≤ GL(4,F), it is impossible in general
(i.e. without any further assumption on the structure of the fi’s) to determine f upto G-equivalence
from f . In what follows we will exploit the fact that the fi’s are computed by (Y,∆−1)-ANF formulas
and show that if the grandchildren of the fi’s satisfy certain nondegeneracy conditions then we can
determine f upto PS(4,F)-equivalence and thereafter upto TS(4,F)-equivalence as well.
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Definition 47. The Iterated Jacobian and the algebraic set VI. Let g1, . . . ,gk ∈ (F[Y])` be
`-tuples of homogeneous (r + 1)-variate polynomials. The iterated Jacobian of (g1, . . . ,gk), denoted

I(g1, . . . ,gk), is defined to be the following matrix: I(g1, . . . ,gk) ∈ F[Y](
r+1
k )×`k has its rows in-

dexed by k-sized subsets of indices of variables {j1, . . . , jk} ∈
([0..r]

k

)
and its columns indexed by tuples

(i1, . . . , ik) ∈ [`]k. The ({j1, . . . , jk}, (i1, . . . , ik))-th entry of I(g1, . . . ,gk,Y) is the polynomial∣∣∣∣∣∣∣∣∣
∂g1i1
∂Yj1

∂g2i2
∂Yj1

· · · ∂gkik
∂Yj1

...
...

. . .
...

∂g1i1
∂Yjr

∂g2i2
∂Yjk

· · · ∂gkik
∂Yjk

∣∣∣∣∣∣∣∣∣ .
The algebraic set VI(g1, . . . ,gk) is defined to be the common zeroes of the polynomials in

Minors(I(g1, . . . ,gk), `
k). In other words VI is the set of points y ∈ Pr for which the matrix

I(g1, . . . ,gk,y) has rank less than `k.

The Situation. In what follows we will look at the following situation:

For i ∈ [4] let fi = fi1 · fi2 + fi3 · fi4 and ∀i, j ∈ [4] deg(fij) = (d/4) and fij homogeneous

For i ∈ [4] let fi = (fi1, fi2, fi3, fi4) and f = f1 · f2 + f3 · f4 (12)

For S = {i1, . . . , ik} ⊆ [4], let

WS := VJ(fi1 , . . . , fik) ∩ VI(fi1 , . . . , fik).

Definition 48. Situation as above. We will say that (f1, f2, f3, f4) are pairwise singularly independent
if

1. Dimension of intersection of singularities of any pair of fi’s is at most (r − 6), i.e.

dim(Sing(fi) ∩ Sing(fj)) ≤ (r − 6) for all 1 ≤ i < j ≤ 4 and

2. For all S ⊂ [4], |S| ≥ 2:
dim (WS) ≤ (r − 6).

We will say that a homogeneous ANF formula φ satisfies pairwise singular independence at a node
v if

• if the node v is a + node and,

• (fv1 , fv2 , fv3 , fv4) is pairwise singularly independent where v1, v2, v3, v4 are nodes which are the
grandchildren of v and fvi is the 4-tuple of polynomials computed at the grandchildren of the
node vi.

We will later see that when the formulas computing the fij ’s are independent random ANF formulas
then (f1, f2, f3, f4) is pairwise singularly independent with high probability. The remainder of this
section is devoted to showing that if the above nondegeneracy condition holds true then step LDR-4
of the algorithm works correctly and recovers f upto PS(4,F)-equivalence.

Lemma 49. Let S = {i1, . . . , ik} ⊆ [4] with |S| = k ≥ 2. Let g =
∑

j∈S αjfj where each αj ∈ F is
nonzero. If (f1, f2, f3, f4) is pairwise singularly independent then

dim(Sing(g)) ≤ (r − 6).

37



Proof. By symmetry, we can assume without assume loss of generality that S = {1, . . . , k}.

Claim 50. We have

Sing(g) ⊆
⋃
T⊆[k]

WT ∩
⋂

i∈[k]\t

Sing(fi)

⋃⋂
i∈[k]

Sing(fi)

 (13)

Proof of Claim 50: Consider an arbitrary y ∈ Sing(g). In order to prove the claim it suffices to show
that y belongs to one of the component varieties on the rhs of equation (13). Towards this end, let
T ⊆ [k] consist of all those indices i such that y /∈ Sing(fi). If T is empty then y ∈

⋂
i∈[k] Sing(fi) and

hence we are done. So assume T is nonempty. Assume without loss of generality that T = {1, . . . , t}.
t = 1 is not possible for we have

f1(Y) = α−1
1 · (g(Y)−

∑
i∈[2..k]

αifi(Y))

and hence any y ∈ Sing(g) ∩ ∩i∈[2..k]Sing(fi) is in Sing(f1) as well. So we must have that t ≥ 2. It
now suffices to show that y ∈ WT . For this we will need to show that

y ∈ VI(f1, . . . , ft) = V(Minors(M(f1, . . . , ft,Y), 4t))

where the matrix M(f1, . . . , ft,Y) ∈ F(r+1
t )×4t is the iterated Jacobian matrix as defined in definition

47. For this it suffices to exhibit an explicit nonzero vector in the nullspace of M(f1, . . . , ft,y). We
will exhibit this vector now. As V(fi) ⊆ Sing(fi) (recall V(fi) = V(fi1, fi2, fi3, fi4) by definition) we
have that y /∈

⋃
i∈[t] V(fi). In particular,

∃i1, . . . , it ∈ [4] such that ∀r ∈ [t] : frir(y) 6= 0. (14)

Let v ∈ F4t be the vector indexed by tuples (i1, . . . , it) ∈ [4]t, whose (i1, . . . , it)-th entry is
∏
r∈[t] frir(y).

In other words,

v =


f11(y) · . . . ft1(y)
f11(y) · . . . ft2(y)

...
f14(y) · . . . ft4(y)


4t×1

From (14) it then follows that v is a non-zero vector. This will essentially be the non-zero vector
that we are looking for. As noted above, it suffices to show that v is in the nullspace of the matrix
M(f1, . . . , ft,y). To see this let us look at the equations defining the algebraic set Sing(g). Note that
since g =

∑
i∈[k] αifi, Sing(g) is defined by the equations

∑
i∈[k]

αi
∂fi
∂Y0

=
∑
i∈[k]

αi
∂fi
∂Y1

= . . . =
∑
i∈[k]

αi
∂fi
∂Yr

= 0.

From the definition of T we have y ∈ Sing(fi) for all i > t so we get that

∂fi
∂Yj

(y) = 0 ∀i > t, j ∈ [0..r].

