
Folded Codes from Function Field Towers and

Improved Optimal Rate List Decoding∗

Venkatesan Guruswami† Chaoping Xing‡

April 2012

Abstract

We give a new construction of algebraic codes which are efficiently list decodable from a
fraction 1−R− ε of adversarial errors where R is the rate of the code, for any desired positive
constant ε. The worst-case list size output by the algorithm is O(1/ε), matching the existential
bound for random codes up to constant factors. Further, the alphabet size of the codes is
a constant depending only on ε — it can be made exp(Õ(1/ε2)) which is not much worse
than the lower bound of exp(Ω(1/ε)). The parameters we achieve are thus quite close to the
existential bounds in all three aspects — error-correction radius, alphabet size, and list-size
— simultaneously. Our code construction is Monte Carlo and has the claimed list decoding
property with high probability. Once the code is (efficiently) sampled, the encoding/decoding
algorithms are deterministic with a running time Oε(N

c) for an absolute constant c, where N
is the code’s block length.

Our construction is based on a linear-algebraic approach to list decoding folded codes from
towers of function fields, and combining it with a special form of subspace-evasive sets. Instan-
tiating this with the explicit “asymptotically good” Garcia-Stichtenoth tower of function fields
yields the above parameters. To illustrate the method in a simpler setting, we also present a
construction based on Hermitian function fields, which offers similar guarantees with a list and
alphabet size polylogarithmic in the block length N . Along the way, we shed light on how to
use automorphisms of certain function fields to enable list decoding of the folded version of the
associated algebraic-geometric codes.

∗An extended abstract will appear in the Proceedings of the 44th ACM Symposium on Theory of Computing
(STOC), 2012.
†Computer Science Department, Carnegie Mellon University, Pittsburgh, USA. guruswami@cmu.edu. Research

supported in part by a Packard Fellowship and NSF CCF 0963975. Some of this work was done during a visit to
Nanyang Technological University. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
‡Division of Mathematical Sciences, School of Physical & Mathematical Sciences, Nanyang Technological Univer-

sity, Singapore. xingcp@ntu.edu.sg. Research supported by the Singapore National Research Foundation under
Research Grant NRF-CRP2-2007-03 and Singapore A*STAR SERC under Research Grant 1121720011.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 36 (2012)

1 Introduction

An error-correcting code C of block length N over a finite alphabet Σ maps a set M of messages
into codewords in ΣN . The rate of the code C, denoted R, equals 1

N log|Σ| |M|. In this work,
we will be interested in codes for adversarial noise, where the channel can arbitrarily corrupt any
subset of up to τN symbols of the codeword. The goal will be to correct such errors and recover
the original message/codeword efficiently. It is easy to see that information-theoretically, we need
to receive at least RN symbols correctly in order to recover the message (since |M| = |Σ|RN), so
we must have τ 6 1−R.

Perhaps surprisingly, in a model called list decoding, recovery up to this information-theoretic
limit becomes possible. Let us say that a code C ⊆ ΣN is (τ, `)-list decodable if for every received
word y ∈ ΣN , there are at most ` codewords c ∈ C such that y and c differ in at most τN
positions. Such a code allows, in principle, the correction of a fraction τ of errors, outputting at
most ` candidate codewords one of which is the originally transmitted codeword.

The probabilistic method shows that a random code of rateR over an alphabet of size exp(O(1/ε))
is with high probability (1 − R − ε,O(1/ε))-list decodable [Eli91]. However, it is not known how
to construct or even randomly sample such a code for which the associated algorithmic task of list
decoding (i.e., given y ∈ ΣN , find the list of codewords within fractional radius 1−R − ε) can be
performed efficiently. This work takes a big step in that direction, giving a randomized construc-
tion of such efficiently list-decodable codes over a slightly worse alphabet size of exp(Õ(1/ε2)). We
note that the alphabet size needs to be at least exp(Ω(1/ε)) in order to list decode from a fraction
1−R−ε of errors, so this is close to optimal. For the list-size needed as a function of ε for decoding
a 1− R − ε fraction of errors, the best lower bound is only Ω(log(1/ε)) [GN12], but as mentioned
above, even random coding arguments only achieve a list-size of O(1/ε), which our construction
matches up to constant factors.

We now review some of the key results on algebraic list decoding leading up to this work. A
more technical comparison with related work appears in Section 1.1. The first construction of
codes that achieved the optimal trade-off between rate and list-decoding radius, i.e., enabled list
decoding up to a fraction 1 − R − ε of worst-case errors with rate R, was due to Guruswami and
Rudra [GR08]. They showed that a variant of Reed-Solomon (RS) codes called folded RS codes
admit such a list decoder. For a decoding radius of 1 − R − ε, the code was based on bundling
together disjoint windows of m = Θ(1/ε2) consecutive symbols of the RS codeword into a single
symbol over a larger alphabet. As a result, the alphabet size of the construction was NΩ(1/ε2).
Ideas based on code concatenation and expander codes can be used to bring down the alphabet size
to exp(Õ(1/ε4)), but this compromises some nice features such as list recovery and soft decoding
of the folded RS code. Also, the decoding time complexity as well as proven bound on worst-case
output list size for these constructions were NΩ(1/ε) which is rather large.

Our main final result statement is the following. The codes we construct are a randomly sampled
subcode of an analog of folded Reed-Solomon codes for an asymptotically optimal tower of function
fields due to Garcia and Stichtenoth [GS95, GS96].

Theorem 1.1 (Main). For any R ∈ (0, 1) and positive constant ε ∈ (0, 1), there is a Monte Carlo
construction of a family of codes of rate at least R over an alphabet size exp(O(log(1/ε)/ε2)) that
are encodable and (1−R− ε,O(1/(Rε))-list decodable in Oε(N

c) time, where N is the block length

2

of the code and c is an absolute positive constant.

Even though our codes are not fully explicit, they are “functionally explicit” in the sense that
once the code is (efficiently) sampled, with high probability the polynomial time encoding and
decoding algorithms deliver the claimed error-correction guarantees for all allowed error patterns.
We note that our codes are quite close to the existential bounds in three aspects simultaneously —
the trade-off between error fraction 1 − R − ε and rate R, the list-size as a function of ε, and the
alphabet size of the code family (again as a function of ε). Our algorithms can also be extended to
the “list recovery” setting in a manner similar to [GR08, Gur11]; we omit discussion of this aspect
and the straightforward details.

To first illustrate our ideas in an algebraically simpler (and perhaps more practical) setting, we
first give a construction based on a tower of Hermitian field extensions [She93]. This gives a similar
result, albeit with alphabet size and list-size upper bound polylogarithmic in N .

1.1 Prior and related work

Let us recap a bit more formally the construction of folded RS codes from [GR08]. One begins with
the Reed-Solomon encoding of a polynomial f ∈ Fq[X] of degree < k consisting of the evaluation
of f on a subset of field elements ordered as 1, γ, . . . , γn−1 for some primitive element γ ∈ Fq
and n < q. For an integer “folding” parameter m > 1 that divides n, the folded RS codeword is
defined over alphabet Fmq and consists of n/m blocks, with the j’th block consisting of the m-tuple

(f(γ(j−1)m), f(γ(j−1)m+1), . . . , f(γjm−1)). The algorithm in [GR08] for list decoding these codes
was based on the algebraic identity f(γX) = f(X)

q
in the residue field Fq[X]/(Xq−1 − γ) where f

denotes the residue f mod (Xq−1 − γ). This identity is used to solve for f from an equation of the
form Q(X, f(X), f(γX), . . . , f(γs−1X)) = 0 for some low-degree nonzero multivariate polynomial
Q. The high degree q > n of this identity, coupled with s ≈ 1/ε, led to the large bounds on list-size
and decoding complexity in [GR08].

One possible approach to reduce q (as a function of the code length) in this construction would be
to work with algebraic-geometric codes based on function fields K over Fq with more rational points.
However, an automorphism σ of K that can play the role of the automorphism f(X) 7→ f(γX) of
Fq(X) is only known (or even possible) for very special function fields. This approach was used
in [Gur10] to construct list-decodable codes based on cyclotomic function fields using as σ certain
Frobenius automorphisms. These codes improved the alphabet size to polylogarithmic in N , but
the bound on list-size and decoding complexity remained NΩ(1/ε).

Recently, a linear-algebraic approach to list decoding folded RS codes was discovered in [Vad10,
Gur11]. Here, in the interpolation stage, which is common to all list decoding algorithms for alge-
braic codes [Sud97, GS99, PV05, GR08], following the idea in [Vad10] one finds a linear multivariate
polynomial Q(X,Y1, . . . , Ys) whose total degree in the Yi’s is 1. The simple but key observation
driving [Gur11] is that the equation Q(X, f(X), . . . , f(γs−1X)) = 0 now becomes a linear system in
the coefficients of f . Further, it is shown that the solution space has dimension less than s, which
again gives a list-size upper bound of qs−1. Finally, since the list of candidate messages fall in an
affine space, it was noted in [Gur11] that one can bring down the list size by carefully “pre-coding”
the message polynomials so that their k coefficients belong to a “subspace-evasive set” (which has
small intersection with every s-dimensional subspace of Fkq). This idea was used in [Gur11] to give

3

a randomized construction of (1 − R − ε,O(1/ε2))-list decodable codes of rate R (in fact, the list
size bound is worse — it is Ω̃(N) — if one requires efficient encoding of the code). However, the
alphabet size and runtime of the decoding algorithm both remained NΩ(1/ε). In [GW11], similar
results were also shown for derivative codes, where the encoding of a polynomial f consists of the
evaluations of f and its first m− 1 derivates at distinct field elements.

In a concurrent independent work, Dvir and Lovett gave an elegant construction of explicit
subspace evasive sets based on certain algebraic varieties [DL11]. This yields an explicit version of
the codes from [Gur11], albeit with a worse list size bound of (1/ε)O(1/ε). This work and [DL11]
are incomparable in terms of results. The big advantage of [DL11] is the deterministic construction
of the code. The benefits in our work are (i) our list-size of O(1/ε) is much better and in fact
optimal up to constant factors,1 and (ii) we are able to construct codes over an alphabet size that
is a constant independent of N , whereas in [DL11] the NΩ(1/ε2) alphabet size of folded RS codes
is inherited. Both our work and [DL11] achieve a decoding complexity of Oε(N

c) with exponent
independent of ε.

We should note that since we require sets that are evasive with respect to subspaces of large
dimension, and which have further structural properties needed in the decoding, we cannot use the
construction in [DL11] to make the codes in this work explicit.

1.2 Our techniques

We describe some of the main new ingredients that go into our work. We need both new algebraic
insights and constructions, as well as ideas in pseudorandomness relating to subspace-evasive sets
with additional structure. We describe these in turn below.