And so using the previous equation we get∑
i∈[t]

αi
∂fi
∂Y0

(y) =
∑
i∈[t]

αi
∂fi
∂Y1

= . . . =
∑
i∈[t]

αi
∂fi
∂Yr
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Rearranging this into a matrix form we have

J(f1, f2, . . . , ft,y) ·


α1

α2
...
αt

 = 0.

As αi’s are non-zero, it follows that for all {j1, . . . , jt} ∈
(

[0..r]
t

)
we have∣∣∣∣∣∣∣∣

∂f1

∂Yj1

∂f2

∂Yj1
· · · ∂ft

∂Yj1
...

...
. . .

...
∂f1

∂Yjt

∂f2

∂Yjt
· · · ∂ft

∂Yjt

∣∣∣∣∣∣∣∣ (y) = 0. (15)

and so y ∈ VJ(f1, . . . , ft). Now we have fi = fi1 · fi2 + fi3 · fi4 so that

∂fi
∂Yj

=
∑
r∈[4]

fir ·
∂(fiπ(r))

∂Yj
,

where π : [4] 7→ [4] is the map π(1) = 2, π(2) = 1, π(3) = 4, π(4) = 3. Substituting this in equation
(15) and arranging the equations corresponding to all {j1, . . . , jt} ∈

(
[0..r]
t

)
into a matrix form we get

that

M(f1, . . . , ft,y) ·


f1π(1)(y) · . . . ftπ(1)(y)

f1π(1)(y) · . . . ftπ(2)(y)
...

f1π(4)(y) · . . . ftπ(4)(y)

 = 0.

As the above vector is v with its entries permuted, it means that M(f1, . . . , ft,y) is a singular matrix
which in turn means that y is a common zero of all the 4t × 4t minors of M(f1, . . . , ft,Y). In other
words y ∈ VI(f1, . . . , ft) and so y ∈ WT (recall that by definition WT = VJ(f1, . . . , ft) ∩ VI(f1, . . . , ft)).
This completes the proof of the claim. 2

From the above claim and using the first two parts of fact 19 it follows that

dim(Sing(g)) ≤ max{δ1, δ2}

where

δ1 = dim

 ⋃
T⊆[k]

WT ∩
⋂

i∈[k]\t

Sing(fi)

 and δ2 = dim

⋂
i∈[k]

Sing(fi)

 .

Since (f1, f2, f3, f4) is pairwise singularly independent and k ≥ 2 we get that δ2 ≤ (r − 6). It then
suffices to prove that δ1 ≤ (r− 6). Using part (2) of fact 19, it suffices to prove that for every T ⊆ [k]

dim

WT ∩
⋂

i∈[k]\T

Sing(fi)

 ≤ (r − 6).

If |T | ≥ 2 then this follows from the fact that (f1, f2, f3, f4) are pairwise singularly independent (via
definition 48). If |T | = 1 (T = {1} say), then WT ⊆ Sing(f1) and so using fact 19

dim

WT ∩
⋂

i∈[k]\T

Sing(fi)

 ≤ dim(Sing(f1) ∩ Sing(f2) ∩ . . . ∩ Sing(fk))

≤ (r − 6).

This proves the lemma.
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Lemma 51. Correctness of step LDR-4. Situation as above. Assume that g̃ = (g̃1, . . . , g̃4)
computed in step LDR-3 is GL(4,F)-equivalent to f . If (f1, f2, f3, f4) are pairwise singularly independent
then step LDR-4 of the algorithm correctly computes h = (h1, h2, h3, h4) which is PS(4,F)-equivalent
to f in time dO(r), with probability 1− dO(r)/|S|.

Proof. By the statement of step LDR-4 h is GL(4,F)-equivalent to g̃ which is in turn GL(4,F)-
equivalent to f . Thus h is GL(4,F)-equivalent to f . In particular each hi is an F-linear combination
of the fi’s. Also by statement of LDR-4 we have that for each i ∈ [4]:

dim(Sing(hi)) = (r − 4).

Using lemma 49 above, this means that each hi is in fact a scalar multiple of some fj which in turn
means that h is in fact PS(4,F)-equivalent to f . Algorithmically, the hi’s are computed as follows.
Consider

h = (α1f1 + α2f2 + α3f3 + α4f4). (16)

We think of the αi’s as unknowns and solve for them in the following manner. Firstly take all first
partial derivatives ∂ih for i ∈ {0, . . . , r}. Then use Lemma 24 and Proposition 31 to form g1, . . . , gu ∈
F[α1, . . . , α4] such that (α1, . . . , α4) ∈ V(g1, . . . , gu) if and only if the codimension of V(∂0h, . . . , ∂rh) is
≤ 4. Note that the parameters in Proposition 31 are set as follows: a = 4, b = 4(r+ 1)− 1, c = 1, d is
the degree bound here and s = dO(1) by the construction in Lemma 24; these give u = dO(r). We view
gi’s as defining a algebraic set in P3. By lemma 49 above, this algebraic set has exactly four points in
the projective space P3. Each of these four solutions in the projective space P3 gives us an hi. These
four points in P3 are computed in time dO(r) using the algorithm of Theorem 25. These four points
give the hi’s via equation (16). This proves the lemma.

5.3 Random ANF formulas satisfy the nondegeneracy conditions

Overall Strategy. In this section we show that the polynomials computed by random ANF formulas
satisfy the algebraic nondegeracy conditions formulated in definitions 37 and 48. Let S ⊆ F, X =
(X0, X1, . . . , Xr) and ∆ ≥ 2. Let φ be a homogeneous (X,∆) ANF formula so that its output
polynomial f can be written as f = F∆(`1, . . . , `4∆), for some suitable choice of linear forms `1, . . . , `4∆

(fact 7). We will now view the coefficients in the `i’s as formal variables and write

`i =
∑

j∈[0..r]

AijXj

so that each `i and hence also f becomes a polynomial in K[X], where A
def
= (Aij)i∈[4∆],j∈[0..r] and

K def
= F(A) is the corresponding rational function field. Note that each of the nondegeneracy conditions

in definitions 37 and 48 require us to show that the dimension of some related algebraic set Vφ ⊆ P(K)r

is less than some number t say. The defining equations for Vφ will be derived out of the polynomials
computed at some of the internal nodes of φ. By lemma 24 there exist polynomials p1(A), . . . , ps(A)
such that the requisite upper bound on dim(Vφ) is satisfied if and only if pi(A) 6= 0 for some i ∈ [s],
i.e.

dim(Vφ) < t if and only if ∃i ∈ [s] such that pi(A) 6= 0 (17)

If one of the pi’s was indeed nonzero as a polynomial in A then via an application of the DeMillo-
Lipton-Scwarz-Zippel lemma (lemma 8) we would have that

Pr
a∈S|A|

[pi(a) 6= 0] ≥
(

1−
maxi∈[s] deg(pi(A))

|S|

)
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Hence using (17) we deduce that if there exists an ANF formula ψ for which dim(Vψ) < t then we

would have dim(Vφ) < t with probability at least (1 − maxi∈[s] deg(pi(A))

|S| ) over a random choice of a

(X,∆, S)-ANF formula φ. Note that this estimate on Prφ[dim(Vφ) < t] is independent of the number
s of the characterizing polynomials pi’s.
Applying this strategy. We now instantiate the discussion above for the nondegeneracy conditions
in definitions 37 and 48. The following two lemmas (whose proofs we defer to section 5.3.1 and section
5.3.2 respectively) prove the existence of (X,∆)-ANF formulas for which the respective nondegeneracy
condition is satisfied.

Lemma 52. Existence of formulaically independent ANF formulas. Let r ≥ 31,∆ ≥ 1
be integers. Let X = (X0, X1, . . . , Xr). There exist (X,∆)-ANF formulas φ1, φ2, φ3, φ4 computing
polynomials f1, f2, f3, f4 respectively such that f = (f1, f2, f3, f4) is formulaically independent.

Lemma 53. Existence of Pairwise Singularly Independent (X,∆)-ANF formulas. Let k > 1,
r ≥ 32k− 1 and ∆ ≥ 1 be integers. Let X = (X0, X1, . . . , Xr) Then there exist polynomials {fij : i ∈
[k], j ∈ [4]} each computed by a (X,∆)-ANF formula φij such that

dim(VJ(f) ∩ VI(f1, . . . , fk)) ≤ (r − 6).

where fi
def
= fi1 · fi2 + fi3 · fi4 (i ∈ [k]), fi

def
= (fi1 · fi2 + fi3 · fi4), and f

def
= (f1, f2, f3, fk).

Before presenting the proofs of these two lemmas we derive their consequences following the strategy
above. In particular we estimate maxi(deg(pi(A))) for the relevant varieties and thereby obtain
estimates for the probability that a random (X,∆, S)-ANF formula is nondegenerate.

Corollary 54. Let r ≥ 31,∆ ≥ 1 be integers and S ⊆ F. Let X = (X0, X1, . . . , Xr). Then a random
homogeneous (X,∆, S)-ANF formula φ with a + gate at the top satisfies formulaic independence at

its output node with probability at least (1− |φ|
O(1)

|S| ).

Proof. Let A be the set of coefficients of the linear forms occuring in the leaf nodes of φ. Let the
polynomial at the output of φ be f and the grandchildren be f = (f1, f2, f3, f4). The coefficients
of the fi’s are polynomials of degree d1 = (2∆−1) over A. Consequently the relevant minors of the

matrix of the matrix B of lemma 24 are polynomials of degree d2 = (d
O(1)
1 ) · d1 = 2O(∆). At least

one of these minors is nonzero (by lemma 52 above) and hence by the DeMillo-Lipton-Schwarz-Zippel

lemma (lemma 8) the probability that dim(V(f)) = r − 4 is at least 1− 2O(∆)

|S| . Now the coefficients of

the derivatives of f are polynomials of degree d3 = (2∆) in A. The 4 × 4 minors of J(f1, f2, f3, f4)
are polynomials of degree d4 = 2 · 2∆−1 = 2∆ in A. Consequently the minors of the relevant matrix

capturing the dimension of Sing(f)∩VJ(f) has degree bounded by d5 = (d
O(1)
4 ) · (d4) = 2O(∆). At least

one of these minors is nonzero (by lemma 52 above) and hence by the DeMillo-Lipton-Schwarz-Zippel

lemma (lemma 8) the probability that dim(Sing(f)∩VJ(f)) < r− 4 is at least 1− 2O(∆)

|S| . By the union
bound overall the probability that φ satisfies formulaic independence at its output node is at least

(1− 2O(∆)

|S| ) = (1− |φ|
O(1)

|S| ).

Corollary 55. Let r ≥ 127,∆ ≥ 1 be integers and S ⊆ F. Let X = (X0, X1, . . . , Xr). Then a
random homogeneous (X,∆, S)-ANF formula φ with a + gate at the top satisfies pairwise singular

independence at its output node with probability at least (1− |φ|
O(1)

|S| ).

Proof. The proof is similar to the proof of corollary 54. We estimate the degrees of the relevant
polynomials and apply the DeMillo-Lipton-Schwarz-Zippel lemma (lemma 8) to deduce that φ satisfies

pairwise singular independence at its output node with probability at least (1− |φ|
O(1)

|S| ).
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Corollary 56. Let ∆ ≥ 2, r ≥ 31 be inetegrs and S ⊆ F. Let X = (X0, . . . , Xr). Then the output
polynomial of a random homogeneous (X,∆, S)-ANF formula φ with a + gate at the top is absolutely

irreducible with probability at least (1 − |φ|
O(1)

|S| ). As a consequence, for a random homogeneous ANF
formula with a × gate at the top, the polynomials computed by the two children of the output node are

absolutely irreducible with probability at least (1− |φ|
O(1)

|S| ).

Proof. By corollary 54, φ satisfies formulaic independence at its output node with probability at least

(1 − |φ|
O(1)

|S| ). By Proposition 40 this means that the output polynomial of φ is absolutely irreducible

with probability at least (1− |φ|
O(1)

|S| ).

5.3.1 Formulaic Independence of random formulas

Proposition 57. Let f = (f1, . . . , fk) ∈ F[X] be a k-tuple of homogenous polynomials. If the fi’s are
variable-disjoint then

VJ(f) =
⋃
i∈[k]

Sing(fi).

Proof. From the variable disjointness of the fi’s we see that the rows of the Jacobian matrix J(f1, . . . , fk,x)
are on disjoint supports and therefore J(f1, . . . , fk,x) is singular if and only if one of its row is entirely
zero. This happens if and only if

x ∈
⋃
i∈[k]

Sing(fi).

Proposition 58. Let f1, . . . , fk ∈ F[X] be homogenous polynomials, S =
∑

i∈[k] fi and P =
∏
i∈[k] fi.