Algebraic ideas. As mentioned above, effecting the original “non-linear” approach in [GR08,
Gur10] with automorphisms of more general function fields seems intricate at best. The correct
generalization of the linear-algebraic list decoding approach to the function field case is also not
obvious. One of the main algebraic insights in this work is noting that the right way to generalize
the linear-algebraic approach to codes based on algebraic function fields is to rely on the local power
series expansion of functions from the message space at a suitable rational point. (The case for
Reed-Solomon codes being the expansion around 0, which is a finite polynomial form.)

Working with a suitable automorphism which has a “diagonal” action on the local expansion
lets us extend the linear-algebraic decoding method to AG codes. Implementing this for specific AG
codes requires an explicit specification of a basis for an associated message (Riemann-Roch) space,
and the efficient computation of the local expansion of the basis elements at a special rational point
on the curve. We show how to do this for two towers of function fields: the Hermitian tower [She93]
and the asymptotically optimal Garcia-Stichtenoth tower [GS95, GS96]. The former tower is quite
simple to handle — it has an easily written down explicit basis, and we show how to compute the
local expansion of functions around the point with all zero coordinates. However, the Hermitian
tower does not have bounded ratio of the genus to number of rational points, and so does not
give constant alphabet codes (we can get codes over an alphabet size that is polylogarithmic in
the block length though). Explicit basis for Riemann-Roch spaces of the Garcia-Stichtenoth tower

1As mentioned above, the bound in [DL11] is (1/ε)O(1/ε) and it seems very difficult to get a sub-exponential
dependence on 1/ε with the algebraic approach relying on Bezout’s theorem to construct subspace-evasive sets.

4

were constructed in [SAK+01]. Regarding local expansions, one major difference is that we work
with local expansion of functions at the point at infinity, which is fully “ramified” in the tower. For
both these towers, we find and work with a nice automorphism that acts diagonally on the local
expansion, and use it for folding the codes and decoding them by solving a linear system.

Pseudorandomness. These algebraic ideas enable us to pin down the messages into a subspace
of dimension linear in the message length. To prune this list, we need several additional ideas.
The starting point is to follow [Gur11] and only encode messages in a subspace-evasive set which
has small intersection with low-dimensional subspaces. Implementing this in our case, however,
leads to several problems. First, since the subspace we like to avoid intersecting much has large
dimension, the list size bound will be linear in the code length and not a constant like in our
final result. More severely, we cannot go over the elements of this subspace to prune the list
as that would take exponential time. To solve the latter problem, we observe that the subspace
has a special “periodic” structure, and exploit this to show the existence of large “hierarchically
subspace evasive” (h.s.e) subsets which have small intersection with the projection of the subspace
on certain prefixes. Isolating the periodic property of the subspaces, and formulating the right
notion of evasiveness w.r.t to such subspaces, is an important aspect of this work.

We also give a pseudorandom construction of good h.s.e sets using limited wise independent
sample spaces, in a manner enabling the efficient iterative computation of the final list of intersecting
elements. With some additional ideas, we ensure that one can efficiently index into a large subset
of our h.s.e set construction (this is needed to get an efficient encoding algorithm for our code).
As a further ingredient, we note that the number of possible subspaces that arise in the decoding
is much smaller than the total number of possibilities. Using this together with a trick to take
the intersection of two subspace evasive set constructions, we are able to reduce the list size to a
constant.

1.3 Organization

We begin by isolating the special notion of subspaces which our evasive sets should avoid intersecting
too much (Section 2). We describe our construction of folded Hermitian codes and a linear-algebraic
list decoding algorithm for these codes in Section 3. In Section 4, we define and construct the
special “hierarchically” subspace-evasive (h.s.e) sets that we need. We show how to combine the
h.s.e sets with folded Hermitian codes in Section 5; this gives a result similar to Theorem 1.1 with
polylogarithmic alphabet and list size. We show how our ideas can be used to construct folded
codes based on the Garcia-Stichtenoth tower, and how to combine them with h.s.e sets to get our
main result (Theorem 1.1) in Section 6.

2 Periodic subspaces

The list decoding algorithm for our algebraic codes will first pin down the candidate messages to
a subspace. The structure of the subspace will be important to us in order to be able to efficiently
prune it to a much smaller list. In this section, we make some important definitions capturing this
property. Let us begin with some notation.

Notation (Projection of vectors and sets). For a vector y = (y1, y2, . . . , ym) ∈ Fmq and positive

5

integers t1 6 t2 6 m, we denote by proj[t1,t2](y) ∈ Ft2−t1+1
q its projection onto coordinates t1 through

t2, i.e., proj[t1,t2](y) = (yt1 , yt1+1, . . . , yt2). When t1 = 1, we use projt(y) to denote proj[1,t](y).

For a subset S ⊆ Fkq and positive integers t1 6 t2 6 k, we denote the projection of S onto the
coordinates in the range [t1, t2] by proj[t1,t2](S). Formally, proj[t1,t2](S) = {proj[t1,t2](y) | y ∈ S}.
Again, we use projt(S) to denote proj[1,t](S).

The specific definition of periodic subspaces below (which might appear rather technical) is
motivated by the structure of the subspaces arising in our list decoding application (for example,
as guaranteed by Lemma 3.7). The special structure of these subspaces is important to guarantee
the existence of “subspace evasive sets” (defined later) that are good enough for our purposes.

Definition 1. (s,∆)-periodic subspaces2) For positive integers s,∆, b, an affine subspace W of
Fkq where k = b∆ is said to be (s,∆)-periodic if there is a subspace U of F∆

q of dimension less than s
such that for all y ∈W and 1 6 i 6 b, proj[(i−1)∆+1,i∆](y) belongs to the affine space U +bi, where
bi is a column vector whose coordinates are affine combinations (depending only on i) of the first

(i − 1)∆ coordinates of y; formally, bi = Ci · proj(i−1)∆(y) + vi for some matrix Ci ∈ F∆×(i−1)∆
q

and vi ∈ F∆
q . We can represent such an affine subspace by U, {Ci,vi}bi=1.

Note that ifW is an (s,∆)-periodic subspace of Fb∆q , for every i, 1 6 i 6 b, and every a ∈ F(i−1)∆
q ,

the affine space {proj[(i−1)∆+1,i∆](w) | w ∈ W and proj(i−1)∆(w) = a} has dimension at most s
(and in particular it has at most qs elements). Therefore, by an inductive argument, we have
|proji∆(W)| 6 qis for 1 6 i 6 b, which together with the fact that proji∆(W) is an affine subspace
implies the following.

Observation 2.1. If W is an (s,∆)-periodic subspace of Fb∆q , then for i = 1, 2, . . . , b, proji∆(W)

is also (s,∆)-periodic and has dimension at most s · i as an affine subspace of Fi∆q .

3 Folded codes from the Hermitian tower

In this section, we will describe a family of folded codes based on the Hermitian function field (or
rather a tower of such fields).

3.1 Background on Hermitian tower

In what follows, let r be a prime power and let q = r2. We denote by Fq the finite field with q
elements. The Hermitian function tower that we are going to use for our code construction was
discussed in [She93]. The reader may refer to [She93] for the detailed background on the Hermitian
function tower, and Stichtenoth’s book [Sti93] for general background on algebraic function fields
and their use in constructing algebraic-geometric codes. The Hermitian tower is defined by the
following recursive equations

xri+1 + xi+1 = xr+1
i , i = 1, 2, . . . , e− 1.

2According to the definition, an (s,∆)-periodic subspace is in fact an affine space. For convenience, we blur this
distinction, which is not too important for us, and use the terminology periodic subspace to refer to them.

6

Put Fe = Fq(x1, x2, . . . , xe) for e > 2. We will assume that r > 2e.

Rational places. The function field Fe has re+1 + 1 rational places. One of these is the “point at
infinity” which is the unique pole P∞ of x1 (and is fully ramified). The other re+1 come from the
rational places lying over the unique zero Pα of x1−α for each α ∈ Fq. Note that for every α ∈ Fq,
Pα splits completely in Fe, i.e., there are re−1 rational places lying over Pα. Intuitively, one can
think of the rational places of Fe (besides P∞) as being given by e-tuples (α1, α2, . . . , αe) ∈ Feq that

satisfy αri+1 + αi+1 = αr+1
i for i = 1, 2, . . . , e − 1. For each value of α ∈ Fq, there are precisely r

solutions to β ∈ Fq satisfying βr + β = αr+1, so the number of such e-tuples is re+1 (q = r2 choices
for α1, and then r choices for each successive αi, 2 6 i 6 e).

Riemann-Roch spaces. For a place P of Fe, we denote by νP the discrete valuation of P : for a
function h ∈ Fe, if h has a zero at P , then νP (h) gives the number (multiplicity) of zeroes, if h has
a pole at P , then −νP (h) gives the pole order of h at P , and νP (h) = 0 if h has neither a zero or
a pole at P .

For an integer l, we consider the Riemann-Roch space defined by

L(lP∞) := {h ∈ Fe \ {0} : νP∞(h) > −l} ∪ {0}.

Then the dimension `(lP∞) is at least l− ge + 1 and furthermore, `(lP∞) = l− ge + 1 if l > 2ge− 1.
A basis over Fq of L(lP∞) can be explicitly constructed as follows{

xj11 · · ·x
je
e : (j1, . . . , je) ∈ Ze>0,

e∑
i=1

jir
e−i(r + 1)i−1 6 l

}
. (1)

We stress that evaluating elements of L(lP∞) at the rational places of Fe (other then P∞) is
easy: we simply have to evaluate a linear combination of the monomials allowed in (1) at the tuples
(α1, α2, . . . , αe) ∈ Feq mentioned above. In other words, it is just evaluating an e-variate polynomial
at a specific subset of re+1 points of Feq, and can be accomplished in polynomial time.

Genus. The genus ge of the function field Fe is given by

ge =
1

2

(
e−1∑
i=1

re
(

1 +
1

r

)i−1

− (r + 1)e−1 + 1

)
6
re

2

e∑
i=1

(
e

i

)
1

ri−1
6
ere

2

e∑
i=1

(e
r

)i−1
6 ere (2)

where the last step used r > 2e.

A useful automorphism. Let γ be a primitive element of Fq and consider the automorphism
σ ∈ Aut(Fe/Fq) defined by

σ : xi 7→ γ(r+1)i−1
xi for i = 1, 2, . . . , e.

The order of σ is q − 1 and furthermore, we have the following facts:

(i) Let P0 be the unique common zero of x1, x2, . . . , xe (this corresponds to the e-tuple (0, 0, . . . , 0)),
and P∞ the unique pole of x1. The automorphism σ keeps P0 and P∞ unchanged, i.e., P σ0 = P0

and P∞
σ = P∞,

7

(ii) Let P be the set of all the rational places which are neither P∞ nor zeros of x1. Then |P| = (q−
1)re−1. Moreover, σ divides P into re−1 orbits and each orbit has q−1 places. For an integer m
with 1 6 m 6 q−1, we can labelNm distinct elements P1, P

σ
1 , . . . , P

σm−1

1 , . . . , PN , P
σ
N , . . . , P

σm−1

N

in P, as long as N 6 re−1
⌊
q−1
m

⌋
.