Then:

1. If the fi’s are variable-disjoint then Sing(S) =
⋂
i∈[k] Sing(fi)

2. Sing(P ) =
⋃
i∈[k] Sing(fi) ∪

⋃
{i,j}∈([k]

2 ) V(fi, fj).

Proof. (1) follows in a straightforward fashion by computing ∂S
∂Xj

and observing that this equals ∂fi
∂Xj

,

where fi is the polynomial that depends on Xj . Thus

{ ∂S
∂Xj
} =

⋃
i∈[k]

{ ∂fi
∂Xj

: fi depends on Xj}

and hence
Sing(S) =

⋂
i∈[k]

Sing(fi).

(2) (⊇) straightforward.
(⊆) Let P be of degree d and x = (x0, . . . , xr) ∈ Sing(P ). So we have,∏

i∈[k]

fi(x) = P (x) =
1

d

∑
i∈[n]

xi(
∂P

∂Xi
)(x) = 0

Hence, ∃` ∈ [k] s.t. f`(x) = 0. Now,

∀i ∈ [n] : (
∂P

∂Xi
)(x) =

∑
j∈[k]

(
∂fj
∂Xi

)(x)
∏
r∈[k],
r 6=j

fr(x) = (
∂f`
∂Xi

)(x)
∏
r∈[k],
r 6=`

fr(x) = 0.
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Now if @m ∈ [k] s.t. m 6= ` and fm(x) = 0 then
∏
r∈[k],r 6=` fr(x) 6= 0 and hence

∀i ∈ [n] : (
∂f`
∂Xi

)(x) = 0

which implies x ∈ Sing(f`).

Combining this with fact 19 we get:

Corollary 59. If f1, . . . , fk are pairwise variable disjoint then

codim(Sing(f1 + . . .+ fk)) =
∑
i∈[k]

codim(Sing(fi))

Proof of lemma 52 : Recall that formulaic independence (definition 37) consists of two parts: (1)
dim(V(f)) = r − 4; (2) dim(Sing(f) ∩ VJ(f)) < dim(Sing(f)). Let e = 2∆−1. The specific fi’s we
construct we use is:

fi := (Xe
8(i−1) +Xe

8(i−1)+1) · (Xe
8(i−1)+2 +Xe

8(i−1)+3) + (Xe
8(i−1)+4 +Xe

8(i−1)+5) · (Xe
8(i−1)+6 +Xe

8(i−1)+7).

Note that fi’s can be computed by (X,∆)-ANF formulas. (1) is satisfied, because of the disjointness
of the variables. We verify (2) as follows. By proposition 57 we have

VJ(f) =
⋃
i∈[4]

Sing(fi). (18)

Then by Proposition 58 we see

Sing(f) = (Sing(f1) ∪ Sing(f2) ∪ V(f1, f2))
⋂

(Sing(f3) ∪ Sing(f4) ∪ V(f3, f4)). (19)

We can compute codim(Sing(fi)) by applying Proposition 58 to decompose the structure of Sing(fi)
and then applying corollary 59 we get

codim(Sing(fi)) = 4 ∀i ∈ [4].

Combining this with the variable disjointness of the fi’s and applying fact 19 we have

codim(Sing(fi) ∩ V(fj , fk)) = 6 ∀i ∈ [4] ∀j < k ∈ ([4] \ {i})
codim(Sing(fi) ∩ Sing(fj)) = 8 ∀i ∈ [4] ∀j ∈ ([4] \ {i}). (20)

Now combining (18) and (19) and simplifying the resulting expression we have

Sing(f) ∩ VJ(f) =

⋃
i∈[2]

Sing(fi) ∩ V(f3, f4)

 ∪
 ⋃
i∈[3..4]

Sing(fi) ∩ V(f1, f2)


∪

 ⋃
i∈[2],j∈[3..4]

Sing(fi) ∩ Sing(fj)


Combining this structural decomposition with (20) and applying fact 19 we have

dim(Sing(f) ∩ VJ(f)) ≤ (r − 6).

This proves the lemma. 2
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5.3.2 Pairwise Singular Independence of random formulas

Proposition 60. Let f1 = (f11, . . . , f14), . . . , fk = (fk1, . . . , fk4) be 4-tuples of homogeneous polynomi-
als which are pairwise variable disjoint. Then

VI(f1, f2, . . . , fk) =
⋃

i∈[k],j∈[4]

Sing(fij)

Proof. First a bit of notation. We will denote by var(fij) the set of indices of the variables in fij , i.e.

var(fij)
def
= {k ∈ [0..r] :

∂fij
∂Xk

6= 0}.

Now let M(f1, . . . , fk) be the iterated Jacobian matrix as in definition 47. We note that for any

{j1, . . . , jk} ∈
([0..r]

k

)
and (i1, . . . , ik) ∈ [4]k, the ({j1, . . . , jk}, (i1, . . . , ik))-th entry of M(f1, . . . , fk) is∣∣∣∣∣∣∣∣∣

∂f1i1
∂Xj1

∂f2i2
∂Xj1

· · · ∂fkik
∂Xj1

...
...

. . .
...

∂f1i1
∂Xjk

∂f2i2
∂Xjk

· · · ∂fkik
∂Xjk

∣∣∣∣∣∣∣∣∣ =

sgn(σ)
∏
r∈[k]

∂frir
∂Xjσ(r)

if ∃σ ∈ Sk s.t. ∀r ∈ [k] : jσ(r) ∈ var(frir)

0 otherwise

As fij ’s are variable disjoint, every row of M has at most one nonzero entry.
Part 1:

⋃
Sing(fij) ⊆ VI(f1, f2, . . . , fk). By symmetry it suffices to show that

Sing(f11) ⊆ VI(f1, f2, . . . , fk).