Definition 2 (Folded codes from the Hermitian tower). Assume that m, l,N are positive integers

satisfying 1 6 m 6 q − 1 and l/m 6 N 6 re−1
⌊
q−1
m

⌋
. The folded code from Fe with parameters

N, l, q, e,m, denoted by F̃H(N, l, q, e,m), encodes a message function f ∈ L(lP∞) as

f 7→




f(P1)
f(P σ1)

...

f(P σ
m−1

1)

 ,


f(P2)
f(P σ2)

...

f(P σ
m−1

2)

 , . . . ,


f(PN)
f(P σN)

...

f(P σ
m−1

N)


 ∈ (Fmq)N . (3)

Lemma 3.1. The above code F̃H(N, l, q, e,m) is an Fq-linear code over alphabet size qm, rate at

least l−ge+1
Nm , and minimum distance at least N − l

m .

Proof. It is clear that the map (3) is an Fq-linear map. The dimension over Fq of the message space
L(lP∞) is at least l − ge + 1 by the Riemann-Roch theorem, which gives the claimed lower bound
on rate. For the distance property, observe that if the i-th column is zero, then f has m zeros.
This implies that the encoding of a nonzero function f can have at most l/m zero columns since
f ∈ L(lP∞).

3.2 Redefining the code in terms of local expansion at P0

For our decoding, we will actually recover the message f ∈ L(lP∞) in terms of the coefficients of
its power series expansion around P0

f = f0 + f1x+ f2x
2 + · · ·

where x := x1 is the local parameter at P0 (which means that x1 has exactly one zero at P0, i.e.,
νP0(x1) = 1). In fact, realizing that one must work in this power series representation is one of the
key insights in this work.

Let us first show that one can efficiently move back-and-forth between the representation of
f ∈ L(lP∞) in terms of a basis for L(lP∞) and its power series representation (f0, f1, . . .) around
P0. Since the mapping f 7→ (f0, f1, . . .) is Fq-linear, it suffices to compute the local expansion at
P0 of a basis for L(lP∞).

Lemma 3.2. For any n, one can compute the first n terms of the local expansion of the basis
elements (1) at P0 using poly(n) operations over Fq.

Proof. By the structure of the basis functions in (1), it is sufficient to find an algorithm of efficiently
finding local expansions of xi at P0 for every i = 1, 2, . . . , e. We can inductively find the local
expansions of xi at P0 as follows.

For i = 1, x1 is the local parameter x of P0, so x is the local expansion of x1 at P0.

8

Now assume that we know the local expansion of xi =
∑∞

j=1 ci,jx
j at P0 for some ci,j ∈ Fq.

Then we have

∞∑
j=1

cri+1,jx
jr +

∞∑
j=1

ci+1,jx
j = xri+1 + xi+1 = xr+1

i =

 ∞∑
j=1

cri,jx
jr

 ∞∑
j=1

ci,jx
j

 .

By comparing the coefficients of xj in the above identity, we can easily solve ci+1,j ’s from ci,j ’s.
More specifically, the coefficient of xj at the left of the identity is{

ci+1,j if r 6 |j
ci+1,j + cri+1,j/r if r|j.

Thus, all ci+1,j ’s can be easily solved recursively.

To keep the list output by the algorithm at a controllable size, we will combine the code with
certain special subspace evasive sets. For this purpose, we will actually need to index the messages
of the code by the first k coefficients (f0, f1, . . . , fk−1) of the local expansion of the function f at P0.
This requires that for every (f0, f1, . . . , fk−1) there is a f ∈ L(lP∞) whose power series expansion
has the fi as the first k coefficients. This is easy to ensure by taking l = k + 2ge − 1 as we argue
below. Note that to ensure that L(lP∞) has dimension k, it suffices to pick l = k + ge − 1 by the
Riemann-Roch theorem. We pick l to be ge more than this bound. Since the genus will be much
smaller than the code length, we can afford this small loss in parameters.

Let us define the local expansion map evP0 : L((k + 2ge − 1)P∞) → Fkq that maps f to
(f0, f1, . . . , fk−1) where f = f0 + f1x+ f2x

2 + · · · is the local expansion of f at P0.

Claim 3.3. evP0 is an Fq-linear surjective map. Further, we can compute evP0 using poly(k, ge)
operations over Fq given a representation of the input f ∈ L((k+ 2ge− 1)P∞) in terms of the basis
(1).

Proof. The Fq-linearity of evP0 is clear. The kernel of evP0 is L((k + 2ge − 1)P∞ − kP0) which has
dimension exactly ge by the Riemann-Roch theorem. By the rank-nullity theorem, the image must
have dimension k, and so the map is surjective. The claimed complexity of computation follows
immediately from Lemma 3.2.

For each (f0, f1, . . . , fk−1) ∈ Fkq , we can therefore pick a pre-image in L((k + 2ge − 1)P∞).

For convenience, we will denote an injective map making such a unique choice by κP0 : Fkq →
L((k + 2ge − 1)P∞). By picking the pre-images of a basis of Fkq and extending it by linearity, we
can assume κP0 to be Fq-linear, and thus specify it by a (k + ge) × k matrix. We record this fact
for easy reference below.

Claim 3.4. The map κP0 : Fkq → L((k+ 2ge− 1)P∞) is Fq-linear and injective. We can compute a
representation of this linear transformation using poly(k, ge) operations over Fq, and the map itself
can be evaluated using poly(k, ge) operations over Fq.

We will now redefine a version of the folded Hermitian code that maps Fkq to (Fmq)N by composing
the folded encoding (3) from the original Definition 2 with κP0 .

9

Definition 3 (Folded Hermitian code using local expansion). The folded Hermitian code FH(N, k, q, e,m)

maps f = (f0, f1, . . . , fk−1) ∈ Fkq to F̃H(N, k + 2ge − 1, q, e,m)(κP0(f)) ∈ (Fmq)N .

The rate of the above code equals k/(Nm) and its distance is at least N − (k + 2ge − 1)/m.

3.3 List decoding folded codes from the Hermitian tower

We now present a list decoding algorithm for the above codes. The algorithm follows the linear-
algebraic list decoding algorithm for folded Reed-Solomon codes. Suppose a codeword (3) encoding
f ∈ Im(κP0) ⊆ L((k + 2ge − 1)P∞) is transmitted and received as

y =


y1,1 y2,1 yN,1

y1,2 y2,2
...

. . .

y1,m · · · yN,m

 (4)

where some columns are erroneous. Let s > 1 be an integer parameter associated with the decoder.

Lemma 3.5. Given a received word as in (4), using poly(N) operations over Fq, we can find a
nonzero linear polynomial in Fe[Y1, Y2, . . . , Ys] of the form

Q(Y1, Y2, . . . , Ys) = A0 +A1Y1 +A2Y2 + · · ·+AsYs (5)

satisfying

Q(yi,j , yi,j+1, · · · , yi,j+s−1) = A0(P σ
j

i) +As(P
σj

i)yi,j+1 + · · ·+As(P
σj

i)yi,j+s = 0 (6)

for i = 1, 2, . . . , N and j = 0, 1, . . . ,m − s. The coefficients Ai of Q satisfy Ai ∈ L(DP∞) for
i = 1, 2, . . . , s and A0 ∈ L((D + k + 2ge − 1)P∞) for a “degree” parameter D chosen as

D =

⌊
N(m− s+ 1)− k + (s− 1)ge + 1

s+ 1

⌋
. (7)

Proof. If we fix a basis of L(DP∞) (of the form (1)) and extend it to a basis of L((D+k+2ge−1)P∞),
then the number of freedoms of A0 is at least D + k + ge and the number of freedoms of Ai is at
least D − ge + 1 for i > 1. Thus, the total number of freedoms in the polynomial Q equals

s(D − ge + 1) +D + k + ge = (s+ 1)(D + 1)− (s− 1)ge − 1 + k > N(m− s+ 1) (8)

for the above choice (7) of D. The interpolation requirements on Q ∈ Fe[Y1, . . . , Ys] are the
following:

Q(yi,j , yi,j+1, · · · , yi,j+s−1) = A0(P σ
j

i) +As(P
σj

i)yi,j+1 + · · ·+As(P
σj

i)yi,j+s = 0 (9)

for i = 1, 2, . . . , N and j = 0, 1, . . . ,m − s. The interpolation requirements on Q give a total of
N(m− s+ 1) homogeneous linear equations that the coefficients of the Ai’s w.r.t the chosen basis
of L((D + k + 2ge − 1)P∞) must satisfy. Since the number of such coefficients (degrees of freedom
in Q) exceeds N(m − s + 1), we can conclude that such a linear polynomial Q as required by the
lemma must exist, and can be found by solving a homogeneous linear system over Fq with about
N(m− s+ 1) variables and constraints.

10

Similar to earlier interpolation based list decoding algorithms, the following lemma gives an alge-
braic condition that the message functions f ∈ L((k+2ge−1)P∞) we are interested in list decoding
must satisfy. The proof is a standard argument comparing the pole order to the number of zeroes.

Lemma 3.6. If f is a function in L((k+ 2ge − 1)P∞) whose encoding (3) agrees with the received
word y in at least t columns with t > D+k+2ge−1

m−s+1 , then

Q(f, fσ
−1
, . . . , fσ

−(s−1)
) = A0 +A1f +A2f

σ−1
+ · · ·+Asf

σ−(s−1)
= 0. (10)

Proof. The proof proceeds by comparing the number of zeros of the functionQ(f, fσ
−1
, . . . , fσ

−(s−1)
) =

A0 +A1f +A2f
σ−1

+ · · ·+Asf
σ−(s−1)

with D + k + 2ge − 1. Note that Q(f, fσ
−1
, . . . , fσ

−(s−1)
) is

a function in L((D+ k+ 2ge − 1)P∞). If column i of the encoding (3) of f agrees with y, then for
all j = 0, 1, . . . ,m− s, we have

0 = A0(P σ
j

i) +A1(P σ
j

i)yi,j+1 +A2(P σ
j

i)yi,j+2 + · · ·+As(P
σj

i)yi,j+s

= A0(P σ
j

i) +A1(P σ
j

i)f(P σ
j

i) +A2(P σ
j

i)f(P σ
j+1

i) + · · ·+As(P
σj

i)f(P σ
j+s−1

i)

= A0(P σ
j

i) +A1(P σ
j

i)f(P σ
j

i) +A2(P σ
j

i)fσ
−1

(P σ
j

i) + · · ·+As(P
σj

i)fσ
−(s−1)

(P σ
j

i)

= (A0 +A1f +A2f
σ−1

+ · · ·+Asf
σ−(s−1)

)(P σ
j

i) .

Note that here we use the fact that fσ(P σ) = f(P)σ = f(P), or equivalently f(P σ) = fσ
−1

(P).

In other words, Q(f, fσ
−1
, . . . , fσ

−(s−1)
) has (m − s + 1) distinct zeros from this agreeing col-

umn. Thus, there are a total of at least t(m − s + 1) zeros for all the agreeing columns. Hence,

Q(f, fσ
−1
, . . . , fσ

−(s−1)
) must be the zero function when t(m− s− 1) > D + k + 2ge − 1.

Solving the functional equation for f . Our goal next is to recover the list of solutions f to the
functional equation (10). Recall that our message functions lie in Im(κP0), so we can recover f by
recovering the top k coefficients (f0, f1, . . . , fk−1) of its local expansion f =

∑∞
j=0 fjx

j at P0. We
now prove that (f0, f1, . . . , fk−1) for f satisfying Equation (10) belong to a “periodic” subspace (in
the sense of Definition 1) of not too large dimension.

Lemma 3.7. The set of solutions (f0, f1, . . . , fk−1) ∈ Fkq such that f = f0 + f1x + f2x
2 + · · · ∈

L((k + 2ge − 1)P∞) obeys equation

A0 +A1f +A2f
σ−1

+ · · ·+Asf
σ−(s−1)

= 0 , (11)

when the Ai’s obey the pole order restrictions of Lemma 3.5 and at least one Ai is nonzero, is an

affine subspace W of dimension at most (s− 1)
⌈

k
q−1

⌉
.

Further, there are at most qNm+s+1 possible choices of the subspace W (as a function of the
Ai’s), each of which is (s, q − 1)-periodic. Given the representation of each Ai w.r.t the basis (1),
we can find a representation of W in terms of the periodic subspace U of dimension less than s,
and the affine shifts in each window of q − 1 coordinates, in the sense of Definition 1.

Proof. Let u = min{νP0(Ai) : i = 1, 2, . . . , s}. Then it is clear that u > 0 and νP0(A0) > u. Each
Ai has a local expansion at P0:

Ai = xu
∞∑
j=0

ai,jx
j

11

for i = 0, 1, . . . , s− 1, which can be efficiently computed from the basis representation of the Ai’s.
From the definition of u, one knows that the polynomial

B0(X) := a1,0 + a2,0X + · · ·+ as,0X
s−1

is nonzero. Assume that at P0, the function f has a local expansion
∑∞

j=0 fjx
j . Then fσ

−i
has a

local expansion at P0 as follows

fσ
−i

=
∞∑
j=0

ξijfjx
j ,

where ξ = 1/γ. The coefficient of xd+u in the local expansion of Q(f, fσ
−1
, . . . , fσ

−(s−1)
) is

0 = B0(ξd)fd +
d−1∑
i=0

bifi + a0,d, (12)

where bi ∈ Fq is a linear combination of ai,j which does not involve fj . Hence, fd is uniquely
determined by f0, . . . , fd−1 as long as B0(ξd) 6= 0. Let S := {0 6 d 6 q − 2 : B0(ξd) = 0}. Then
it is clear that |S| 6 s− 1 since the order of ξ is q − 1 and B0(X) has degree at most s− 1. Thus,
B0(ξj) 6= 0 if and only if j mod (q− 1) /∈ S; and in this case fj is a fixed affine linear combination

of fi for 0 6 i < j. Note that B0(X) has at most (s−1)
⌈

k
q−1

⌉
roots among {ξi : i = 0, 1, . . . , k−1}.

It follows that the set of solutions (f0, f1, . . . , fk−1) is an affine space W ⊂ Fkq , and the dimension

of W is at most (s− 1)
⌈

k
q−1

⌉
.

The fact that W is (s, q − 1)-smooth follows from (12) and noting that the coefficients bd−j
for j > 1 in that equation are given by Bj(ξ

d−j) where Bj(X) := a1,j + a2,jX + · · · + as,jX
s−1.

Therefore, once the values of fi, 0 6 i < (j − 1)(q − 1) are fixed, the possible choices for the next
block of (q − 1) coordinates, f(j−1)(q−1), · · · , fj(q−1)−1, lie in an affine shift of a fixed subspace of
dimension at most (s−1). Further, this shift is an easily computed affine linear combination of the
fi’s in the previous blocks. This implies the efficient computability of the claimed representation
of W .

Finally, by the choice of D in (7), the total number of possible (A0, A1, . . . , As) and hence the
number of possible functional equations (11), is at most qN(m−s+1)+s+1 6 qNm+s+1. Therefore, the
number of possible candidate subspaces W is also at most qNm+s+1.

Combining Lemmas 3.6 and 3.7, we conclude, after some simple calculations, that one can find a
representation of the (s, q−1)-periodic subspace containing all candidate messages (f0, f1, . . . , fk−1)
in polynomial time, when the fraction of errors τ = 1− t/N satisfies

τ 6
s

s+ 1
− s

s+ 1

k

N(m− s+ 1)
− 3m

m− s+ 1

ge
mN

. (13)

Pruning the subspace. Applying Lemma 3.7 directly we would get a list size bound of ≈
qsk/q which would be super-polynomial in the code length unless k = O(q). Thus this idea does
not directly allow us to get good list decodable codes while keeping the base field size small or
achieve a list size that grows polynomially in s. Instead what we show is that by only encoding

12

(f0, f1, . . . , fk−1) ∈ Fkq that are restricted to belong to a special subspace-evasive set, we can (i) bring
down the list size, and (ii) find this list efficiently in polynomial time (and further the exponent of
the polynomial is independent of ε, the gap to capacity). To this end, we develop the necessary
machinery concerning subspace evasive sets next. Later, in Section 5, we combine these subspace
evasive sets with our folded Hermitian codes to get good list-decodable codes.

4 Subspace evasive sets with additional structure

Let us first recall the notion of “ordinary” subspace-evasive sets from [Gur11].

Definition 4. A subset S ⊂ Fkq is said to be (d, `)-subspace-evasive if for all d-dimensional affine

subspaces W of Fkq , we have |S ∩W | 6 `.

We next define the notion of evasiveness w.r.t a collection of subspaces instead of all subspaces
of a particular dimension.

Definition 5. Let F be a family of (affine) subspaces of Fkq , each of dimension at most d. A subset

S ⊂ Fkq is said to be (F , d, `)-evasive if for all W ∈ F , we have |S ∩W | 6 `.

4.1 Hierarchical subspace-evasive sets

The key to pruning the list to a small size is the notion of a hierarchical subspace-evasive set,
which is defined as a subset of Fkq with the property that some of its prefixes are subspace-evasive
with respect to (s,∆)-periodic subspaces. We will show how the special subspace-evasive sets help
towards pruning the list in our list decoding context in Section 4.5.

Definition 6. Let F be a family of (s,∆)-periodic subspaces of Fkq . A subset S ⊂ Fkq is said to be
(F , s,∆, L)-h.s.e (for hierarchically subspace evasive for block size ∆) if for every affine subspace
W ∈ F , the following bound holds for j = 1, 2, . . . , b:

|projj∆(S) ∩ projj∆(W)| 6 L .

4.2 Random sets are hierarchically subspace evasive

Our goal is to give a randomized construction of large h.s.e sets that works with high probability,
with the further properties that one can index into elements of this set efficiently (necessary for
efficient encoding), and one can check membership in the set efficiently (which is important for
efficient decoding).

An easy probabilistic argument, see [Gur11], shows that a random subset of Fkq of size about

q(1−ζ)k is (d,O(d/ζ))-subspace evasive with high probability. As a warmup, let us work out the
similar proof for the case when we have only to avoid a not too large family F of all possible
d-dimensional affine subspaces. The advantage is that the guarantee on the intersection size is now
O(1/ζ) and independent of the dimension d of the subspaces one is trying to evade.

13

Lemma 4.1. Let ζ ∈ (0, 1) and k be a large enough positive integer. Let F be a family of affine
subspaces of Fkq , each of dimension at most d 6 ζk/2, with |F| 6 qck for some positive constant c.

Let W be a random subset of Fkq chosen by including each x ∈ Fkq in W with probability q−ζk.

Then with probability at least 1−q−ck, W satisfies both the following conditions: (i) |W| > q(1−2ζ)k,
and (ii) W is (F , d, 4c/ζ)-evasive.

Proof. The first part follows by noting that the expected size of W equals q(1−ζ)k and a standard
Chernoff bound calculation. For the second part, fix an affine subspace S ⊆ F of dimension at
most d, and a subset T ⊆ S of size t, for some parameter t to be specified shortly. The probability
that W ⊇ T equals q−ζkt. By a union bound over the at most qck choices for the affine subspace
S ∈ F , and the at most qdt choices of t-element subsets T of S, we get that the probability that W
is not (F , d, t)-evasive is at most qck+dt · q−ζkt 6 qckq−ζkt/2 since d 6 ζk/2. Choosing t = d4c/ζe,
this quantity is bounded from above by q−ck.

4.3 Pseudorandom construction of large h.s.e subsets

We next turn to the pseudorandom construction of large h.s.e subsets. Suppose, for some fixed
subset F of (s,∆)-periodic subspaces of Fkq , we are interested in an (F , s,∆, `)-h.s.e subset of Fkq
of size ≈ q(1−ζ)k for a constant ζ, 1/∆ < ζ < 1. For simplicity, let us assume that the block size
∆ divides k, though arbitrary k can be easily handled. (We will also ignore floors and ceilings in
the description to avoid notational clutter; those are easy to accommodate and do not affect any
of the claims.) Define b = k

∆ to be the number of blocks. The parameters b,∆, k and field size q
will be considered fixed for the rest of the discussion in this section.

Our construction will use some arbitrary fixed subsets Λ1,Λ2, . . . ,Λb where Λi ⊆ Fqi∆ with

|Λi| = q(i−ζ)∆. The only requirement from the subsets Λi is that membership in them can be
checked using at most poly(i∆) operations over Fq.

The random part of the construction will consist of two sets of mutually independent, random
polynomials P1, P2, . . . , Pb and Q1, Q2, . . . , Qb where Pi, Qi ∈ Fqi∆ [T] are random polynomials of
degree λ for 1 6 i 6 b. 3 The degree parameter will be chosen to be λ = Θ(k).

The key fact we will use about the random polynomials Pi’s is the following, which follows by
virtue of the λ-wise independence of the values of a random degree λ polynomial.

Fact 4.2. For a fixed subset T ⊆ Fqi∆ with |T | 6 λ, the values {Pi(α)}α∈T are independent random
values in Fqi∆.

In what follows we assume that, for i = 1, 2, . . . , b, some fixed bases of the fields Fqi∆ have been

chosen, giving us some canonical Fq-linear injective maps ρi : Fi∆q → Fqi∆ .

Definition 7. Given the polynomials P1, P2, . . . , Pb, define the subset Γ(P1, P2, . . . , Pb) by

{y = (y1, y2, . . . , yb) ∈ Fkq | yj ∈ F∆
q , Pj(ρj(y1 ◦ y2 ◦ · · · ◦ yj)) ∈ Λj for j = 1, 2, . . . , b} .

3We will assume that representations of the necessary extension fields Fi∆
q are all available. For this purpose, we

only need irreducible polynomials over Fq of degree i∆, which can be constructed by picking random polynomials
and checking them for irreducibility. Our final construction is anyway randomized, so the randomized nature of this
step does not affect the results.