Towards this end consider an arbitrary x ∈ Sing(f11). The set of non-zero entries in the first column
of M(f1, . . . , fk) (upto multiplication by −1) is given by∏

r∈[k]

∂fr1
∂Xjr

(X) : (j1, . . . , jk) ∈ var(f11)× . . .× var(fk1)


As ∀j1 ∈ var(f11) : ∂f11

∂Xj1
(x) = 0 we have than the entire first column of M(f) vanishes at x and

hence so do its 4k × 4k minors. Thus x ∈ VI(f1, f2, . . . , fk), as required.
Part 2: VI(f1, f2, . . . , fk) ⊆

⋃
Sing(fij). It suffices to show that if

x ∈ VI(f1, f2, . . . , fk) and x /∈
⋃

i∈[k],j∈[4],(i,j)6=(1,1)

Sing(fij) (21)

then x ∈ Sing(f11). The second part of (21) means that

∀(i, j) ∈ ([k]× [4]) \ {(1, 1)} ∃`ij ∈ var(fij) :
∂fij
∂X`ij

(x) 6= 0

Fix any such tuple `12, . . . , `14, `21, . . . , `k4. Consider any `11 ∈ var(f11). Now if x ∈ VI(f1, . . . , fk)
then the minor of M(f1, . . . , fk) (upto multiplication with −1) corresponding to the 4k tuples in
{(j1, . . . , jk) : ji ∈ {`i1, . . . , `i4}} is given by

∏
i∈[k],j∈[4]

(
∂fij
∂X`ij

(x)

)4k−1

= 0

and hence by (21) we have ∂f11

∂X`11
(x) = 0. As `11 was arbitary we have x ∈ Sing(f11). This completes

the proof of part 2 and hence of the lemma as well.
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Proof of lemma 53 : Let e = 2∆−1. The fij ’s we construct are as follows.

fij(X) =
(
Xe

32(i−1)+8(j−1) +Xe
32(i−1)+8(j−1)+1

)
·
(
Xe

32(i−1)+8(j−1)+2 +Xe
32(i−1)+8(j−1)+3

)
+(

Xe
32(i−1)+8(j−1)+4 +Xe

32(i−1)+8(j−1)+5

)
·
(
Xe

32(i−1)+8(j−1)+6 +Xe
32(i−1)+8(j−1)+7

)
.

Clearly, the fij ’s constructed above are computed by (X,∆) formulas. By construction the fij ’s (and
hence also the fi’s) are pairwise variable disjoint and hence we can apply propositions 57 and 60 to
obtain decompositions of VJ(f) and VI(f1, . . . , fk) respectively. We therefore have

VJ(f) ∩ VI(f1, . . . , fk) =

⋃
i∈[k]

Sing(fi)

 ∪
 ⋃
i∈[k],j∈[4]

Sing(fij)


Now applying proposition 58 we get a decomposition of Sing(fi) as follows. For each i ∈ [k]

Sing(fi) = V(fi) ∪
⋃
j∈[4]

Wij ∪

 ⋃
j∈[1..2],k∈[3..4]

Sing(fij) ∩ Sing(fik)


where

Wij
def
=

{
Sing(fij) ∩ V(fi3, fi4) if j ∈ [1..2]

Sing(fij) ∩ V(fi1, fi2) if j ∈ [3..4]

Combining the two decompositions above and simplifying we obtain

VJ(f) ∩ VI(f1, . . . , fk) =

⋃
j∈[4]

Wij

 ∪
 ⋃

(i,j)6=(i′,j′)∈[k]×[4]

Sing(fij) ∩ Sing(fi′j′)

 ∪
 ⋃
i,i′∈[k],j∈[4]

Sing(fij) ∩ V(fi′)


Using the variable disjointness of the fij ’s and applying fact 19 we have

codim(Wij) = 6 ∀i ∈ [k] ∀j ∈ [4]

codim(Sing(fij) ∩ V(fi)) = 7 ∀i ∈ [k] ∀j ∈ [4]

codim(Sing(fij) ∩ V(fi′)) = 8 ∀i 6= i′ ∈ [k] ∀j ∈ [4]

codim(Sing(fij) ∩ Sing(fi′j′)) = 8 ∀(i, j) 6= (i′, j′) ∈ [k]× [4]. (22)

Consequently
codim(VJ(f) ∩ VI(f1, . . . , fk)) ≤ (r − 6),

as required. This proves the lemma.
2

5.4 Putting everything together

We now put everything together into a formal statement.
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Theorem 61. Let Y = (Y0, Y1, . . . , Yr) and ∆ ≥ 1 be an integer. Let m = 4∆−1 and S ⊆ F. Given
blackbox access to the output f of a random homogeneous (Y,∆, S)-ANF formula φ, with probability
at least (

1− |φ|
O(1)

|S|

)
(over the random choice of φ),

the LDR algorithm of section 5.1 successfully computes a tuple of m quadratic forms Q = (q1, q2, . . . , qm) ∈
(F[Y])m such that:

1. Each qi(Y) is a quadratic form of rank four.

2.
f = F∆−1(q1, . . . , qm)

3. If Q′ = (q′1, . . . , q
′
m) is any other m-tuple for which

f = F∆−1(q′1, . . . , q
′
m)

then Q′ is TS(m,F)-equivalent to Q.

Moreover the running time of the LDR algorithm is bounded by dO(r).

Proof. Correctness (with high probability). By corollaries 54 and 55 each + node of φ is formu-

laically independent and pairwise singularly independent with probability at least (1− |φ|
O(1)

|S| ). By the
union bound, every node of φ is formulaically independent as well as pairwise singularly independent

with probability at least (1−|φ| · |φ|
O(1)

|S| ) = (1− |φ|
O(1)

|S| ). Lemmas 42, 43, 51 and 45 then imply that the

LDR algorithm will correctly reconstruct the polynomial computed at each node of φ (upto an appro-
priate group of symmetries). Moreover part (2) of lemma 45 shows that when a node v of φ satisfies
formulaic independence and pairwise singular independence then the polynomials computed at the
grandchildren of v are computed upto TS(4,F) equivalence. Overall, this means that the quadratic
forms are computed correctly upto TS(m,F)-equivalence.
Running Time. It follows from lemmas 42, 43, 51 and 45 that steps LDR-1 to LDR-5 can be
accomplished in time d2O(r)

. Thus the recursion for the running time is

T (d) = d2O(r)
+ 4 · T (d/2)

which solves out to give an overall running time of

d2O(r)
= |φ|2

O(r)

.

6 The Formula Reconstruction algorithm

In section 5 we gave an efficient average-case algorithm for reconstruction of random ANF formulas
whose running time was polynomial in the size of the hidden formula. This algorithm had however
critically exploited two assumptions:

1. The unknown formula φ that we are trying to reconstruct is homogeneous.

2. The number of variables is a constant.
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In this section we will effectively get rid of these two assumptions. Let n be the number of variables
in the general case. We will use the LDR algorithm of section 5 as a subroutine and show that for
arbitrary n, making O(n2) invocations to the LDR algorithm sufices to patch together the answer to
the general problem from the answers to the induced subproblems. This will give us overall a running
time of (sn)O(1), where s is the size of the unknown formula φ that we are trying to reconstruct.
Getting rid of the first assumption is relatively straightforward and we do this in section 6.1. Then in
section 6.2 we exploit what we call the Project and Lift technique due originally to Kaltofen [Kal89]
and to Shpilka [Shp07] in order to get rid of the second assumption. To summarize and for the sake
of completeness and concreteness, in section 6.3, we state this overall algorithm and together with the
formal statement about the running time and probability of success of the algorithm.