14

Given the above definition, our final h.s.e set will be defined as follows (we suppress the depen-
dence of H on Pi, Qi for convenience):

H
def
= Γ(P1, P2, . . . , Pb) ∩ Γ(Q1, Q2, . . . , Qb) . (14)

The reason for defining the set as the intersection of two Γ sets will become clear later on. We will
later modify the construction slightly to ensure also the efficient encoding property that we seek
(but it is cleaner to first present the construction without this extra concern).

We first note that it is highly likely that the set H is large, and then establish the h.s.e property.

Lemma 4.3. With probability at least 1− q−Ω(k) over the choice of {Pi, Qi}16i6b, we have

|H| > q(1−3ζ)k .

Proof. For each y ∈ Fkq , define the indicator random variable Iy for the event that y ∈ Γ. We

have E[Iy] = (q−ζ∆)2b = q−2ζk. Therefore, E[|H|] =
∑

y∈Fk
q
E[Iy] = q(1−2ζ)k. For degree λ > 2,

the random variables Iy’s are pairwise independent, so by Chebyshev’s inequality, we have that
|Γ| > q(1−3ζ)k with probability at least 1− q−Ω(k).

We now move on to the main claim about the h.s.e property of our construction.4

Theorem 4.4. Let ζ ∈ (0, 1) and s be a positive integer satisfying s < ζ∆/10. Let F be a
subset of at most qck (s,∆)-periodic subspaces of Fkq for some positive constant c. Suppose that

the parameters satisfy the condition qζ∆ > (2qck)10/9. Then with probability 1 − exp(−Ω(k)) over
the choice of random polynomials {Pi, Qi}16i6b each of degree λ > ck, the set H defined in (14) is
(F , s,∆, L)-h.s.e and (F , sb, `)-evasive for L 6 ck and ` 6 20c/ζ.

Proof. We will prove that w.h.p over the choice of Pi’s, the subset Γ
def
= Γ(P1, P2, . . . , Pb) is

(F , s,∆, L)-h.s.e for L = ck, and this will imply the same for H as H ⊆ Γ(P1, P2, . . . , Pb). We will
then prove that conditioned on Γ being (F , s,∆, L)-h.s.e, with high probability over the choice of
the Qi’s, H will intersect any subspace in F at less than O(1/ζ) points. (Note that every subspace
in F has dimension at most sb by Observation 2.1.) Together, these steps will imply the claim of
the theorem.

For the first step, it suffices to show that w.h.p, the following holds: For every (s,∆)-smooth
subspace W ⊆ Fkq that belongs to F , we have

|Γi ∩Wi| 6 L for i = 1, 2, . . . , b

where Wi = proji∆(W) and Γi = proji∆(Γ). (Recalling the definition of Γ, this means that

Γi = {z ∈ Fi∆q | Pi(ρi(z)) ∈ Λi and projj∆(z) ∈ Γj for 1 6 j < i} .)

We will establish this by induction. For the base case i = 1, this is just the standard argument
using the λ-wise independence of the set Γi. By the choice of the degree λ we made, L < λ. For
each fixed set of L elements, the events that they all belong to Γ1 are independent and each occurs

4We have not attempted to optimize the constants in the conditions stated in the theorem.

15

with probability equal to the density of Λ1 ⊆ Fq∆ which q−ζ∆. Therefore, for a fixed subspace

U ⊆ F∆
q of dimension s, the probability that |U ∩ Γ1| > L is at most(

qs

L

)
q−ζ∆L 6 qsLq−ζ∆L 6 q−9sL ,

using s 6 ζ∆/10. Since there are at most |F| candidates U which are of the form proj∆(W) for
W ∈ F , by a union bound over such U , we conclude that the probability that |Γ1 ∩W1| > L for
some W ∈ F is at most qckq−9sL 6 q−Ω(k) for the choice L = ck.

Suppose now that i > 1 and we condition on the fact that for every W ∈ F , we have |Γi−1 ∩
Wi−1| 6 L. Let us first fix W ∈ F and upper bound the probability that |Γi ∩Wi| > L. Since
|Γi−1 ∩Wi−1| 6 L, the number of candidate elements in Γi ∩Wi is at most L · qs, since there are
at most L possibilities for the first (i− 1)∆ coordinates, and by the definition of (s,∆)-smoothness
(Definition 1), for each of these there are at most qs possibilities for the last ∆ coordinates. The
probability that some L of these candidates actually belong to Γi, and thus the probability that
|Γi∩Ui| > L, is at most (Lqs)L ·q−ζ∆L. Taking a union bound over all W ∈ F , we have |Γi∩Wi| 6 L
for all W ∈ F except with probability at most

qck(L · q(s−ζ∆))L 6 qck(L · q−0.9ζ∆)L = (q · ck · q−0.9ζ∆)ck 6 2−ck

where the last step used the hypothesis that qζ∆ > (2cqk)10/9, and the previous step used that
L = ck. This finishes the proof that Γ is (F , s,∆, L)-h.s.e except with 2−Ω(k) probability.

Suppose we now condition on the event that |Γ ∩ W | 6 L (which we showed happens with
high probability) after the Pi’s are picked. Let us now prove that w.h.p over the choice of the
Qi’s, H = Γ ∩ Γ(Q1, Q2, . . . , Qb) intersects every W ∈ F at not more than ` points. Note that
H ∩W ⊆ Γ ∩W , so only the (at most L) elements of Γ ∩W can belong to H ∩W . Fixing a
W ∈ F , the probability that at least ` elements of Γ ∩W belong to H is at most

(
L
`

)
· q−ζk` since

the probability that a fixed y ∈ Fkq belongs to Γ(Q1, . . . , Qb) equals (q−ζ∆)b = q−ζk. By a union
bound over all W ∈ F , the conditional probability that |H ∩W | > ` for some W ∈ F is at most

qckL`q−ζk` 6 qckq0.9ζ∆`q−ζk` 6 qckq−0.1ζk` .

Choosing ` = 20c/ζ, this probability is at most q−ck.

4.4 Efficient encoding of h.s.e. subsets

The construction of the h.s.e set in (14) allows for efficient membership checks in H — once
the Pi’s and Qi’s are sampled, it follows from Definition 7 that one can check membership in
Γ(P1, P2, . . . , Pb) and Γ(Q1, Q2, . . . , Qb). The construction does not, however, provide an efficient
method to index into elements of H, which is necessary for efficient encoding of messages into
elements of H. In this section we will show that w.h.p. H contains a certain subset that permits
efficient encoding.

We will describe this subset of H by giving an encoding map from strings in F(1−3ζ)k
q to the set.

We will then prove that the map is well-defined.

16

Definition 8 (Encoding into the h.s.e set). Given the polynomials P1, P2, . . . , Pb and Q1, . . . , Qb,

and the subsets Λi ⊆ Fqi∆, the encoding of x = (x1, x2, . . . , xb) where xi ∈ F(1−3ζ)∆
q , proceeds as

follows:

For i = 1, 2, . . . , b

• Let βi ∈ F3ζ∆
q be the lexicographically first string such that Pi(ρi(x1 ◦ β1 ◦ · · · ◦ xi ◦ βi)) ∈ Λi

and Qi(ρi(x1 ◦ β1 ◦ · · · ◦ xi ◦ βi)) ∈ Λi. If no such βi exists, fail.

Output x1 ◦ β1 ◦ x2 ◦ β2 ◦ · · · ◦ xb ◦ βb ∈ Fkq as the encoding of x.

We will denote the above encoding map by HSE and refer to ∆ as its period size (we suppress
the dependence of the map on the Pi’s and Qi’s for convenience).

We now prove that the above map is well-defined, in the sense that the required βi’s will exist
with high probability. Note that HSE, when it is well-defined, is an injective map.

Lemma 4.5. Suppose the parameters satisfy qζ∆ > 3qλ and λ > 6k. For every choice of the
subsets Λi ⊆ Fqi∆ with |Λi| = q(i−ζ)∆, the following holds with probability at least 1 − q−Ω(k) over
the choice of the random degree λ polynomials {Pi : 1 6 i 6 b} and {Qi : 1 6 i 6 b}: For all

x = (x1, x2, . . . , xb) where xi ∈ F(1−3ζ)∆
q , the above procedure successfully encodes x.

The encoding complexity is at most O(q3ζ∆λk2 log2 k) operations over Fq.

Proof. First, let us note that the encoding complexity is as claimed when the encoding succeeds.
Given a ∈ Fqi∆ we can compute Pi(a) and Qi(a) using at most O(λk log2 k) Fq-operations. We can
pick Λi so that membership of an element of Fqi∆ in Λi can be checked using O(k2) operations.

Therefore, for each i = 1, 2, . . . , b, the search for βi takes q3ζ∆ · O(λk log2 k) operations over Fq.
This gives a bound of O(q3ζ∆λk2 log2 k) operations over Fq for the total encoding complexity.

Let us now prove that HSE(x) exists for all x with high probability, taken over the choice of

the random polynomials Pi, Qi. Fix an x ∈ F(1−2ζ)k
q . For 1 6 j 6 b, conditioned on the choice of

β1, β2, . . . , βj−1, the probability that a fixed α ∈ F3ζ∆
q satisfies Pj(ρj(x1◦β1◦· · ·xj−1◦βj−1◦xj◦α)) ∈

Λj and Qj(ρj(x1 ◦β1 ◦ · · ·xj−1 ◦βj−1 ◦xj ◦α)) ∈ Λj is q−2ζ∆. Let Nj be the random variable equal

to the number of elements α ∈ F3ζ∆
q such that Pj(ρj(x1 ◦ β1 ◦ · · ·xj−1 ◦ βj−1 ◦ xj ◦ α)) ∈ Λj and

Qj(ρj(x1 ◦ β1 ◦ · · ·xj−1 ◦ βj−1 ◦ xj ◦α)) ∈ Λj . The expected value of Nj equals µ
def
= qζ∆. Note that

µ > 3qλ by the hypothesis in the lemma.

By concentration inequalities for λ-wise independent random variables, see for example [BR94,
Lemma 2.3], the probability that Nj = 0 is at most

8 ·
(
λµ+ λ2

µ2

)λ/2
6 8 ·

(
1

2q

)λ/2
6 q−3k .

Summing up these conditional probabilities for j = 1, 2, . . . , b, the probability that HSE(x) does

not exist is at most b · q−3k 6 q−2k. Finally, a union bound over all x ∈ F(1−3ζ)k
q shows that the

probability that some x does not have a valid encoding HSE(x) is at most q−k.

17

Suppose the polynomials Pi, Qi, 1 6 i 6 b, are such that HSE(x) is defined for all x ∈ F(1−3ζ)k
q .

This implies that the set Θ = {HSE(x) | x ∈ F(1−3ζ)k
q } has size q(1−3ζ)k. Also note that Θ ⊆ H =

Γ(P1, P2, . . . , Pb)∩Γ(Q1, . . . , Qb). Thus if H is (F , s,∆, L)-h.s.e and (F , sb, `)-evasive then so is Θ.
Therefore the claim of Theorem 4.4 also holds for Θ. Putting these together, we have the following
main result on the pseudorandom construction of efficiently encodable h.s.e sets. The elements of
this h.s.e set will give the subset of messages that we will encoded by the folded algebraic codes for
our final list-decodable code construction. The proof is an immediate consequence of Theorem 4.4
and Lemma 4.5 (note that the stated conditions (15) on the parameters meet the requirements of
both Theorem 4.4 and Lemma 4.5).

Theorem 4.6 (Main construction of h.s.e. subsets). Suppose b, c,∆, k, s are positive integers and
ζ ∈ (0, 1) such that following requirements are met:

k = b∆; s < ζ∆/10; qζ∆ > (2cqk)10/9 . (15)

Let F be a family of (s,∆)-periodic subspaces of Fkq with |F| 6 qck. Then, for a random and
independent choice of polynomials Pi, Qi ∈ Fqi∆ [T] of degree λ = max{6k, ck + 1} and any subsets

Λi of size q(i−ζ)∆ for i = 1, 2, . . . , b, the following conditions both hold with probability at least
1− 2−Ω(k):

1. HSE : F(1−3ζ)k
q → Fkq from Definition 8 is a well-defined injective map, and can be computed

using O(q3ζ∆k3 log2 k) operations over Fq.

2. The set H = Γ(P1, . . . , Pb)∩Γ(Q1, . . . , Qb), and in particular the image of HSE, is a (F , s,∆, ck)-
h.s.e and a (F , sb, 20c/ζ)-evasive subset of Fkq .

4.5 Efficient computation of intersection with h.s.e. subsets

The key aspect which makes h.s.e subsets useful in our context to prune the affine space of candi-
date messages, and indeed motivated the exact specifics of the definition and construction, is the
following claim which shows that intersection of a (s,∆)-periodic subspace with our h.s.e set can
found efficiently.

Lemma 4.7. Suppose polynomials Pi, Qi, i = 1, 2, . . . , b, of degree λ = max{6k, ck + 1} have been
picked so that the map HSE satisfies the conditions of Theorem 4.6 w.r.t some family F of at
most qck affine subspaces of Fkq each of which is (s,∆)-periodic. Then given a representation of

W ∈ F (as in Definition 1), we can find the list of at most O(c/ζ) values of x ∈ F(1−3ζ)k
q such that

HSE(x) ∈ F using O
(
c2(kqs + q3ζ∆)k3 log2 k

)
operations over Fq.

Proof. The fact that there are at most ` solutions x follows immediately from the fact that the
image of HSE is (F , sb, `)-evasive. So we only need to argue about the time complexity.

For 1 6 i 6 b, define Hi = proji∆(H) where H = Γ(P1, . . . , Pb)∩Γ(Q1, . . . , Qb). Likewise, define
Wi = proji∆(W). To compute the intersection H ∩W list efficiently, we iteratively find Wi∩Hi for
i = 1, 2, . . . , b as follows. Recall that we know that |Hi∩Wi| 6 L for each i as H is (F , s,∆, L)-h.s.e.
For each of the at most L = ck candidates in Wi−1 ∩ Hi−1, as W is (s,∆)-periodic, there are at
most qs possible extensions to the next block of (q−1) coordinates which we can find and list using

18

O(qs · k∆) operations. (The k∆ term comes from computing the affine shift for the i’th block for
that particular prefix of (i− 1)∆ symbols.)

We then test each of L·qs candidates for membership in Γi which can be done using O(ck2 log2 k)
Fq-operations time by evaluating the degree λ polynomial and checking that the resulting value
belongs to Λi. By the (F , s,∆, L)-h.s.e property of H there are at most L of these candidates
that can belong to Hi, thus bringing our list size back to L. The runtime for each iterative step is
O(Lqsk∆ + Lqsck2 log2 k) = O(cLqsk2 log2 k) Fq-operations, leading to an overall runtime for all
b < k stages of O(cLqsk3 log2 k) operations over Fq to recover the intersection H ∩W . Finally for
each y ∈ H ∩W , we can check if it is the range of HSE by writing y = x1 ◦ β1 ◦ · · · ◦ xb ◦ βb and
checking that HSE(x1 ◦ x2 ◦ · · · ◦ xb) = y, which takes O(q3ζ∆ck3 log2 k) operations over Fq.

5 Combining folded Hermitian codes and h.s.e sets

Instead of encoding arbitrary f ∈ Fkq by the folded Hermitian code (Definition 3), we can restrict the
messages f to belong to the range of our h.s.e set, so that the affine space of solutions guaranteed
by Lemma 3.7 can be efficiently pruned to a small list. The formal claim is below.

Theorem 5.1. Let e > 2 be an integer, r > 2e be a large enough prime power, q = r2, and
ζ ∈ (1/q, 1). Let k 6 qζq/2 be a positive integer. Let s,m be positive integers satisfying 1 6 s 6
m 6 q − 1 and s < ζq/12. Finally let N be an integer satisfying k + 2ere 6 Nm 6 (q − 1)re.

Consider the code C1 with encoding E1 : F(1−3ζ)k
q → (Fmq)N defined as

E1(x) = FH(N, k, q, e,m)(HSE(x)) ,

for HSE : F(1−3ζ)k
q → Fkq from Definition 8 for a period size ∆ = q − 1.

Then, with high probability over the choice of HSE, this code has rate R = (1−3ζ)k/(Nm), can
be encoded in poly(Nmqζq) time, and is (τ, `)-list decodable in time poly(Nmqζq) for ` 6 O(1/(Rζ))
and

τ =
s

s+ 1

(
1− k

N(m− s+ 1)

)
− 3m

m− s+ 1

ere

mN
.

Proof. This follows by just combining the ingredients we have developed so far. Since ge 6 ere

by (2), the condition on N,m meets the requirement for the construction of the folded Hermitian
tower based code in Definition 2.

Whp, the map HSE is well-defined and injective, and so E1 is an injective encoding. The rate
of the code is therefore clearly as claimed. With ∆ = q − 1, one can check that the conditions of
Theorem 4.6 are met for our choice of ζ, s, q, k. By Theorem 4.6 , Part 1, HSE can be computed in
time poly(Nmqζq) and hence so can E1 (as FH is efficiently encodable as well).

The claimed value of the error fraction τ satisfies (13) since the genus is at most ere by (2).
By Lemma 3.7, we know that the candidate messages found by the decoder lie in one of at most
q2Nm possible (s, q − 1)-periodic subspaces. Appealing to Theorem 4.6 and Lemma 4.7 with the
choice c = 2Nm/k = O(1/R), we conclude that there is a decoding algorithm running in time
poly(Nmqζq) to list decode C1 from a fraction τ of errors, outputting at most O(1/(Rζ)) messages
in the worst-case.

19

Let ε > 0 be a small positive constant, and a family of codes of length N (assumed large enough)
and rate R ∈ (0, 1) is sought. Pick n to be a growing parameter.

By picking s = Θ(1/ε), m = Θ(1/ε2), r = blog nc, e = d logn
log logne, ζ = (log n log logn)−1,

N = b (r2−1)re

m c, and k proportional to Nm in Theorem 5.1, we can conclude the following.

Corollary 5.2. For any R ∈ (0, 1) and positive constant ε ∈ (0, 1), there is a Monte Carlo
construction of a family of codes of rate at least R over an alphabet size (logN)O(1/ε2) that are
encodable and (1 − R − ε,O(R−1 logN log logN))-list decodable in poly(N, 1/ε) time, where N is
the block length of the code.

Our promised main result (Theorem 1.1) achieves better parameters than the above — an
alphabet size of exp(Õ(1/ε2)) and list-size of O(1/(Rε)). This is based on the Garcia-Stichtenoth
tower and is described next.

6 Folded codes from the Garcia-Stichtenoth tower

Compared with the Hermitian tower of function fields, the Garcia-Stichtenoth tower of function
fields yields folded codes with better parameters due to the fact that the Garcia-Stichtenoth tower
is an optimal one in the sense that the ratio of number of rational places against genus achieves
the maximal possible value. The construction of folded codes from the Garcia-Stichtenoth tower is
almost identical to the one from the Hermitian tower except for one major difference: the redefined
code from the Garcia-Stichtenoth tower is constructed in terms of the local expansion at point P∞,
while in the Hermitian case local expansion at P0 is considered. For convenience of the reader, we
give a parallel description of folded codes from the Garcia-Stichtenoth tower, while only sketching
the identical parts.

6.1 Background on Garcia-Stichtenoth tower

Again let r be a prime power and let q = r2. We denote by Fq the finite field with q elements.
The Garcia-Stichtenoth towers that we are going to use for our code construction were discussed
in [GS95, GS96]. The reader may refer to [GS95, GS96] for the detailed background on the Garcia-
Stichtenoth function tower. There are two optimal Garcia-Stichtenoth towers that are equivalent.
For simplicity, we introduce the tower defined by the following recursive equations [GS96]

xri+1 + xi+1 =
xri

xr−1
i + 1

, i = 1, 2, . . . , e− 1.

Put Ke = Fq(x1, x2, . . . , xe) for e > 2.

Rational places. The function field Ke has at least re−1(r2− r) + 1 rational places. One of these
is the “point at infinity” which is the unique pole P∞ of x1 (and is fully ramified). The other
re−1(r2− r) come from the rational places lying over the unique zero of x1−α for each α ∈ Fq with
αr +α 6= 0. Note that for every α ∈ Fq with αr +α 6= 0, the unique zero of x1−α splits completely
in Ke, i.e., there are re−1 rational places lying over the zero of x1 − α. Let P be the set of all the
rational places lying over the zero of x1 − α for all α ∈ Fq with αr + α 6= 0. Then, intuitively, one

20

can think of the re−1(r2 − r) rational places in P as being given by e-tuples (α1, α2, . . . , αe) ∈ Feq
that satisfy αri+1 + αi+1 =

αr
i

αr−1
i +1

for i = 1, 2, . . . , e− 1 and αr1 + α1 6= 0. For each value of α ∈ Fq,

there are precisely r solutions to β ∈ Fq satisfying βr + β = αr

αr−1+1
, so the number of such e-tuples

is re−1(r2 − r) (r2 − r choices for α1, and then r choices for each successive αi, 2 6 i 6 e).

Riemann-Roch spaces. As shown in [SAK+01], every function of Ke with a pole only at P∞ has
an expression of the form

xa1

(e−2)r+1∑
i1=0

r−1∑
i2=0

· · ·
r−1∑
ie=0

cih1
xi11 x

i2
2 · · ·xiee

π2 . . . πe−1

 , (16)

where a > 0, ci ∈ Fq, and for 1 6 j < e, hj = xr−1
j + 1 and πj = h1h2 . . . hj . Moreover, Shum et al.