6.1 Homogenization

In this section we will see how the general ANF formula reconstruction problem reduces to the ho-
mogeneous ANF formula reconstruction problem. This can be done in a rather straightforward and
routine manner (as indicated in the response to Q1 in section 2), the only nontrivial part is to simulate
access to a homogenized version of the output polynomial f using blackbox access to f itself.

Proposition 62. Let X = (X1, X2, . . . , Xn). Let ∆ ≥ 1 be an integer. Let X0 be a fresh indeterminate

and d
def
= 2∆. For a polynomial f ∈ F[X], define

f̂
def
= Xd

0 · f(
X1

X0
,
X2

X0
, . . . ,

Xn

X0
).

Then:

1. f(X) can be computed by an (X,∆)-ANF formula if and only if f̂ can be computed by a homo-
geneous ((X0, X1, . . . , Xn),∆)-ANF formula. Moreover, given a (X,∆)-ANF formula for f one
can easily obtain a homogeneous ((X0, X1, . . . , Xn),∆)-ANF formula for f̂ and vice-versa.

2. Given blackbox access to f we can efficiently simulate blackbox access to f̂ and vice-versa.

Proof. (1). Let m = 4∆. By fact 7, f is computed by a (X,∆)-ANF formula if and only if there exist
affine forms `1, . . . , `m ∈ F[X] such that

f = F∆(`1, . . . , `m).

Meanwhile f̂ is computed by a ((X0, . . . , Xn),∆)-ANF formula if and only if there exist linear forms
ˆ̀
1, . . . , ˆ̀

m such that
f = F∆(ˆ̀

1, . . . , ˆ̀
m).

Indeed this holds under the natural correspondence which maps an affine form `(X) to the linear form

ˆ̀ def
= X0 · `(

X1

X0
,
X2

X0
, . . . ,

Xn

X0
)

which has an inverse given by
` = ˆ̀(1, X1, X2, . . . , Xn).

This proves the first part.
(2). Let

f(X) = f [d](X) + f [d−1](X) + . . .+ f [0](X)

where each f [i](X) is the homogeneous component of degree i of f . We use the following claim
from [Kay12] whose proof we reproduce here for the sake of completeness.
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Claim 63. Given blackbox access to f(X) and a point x ∈ Fn, we can compute f [i](x) for each
i ∈ [0..d] in polynomial time.

Proof of Claim 63: Let x = (x1, x2, . . . , xn) and for λ ∈ F let

λ · x = (λ · x1, λ · x2, . . . , λ · xn).

Then we have
f(λ · x) = λd · f [d](x) + λd−1 · f [d−1](x) + . . .+ λ0 · f [0](x)

so that by plugging in (d+ 1) different values for λ in the above equation, using the oracle for f(X) to
obtain each f(λ ·x) and solving the resulting system of linear equations we obtain f [i](x) in polynomial
time. (The matrix corresponding to this system of linear equations is a Vandermonde matrix so that
it always has an inverse.) 2

Now note that since fi is of degree at most d we have

f̂(X0, X1, . . . , Xn) = X0
0 · f [d](X) +X1

0 · f [d−1](X) + . . .+Xd
0 · f [0](X)

Using this we can evaluate f̂ at any given point (x0, x1, . . . , xn). This proves the proposition.

6.2 Reduction to low dimensional reconstruction.

Kaltofen [Kal85] showed how to reduce the problem of factoring an n-variate polynomial to factoring
polynomials with a small number of variables. Subsequently Shpilka [Shp07] showed how reconstruct-
ing n-variate ΣΠΣ(2) formulas can be reduced to reconstructing (log n)O(1)-variate ΣΠΣ(2) formulas.
These reductions follow a common pattern and we call it the Project and Lift technique. We now
describe this technique as applicable to our situation.
The Project and Lift Technique. Let X = (X0, X1, . . . , Xn). Let ∆ ≥ 1 be an integer. By the
discussion in the preceding section, we can assume that the unknown formula is homogeneous. Thus
our problem is the following: given a homogeneous polynomial f of degree d = 2∆, our task is to
compute m = 4∆−1 quadratic forms (q1, . . . , qm) each of rank at most 4 such that

f(X) = F∆−1(q1, q2, . . . , qm), (23)

where the qi’s are the polynomials computed at the second-last level of the unknown ANF formula
φ computing f . We pick a set of (n + 1) linearly independent vectors a0,a1, . . . ,an ∈ Fn+1. Let
r ∈ [2..n + 1] be an integer (r will subsequently be chosen to be an appropriate constant). For
r < i < j ≤ n, let Aij ∈ F(n+1)×(n+1) be the matrix whose k-th column (k ∈ [0..n]) is δijk · ak, where

δijk
def
=

{
1 if k ∈ [0..r] ∪ {i, j}
0 otherwise

(24)

Proposition 64. Reconstructing a quadratic form from its projections. Let q(X) be a
quadratic form over the indicated variable set. Then given σAij (q) for all {i, j} ∈

(
[(r+1)..n]

2

)
, we

can efficiently compute the quadratic polynomial q(X) itself.

Proof. Upto an appropriate change of basis we can assume without loss of generality that a0 =
e0, . . . ,an = en so that

σAij (q) = q(X0, . . . , Xr, 0, . . . , 0, Xi, 0, . . . , 0, Xj , 0, . . . , 0)
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Let the quadratic form q be

q(X) =
∑

0≤i≤j≤n
aij ·Xi ·Xj .

It is now clear that we can read off each coefficient aij by looking at the coefficient of Xi ·Xj in an
appropriate projection σAij (q) .

The means that if for each {i, j} ∈
(

[(r+1)..n]
2

)
we could somehow compute σAij (qk) then we can recover

the quadratic polynomial qk. How do we obtain σAij (qk)? We look at the polynomial σAij (f), i.e.
we look at the restriction of f to the subspace spanned by the vectors a0, . . . ,ar,ai,aj . Observe that
since σAij is a homomorphism, from equation (23) we have that

σAij (f) = F∆−1(σAij (q1), . . . , σAij (qm)).