[SAK+01] present an algorithm running in time polynomial in l that outputs a basis of over Fq of
L(lP∞) explicitly in the above form.

We stress that evaluating elements of L(lP∞) at the rational places of P is easy: we simply have
to evaluate a linear combination of the monomials allowed in (16) at the tuples (α1, α2, . . . , αe) ∈ Feq
mentioned above. In other words, it is just evaluating an e-variate polynomial at a specific subset
of re−1(r2 − r) points of Feq, and can be accomplished in polynomial time.

Genus. The genus ge of the function field Ke is given by

ge =

{
(re/2 − 1)2 if e is even

(r(e−1)/2 − 1)(r(e+1)/2 − 1) if e is odd.

Thus the genus ge is at most re. (Compare this with the ere bound for the Hermitian tower; this
smaller genus is what allows to pick e as large as we want in the Garcia-Stichtenoth tower, while
keeping the field size q fixed.)

A useful automorphism. Let γ be a primitive element of Fr and consider the automorphism
σ ∈ Aut(Ke/Fq) defined by

σ : xi 7→ γ(r+1)ri−1
xi for i = 1, 2, . . . , e.

Then the order of σ is r − 1 and furthermore, we have the following facts:

(i) σ keeps P∞ unchanged, i.e., P∞
σ = P∞;

(ii) Let P be the set of all the rational places lying over x1 − α for all α ∈ Fq with αr + α 6= 0.
Then |P| = (r − 1)re. Moreover, σ divides P into re orbits and each orbit has r − 1 places.
For an integer m with 1 6 m 6 r − 1, we can label Nm distinct elements

P1, P
σ
1 , . . . , P

σm−1

1 , . . . , PN , P
σ
N , . . . , P

σm−1

N

in P, as long as N 6 re
⌊
r−1
m

⌋
.

The folded codes from the Garcia-Stichtenoth tower are defined similarly to the Hermitian case.

21

Definition 9 (Folded codes from the Garcia-Stichtenoth tower). Assume that m, k,N are positive
integers satisfying 1 6 m 6 r − 1 and l/m < N 6 re

⌊
r−1
m

⌋
. The folded code from Ke with

parameters N, l, q, e,m, denoted by F̃GS(N, l, q, e,m), encodes a message function f ∈ L(lP∞) as

f 7→




f(P1)
f(P σ1)

...

f(P σ
m−1

1)

 ,


f(P2)
f(P σ2)

...

f(P σ
m−1

2)

 , . . . ,


f(PN)
f(P σN)

...

f(P σ
m−1

N)


 ∈ (Fmq)N . (17)

Then we have a similar result on parameters of F̃GS(N, l, q, e,m).

Lemma 6.1. The above code F̃GS(N, l, q, e,m) is an Fq-linear code over alphabet size qm, rate at

least l−ge+1
Nm , and minimum distance at least N − l

m .

6.2 Redefining the code in terms of local expansion at P∞

In the Hermitain case, we use coefficients of its power series expansion around P0. However, for
the Garcia-Stictenoth tower we do not have such a nice point P0. Fortunately, we can use point
P∞ to achieve our mission.

Again for our decoding, we will actually recover the message f ∈ L(lP∞) in terms of the
coefficients of its power series expansion around P∞

f = T−l(f0 + f1T + f2T
2 + · · ·)

where T := 1
xe

is the local parameter at P∞ (which means that xe has exactly one pole at P∞, i.e.,
νP∞(xe) = −1).

In this case we can also show that one can efficiently move back-and-forth between the represen-
tation of f ∈ L(lP∞) in terms of a basis for L(lP∞) and its power series representation (f0, f1, . . .)
around P∞. Since the mapping f 7→ (f0, f1, . . .) is Fq-linear, it suffices to compute the local
expansion at P∞ of a basis for L(lP∞).

Lemma 6.2. For any n, one can compute the first n terms of the local expansion of the basis
elements (16) at P∞ using poly(n) operations over Fq.

Proof. First let h be a nonzero function in Fq(x1, x2, . . . , xe) with νP∞(h) = v ∈ Z. Assume that
the local expansion h = T v

∑∞
j=0 ajT

j is known. To find the local expansion 1
h = T−v

∑∞
j=0 cjT

j .
Consider the identity

1 =

 ∞∑
j=0

cjT
j

 ∞∑
j=0

ajT
j

 .

Then by comparing the coefficients of T i in the above identity, one has c0 = a−1
0 and ci =

−a−1
0 (ci−1a1 + · · ·+ c0ai) can be easily computed recursively for all i > 1.

Thus, by the structure of the basis functions in (16), it is sufficient to find an algorithm of
efficiently finding local expansions of xi at P∞ for every i = 1, 2, . . . , e. We can inductively find the
local expansions of xi at P∞ as follows. We note that νP∞(xi) = −re−i for i = 1, 2, . . . , e.

22

For i = e, xe has the local expansion 1
T at P∞.

Now assume that we know the local expansion of xi. Then we can easily compute the local
expansion of xri + xi and hence the local expansion of 1/(xri + xi). Let us assume that 1/(xri + xi)

has local expansion 1/(xri + xi) = T r
e−i+1 ∑∞

j=0 αjT
j at P∞ for some αi ∈ Fq. Assume that 1/xi−1

has the local expansion 1/xi−1 = T r
e−i+1 ∑∞

j=0 βjT
j . To find βj , we consider the identity

T r
e−i+1

∞∑
j=0

βjT
j + T r

e−i+2
∞∑
j=0

βrjT
rj =

1

xi−1
+

(
1

xi−1

)r
=

1

xri + xi
= T r

e−i+1
∞∑
j=0

αjT
j .

By comparing the coefficients of T j+r
e−i+1

in the above identity, we have that β0 = α0 and βj can
be easily computed recursively by the following formula for all i > 1.

βj =

{
αj if r 6 |j
αj − βrj/r−1 if r|j.

Therefore, the local expansion of xi−1 at P∞ can be easily computed.

As in the Hermitian case, we will actually need to index the messages of the code by the first
k coefficients (f0, f1, . . . , fk−1) of the local expansion of the function f at P∞.

Let us define the local expansion map evP∞ : L((k + 2ge − 1)P∞) → Fkq that maps f to

(f0, f1, . . . , fk−1) where f = T−(k+2ge−1)(f0 + f1T + f2T
2 + · · ·) is the local expansion of f at P∞.

Claim 6.3. evP∞ is an Fq-linear surjective map. Further, we can compute evP∞ using poly(k, ge)
operations over Fq given a representation of the input f ∈ L((k+ 2ge− 1)P∞) in terms of the basis
(16).

The proof of this claim is similar to Claim 3.3. Note that the kernel of evP∞ is L((2ge − 1)P∞)
which has dimension exactly ge by the Riemann-Roch theorem.

For each (f0, f1, . . . , fk−1) ∈ Fkq , we can therefore pick a pre-image in L((k + 2ge − 1)P∞).

For convenience, we will denote an injective map making such a unique choice by κP∞ : Fkq →
L((k + 2ge − 1)P∞). By picking the pre-images of a basis of Fkq and extending it by linearity, we
can assume κP∞ to be Fq-linear, and thus specify it by a (k + ge)× k matrix. We record this fact
for easy reference below.

Claim 6.4. The map κP∞ : Fkq → L((k+2ge−1)P∞) is Fq-linear and injective. We can compute a
representation of this linear transformation using poly(k, ge) operations over Fq, and the map itself
can be evaluated using poly(k, ge) operations over Fq.

Now we redefine a version of the folded Garcia-Stichtenoth code that maps Fkq to (Fmq)N by com-
posing the folded encoding (17) from the original Definition 9 with κP∞ .

Definition 10 (Folded Garcia-Stichtenoth code using local expansion). The folded Garcia-Stichtenoth

code (FGS code for short) FGS(N, k, q, e,m) maps f = (f0, f1, . . . , fk−1) ∈ Fkq to F̃GS(N, k + 2ge −
1, q, e,m)(κP∞(f)) ∈ (Fmq)N .

The rate of the above code equals k/(Nm) and its distance is at least N − (k + 2ge − 1)/m.

23

6.3 List decoding FGS codes

The list decoding part for the codes from the Garcia-Stichtenoth tower is almost identical to the
Hermitian tower. We only sketch this part briefly.

If f is a function in L((k + 2ge − 1)P∞) whose encoding (17) agrees with the received word y
in at least t columns with t > D+k+2ge−1

m−s+1 and

D =

⌊
N(m− s+ 1)− k + (s− 1)ge + 1

s+ 1

⌋
,

then there exist Ai ∈ L(DP∞) for i = 1, 2, . . . , s and A0 ∈ L((D + k + 2ge − 1)P∞) such that they
are not all zero and

Q(f, fσ
−1
, . . . , fσ

−(s−1)
) = A0 +A1f +A2f

σ−1
+ · · ·+Asf

σ−(s−1)
= 0. (18)

Solving the functional equation for f . As in the Hermitian case, our goal next is to recover the
list of solutions f to the functional equation (18). Recall that our message functions lie in Im(κP∞),
so we can recover f by recovering the top k coefficients (f0, f1, . . . , fk−1) of its local expansion.

f = T−(k+2ge−1)
∞∑
j=0

fjT
j (19)

at P∞. We now prove that (f0, f1, . . . , fk−1) for f satisfying Equation (18) belong to a “periodic”
subspace (in the sense of Definition 1) of not too large dimension.

Lemma 6.5. The set of solutions (f0, f1, . . . , fk−1) ∈ Fkq such that

f = T−(k+2ge−1)
∞∑
j=0

fjT
j ∈ L((k + 2ge − 1)P∞)

obeys equation

A0 +A1f +A2f
σ−1

+ · · ·+Asf
σ−(s−1)

= 0 (20)

when at least one Ai is nonzero is an affine subspace W of dimension at most (s− 1)
⌈

k
r−1

⌉
.

Further, there are at most qNm+s+1 possible choices of the subspace W , each of which is (s, r−1)-
periodic.

Given the representation of each Ai w.r.t the basis (16), we can find a representation of W in
terms of the periodic subspace U of dimension less than s, and the affine shifts in each window of
r − 1 coordinates, in the sense of Definition 1.

Proof. Let u = min{νP∞(Ai) : i = 1, 2, . . . , s}. Then it is clear that u 6 0 and νP∞(A0) >
u− (k + 2ge − 1). Each Ai has a local expansion at P∞:

Ai = T u
∞∑
j=0

ai,jT
j

24

for i = 1, . . . , s− 1 and A0 has a local expansion at P∞:

A0 = T u−(k+2ge−1)
∞∑
j=0

a0,jT
j

From the definition of u, one knows that the polynomial

B0(X) := a1,0 + a2,0X + · · ·+ as,0X
s−1

is nonzero.

Assume that at P∞, the function f has a local expansion (19). Then fσ
−i

has a local expansion
at P∞ as follows

fσ
−i

= ξ−(k+2ge−1)iT−(k+2ge−1)
∞∑
j=0

ξjifjT
j ,

where ξ = 1/γ.

The coefficient of T d+u−(k+2ge−1) in the local expansion of Q(f, fσ
−1
, . . . , fσ

−(s−1)
) is

0 = B(ξd−(k+2ge−1))fd +
d−1∑
i=0

bifi + a0,d, (21)

where bi ∈ Fq is a linear combination of ai,j which does not involve fj . Hence, fd is uniquely
determined by f0, . . . , fd−1 as long as B(ξd−(k+ge−1)) 6= 0.

Let S := {0 6 d 6 r − 2 : B(ξd−(k+ge−1)) = 0}. Then it is clear that |S| 6 s − 1 since the
order of ξ is r − 1 and B0(X) has degree at most s− 1. Thus, B(ξd−(k+ge−1)) 6= 0 if and only if j
mod (r − 1) /∈ S; and in this case fj is a fixed affine linear combination of fi for 0 6 i < j. Note

that B0(X) has at most (s − 1)
⌈

k
r−1

⌉
roots among {ξi : i = 0, 1, . . . , k − 1}. It follows that the

set of solutions (f0, f1, . . . , fk−1) is an affine space W ⊂ Fkq , and the dimension of W is at most

(s− 1)
⌈

k
r−1

⌉
.

The fact that W is (s, r− 1)-smooth follows from (21) and noting that the coefficients bd−j for
j > 1 in that equation are given by Bj(ξ

d−j−(k+2ge−1)) where Bj(X) := a1,j+a2,jX+· · ·+as,jXs−1.
Therefore, once the values of fi, 0 6 i < (j − 1)(r − 1) are fixed, the possible choices for the next
block of (r − 1) coordinates, f(j−1)(r−1), · · · , fj(r−1)−1, lie in an affine shift of a fixed subspace of
dimension at most (s− 1). Further, the affine shift is an affine linear combination of the fi’s in the
previous blocks.

Finally, by the choice of D, the total number of possible (A0, A1, . . . , As) and hence the number
of possible functional equations (20), is at most qN(m−s+1)+s+1 6 qNm+s+1. Therefore, the number
of possible candidate subspaces W is also at most qNm+s+1.

Similar to the bound (13) for the Hermitian case, we conclude, after some simple calculations
and using the upper bound on genus ge 6 re, that one can find a representation of the (s, r − 1)-
periodic subspace containing all candidate messages (f0, f1, . . . , fk−1) in polynomial time, when the
fraction of errors τ = 1− t/N satisfies

τ 6
s

s+ 1

(
1− k

N(m− s+ 1)

)
− 3m

m− s+ 1

re

mN
. (22)

25

6.4 Combining FGS codes and h.s.e sets

Similarly to Section 5, we now show how to pre-code the messages of the FGS code with a h.s.e
subset. The approach is similar, though we need one idea to ensure that we can pick parameters
so that the base field Fq can be constant-sized and obtain a final list-size bound that is a constant
independent of the code length. This idea is to work with a larger “period size” ∆ for the periodic
subspaces, based on the following observation.

Observation 6.6. Let W be an (s,∆)-periodic subspace of Fkq for k = b∆. Then W is also
(su,∆u)-periodic for every integer u, 1 6 u 6 b.

As in the Hermitian case, instead of encoding arbitrary f ∈ Fkq by the folded Garcia-Stichtenoth
code (Definition 3), we will restrict the messages f to belong to the range of our h.s.e set. This will
ensure that the affine space of solutions guaranteed by Lemma 6.5 can be efficiently pruned to a
small list.

Theorem 6.7. Let r be a prime power, q = r2, and e > 2 be an integer, and ζ ∈ (0, 1). Let
k 6 qζ∆/2 be a positive integer. Let ∆ 6 k be a multiple of (r− 1), say ∆ = u(r− 1) for a positive
integer u.

Let s,m be positive integers satisfying 1 6 s 6 m 6 r − 1 and s < ζr/12. Finally let N be an
integer satisfying k + 2re 6 Nm 6 (r − 1)re.

Consider the code C2 with encoding E2 : F(1−3ζ)k
q → (Fmq)N defined as

E2(x) = FGS(N, k, q, e,m)(HSE(x)) ,

for HSE : F(1−3ζ)k
q → Fkq from Definition 8 for a period size ∆.

Then, with high probability over the choice of HSE with period size ∆, this code has rate R = (1−
3ζ)k/(Nm), can be encoded in poly(Nmqζ∆) time, and is (τ, `)-list decodable in time poly(Nmqζ∆)
for ` 6 O(1/(Rζ)) and

τ =
s

s+ 1

(
1− k

N(m− s+ 1)

)
− 3m

m− s+ 1

re

mN
. (23)

Proof. This follows by just combining the ingredients we have developed so far. Since the genus
ge is upper bounded re, the condition on N,m meets the requirement for the construction of the
folded codes based on Garcia-Stichtenoth tower in Definition 9.

Whp, the map HSE is well-defined and injective, and so E2 is an injective encoding. The rate
of the code is therefore clearly as claimed. By Theorem 4.6 , Part 1, HSE can be computed in time
poly(Nmqζ∆) and hence so can E1 (as FGS is efficiently encodable as well).

The claimed value of the error fraction τ is just the bound (22). By Lemma 6.5, we know that
the candidate messages found by the decoder lie in one of at most q2Nm possible (s, r− 1)-periodic
subspaces. By Observation 6.6, each of these subspaces is also (su,∆)-periodic. One can check
that the conditions of Theorem 4.6 are met for our choice of ζ, q,∆, k and taking su to play the
role of s (since s < ζr/12, we have su < ζ∆/10).

Appealing to Theorem 4.6 and Lemma 4.7 with the choice c = 2Nm/k = O(1/R), we conclude
that there is a decoding algorithm running in time poly(Nmqζ∆) to list decode C2 from a fraction
τ of errors, outputting at most O(1/(Rζ)) messages in the worst-case.

26

Finally, all that is left to be done is to pick parameters to show how the above can lead to
optimal rate list-decodable codes over a constant-sized alphabet which further achieve very good
lists-size.

Let ε > 0 be a small positive constant, and a family of codes of length N (assumed large enough)
and rate R ∈ (0, 1) is sought. Pick n to be a growing parameter.

Let us pick s = Θ(1/ε), m = Θ(1/ε2), ζ = ε/6, r = Θ(1/ε), q = r2, and e = d logn
log r e,

N = b (r−1)re

m c, and k = RNm(1 + ε). This ensures that (i) there are at least n = Nm rational
places and so we get a code of length at least n/m = N , (ii) the rate of the code C2 is at least R,
and (iii) the error fraction (23) is at least 1−R− ε.

The remaining part is to pick a multiple ∆ of (r − 1) so that the k 6 qζ∆/2 condition is met.
This can be achieved by choosing u = d logn

log(1/ε)e and ∆ = (r − 1)u. With these choices, we can
conclude the following, which is the main final result of this paper.

Theorem 6.8 (Main; Corollary to Theorem 6.7 with above choice of parameters). For any R ∈
(0, 1) and positive constant ε ∈ (0, 1), there is a Monte Carlo construction of a family of codes of rate
at least R over an alphabet size exp(O(log(1/ε)/ε2)) that are encodable and (1−R−ε,O(1/(Rε))-list
decodable in poly(N) time, where N is the block length of the code.

It may be instructive to recap why the Hermitian tower could not give a result like the above
one. In the Hermitian case, the ratio ge/n of the genus to the number of rational places was about
e/r = e/

√
q, and thus we needed q > e2. Since the period ∆ was about q, the running time

of the decoder was bigger than qΩ(ζq), whereas the length of the code was at most qO(
√
q). This

dictated the choice of q ≈ log2 n, and then to keep the running time polynomial, we had to take
ζ ≈ (log n log log n)−1.

References

[BR94] Mihir Bellare and John Rompel. Randomness-efficient oblivious sampling. In Symposium
on Foundations of Computer Science (FOCS), pages 276–287, 1994. 17

[DL11] Zeev Dvir and Shachar Lovett. Subspace-evasive sets. Electronic Colloquium on Com-
putational Complexity, TR11-139, 2011. 4

[Eli91] Peter Elias. Error-correcting codes for list decoding. IEEE Transactions on Information
Theory, 37:5–12, 1991. 2

[GN12] Venkatesan Guruswami and Srivatsan Narayanan. Combinatorial limitations of a strong
form of list decoding. CoRR, abs/1202.6086, 2012. 2

[GR08] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding capacity:
Error-correction with optimal redundancy. IEEE Transactions on Information Theory,
54(1):135–150, 2008. 2, 3, 4

[GS95] Arnaldo Garcia and Henning Stichtenoth. A tower of Artin-Schreier extensions of func-
tion fields attaining the Drinfeld-Vlădut bound. Inventiones Mathematicae, 121:211–222,
1995. 2, 4, 20

27

[GS96] Arnaldo Garcia and Henning Stichtenoth. On the asymptotic behavior of some towers
of function fields over finite fields. Journal of Number Theory, 61(2):248–273, 1996. 2,
4, 20

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon and
Algebraic-geometric codes. IEEE Transactions on Information Theory, 45(6):1757–1767,
1999. 3

[Gur10] Venkatesan Guruswami. Cyclotomic function fields, Artin-Frobenius automorphisms,
and list error-correction with optimal rate. Algebra and Number Theory, 4(4):433–463,
2010. 3, 4

[Gur11] Venkatesan Guruswami. Linear-algebraic list decoding of folded Reed-Solomon codes.
In Proceedings of the 26th IEEE Conference on Computational Complexity, June 2011.
3, 4, 5, 13

[GW11] Venkatesan Guruswami and Carol Wang. Optimal rate list decoding via derivative codes.
In Proceedings of APPROX/RANDOM 2011, pages 593–604, August 2011. 4

[PV05] Farzad Parvaresh and Alexander Vardy. Correcting errors beyond the Guruswami-Sudan
radius in polynomial time. In Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science, pages 285–294, 2005. 3

[SAK+01] Kenneth Shum, Ilia Aleshnikov, P. Vijay Kumar, Henning Stichtenoth, and Vinay De-
olalikar. A low-complexity algorithm for the construction of algebraic-geometric codes
better than the Gilbert-Varshamov bound. IEEE Transactions on Information Theory,
47(6):2225–2241, 2001. 5, 21

[She93] Ba-Zhong Shen. A Justesen construction of binary concatanated codes that asymptoti-
cally meet the Zyablov bound for low rate. IEEE Transactions on Information Theory,
39:239–242, 1993. 3, 4, 6

[Sti93] Henning Stichtenoth. Algebraic Function Fields and Codes. Universitext, Springer-
Verlag, Berlin, 1993. 6

[Sud97] Madhu Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound.
Journal of Complexity, 13(1):180–193, 1997. 3

[Vad10] Salil Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Com-
puter Science (FnT-TCS). NOW publishers, 2010. To appear. Draft available at
http://people.seas.harvard.edu/~ salil/pseudorandomness/. 3

28

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