Thus one can potentially obtain σAij (qk) (and therefore solve the n-dimensional reconstruction prob-
lem) by solving the reconstruction problem for σAij (f), which is “merely a constant dimensional
problem”. σAij (f) being merely a constant-variate polynomial (when r is chosen as a suitable con-
stant), we can use the low dimensional reconstruction algorithm of section 5 to efficiently reconstruct
an ANF formula for f and obtain an m-tuple of quadratic forms

q′ij = (q′ij1, . . . , q
′
ijm)

with each q′ijk of rank four such that

σAij (f) = F∆−1(q′ij).

Now if it were true that q′ was equal to σAij (q), i.e. if it were true that

(q′ij1, q
′
ij2, . . . , q

′
ij2) = (σAij (q1), σAij (q2), . . . , σAij (qm)),

then we would have obtained σAij (qk) for each k ∈ [m] and would be done by proposition 64. Unfor-
tunately however this is not true. But we can indeed ensure uniqueness upto a certain subgroup of
GL(m,F). In particular, note that by part (3) of theorem 61 we have that

q′ij is TS(m,F)− equivalent to σAij (q)

Fortunately this uniqueness of solution upto TS(m,F) suffices to “patch together” the q′ij ’s into a valid
q. In other words we can patch together the formulas for σAij (f) into a formula for f itself. In the rest
of this section how this works, i.e. we show why knowing σAij (q) upto TS(m,F)-equivalence suffices
for our purpose.

Lemma 65. Let
q := (q1, . . . , qm) ∈ (F[X])m

be an m-tuple of quadratic polynomials. Assume that for all 1 ≤ k < ` ≤ m: qk is not a scalar multiple
of q`. Let T ⊆ F. Let a0, . . . ,an ∈ Fn+1 be vectors. There is an algorithm, call it PnL, satisfying the
following:

1. The algorithm takes as input the vectors a0, . . . ,an ∈ Fn+1 and m-tuples q′ij for each r < i <
j ≤ n with the property that each q′ij is TS(m,F)-equivalent to σAij (q). The algorithm either
outputs an m-tuple q′ which is TS(m,F)-equivalent to q or outputs Fail .

2. Over the random choice of a0, . . . ,an chosen uniformly and independently at random from
Tn+1 ⊆ Fn+1, the probability that the algorithm outputs Fail is at most ().
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3. The running time of the algorithm is bounded by (nm)O(1).

Proof. We first fix a reference m-tuple p = (p1, . . . , pm)
def
= q′(r+1)(r+2). Let A be the (n+ 1)× (n+ 1)

matrix whose first (r + 1) columns consist of a0, . . . ,ar and the rest of the columns are zero.

Claim 66. Over the random choice of a0, . . . ,an chosen uniformly and independently at random from
Tn+1 ⊆ Fn+1, with probability at least (1 − 4

|T |) it holds true that σA(qk) is not a scalar multiple of

σA(q`) (k 6= `).

Proof of Claim 66: Note that two polynomials qk(X) and q`(X) are scalar multiples of each other
if and only if they are F-linearly dependent. The claim then follows by an application of lemma 10.

2

Now fix a randomly chosen a0, . . . ,an such that the conclusion of the above claim holds true. By
making a change of basis if necessary we can assume without loss of generality that a0 = e0,a1 =
e1, . . . ,an = en so that for any q(X) ∈ F[X] we have

σA(q) = q(X0, . . . , Xr, 0, . . . , 0) and σAij (q) = q(X0, . . . , Xr, 0, . . . , 0, Xi, 0, . . . , 0, Xj , 0, . . . , 0).

Now the above claim means in particular that every {i, j} ∈
(

[(r+1)..n]
2

)
there exists a unique matrix

Bij ∈ TS(m,F) such that σA(p) = Bij · σA(q′ij) and moreover that each such Bij can be computed

in time mO(1). Algorithmically we compute all the Bij ’s and replace each q′ij by Bij · q′ij so that

going forward we can assume that σA(p) = σA(q′ij) for every {i, j} ∈
(

[(r+1)..n]
2

)
. We now apply

apply proposition 64 to all the m components of the q′ij ’s separately and this gives us the required
q′ ∈ F[X]m which is TS(m,F)-equivalent to the unknown q ∈ F[X]m. The overall running time is
clearly (nm)O(1).

6.3 The overall algorithm.

With all the necessary tools in hand, we are now state a more formal version of our main theorem and
the overall ANF formula reconstruction algorithm.

Theorem 67 (Main). Let X = (X1, . . . , Xn), F be a field of characteristic 0 and S be a finite subset
of F. Let ∆ ≥ 1 be an integer and s = 4∆. Given blackbox access to the output f of a random
(X,∆, S)-ANF formula φ, with probability at least(

1− n2.sO(1)

|S|

)
(over the random choice of φ),

algorithm 2 successfully computes a tuple of s affine forms L = (`1, . . . , `s) ∈ (F[X])s such that

f = F∆(`1, . . . , `s).

Moreover the running time of the algorithm is poly(n, s).

Proof of Theorem 67 : The algorithm is as given in the accompanying box. We now analyze its
correctness and running time.
Correctness (with high probability). In step AFR3 each σAij (f) is a effectively a random (r+1)-
variate ANF formula so that by theorem 61 the probability that step AFR3 succeeds is at least(

1− n2|φ|O(1)

|S|

)
. Moreover a pair of independent chosen quadratic forms of rank four are F-linearly

independent with probability at least (1− 4
|S|) so that all the quadratic forms at the second last level
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Algorithm: ANF Formula Reconstruction AFR(f(X),∆)
Input: Blackbox access to an n-variate homogeneous polynomial

f ∈ F[X] of degree at most d = 2∆.

Output: Either a set of 4∆ affine forms `1, . . . , `4∆ such that

f = F∆(`1, . . . , `4∆) or ‘Fail’.

AFR1: If ∆ = 0 then f is an affine form. Compute f via

interpolation and return the affine form.

AFR2: Homogenization. Use the algorithm of proposition 62 to

homogenize f. So now assume that X = (X0, X1, . . . , Xn) and f
is a homogeneous polynomial of degree exactly d = 2∆.

AFR3: Reduction to LDR. Pick (n + 1) vectors a0, . . . ,an each of whose

coordinates are chosen uniformly at random from a large enough

subset T ⊆ F. Let r = 127 and m := 4∆−1. For r < i < j ≤ n, let

Aij be the (n + 1) × (n + 1) matrix whose k-th column (k ∈ [0..n])
is δijk · ak where δijk is as defined in equation (24). For each

Aij invoke the LDR algorithm on σAij (f) to obtain an m-tuple

qij = (qij1, . . . , qijm) satisfying

• rank(qijk) ≤ 4 for each i, j ∈
(

[(r+1)..n]
2

)
and k ∈ [m] and

• σAij (f) = F∆−1(qij).

AFR4: Patchwork. Invoke the algorithm of lemma 65 on input

((a0, . . . ,an), (qij)r<i<j≤n) and obtain an m-tuple of quadratic

forms q = (q1, q2, . . . , qm).

AFR5: For each i ∈ [m], find linear forms `i1, `i2, `i3, `i4 such that

qi = `i1 · `i2 + `i3 · `i4.

Output (`11, . . . , `14, `21, . . . , `m3, `m4).

Algorithm 2: ANF Formula Reconstruction (AFR)
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of φ are pairwise F-linearly independent with probability at least (1− 4n2

|S| ). By lemma 65 this ensures

that step AFR4 with probability at least (1− 4n2

|S| ). The remaining steps succeed for any choice of φ.

Thus over the random choice of a (X,∆, S) formula our algorithm succeeds with probability at least(
1− n2 |φ|O(1)

|S|

)
.

Running Time. The running time is dominated by step ADR3 and the time taken here is n2 · d2O(r)

which is n2 · |φ|O(1) as r is a constant. Overall therefore the running time is bounded by |φ|O(1). This
completes the proof of our main theorem.

2

We conclude with some remarks of a somewhat speculative nature concerning speedup, improvements
and generalizations of the above algorithm which may one day make it a practical one.

Remark 68. 1. Currently, the most expensive step of our algorithm is Step LDR-2 of the low
dimensional reconstruction algorithm, where we need to apply Theorem 35 to extract the top
dimensional component. We note that in practice, the algorithm using Gröbner basis to extract
the top dimensional component is readily supported in some softwares like SINGULAR [GP07].
Thus this step should not be considered as expensive from the practical point of view. Theoret-
ically, it may well be that formulaic independence of f = (f1, f2, f3, f4) suffices to ensure that
I(f) is a radical ideal, i.e.

√
I(f) = I(f) . In this case we would have that I(f) = I(V(f)) (by

Hilbert’s string Nullstellensatz). In this situation we can use the algorithm of Jeronimo and
Sabia [JS02] to extract the top dimensional component of Sing(f) and using this we would incur

a cost in the running time of only dO(r) rather than d2O(r)
for the LDR algorithm.

2. Choice of r. The choice of the parameter r (which is currently set to 127) has a huge impact
on the running time of our algorithm. Our present choice of r stems from lemmas 52 and 53.
These lemmas may hold true true for much smaller values of r, maybe even for r = 6. If so, this
can have a significant the practical running time of our algorithm. Combined with the above
this means that a running time of O(d8) = O(|φ|4) or maybe even O(|φ|3) seems possible.

3. When the characteristic of the field is small. The same algorithm as above (possibly
with a different choice of the parameter r) remains valid even when the characteristic of the
underlying field is small. But there are some significant changes to the analysis in this situation.
We indicate these changes. Firstly, the Jacobian criterion of theorem 13 is valid only in one
direction when the characteristic of the field is small but this is okay because in our application
(in proposition 38) we only this valid direction. Most of the remaining analsysis (except the
proofs of lemmas 52 and 53) carry over to the low characteristic situation when we interpret
the derivatives ∂f

∂Xi
symbolically. In the proof of lemmas 52 and 53 we use variable-disjoint but

isomorphic copies of polynomials of the form

f = (Xe
1 +Xe

2) · (Xe
3 +Xe

4) + (Xe
5 +Xe

6) · (Xe
7 +Xe

8), where e = 2∆−1.

Over any field F of characteristic different from two we have codim(Sing(f)) = 4 so that lemmas
52 and 53 continue to be valid over such fields. When the characteristic of F is 2 if we instead
choose

f = (Xe−1
1 X2 +Xe−1

3 X4) · (Xe−1
5 X6 +Xe−1

7 X8) + (Xe−1
9 X10 +Xe−1

11 X12) · (Xe−1
13 X14 +Xe−1

15 X16)
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(e = 2∆−1) then such an f can be computed by a homogeneous (X,∆) ANF formula and satisfies
codim(Sing(f)) = 4. The rest of the analysis (in particular proofs of propositions 57, 58 and
60) carry over unchanged so that theorems 61 and 1 continue to remain valid even over fields of
characteristic two (though with a slightly larger value of r).

4. Success probability. Note that when `1, `2, `3, `4 are independent n-variate linear forms with
coeffcients chosen independently at random from S ⊆ F, the probability that these are F-linearly

dependent is at most p = 4
|S|

n/4
. (To see this note that the above quantity is the same as the

probability that a random 4×n matrix A has rank 3 when the entries of A are chosen uniformly
at random from S ⊆ F. If we now break matrix A into n/4 disjoint submatrices of dimension 4×4
each, then the determinants of these submatrices are each nonzero as formal polynomials and
these are on disjoint sets of variables. Now if rank(A) < 4 then each of these disjoint submatrices

must have determinant zero and by independence this happens with probability at most 4
|S|

n/4
.)

The nondegeneracy conditions of definitions 37 and 48 are in some sense generalization of F-
linear independence to higher degree polynomials. It is quite plausible that an argumnt akin to
the one above can show that the success probability of this algorithm is at least(

1−
(
n |φ|
|S|

)O(n)
)
.

5. Allowing larger fanin. It should be possible to generalize the average-case reconstruction
algorithm presented here to formulas wherein the internal nodes to have fanin bounded by some
constant k (the formula would still have alternating layers of addition and multiplication gates
as before).

7 Conclusion

One of the underlying motivations of this work was to understand the complexity of computing the
minimum formula for a polynomial given as a blackbox. We are not aware for a hardness result for
this problem and pose it as a conjecture.

Conjecture 69. Finding the smallest formula computing a given polynomial f (for concreteness
assume that f itself is given via an arithmetic formula) is NP-hard.

The work of Buchfuhrer and Umans, in particular the following comment from [BU08], is especially
relevant in this context.

One reason reductions for these problems are difficult is that one direction of the
reduction entails proving a lower bound for the type of circuit under considera-
tion. This shouldnt be an absolute barrier, though, for two reasons. First, we
have lower-bound proof techniques for (Boolean) formulas ... nevertheless incor-
porating these into a reduction seems tricky. Second, a reduction need not entail
strong lower bounds and in principle even slightly non-trivial lower bounds could
suffice.
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